TWI245138B - Mounting and alignment structures for optical components - Google Patents
Mounting and alignment structures for optical components Download PDFInfo
- Publication number
- TWI245138B TWI245138B TW89123772A TW89123772A TWI245138B TW I245138 B TWI245138 B TW I245138B TW 89123772 A TW89123772 A TW 89123772A TW 89123772 A TW89123772 A TW 89123772A TW I245138 B TWI245138 B TW I245138B
- Authority
- TW
- Taiwan
- Prior art keywords
- optical
- patent application
- scope
- optical element
- item
- Prior art date
Links
Landscapes
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
1245138 A7 —______B7 __ 五、發明說明(ί ) 1相關申請案] 本申請案聲明美國臨時申請案號60/165,431,建檔於 1999年11月15日之申請日之利益,且茲按其整體倂合爲 參考文獻。 同時,本申請案亦聲明美國臨時申請案號60/186,925 ,建檔於2000年3月3日之申請日之利益,且茲按其整體 倂合爲參考文獻。 [本發明之背景] 對於依據光學系統製程之半導體及/或MEMS (微機電 系統)而言,元件校準極爲重要。依照光線的基本性質,會 要求按光線來產生、傳送與修改各項元件時,必須要相對 於彼此準確地安置,特別是在自由空間光學系統的環境下 尤甚,以便於電子光學式或是全光學式系統之內適切地和 有效地運作。而半導體及MEMS的比例特徵甚或要求到次 微米的校準正確度。 經濟部智慧財產局員工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) 茲考慮將諸如抽運(pump)雷射之半導體二極體雷射, 耦接至一單模光纖的光纖核芯之特定範例。只有被耦接到 該光纖核芯的功率方得用以按Raman抽運法則來光學性抽 運一後續增益光纖,諸如摻有稀土族元素光纖或是常態光 纖。該耦接效益性與雷射輸出面和核芯兩者正確校準結果 之間的相關度極高。偏誤的校準結果或將導致信號透過光 學系統傳輸時發生部份或完全損失。 除此之外,這種光學系統會要求機械性強固的固定與 3 P氏張尺度適用中關家標準(CNS)A4規格(21G X 297公爱) " 1245138 B71245138 A7 —______ B7 __ V. Description of Invention (ί) 1 Related Applications] This application declares the benefit of US Provisional Application No. 60 / 165,431, filed on the filing date of November 15, 1999, and is based on its entirety Coupling is a reference. At the same time, this application also declares the benefit of US Provisional Application No. 60 / 186,925, filed on the filing date of March 3, 2000, and is hereby incorporated by reference as a whole. [Background of the Invention] For semiconductor and / or MEMS (micro-electro-mechanical systems) based on optical system processes, component calibration is extremely important. According to the basic nature of light, it is required that when components are generated, transmitted and modified according to light, they must be accurately positioned relative to each other, especially in the environment of free-space optical systems, in order to facilitate electron optics or Operates properly and efficiently within an all-optical system. The proportional characteristics of semiconductors and MEMS even require sub-micron calibration accuracy. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling out this page). We will consider coupling semiconductor diode lasers such as pump lasers to a single-mode fiber. Specific examples of fiber cores. Only the power coupled to the core of the fiber can be used to optically pump a subsequent gain fiber, such as a rare earth-doped fiber or a normal fiber, according to the Raman pumping rule. The correlation between the coupling effectiveness and the correct calibration results of both the laser output surface and the core is extremely high. Misaligned calibration results may result in partial or complete loss of signals transmitted through the optical system. In addition, this optical system will require mechanically strong fixation and 3 P-scale scales to apply Zhongguanjia Standard (CNS) A4 specifications (21G X 297 public love) " 1245138 B7
經濟部智慧財產局員XMember of Intellectual Property Bureau, Ministry of Economic Affairs X
五、發明說明(〆) '校準組態。在製作過程裡,系統會暴露於廣泛的溫度範圍 下,並且買方規格亦會明訂要求關於溫度的週期性測試。 而於交貨之後,系統又會暴露在長期的溫度循環和機械震 動狀態。 焊接與雷射鎔燒是兩種常用的固定技術。可藉於待加 校準元素與彼所將附裝之平台或基板間,利用鎔鑄焊接來 執行校準作業的方式,俾達成光學元件的焊接附裝。然後 將該焊處固化以「鎖定」於校準結果。在某些情況下,會 在焊處固化之前先有意對該校準位置另加入一位移量,藉 以補償該焊處固化收縮所產生的後續校準位移。而在雷射 鎔燒的情況裡,例如用一鉗夾將光纖握持住,然後再對準 於該半導體雷射並於該處進行鎔燒。可接著再於該鉗夾進 一步鎔燒該光纖,以便得出沿著他軸的校準結果。第二次 鎔燒通常是用以補償因鎔燒自身所產生的校準位移,不過 就如同焊接系統,是無法或得絕對性補償的。 此外,亦有兩種主要類別的校準策略:主動式與被動 式。通常在光學元件的被動式校準作業中,登註或校準特 徵會被直接製作於元件上或是元件載具上,以及元件所將 予固疋之平台上。然後再利用校準功能,將該些元件直接 固定與接附於該平台。而在主動式校準作業中,會將光學 信號傳通該些元件並加偵測。可根據傳輸特徵來執行校準 作業,藉以獲致該系統的最高可能效能水準。 [發明槪要]4 '度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂- -------線— 0V. Description of the invention (i) 'Calibration configuration. During the manufacturing process, the system is exposed to a wide range of temperatures, and the buyer's specifications also specify periodic tests on temperature. After delivery, the system is exposed to long-term temperature cycling and mechanical shock. Welding and laser scorch are two common fixing techniques. We can achieve the soldering of optical components by using the method of performing the calibration operation between the calibration element to be added and the platform or substrate to which it will be attached. The weld is then cured to "lock" to the calibration result. In some cases, an additional displacement is intentionally added to the calibration position before the weld is cured to compensate for subsequent calibration displacements caused by the shrinkage of the weld. In the case of laser burn, for example, the optical fiber is held with a clamp, and then the semiconductor laser is aligned and burned there. The fiber can then be further burned in the clamp to obtain a calibration result along another axis. The second sintering is usually used to compensate the calibration displacement caused by the sintering itself, but like the welding system, it cannot be or absolutely compensated. In addition, there are two main types of calibration strategies: active and passive. Usually in the passive calibration of optical components, the registration or calibration features are directly made on the component or on the component carrier and on the platform on which the component is to be fixed. Then use the calibration function to fix and attach these components directly to the platform. In the active calibration operation, optical signals are transmitted to these components and detected. Calibration operations can be performed based on transmission characteristics to achieve the highest possible performance level of the system. [Invention note] 4 'degree applies to China National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page) Order-------- line — 0
I I 1245138 A7 B7 五、發明說明(5) (請先閱讀背面之注意事項再填寫本頁) 傳統式固定與校準技術的基本問題在於,彼等並不相 容於能夠一致性地產出高品質產品之高速生產程序。被動 式校準作業可爲快速執行,不過當有關於生產高效能產品 時通常會出現問題。相對地,主動式校準作業可爲針對時 間進行最佳化以產出該些高效能裝置。然而,這些程序一 般卻屬緩慢。例如,如雷射鎔燒的情況裡,必須首先鎔燒 光纖支架。另外,要讓鎔燒冷卻,接下來再檢查校準結果 。而或仍需要進行後續的鎔燒作業,再施予鎔燒冷卻和複 檢步驟。 -丨線< 除此之外,在製作益形複雜而具較高層級功能性之光 學系統時,確實不易展開這些傳統式技術。譬如說,在雷 射鎔燒可成功地用來將光纖端點校準到位在像是小於5公 分之模組內的單一雷射二極體晶片處。然而,卻是希望得 將更多如過濾、多工、解多工及/或切換等特徵整合於某一 類似尺寸之模組內。 經濟部智慧財產局員工消費合作社印製 本發明係有關用於光學元件之固定與校準結構,特別 是關於具有通常會小於一個公厘(millimeter)尺寸的微光學 元件。該等結構最好是可配署於全光學式、電子光學式、 電機光學式裝置/子系統/系統者爲佳。彼些結構係用以連 接光學諸元至某光學電路板或是光學工臺。該些光學元件 包括如雷射或其他可提供較高層級之功能性的主動裝置, 像疋整合式雷射/MEMS ,即可調式Fabry-Perot主動裝置。 而更進一步,在其他的實作裡該些光學元件可爲被動裝置 ,例如像是射束分割器、被動(如薄膜)過濾器、.鏡射器、 5 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消t 1245138 A7 _____B7_______ 五、發明說明(iV ) 雙折射性材質、極化器、水晶、稜鏡及/或繞射性元素。更 特別是,本發明係屬一種通用型固定系統’可將諸光學元 件連接到一光學工臺,之後並於製作或是後續之刻調 (calibration)或在刻調作業、校準或再校準作業過程中,按 被動或主動方式進行校準。 一般說來,根據一觀點,本發明特性爲一光學元件之 固定與校準結構。這結構通常包含有一準突部分。該部分 之所以稱爲「準突」,是因爲於突擠製程中彼者會在z軸 方向產生具有一大致爲常固之橫切面區段。 然而,本發明並非僅限於透過這種突擠作業來構成該 款結構。例如說,在一較佳實施例中,即利用照相平版以 及像是金屬電鍍處理之金屬化作業來製作該些結構。 根據本發明,該準突部分包含至少一個基座,彼者具 有一橫延性的基座表面,以及一光學元件介面。至少一個 接片會將該光學元件介面連接於該基座。 在一較佳實施例中,該基座表面可接於一光學工臺。 而在另一較佳實施例中,該基座表面係透過焊接,如按 80/20金/錫比率或其他的共融合金比率而加焊接,藉此接 附於一光學工臺。不過,在另款實施例中,亦得採行如雷 射鎔燒、樹脂膠附、超音波鎔燒或其他的黏著/鑄造接附方 式。 在一實施例中,該基座表面尙可進一步包含既經調適 爲符配於光學工臺之對性校準特性的校準特徵。這種被動 校準技術可用來協助光學工臺上的校準結構初始定位作業 6 -------!f丨 (請先閱讀背面之注意事項再填寫本頁) 訂: -·線· 义度適用中國國家標準(CNS)A4規格(210 X 297公釐) 1245138 A7 B7 五、發明說明(<) °在較佳實施例中,係利用光學可偵測式校準的特徵或標 示來在工臺上進行結構定位作業。 根據實作方式,可提供一個或兩個基座。在雙基座組 態、中’通常各者位於該結構中軸的各側處。 在該較佳實施例中,該介面包括一用以透過該準突部 #而得傳通光學信號之璋。這可作爲通往某個安裝於該光 學元件介面上之光學元件的光學接取特徵。在某些實施例 中’光學信號會自光學元件反射並透過該埠而被傳回。而 在其他的實施例中,光學信號會傳通該項像是鏡片等的光 學元件。 在其他的實施例裡,該介面組態係被設定爲某開放鉗 夾或U型鎖閥。這種組態可適用於將如光纖等光學元件固 定在工臺上。 並且最好是提供握把,以利於抓取及操控本校準結構 可屬較佳。在一實施例中,該握把既經整合於光學元件介 面上。而在其他實施例中,所供之握把係整合於接片處及/ 或整合於該基座處。 在該較佳實施例中,該接片含有至少一個彎摺。彎摺 通常是具較少常固橫切面之接片範圍。沿著該接片上最好 供置有至少兩個彎摺可爲較適。彎摺最好是被接片的橫延 區段所分開。該結構的其他彎摺最好是由諸多垂延區段所 分隔較佳。 提供橫延與垂延區段可利於操控,並因而有助於後續 裡按二維x-y平面而具沿X軸校準與沿y軸校準之間的最 7 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) ;0 訂---------線丨 經濟部智慧財產局員工消費合作社印製 1245138II 1245138 A7 B7 V. Description of the invention (5) (Please read the notes on the back before filling this page) The basic problem of traditional fixing and calibration technology is that they are not compatible with the ability to consistently produce high-quality products High-speed production process. Passive calibration jobs can be performed quickly, but problems often arise when it comes to producing high-performance products. In contrast, active calibration operations can be optimized for time to produce these high-performance devices. However, these procedures are generally slow. For example, in the case of laser burn, the fiber holder must be burned first. In addition, let the burner cool down and check the calibration results next. However, it is still necessary to perform subsequent incineration operations, and then perform incineration cooling and re-inspection steps. -丨 In addition, it is really difficult to deploy these traditional technologies when making optical systems with complex shapes and higher levels of functionality. For example, laser sintering can be successfully used to align fiber end points to a single laser diode chip, such as in a module smaller than 5 cm. However, it is hoped that more features such as filtering, multiplexing, demultiplexing, and / or switching can be integrated into a module of a similar size. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economics The present invention relates to fixing and alignment structures for optical elements, and more particularly to micro-optical elements having a size generally smaller than a millimeter. These structures are preferably compatible with all-optical, electro-optical, and motor-optical devices / subsystems / systems. These structures are used to connect optical elements to an optical circuit board or an optical table. These optical components include, for example, lasers or other active devices that provide higher levels of functionality, such as 疋 integrated laser / MEMS, which can modulate Fabry-Perot active devices. Furthermore, in other implementations, these optical components can be passive devices, such as beam splitters, passive (such as thin film) filters, mirrors, and 5 paper standards are applicable to Chinese national standards (CNS ) A4 specification (210 X 297 mm) Employees of the Intellectual Property Bureau of the Ministry of Economic Affairs 1245138 A7 _____B7_______ V. Description of the invention (iV) Birefringent material, polarizer, crystal, rubidium and / or diffractive element. More specifically, the present invention is a universal fixing system that can connect optical components to an optical bench, and then perform production or subsequent calibration or calibration, calibration or recalibration operations. During the calibration, the calibration is performed passively or actively. Generally speaking, according to an aspect, the present invention is characterized by a fixing and alignment structure for an optical element. This structure usually contains a quasi-projection. This part is called "quasi-protrusion" because in the extrusion process, the other will produce a section with a generally constant cross section in the z-axis direction. However, the present invention is not limited to constructing the structure by such a burst operation. For example, in a preferred embodiment, the structures are fabricated using photolithography and metallization operations such as metal plating. According to the present invention, the quasi-projection portion includes at least one pedestal, which has a laterally pedestal surface, and an optical element interface. At least one tab will connect the optical element interface to the base. In a preferred embodiment, the surface of the base can be connected to an optical table. In another preferred embodiment, the surface of the base is welded, such as by welding at 80/20 gold / tin ratio or other fused gold ratio, thereby attaching to an optical table. However, in other embodiments, such as laser sintering, resin bonding, ultrasonic sintering, or other adhesion / casting methods may be used. In one embodiment, the surface of the base may further include calibration features adapted to match the alignment characteristics of the optical table. This passive calibration technology can be used to assist the initial positioning of the calibration structure on the optical table 6 -------! F 丨 (Please read the precautions on the back before filling this page) Order:-· Line · Meaning Applicable to China National Standard (CNS) A4 specification (210 X 297 mm) 1245138 A7 B7 V. Description of the invention (<) ° In the preferred embodiment, the optically detectable calibration feature or label is used to work. Structural positioning operations are performed on the stage. Depending on the implementation, one or two pedestals can be provided. In the double-pedestal configuration, the middle 'are usually located on each side of the shaft in the structure. In the preferred embodiment, the interface includes a frame for transmitting optical signals through the quasi-projection portion #. This can be used as an optical access feature to an optical component mounted on the interface of the optical component. In some embodiments, the 'optical signal is reflected from the optical element and transmitted back through the port. In other embodiments, the optical signal passes through the optical element such as a lens. In other embodiments, the interface configuration is set to an open jaw or U-lock valve. This configuration is suitable for fixing optical components such as optical fibers on a workbench. It is better to provide a grip to facilitate grasping and manipulating the calibration structure. In one embodiment, the grip is integrated on the optical element interface. In other embodiments, the provided grip is integrated at the connecting piece and / or integrated at the base. In the preferred embodiment, the tab contains at least one bend. Bend is usually a range of tabs with less constant cross section. It may be appropriate to provide at least two bends along the web. The bends are preferably separated by transverse sections of the web. The other bends of the structure are preferably separated by a plurality of vertical sections. The horizontal and vertical sections are provided to facilitate manipulation, and thus to facilitate subsequent follow-up of the two-dimensional xy plane with calibration along the X-axis and calibration along the y-axis. A4 specification (210 X 297 mm) (Please read the notes on the back before filling out this page); 0 Order --------- Line 丨 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1245138
五、發明說明(^ ) 讎結薩,賴該結構i:光學元賴肺_準作業。 不過,並非一定要使用離散式彎摺不可。在其他的實 施例裡,係按某片彎曲跨越該接片上某範圍的方式來配置 該彎摺,並且實際上該接片本身即可作爲一配散式彎摺。 般P兌來,根據另一觀點,本發明特徵亦爲一種具有 在x-y軸平面上大致爲常數之橫切面用於光學元件之固定 與校準|p構,δ亥結構中限制於x-y平面內之堅固性遠強於 按Z軸方向者。該結構裡包含了至少一個具有橫延基座表 面和光學元件介面的基座。 後文中將參酌隨附圖示,來詳細說明本發明前揭與其 餘含有各種新穎結構細節及諸多部分組合的特點以及他項 優點,並於申請專利範圍中予以指明。應瞭解,用以實作 本發明之特定方法和裝置係屬說明性,而非作爲本發明之 限制。本發明原理與特點確可按各式及許多實施例而實作 ,且仍無虞悖離於本發明之範圍。 [圖式簡單說明] 在隨附圖式中,參考編號於全篇各圖之內係指相同部 分。該些圖式無需按比例而行·,而其重點強調於闡述本發 明原理。按該等圖式中: 圖1爲根據於本發明之固定與校準結構第一實施例立 體圖; 圖2爲該固定與校準結構第一實施例之前視圖; 圖3A爲根據於本發明之固定與校準結構第二實施例 8 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 0 經濟部智慧財產局員工消費合作社印製 一:0, · ^1 ϋ i^i i^i n -^1 I I m ϋ— I an ϋ in l n i n in d i.— an n n ϋ in ϋ ϋ 1245138 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明() '立體圖; 圖3B爲顯示第二實施例結構尺寸之前視圖; 圖4爲根據於本發明之固定與校準結構第三實施例立 體圖; 圖5A爲本發明固定與校準結構第四實施例之前視圖 , 圖5B爲本發明固定與校準結構相關實施例之立體圖 j 圖6爲本發明固定與校準結構第五實施例之前視圖; 圖7爲根據於本發明之固定與校準結構第六實施例前 視圖, 圖8爲本發明固定與校準結構第七實施例之前視圖; 圖9與10爲本發明固定與校準結構第八與第九實施例 之圖式。 圖11爲本發明固定與校準結構第十實施例之前視圖, 其中根據本發明而將諸個別結構整合成單一基座; 圖12爲根據本發明之固定與校準結構第十一實施例平 面圖; 圖13爲本發明之第十二實施例平面圖; 圖14爲本發明用於被動元件校準之固定與校準結構第 十三實施例平面圖; 圖15A與15B爲固定與校準結構第十四實施例平面圖 ,用以將某第二光學元件固定於另一光學元件附近的配署 方式; 9 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -------訂---------線. !245138 A7 B7 五、發明說明() 圖16A、16B、16C係用於根據本發明製作該固定與校 準結構的電鍍以及照相平版處理的剖視圖; 圖17A - 17F |兌明製造出沿g亥結構諸局部之z軸方向 具有非常固性橫切面區段的固定與校準結構程序; 圖18A與18B爲說明有關於將光學元件安裝在該固定 與校準結構上,以及將該固定與校準結構安裝在光學工臺 上的處理步驟立體圖; 圖19爲根據本發明,將某射束耦接於由該固定與校準 結構所握持之光纖內的雷射光學信號源立體圖; 圖20爲根據本發明,該光學系統主動式校準程序之程 序圖; 圖21係爲於校準作業過程中本結構變形,而對該固定 與校準結構握把進行處理之校準器齒夾立體俯視圖; 圖22爲按本發明校準作業程序之水平軸上位移或形變 的函數,所繪出力度與垂直軸上光學回應的圖形; 圖23爲按照表示產出力度選取限制之位移値的函數, 而沿y軸上之力度圖形; 圖24爲表不本發明第十五、組合結構實施例之立體圖 圖25爲本發明第十六、雙材質實施例之示意立體圖; 圖26爲說明根據本發明之光學系統生產線示意圖;以 及 圖27A、27B與27C爲顯示三種不同校準通道組態之 10 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印制农 -- — — III — — 一0|* « — — — — — — It — — — — — — —— — — — — — — — — — — — — — — — 1245138 A7 B7 五、發明說明(^!)/固定與校準結構的局部平面圖。[元件符號說明] 經濟部智慧財產局員工消費合作社印製 100 校準結構 100-1 校準結構 100-2 校準結構 110 基座 112 光學元件介面 113 結構元件校準特徵 114Α 左接片 114Β 右接片 116 橫延基座表面 118 插槽型校準通道 120 U型鎖閥區域 121Α 翼狀局部 121Β 翼狀局部 122Α 垂延區段 122Β 垂延區段 124Α 平延區段 124Β 平延區段 126Α 彎摺 126Β 彎摺 128Α 彎摺 128Β 彎摺 11 (請先閱讀背面之注意事項再填寫本頁) 訂---------線丨β 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 1245138 A7 五、發明說明() 130 132 V, 134 ^ 136 152 154A 154B 155A 155B 158A 158B 159 210 212A 212B 214A 214B 310 410 412 414 420 422 424 中軸 表面 光學埠 握把 插槽 平延部分 平延部分 平延部分 平延部分 鏈結部分 鏈結部分 箭頭 V型校準特徵 對延區段 對延區段 對延區段 對延區段 彈簧型連接元素 基板 種源/釋放層 厚型PMMA阻抗層 光阻層 前鈑部分 光阻層 (請先閱讀背面之注意事項再填寫本頁) t -線· 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 245138 A7 B7 五、發明說明( 經濟部智慧財產局員工消費合作社印制衣 428 彎摺 452 結構-工臺固定 470 前端射鏡 472 MEMS裝置 610 雷射源系統 612 晶片 614 混合式基板 616 偵測器 618 前側端面 620 校準特徵 622 包裝基板 710A 齒夾 710B 齒夾 2010 校準結構供應器 2012 光學元件供應器 2014 選置機械 2016 選置機械 2020 校準系統 2022 光學信號 2024 偵測器 2026 蓋封 [較佳實施例詳細說明] 固定與校準結構組態 13 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) (請先閱讀背面之注意事項再填寫本頁) · n n n ϋ n n n J,JI I I ϋ ϋ n ϋ ϋ I I =口 系V. Description of the invention (^) The structure of the structure depends on the structure i: the optical element depends on the lungs_quasi-operation. However, it is not necessary to use discrete bending. In other embodiments, the bending is configured in such a way that a piece bends across a range on the tab, and in fact, the tab itself can be used as a distributed bending. Generally speaking, according to another viewpoint, the present invention is also characterized by a cross section which is approximately constant on the xy-axis plane for fixing and calibrating the optical element. The sturdiness is much stronger than those in the Z axis direction. The structure contains at least one pedestal with a traverse base surface and an optical element interface. In the following, reference is made to the accompanying drawings to describe in detail the features of the present disclosure and other novel structural details and combinations of many parts, as well as other advantages, and to indicate them in the scope of patent applications. It should be understood that the specific methods and apparatus used to implement the invention are illustrative and not limiting of the invention. The principles and features of the present invention can be implemented in various forms and many embodiments without departing from the scope of the present invention. [Brief description of the drawings] In the accompanying drawings, the reference numbers refer to the same parts throughout the drawings. These drawings are not necessarily to scale, and their emphasis is on explaining the principles of the present invention. According to the drawings: FIG. 1 is a perspective view of the first embodiment of the fixing and calibration structure according to the present invention; FIG. 2 is a front view of the first embodiment of the fixing and calibration structure according to the present invention; Second embodiment of the calibration structure 8 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page) 0 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 1: 0, · ^ 1 ϋ i ^ ii ^ in-^ 1 II m ϋ— I an ϋ in lnin in d i.— an nn ϋ in ϋ 45 1245138 A7 B7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 3, a perspective view of the invention; FIG. 3B is a front view showing the structural dimensions of the second embodiment; FIG. 4 is a perspective view of the third embodiment of the fixing and calibration structure according to the present invention; FIG. 5B is a perspective view of a related embodiment of the fixing and calibration structure of the present invention. FIG. 6 is a front view of the fifth embodiment of the fixing and calibration structure of the present invention. FIG. 7 is a fixing and calibration structure according to the present invention. Example front view of a six embodiment, and FIG. 8 is fixed alignment structure before the seventh embodiment of the present invention, the view; Figs. 9 and 10 of the present invention is fixed alignment structure of Formula VIII to the ninth embodiment of FIG. FIG. 11 is a front view of a tenth embodiment of the fixing and calibration structure of the present invention, in which individual structures are integrated into a single base according to the present invention; FIG. 12 is a plan view of the eleventh embodiment of the fixing and calibration structure according to the present invention; 13 is a plan view of the twelfth embodiment of the present invention; FIG. 14 is a plan view of the thirteenth embodiment of the fixing and calibration structure for passive component calibration of the present invention; FIGS. 15A and 15B are plan views of the fourteenth embodiment of the fixing and calibration structure, A deployment method for fixing a second optical element near another optical element; 9 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling (This page) ------- Order --------- Line. 245138 A7 B7 V. Description of the invention () Figures 16A, 16B, and 16C are used to make the fixing and calibration structure according to the present invention. Cross-sectional views of electroplating and photolithographic processing; Figures 17A-17F | Weiming manufactures a procedure for fixing and calibrating a structure with a very solid cross-section section along the z-axis direction of parts of the ghai structure; Figures 18A and 18B illustrate About Will Optics Figure 3 is a perspective view of processing steps for mounting the fixing and calibration structure on the fixing and calibration structure, and mounting the fixing and calibration structure on the optical table. A perspective view of a laser optical signal source in a holding optical fiber; FIG. 20 is a flowchart of an active calibration procedure of the optical system according to the present invention; FIG. 21 is a deformation and calibration structure of the structure during a calibration operation; Three-dimensional top view of the calibrator tooth grip processed by the grip; Figure 22 is a function of the displacement or deformation on the horizontal axis of the calibration procedure according to the present invention, and the force and the optical response on the vertical axis are plotted; Figure 23 The output force is selected as a function of the limited displacement ,, and the force pattern along the y-axis is shown. Figure 24 is a perspective view showing the fifteenth, combined structure embodiment of the present invention. Figure 25 is a sixteenth, dual-material embodiment of the present invention. Schematic perspective view; Figure 26 is a schematic diagram illustrating an optical system production line according to the present invention; and Figures 27A, 27B, and 27C are 10 sheets of paper showing three different calibration channel configurations Standards are applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) (Please read the precautions on the back before filling out this page) Printed Agriculture by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs-— — III — — 0 | * «— — — — — — — It — — — — — — — — — — — — — — — — — — — — 1245138 A7 B7 V. Description of the invention (^!) / Fixed and calibrated structure Partial plan view. [Explanation of component symbols] Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 100 Calibration structure 100-1 Calibration structure 100-2 Calibration structure 110 Base 112 Optical element interface 113 Structural component calibration feature 114Α Left tab 114Β Right tab 116 Horizontal Extending the base surface 118 Slot type calibration channel 120 U-shaped lock valve area 121A Wing-shaped part 121B Wing-shaped part 122A Vertical section 122B Vertical section 124A Flat section 124B Flat section 126A Bend 126B Bend 128A Bend 128B Bend 11 (Please read the precautions on the back before filling this page) Order --------- Line 丨 β This paper size applies to China National Standard (CNS) A4 (210 X 297) 1245138 A7 V. Description of the invention 130 132 V, 134 136 152 154A 154B 155A 155B 158A 158B 159 210 212A 212B 214A 214B 310 410 412 412 414 420 422 424 Partially flattened Partially flattened part Linked part Linked part arrow V-shaped calibration feature Pair extension section Pair extension section Pair extension section Source / Release Layer Thick PMMA Resistive Layer Photoresist Layer Part of the front photoresist layer (Please read the precautions on the back before filling out this page) National Standard (CNS) A4 specification (210 X 297 mm) 245138 A7 B7 V. Description of the invention (Printed clothing of employee consumer cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 428 Bend 452 Structure-workstation fixed 470 Front lens 472 MEMS device 610 Laser source system 612 Wafer 614 Hybrid substrate 616 Detector 618 Front end face 620 Calibration feature 622 Packaging substrate 710A Tooth clamp 710B Tooth clamp 2010 Calibration structure supplier 2012 Optical element supplier 2014 Selection machine 2016 Selection machine 2020 Calibration system 2022 Optical signal 2024 Detector 2026 Cover [Detailed description of the preferred embodiment] Fixing and calibration structure configuration 13 This paper size applies to China National Standard (CNS) A4 (210x297 mm) (Please read the precautions on the back first (Fill in this page again) · nnn ϋ nnn J, JI II ϋ ϋ n ϋ ϋ II = mouth system
A 1245138 A7 _ B7 五、發明說明(γ) ' 圖1爲根據於本發明原理所建構之示範性固定與校準 結構圖式。 一般說來’該校準結構1〇〇包含一基座、一光學 元件介面112以及左、右接片114Α、114Β,而彼等可爲 直接或間接方式將基座110連接到介面112處。 該基座11Q包括一橫延基座表面116。在本例中’ s亥 基座表面116大致延展於X與Ζ軸的平面上。 該基座/基座表面包含諸項校準特徵。在某些實施例中 ,可將該些特徵調適爲符配於光學工臺之較佳對性校準特 徵。而在本特定實作中,藉機械視覺來利用該校準特徵以 符合於某校準標記或工臺特徵。特別是’該校準特徵包括 一橫寬、υ型鎖閥區域120。可進一步提供三個母型校準 通道,彼等按Ζ軸方向沿著整個結構的深度而延伸。該U 型鎖閥區域120具有將接觸區域最小化,並因而可強調於 該結構與該工臺或是其他所附接到表面間之介面的附帶優 點。 在本實作中,各個接片114Α、114Β包含兩個區段 122與124。詳細地說,例如該接片114Β包含了兩個區段 122Β 和 124Β。A 1245138 A7 _ B7 V. Description of the Invention (γ) 'FIG. 1 is an exemplary fixing and calibration structure diagram constructed according to the principles of the present invention. Generally speaking, the calibration structure 100 includes a base, an optical element interface 112, and left and right tabs 114A, 114B, and they can directly or indirectly connect the base 110 to the interface 112. The base 11Q includes a transverse base surface 116. In this example, the 'shai base surface 116 extends approximately on the plane of the X and Z axes. The base / base surface contains calibration features. In some embodiments, these features can be adapted to match the better alignment characteristics of the optical bench. In this particular implementation, the calibration feature is utilized by mechanical vision to conform to a calibration mark or a bench feature. In particular, the calibration feature includes a horizontally widened v-shaped lock valve region 120. Three master calibration channels can be further provided, which extend along the depth of the entire structure in the direction of the Z axis. The U-shaped lock valve area 120 has the advantage of minimizing the contact area and thus can be emphasized in the interface between the structure and the workbench or other surface attached. In this implementation, each tab 114A, 114B includes two sections 122 and 124. In detail, for example, the tab 114B includes two sections 122B and 124B.
而本例中,垂延區段122Α、122Β,即至少某部分係 按y軸方向所延伸,且沿著其長度具有兩個彎摺Π6Α、 126B。這些彎摺爲該區段中較低橫切面區域之範圍,該範 圍係按z軸方向延伸。這些垂延區段I22有助於安裝在介 面112上的光學元件沿著X軸定位之用;而該些彎摺126A 14 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) (請先閱讀背面之注意事項再填寫本頁) · 線· 經濟部智慧財產局員工消費合作社印製 1245138 A7 B7 五、發明說明(4) 、126B則有助於在X和y軸平面上導引該些區段122A、 122B。這些彎摺的目的在於可隔離細微結構性變化的區域 ,諸如發生於塑膠形變,藉此讓像是產出力度成爲即可預 測者。同時,這些彎摺會將形變區域化在該接片上,並因 而在接片處產生塑膠形變之前,即可減少光學元件所需要 的力度/移動量。 本實例中,平延區段(即按X軸方向延伸者)124A、 124B,各者包含兩個彎摺128A、128B。這些彎摺亦屬各 個區段中較低橫切面區域之範圍,而彎摺係按z軸方向而 延伸。 平延區段124A、124B可供安裝於該光學元件介面 112上的光學元件進行定位,通常是垂直地沿著y軸方向 。可由各個彎摺128A、128B提供接片形變特徵。 在某實作中,光學元件係接附於該光學元件介面112 上,並詳細地說附於表面132.。可藉透過聚脂黏著劑黏附 方式或較適之焊接接附方式來達到這種接附結果。而在其 他實作裡,可採用熱壓縮接附、雷射鎔燒、反應是接附或 其他的接附方法。 經濟部智慧財產局員工消費合作社印製 (請先閱讀背面之>i意事項再填寫本頁} 在本實施例中,該元件介面尙包括結構元件校準特徵 113。在本實施例中,該結構元件校準特徵包含了於z軸方 向上自元件接附表面132處所延伸的插槽。因此,光學元 件的對應公突而被插入到插槽113,以便透過光學埠134, 而沿著X軸與y軸方向進行光學元件定位及校準。 在某些實作裡,該光學元件介面包含了可讓光學信號 15 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A7 1245138 B7__ 五、發明說明(A) '傳通於該結構的璋134。這可藉由讓光學信號播送至及/或 離該元件,來提供接取到該光學元件的特徵。 爲便於抓取及置放結構100,最好是在結構上提供有 握把I36。在本實施例中,該握把136在其中〜邊靠近該 結構頂部的上緣處,包含了兩個V型或U型的鎖閥區域。 在本例中,彼等係整合於該光學元件介面112。 當接附於工臺10時,該握把136可供用以操控本結構 1〇〇。詳細地說,例如該右端鎖閥係用以移動本結構至左方 。而如欲垂直地或按y軸方向移動本結構,則可啓動兩個 鎖閥而讓該結構被朝著工臺處壓下,或是拉離於該工臺。 爲進一步可抓取並安裝於該工臺上,可在各個接片處 提供翼狀局部121A、121B。這些係讓加熱後的真空頸柱 用以操控本結構,並因得加熱進行焊接接附作業。翼部 121與基底表面116間的短近距離有助於良好的熱傳導作 用。 圖2爲如圖1所繪者固定與校準結構100第一實施例 之前視圖。本視圖說明左端及右端接片114A、114B的建 構方式,並特別是說明如何從個別的平延區段124與垂延 區段122來建構該些接片。 該圖也繪出接附表面132的延展範圍。通常,首先會 將焊接材料施用於該表面132上。接著,將光學元件及/或 結構加熱,並彼此接觸安置,按此進行焊接接附作業。而 在其他的實施例中,可採取樹脂膠附處理,其中會先將該 樹脂施加於該表面132上。 16 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製In this example, the vertical sections 122A, 122B, that is, at least some parts extend in the y-axis direction, and have two bends 6A, 126B along their length. These bends are the area of the lower cross-sectional area of the section, which extends in the z-axis direction. These vertical sections I22 facilitate the positioning of the optical components mounted on the interface 112 along the X axis; and these bends 126A 14 This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) ) (Please read the notes on the back before filling out this page) · Line · Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1245138 A7 B7 V. Description of the invention (4) and 126B help on the X and y planes The sections 122A, 122B are guided. The purpose of these bends is to isolate areas of subtle structural change, such as those that occur in plastic deformation, thereby making the output force predictable. At the same time, these bends will localize the deformation on the tab, and thus reduce the amount of force / movement required by the optical component before plastic deformation occurs at the tab. In this example, the flattened sections (that is, those extending in the X-axis direction) 124A and 124B each include two bends 128A and 128B. These bends also belong to the lower cross-sectional area of each section, and the bends extend in the z-axis direction. The flattened sections 124A, 124B can be used for positioning the optical elements mounted on the optical element interface 112, and are usually perpendicular to the y-axis direction. Deformation features of the tabs can be provided by each bend 128A, 128B. In an implementation, the optical element is attached to the optical element interface 112, and is attached to the surface 132 in detail. This type of attachment can be achieved by using a polyester adhesive or a more suitable soldering method. In other implementations, thermal compression attachment, laser scorch, reaction is attachment, or other attachment methods may be used. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs (Please read the > i Notice on the back before filling out this page} In this embodiment, the component interface 尙 includes the structural component calibration feature 113. In this embodiment, the The structural component calibration feature includes a slot extending from the component attachment surface 132 in the z-axis direction. Therefore, the corresponding male protrusion of the optical component is inserted into the slot 113 so as to pass through the optical port 134 and along the X axis Position and calibrate the optical element with the y-axis direction. In some implementations, the interface of the optical element contains an optical signal that allows 15 optical paper sizes. Applicable to China National Standard (CNS) A4 (210 X 297 mm) A7 1245138 B7__ 5. Description of the invention (A) '' 134 communicated to the structure. This can provide access to the optical element by allowing optical signals to be transmitted to and / or away from the element. In order to facilitate grasping and The placement structure 100 is preferably provided with a grip I36 on the structure. In this embodiment, the grip 136 includes two V-shaped or U-shaped edges near the top edge of the structure. Lock the valve area. They are integrated into the optical element interface 112. When attached to the workbench 10, the grip 136 is available for controlling the structure 100. In detail, for example, the right-side lock valve is used to move the structure The structure is to the left. If you want to move the structure vertically or in the y-axis direction, you can activate two lock valves and let the structure be pushed down or pulled away from the platform. To further It can be grasped and installed on the workbench, and wing-shaped parts 121A, 121B can be provided at each connection piece. These are used for heating the vacuum neck post to control the structure, and welding and attaching operations due to heating. The short and close distance between the wings 121 and the base surface 116 contributes to good heat conduction. Figure 2 is a front view of the first embodiment of the fixing and calibration structure 100 as depicted in Figure 1. This view illustrates the left and right end tabs 114A , 114B, and in particular how to construct the tabs from the individual flat sections 124 and vertical sections 122. The figure also depicts the extension of the attachment surface 132. Generally, first, Welding material is applied to the surface 132. Next, The components and / or structures are heated and placed in contact with each other, and the welding and attaching operations are performed according to this. In other embodiments, a resin adhesive treatment may be adopted, in which the resin is first applied to the surface 132. 16 This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling out this page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs
' ϋ ϋ I n ϋ I 一:°J I ϋ I n t I n I ·1 n n ϋ ϋ ϋ ϋ - - ϋ ϋ I I ϋ ϋ i I n ϋ n ϋ I 1245138 Α7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明說明(5) ' 圖3A爲固定與校準結構第二實施例之圖式。這項實 施例繼享諸多與如圖1與2所繪列之第一實施例的類似處 。特別是該固定表面Π6具有作爲視覺校準用之插槽型校 準通道118。 而接片IMA、IMB,可按類似方式提供垂延部分 122A、122B。不過,在固定與校準結構1〇〇各邊的各接片 處,提供了兩個平延部分154、155。詳細地說,該接片 114B包含兩個平延區段154B、155B,而彼等通常又會自 垂延部分122B處延伸到光學元件介面112。特別是鏈結部 分158B會將平延部分154、155兩者的末梢端,連接到該 接片114B的垂延部分122B。 圖3A所示之第二實施例說明了光學元件介面112的 進一步組態。更詳細地說,該第二實施例的光學元件介面 II2裡,包含一個按z軸方向通過該固定與校準結構1〇〇 而延伸的V或ϋ型鎖閥區域或插槽152。這種開放插槽組 態可讓如F所略標之光纖得以垂直地安裝於箭頭159朝入 該插槽152的方向上。在一般的實作裡,該光纖F會接著 被接附到插槽底部的表面132。最好是以焊接接附,不過 亦可採行其他像是樹脂膠附的方式。 在較佳實施例中,插槽相對於接片之接附點位置的深 度,係設計來阻抗任何回應於由光纖的ζ軸力度所施加於 該結構上之晃動。詳細地說,某些回應於ζ軸力度所產生 的動作確是無可避免者。然而,可控制插槽深度以便讓光 纖軸不會因這些外力而移動。 π 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂: -丨線. 1245138 A7 B7 五、發明說明(>) ' 而在其他的實施例中,會用到握把136並且沿著箭頭 (請先閱讀背面之注意事項再填寫本頁) 157施加力度來摺收關閉住該U型插槽,藉以保護像是光 纖等光學元件。 圖3B爲第三實施例之示範尺寸。特別是,所示之實 施例的局度h爲1 · 1公厘(mm)。通常該結構會具有大於〇. 5 mm的高度俾利操控。而爲於標準包裝裡提供適當的淨空 度,該些結構一般是按小於2.0 mm的高度。所式結構的寬 度w爲1.9 mm。在此同樣地,該寬度最好是大於〇.5 mm 的高度,以便順利安裝於工臺上。爲在諸多元件間提供可 接受之元件包裝密度以及淨空度,故該寬度w通常是小於 4 mm較爲適宜。 圖4爲該固定與校準結構1〇〇的第三實施例,該者繼 享諸多如圖1-3所描述結構之類似性。彼者具有基座11〇 ,以及橫延基座表面116。此外,第三個所述之實施例會 有一個具光學璋152的光學元件介面112。本例中,會較 強調該握把136,該者由介面112而垂直向上延伸。 在基座表面上提供有V型校準特徵210,以便於接合 於工臺上互補性之V型校準插渠。 經濟部智慧財產局員工消費合作社印製 而其中更爲顯著特徵之一者爲接片114A與114B。不 同於具有兩個平行延伸於X和y軸方向的區段,各個接片 包含兩個對延區段212、214,彼此之間大致爲直角相交。 此外,這些接片並不具分散性彎摺系統,而是沿著接片長 度上具有相當常固之橫切面區段。 並且,該光學元件介面112包含相對地密閉的槽型光 18 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 1245138 A7 B7 五、發明說明(Λ) (請先閱讀背面之注意事項再填寫本頁) -學元間固定插槽152。在一實施例中,光纖會被插入插槽 152,然後再摺閉該插槽以便保護其內的光纖。此外’可提 供一個自該光學元件介面112垂直延伸的握把136 °在本 範例中,該握把136在插槽I52其中某側上具有右端與左 端延伸。 圖4所示者爲相對於前揭之另一項有關該第三實施例 的區別,此即利用到z軸的彎摺。詳細地說’基座11〇包 含一前鈑部分422,以及一後鈑部分(未於本圖式出)。如此 ,該基座11〇即成爲一中空的盒狀組態。使用z軸接片可 讓受控彎摺當受力時會繞著X軸或防向而按旋轉方式被拉 進。 •線- 圖5A爲一實施例,其中該基座被分爲兩個不同基座 局部110A、110B,以便提供穩定的結構-工臺介面,而同 時又將受到熱性擴差張力的接觸面最小化。爲便讓該裝置 於結構製作過程以及於安裝到光學工臺的過程中更爲強固 ,彈簧型連接元素310可連接基底110A、110B的兩個鎖 閥。在安裝之前,會先行夾緊或故意壓收該元素。 經濟部智慧財產局員工消費合作社印製 圖5B爲具表示相仿諸部之類似參考編號的相關實施 例。該實施例値得注意之處爲垂延區段126與平延區段 124間的角度會構成一個鈍角。在某些應用裡,這種組態 會有利於校準作業。 圖6所示者爲第五實施例,該者與圖5的第四實施例 極爲相關。在子,光學元件介面包含兩個個別、切割之部 分1ΠΑ、ΙΠΒ。在本實施例中,某光學元件,像是光纖f 19 ^紙張尺度適用中國國^標準(CNS)A4規格(210 X 297公爱) 1245138 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(d ) ',被插入該介面之兩個鎖閥112A與U2B間的容積測定範 圍內。這兩個鎖閥Π2Α與112B會被繞著光纖f所扣閉。 圖7爲固定與校準結構的第六實施例。本實施例相對 於前揭諸例値得注意處爲接片114A、114B具有配散於整 個接片長度上的連續性彎摺。這些彎摺並非如前述某些實 施例般位於特定彎摺點處。在本實施例裡’這些接片係作 爲會受到塑膠形變所影響的配散式彎摺元件之用。 圖8爲固定與校準結構的第七實施例。本實施例應注 意到該些接片Π4Α、114B是相當地硬,而讓彼等得以阻 抗任何彎摺或塑膠形變。詳細地說,該些接片Π4Α、 114B並不具有如前述圖1的配散式彎摺,也不具有如前述 圖7中按相當厚度之接片所表示的連續性彎摺系統。因此 ,圖8的實施例通常多是用於將經過該模組或包裝外之光 纖饋通所行通的光纖固定住。該第七實施例可阻拒任何施 加於像是握持在介面112內的光纖F上之拉力。 通常,該第七實施例會與某第二固定與校準結構相連 倂用。該第一固定與校準結構接近於光纖端處,並讓光纖 端校準於X,y平面。該第七實施例校準結構可用來將爲進 行光纖端校準,而透過光纖傳通到該結構處的拉力降到最 低。 圖9爲具連續性彎摺接片114A、114B以及一光學介 面112之第八實施例,該者適於除光纖以外的光學元件。 詳細地說,如藉由像是焊接或樹脂的接阜方式,將反射鏡 或透鏡固定於該光學介面112上。該埠134可提供接往該 20 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱)— -------!?丨 (請先閱讀背面之注意事項再填寫本頁) 訂: .線- 1245138 A7 B7 五、發明說明(d) 元件的光學接取特徵,其中光學信號會被該光學元件所反 射或透過該元件而傳通,並因此而行經該埠134。 圖10爲第九實施例,其中該基座110式一種相當寬的 單件式基座。 圖11爲另一實施例,其中四個結構100A - 100D係經 整合於某共同基座110上。本系統適合於對像是具四個實 體平行光學通道或路徑的光學元件握持其光纖。根據本發 明,各個光纖分別地按諸架構個別的校準特徵而進行校準 。然而,共同基座可按單一個選取與置放步驟中,提供多 重性、同時性的結構/光纖被動校準特徵。 圖12爲根據第十一實施例之非橫延對稱性固定與校準 結構。彼者包含基座110與一由基座而垂直所延伸的接片 114。該接片包含一垂直區段122,以及一平延區段124。 該平延區段124結束於一元件介面112處。握把136可由 該介面垂直延伸。 圖13所示者爲根據本發明第十二實施例之非橫延對稱 性固定與校準結構。在此,基座110爲按垂直,y軸方向 ,所延伸,而讓彼可被附接至模組或是其他的固定與校準 結構邊牆之上。該者可進一步具備一平延區段114,和一 個經調適爲按集中於中央或靠著某光纖的方式來握持光纖 藉以改善其校準結果之元件介面112。 圖14爲用於專對光學元件被動固定方式之固定結構的 平視圖。詳細地說,該第十三實施例具有一底座112以及 一整合式光學元件介面112。而該者更具有一埠134以便 21 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 x 297公釐) -----:!#·11 (請先閱讀背面之注意事項再填寫本頁) _ -線· 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 1245138 A7 B7 五、發明說明(/) '接取到光學元件。本實施例並不配置有接片’並因而僅感 適於細微校準位移。這大多是在當元件的水平或垂直定位 非屬關鍵性時作爲握持彼等之用,即像是某些系統設計中 的摺式射鏡。 圖15A爲用於相當大型MEMS過濾器裝置,一種現用 之實作方式,的固定與校準結構。 詳細地說,該第十四實施例具有一分割底座110A、 110B。而個別的接片114A、114B則是自各個底座延伸。 這些接片各者包含一垂延部分122A、122B,以及平延部 分124A、124B。光學元件介面112相當地大,並係設計 作爲握持某項既載於例如像是固定表面132之上的光學元 件。本實施例中,該握把136係整合於該介面上。 圖15B說明該第十四實施例校準結構100B而連同前 揭諸校準結構100A其中一者之配署圖。在一般的安裝與 校準作業裡,該固定與校準結構100A首先會被安裝在一 光學工臺10上。接著,像是於主動式校準處理程序中,改 變校準結構外形,而相對於光學路徑來說可讓光學元件得 以適當定位。因此,在由該固定與校準結構100A所握持 之光學元件經過校準後,即可按其本身的光學元件來安裝 該校準結構100B。接下來,例如於主動式校準處理程序中 ,該第二校準結構100B會被加以校調,好讓第二個光擧 元件於光學路徑上得以適當定位。校準結構iOOA與100B 之間相對性的尺寸差異,可利彼等個別的光學元件進行〜 系列的校準作業’即使是這些光學元件係彼此緊密相鄰而 22 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -------訂---------*^1 -n ϋ n 經濟部智慧財產局員工消費合作社印製 1245138 Α7 Β7 五、發明說明(Μ) '固定於工臺10之上亦然。 固定結構製作 圖16Α - 16C爲於製作過程中,該固定與校準結構 100之橫切面剖視圖。 詳細地說,即如圖16Α所示,厚型ΡΜΜΑ阻抗層414 係接附於基板410上的種源/釋放層412。 該ΡΜΜΑ阻抗層414的厚度d可決定後續所製作之固 定與校準結構準突部分的最大厚度。因此,該深度可決定 該固定與校準結構100對於沿著z軸上之力度的強固性。 在較佳實施例中,該深度與衍生之該固定與校準結構z軸 厚度係位於500 - 1000微米的範圍內。較厚的結構通常是 用在拉力釋放型結構&根據本發明程序,該結構並因而 ΡΜΜΑ層的深度爲2000微米,以產生相同厚度的結構。 圖16Β爲該固定與校準結構100的下一個製作步驟。 詳細地說,係將厚型ΡΜΜΑ阻抗層414暴露於X光瞄準之 下以進行模型處理。詳細地說,遮罩416,該者可爲具有 所欲結構模型的正或負式遮罩,會被置放在像是同步加速 器的X光源與該ΡΜΜΑ阻抗層4Η之間。接著,將言亥 ΡΜΜΑ阻抗層414製作成模型層4ΜΑ,即如圖ΙβΒ所示 者。 圖16C爲該固定與校準結構1〇〇準突部分的構成作棻 。詳細地說,在較佳實施例中,可透過電鍍方式來建橇該 準突部分。根據本發明,較適之電鍍金屬爲鎳質。而在另 23 ------1丨夢·丨丨 (請先閱讀背面之注意事項再填寫本頁) 訂: -線 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 1245138 A/ _B7 五、發明說明(/ ) '替之實施例中,則是採用了像是鎳鐵合金的鎳合金。另外 ,尙可於其他實施例裡採行金質或黃金合金。目前,替代 性金屬與合金可包括·銀、銀合金、鎮銅、錬姑、金姑以 及充載膠質氧化粒子之合金,以釘確該微型結構。 圖1?A - PF爲製作前文如圖4所述之z軸彎摺422 的程序。詳細地說,即如圖ΠΑ所示,在該固定與校準結 構的準突部分構成作業之後,會接著將基板410自種源層 412移除。然後,再鑛加一個額外的光阻層420,並對某z 軸彎摺之鍍層而按圖17B所示方式予以模型處理。然後, 會進一步執行一項電鍍步驟,藉以在既存之常固橫切面區 段100上,製作出z軸彎摺422的鍍層。 圖17D中,會於結構100與該第一 PMMA層414的 反面上建構第二個光阻層然後再模型處理。可透過該種源 層412進行蝕刻作業。即如圖17E所示者,再進行另一個 鍍層步驟,並作出z軸彎摺428的第二鍍層。接著,如圖 17F所示,剩下的光阻層424、種源層412以及PMMA層 414會被移除,而餘得所示之中空盒型結構。該盒型結構 可構成如圖4之固定與校準結構的底部基座區段422。 固定結構-光學元件工臺安裝 圖18A爲有關於在光學工臺1〇上安裝光學元件之程 序。 工臺最好是按機械強固、化學穩定以及溫度穩定之材 質所建造,諸如矽質、氧化鈹、氮化鋁、碳化矽鋁、銅化 24 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) - .. 丨線· 經濟部智慧財產局員工消費合作社印製 1245138 A7 B7 五、發明說明(A ) '鈹等。這通常是金屬或鍍以例如金質或黃金合金之陶瓷。 詳細地說,在步驟450處,光學元件20被安裝在某第 一固定與校準結構100-1之上。詳細地說’該光學元件20 最好是被接附於該固定與校準結構100-1之上爲佳。在較 佳實施例中可採用焊接接附方式,其中會先對光學元件周 圍,及/或光學元件介面Π2的接附表面132進行焊接。接 著再帶置該光學元件以接觸到該光學元件介面112的接附 表面132。然後再融合焊接並予以固化。 同時,在較佳實施例中,該光學元件20與介面112的 互補性校準特徵,會有助於校準作業以及元件20與結構 100-1間的適當座置處理。詳細地說,校準通道113(參閱 圖1與2)係構成於結構的介面上。光學元件20上的遮罩 或投射45〇會接於插槽113,以確供在結構100-1上該元 件20的可重製性安裝方式。 而在其他實施例中,可爲樹脂膠附或利用其他黏著劑 膠著的接附技術,將該元件20附接於結構上。 然後,在結構-工臺固定步驟452中,該結構100-1會 被帶往接觸於該光學工臺10,並被附接於該工臺上。在較 佳實施例中,可採用焊接接附方式,其中該工臺會被握持 於選置機械上經加熱之頸柱處,而這個既經預熱處理之結 構會被帶入接觸於該工臺。然後將熱度移除以固化焊接處 〇 即如按關連於校準結構100-2所示,對於其他的工學 元件,該固定步驟會被反述。本例中,於結構-工臺接附步 25 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂· -·線· 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 1245138 A7 ______B7 五、發明說明(:斗) '驟454裡,該固定與校準結構10()_2會接觸到並被附接至 該工臺處。然後,光纖會被座置於該固定與校準結構100-2的U型埠152內。接下來,可要不將光纖接附於介面接 附表面132 ’要不就是摺收該u型插槽而將光纖保護於該 U型插槽的底部。如此,光纖端面EF會於光學工臺上靠近 像是由結構100-1所握持之薄膜過濾器或鏡射20的工學元 件處受到保護。 圖18B也說明一種關於安裝MEMS型態光學元件於光 學工量10之上的程序。詳細地說,在本實施例裡,首先在 第一個接附步驟474中,將前端射鏡470附接於MEMS裝 置472的反射性薄膜上。然後,在第二個接附步驟476裡 ,將該MEMS裝置472接附到校準結構1〇〇。接下來,在 工臺-接附步驟478裡,再將組合MEMS/結構接附到該工 量10。 校準作業中的固定結構變形 圖19爲光纖雷射信號源系統之外觀圖,該者係確按本 發明原理而建構。詳細地說,該雷射源系統610既以固定 於混合式基板614上。通常,該基板可支援接往晶片612 的電子連線,並亦或可包含一熱電冷卻器以維持該晶片 612的某一作業溫度。該混合式基板614接著會被安裝在 包裝基板622的光學工臺部分10之上。偵測器616係位於 該工臺10的晶片612後方,以偵測後側端面光線,並藉此 監視該雷射612的運作狀況。 26 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ------!!!.#·! (請先閱讀背面之注意事項再填寫本頁) .' ;線· 1245138 A7 B7 五、發明說明(4) ' 由晶片612的前側端面618所傳達之光線,會被光纖 f所收集亦便傳輸至該光學系統610的外部。在一實施例 中,播送於光纖f內的光線會按Raman抽運法則,而被用 來光學抽運某增益光纖,像是稀土族元素既摻光纖或是常 態光纖。而在其他實施例中,該雷射晶片612會回應於資 訊信號而加調變,以利光纖傳送光學資訊信號給遠端的偵 測器。而又在其他實施例中,可操控該雷射晶片612以按 CW模式執行’並由另者調變器,像是Mach-Zehner干涉 儀,來執行調變作業。 根據本發明,該光學兀件固定與校準結構1〇〇係安裝 於包裝基板622的光學工臺部分1〇上。即如前述,該光學 工臺具有校準特徵62〇,該者即如像是前揭圖丨所述般, 可合配於該固定與校準結構100基座表面上的對性校準特 徵。 即如則述,g亥光纖f係安裝於該U型璋1S2內,該者 爲固定與校準結構100的光學元件介面U2之局部。 圖2 0爲§兌明於製作例如_ 19所示之光·學伊於解辟, 可倂用於可變形光學元件固定結構之主動校準;^的處理 經濟部智慧財產局員工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) 線. 程序圖。 詳細地說,在步驟65〇處,於選置與接附處理程序中 S亥雷射鑄模614以及校準結構1〇〇會被固定在該光學工臺 10上。詳細地說,某選置機械臂會藉由被動校準作業,而 將該纟尋模614和f父準結構100放在該光學工臺上。最好 是利用機械視覺技術,及/或該光學工臺1〇和固定與校準 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297 1245138 A7 __B7 五、發明說明(4 ) '結構100,以及該鑄模614或顯著相關於該工臺10/模組 622既經定義之座標系統的校準特徵,來完成這項校準程 (請先閲讀背面之注意事項再填寫本頁) 序爲佳。 在步驟652處,一旦將雷射混合614與結構100附接 到該工臺10之後,就會對該雷射混合進行有線附接。然後 在步驟654處,會以激能該雷射612來決定該雷射是否可 正常運作。 如果雷射無法正常運作,則會回拒該光學系統並折返 至步驟656。 然而如果於步驟654處經決定雷射確可爲正常運作, 則工臺會於步驟658處被移到生產系統的某校準固定處。 在步驟660處,光纖f被插入到光學元件介面112的 U型埠152內並被附接於該處。在較佳實施例中,該光纖 會被焊接接附至該接附表面132處。 在步驟664處,該校準系統會攫取或套入該固定與校 準結構1〇〇以回應於光纖f由雷射612所傳送之信號的強 度或等級,而將該固定與校準結構100予以變形。 經濟部智慧財產局員工消費合作社印製 圖21爲該校準系統與該固定與校準結構100間之套接 作業以校準光纖f的圖式。詳細地說,兩個齒夾710A、 710B會咬接該固定與校準結構100的握把136,然後再移 動該固定與校準結構,以便於x-y平面上對光纖f進行移 位作業,而該者爲正交於光纖f的軸心。同時,由光纖f 所傳送之信號強度會受到監控,一直到確已於圖20內的步 驟666處偵得最強信號。應注意之事實爲,握把136的右 28 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 1245138 A7 ____B7 五、發明說明(11 ) 端與左端鎖閥可按完成最佳校準結果所需,讓校準系統的 該些齒夾將該結構拉離與推向該工臺1 〇。 現回到圖20,一旦於步驟666處偵測到最強信號,校 準系統就會進一步將該固疋與校準結構100變形,而讓當 該固定與校準結構經釋放後,彼可彈性地跳回到所欲而於 步驟666處偵測到的校準位置。換言之,該固定與校準結 構會按可塑方式變形,而使得當校準系統的齒夾710A、 710B放離於該固定與校準結構1〇〇時,會具有適當之校準 結果。 而如果在步驟670處後續地決定出該光學元件,即光 纖,並非位於相關爲最高耦接結果的位置上時,即再度執 行該變形步驟668,一直到該爲至確實落在可接受的容忍 範圍內爲止。 圖22爲校準作業程序圖型。詳細地說,將光線接入光 纖內的益處圖形或耦接效益係按光纖移位値的函數所繪表 。詳細地說,當光纖位在最佳校準位置且落於該位置任一 側時,耦接效益會被最大化 圖22也說明在諸多校準程序步驟的過程裡,按拉力或 移位量之函數來表示力度或張力。詳細地說,在第一個步 驟710裡,力量係施加於該固定與校準結構上,而讓彼可 進行彈性變形。在此範圍內,y軸上的施加力度與X軸上 的移位値或拉力之間,會有大致爲線性的關係存在。然而 ,一旦超過了產出力度水準,則該固定與校準結構1〇〇會 出現如步驟720所述之可塑性形變。這種可塑性形變對於 29 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) .- 丨線· 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 1245138 A7 ^__B7_ 五、發明說明() '該固定與校準結構係屬永久性形變。 而當移除掉外力後,該固定與校準結構即出現如步驟 720所述之彈性「跳回」。也就是說,當移去力度時,該 結構會產生某些彈性移動。不過,由於確已超出產出力度 水準,所以該固定與校準結構確已出現如A所標示之距離 的永久形變。 即使是可塑性形變,光纖亦仍未處於其最佳校準位置 。因此之故,即開始另一循環的可塑性形變。詳細地說, 施加外力,讓該固定與校準結構產生如實線724所標示之 彈性形變。一旦再度超出新的產出力度水準時,彼者即產 生如實線726所標示的可塑性形變。在第二次的校準循環 過程裡,由於加重了作業故確已增強該產出力度。然後再 移除力度,並且該固定與校準結構會出現如實線728所表 示的彈性跳回。 由於確已超過產出力度,所以這個第二次的可塑性形 變步驟,會出現朝向最佳校準位置4而移動的結果。 然而,如欲達到最佳校準結果,則需執行更多次的可 塑性形變作業。詳細地說,會在步驟730處再度執行彈性 形變,一直到達到產出力度爲止。接著,按如實線732所 述方式執行少量的可塑性形變。然後移除力度,並且該固 定與校準結構會彈性跳回到如實線734所表示之最佳校準 位置。 該插圖顯示出校準程序過程中的優點圖形。在第一次 的可塑性形變循環過程裡,該位置點會通過該最佳校準位 30 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------------—— (請先閱讀背面之注意事項再填寫本頁) . 1245138 A7 B7 五、發明說明(叫) (請先閱讀背面之注意事項再填寫本頁) 置,不過經移除力度之後,彈性跳回會將其拉離該最佳校 準處。然而,在第二次的循環裡,當移除力度之後’即可 改進該校準結果。最後,第三次循環會將光纖帶入到該最 佳校準位置處。 固定結構設計關鍵標準 圖23爲力度FY按移位値之函數所表示的圖形,可根 據本發明針對某項應用而作爲設計接片之用。該產出力度 爲該結構由彈性變形範圍上開始出現可塑性形變時的力度 〇 -線 經濟部智慧財產局員工消費合作社印製 FY(1200)的下界受到如加速之環境震動,以及處理過 程中該固定結構所得承受之可能力度所限制。某些規格會 要求該光學系統需耐住5000公克的震度測試。通常對於某 些光學元件,一般是會要求到超過0.5牛頓的產出力度。 然而,這個數字可按尺寸而降低,並因此得減少光學元素 的質量。如果沒有最小產出力度限制,則包括像是製作、 熱處理、鍍鑄、選置、校準、封裝以及其他的處理過程裡 無可避免所產生之力度,皆有可能造成彎摺關節處的可塑 性形變。更嚴重地,任何對本校準系統所生之衝擊皆或將 使其失去準度,因而抵銷本發明之意旨。 該FY(l25〇)上界會受到三個因素所影響。首先,會造 成接片或彎摺可塑性形變的力度不可過高,而減弱或損毀 固定結構與該基板之間的接附處。其次,該產出力度不可 過高而造成施出力度之微操控器內的明顯彈性形變。第三 31 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 1245138 A7 B7 五、發明說明(π) ',所需用以讓接片或彎摺變形之力度不可過高,而損壞該 整體建構固定結構上的其他部分。 除了限制接片產出力度之外,亦最好是限制住移位値 需爲多少方得達到該產出點。首先該下界(實線1300)表示 實體結構範圍。如果確有足夠可塑性形變範圍來達到該校 準位置,則該固定結構僅會依需要而運作。通常,校準結 構必須能夠讓光學元件進行0到50微米的移動或移位。常 用的校準演算法會要求得產出4到5微米的光學元件位置 移動方式以達到校準結果之可塑性形變。最小硬度的第二 個限制爲校準演算法設爲可接受之「過荷」量所決定。如 果該結構彈性過高,則爲了要甚至僅進行微量校準調整, 仍必須要壓下超過所欲之校準點的較長距離。 最後的限制是彎摺最大硬度(實線1350)。如果作業硬 化並非重點,則在此不會對最大硬度提出任何限制(當然, 除了材質限制之外)。不過,鎳質與鎳合金即會出現作業硬 化。因此,可選定硬度上界而不超過實線1250,即使是因 於搜尋正確校準結果的過程裡執行後續可塑性形變循環時 所產生之作業硬化亦然。 在較佳實施例中,FY,y,即y軸方向上的產出力度,會 小於3牛頓(N),而通常是0.2到1 N之間。至於沿著X軸 方向上的產出力度,FY,X,則會類似地被限制在低於3牛頓 (N),而通常是0.2到1 N之間。然而,如所用者爲小型的 光學元件,則可採行低於0·2 N的產出力度。這些下限値 會與該結構必須持束而又不希望產生可塑性形變的光學元 32 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) ------!.#.! (請先閱讀背面之注咅?事項再填寫本頁) 丨線. 1245138 A7 B7 五、發明說明(Μ ) '件質量有關。如此,即可於後續的產品產製過程裡,對小 型元件施用較低的產出力度。 相對地,Z軸方向上的產出力度,即FY,Z,或是Ργ,θ ’ 係屬強力者藉以僅校準該x-y平面。該FY,ZS Fy最好是 大於5 N或10 N爲佳。此外,特別是在用以保全光纖尾端 於光台的校準結構版本內尤爲如此。熱性膨脹會讓光纖上 的結果拉力失誤。本目的在於設計一種讓該拉力對光纖端 面產生盡可能低的移動情況之結構。特別是最好得利用選 取接片附接到光纖元件介面上的位置來均衡本結構,以盡 量避免任何的搖晃動作。 進一步之實施例 圖24爲本發明他款實施例,其中結構1〇〇係突似部分 101之組合,該者沿z軸上具有一常固橫切面區段,以及 兩個z軸彎摺組件102,可供控制旋繞於X軸或是按角度Θ 的方向等動作,藉以決定該力度沿z軸的成分之阻抗度。 該z軸彎摺組件101最好是個別地製作和接附到局部101 的基座表面。接者’將諸組件的基座表面接附到該工臺。 圖25爲本發明所提供之固定結構範例,其中,該固定 結構裡採用了兩種不同材質(茲標示爲「A」和「B」),藉 此將光學軸心位置因熱性膨脹及/或結構收縮所生之任何變 動最小化。在其一示範性組態中,連同於該結構範圍上的 設計’選取該「A」材質以便得因溫度變化而向上膨脹, 而選取該「B」材質以及其相關固定設計特徵,讓其得因 33 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) (請先閱讀背面之注意事項再填寫本頁) · •線· 經濟部智慧財產局員工消費合作社印製 1245138 A7 B7 五、發明說明(v7) '溫度變化而有向下膨脹的趨向。這些相對性膨脹傾向會產 生獲得橫跨運作溫度範圍裡該結構幾何與位霞上的穩定性 之補償動作。 光學系統生產線 圖26爲根據本發明原理之光學系統製程序列略圖。一 般說來,該程序包含了精準度選置,以訂定該光學元件至 某一優於10微米之正確度,而於本較佳實施例裡設爲2微 米,之後再爲主動式校準作業,其中該元件的位置會被調 校至約爲1微米的精準度,且以優於1微米爲佳。 詳細地說,可提供該校準結構供應器2010,像是膠封 或其他機械視覺相容之握持器者,並連同與其類似組態之 光學元件供應器2012。 各個供應器會由選置機械2014所接取。詳細地說,該 選置機械會將光學元件施置於校準結構上並接附該元件。 通常,要不是該校準結構及/或該光學元件係屬焊接鍍層, 要不就是使用焊接方式。該選置機械加熱該校準結構與該 光學元件,並將兩個組件帶入而彼此接觸,然後以焊接融 燒並再予以固化。 在本實施例中,該選置機械係由法國Karl Siiss公司所 製作之機型FC-150或FC-250者。這些選置機械具有一用 以選取光學元件的真空頸柱,以及一用來夾握該校準結構 的握持器。 具既經固著之光學元件的校準結構接著會被饋送給另 34 (請先閱讀背面之注意事項再填寫本頁) 訂: 參 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 1245138 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(Vi ) ¥者或相同的選置機械,該者可接取到某光學工臺供應器 2018。在這第二個選置作業裡,該選置機械2016會握持該 光學工臺於真空頸柱或是握持器上,然後再利用其真空頸 柱將該校準結構,連同光學元件,施置於該光學工臺上。 接著,將該工臺與結構加熱,以進行焊接接附。之後,再 藉由工臺的合配校準特徵以及固定結構的校準特徵,即可 達到低於5微米的置放準確度。在較佳實施例中,該些結 構係位在具優於2-3微米精確度生產環境下的工臺上。 在較佳實施例中,該光學工臺,連同固定其上之校準 結構,接下來會被送往一校準系統處。該校準系統2020具 有齒夾710A、710B,而彼等會咬接該校準結構100的握 把以進行校準作業。在較佳實施例中,這項校準作業係屬 主動校準,其中光學信號2022的強度會被偵測器2024所 偵知。可操控並變形該校準結構1〇〇,一直到該偵測器 2024所偵得之光學信號2022確已最大化。而最好是使用 像是「登嶺法」或是「螺旋掃描法」的校準搜尋策略爲佳 〇 在其他情況下,像是當將光纖安裝於工臺10之上時, 安裝該校準結構最好是先不要將光纖附接於該選置機械 2016上爲佳。然後在校準系統處,透過模組內的光纖饋通 將光纖饋送過去,並藉像是焊接接附接附到該校準結構 1〇〇處。然後,該校準系統操控該結構以進行校準作業。 當校準完畢後,光學工臺和模組會接著被傳通到一蓋 封作業2026,在此可按其需要執行像是封蓋與烘熱作業的 35 (請先閱讀背面之注意事項再填寫本頁) · 線 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 之 經濟部智慧財產局員工消費合作社印製 1245138 A7 B7 五、發明說明(vv) '最終製作步驟。'ϋ ϋ I n ϋ I 1: ° JI ϋ I nt I n I · 1 nn ϋ ϋ ϋ ϋ--ϋ ϋ II ϋ ϋ i I n ϋ n ϋ I 1245138 Α7 Β7 Intellectual Property Bureau, Ministry of Economic Affairs, Consumer Consumption Cooperatives Fifth, the description of the invention (5) 'FIG. 3A is a diagram of a second embodiment of the fixing and calibration structure. This embodiment follows many similarities to the first embodiment shown in Figs. In particular, the fixed surface Π6 has a slot-type calibration channel 118 for visual calibration. The connecting pieces IMA and IMB can provide the vertical portions 122A and 122B in a similar manner. However, two flattened portions 154, 155 are provided at each tab on each side of the fixing and alignment structure 100. In detail, the tab 114B includes two flattened sections 154B, 155B, and they usually extend from the vertical section 122B to the optical element interface 112. In particular, the link portion 158B connects the distal ends of both the flat portions 154 and 155 to the vertical portion 122B of the tab 114B. The second embodiment shown in Fig. 3A illustrates a further configuration of the optical element interface 112. More specifically, the optical element interface II2 of the second embodiment includes a V or ϋ-type lock valve region or slot 152 extending in the z-axis direction through the fixing and calibration structure 100. This open slot configuration allows the optical fiber, as indicated by F, to be mounted vertically in the direction of arrow 159 into the slot 152. In a normal implementation, the fiber F is then attached to a surface 132 at the bottom of the slot. It is best to use welding, but other methods such as resin glue can also be used. In a preferred embodiment, the depth of the slot relative to the location of the attachment point of the tab is designed to resist any shaking in response to the structure exerted by the z-axis force of the fiber. In detail, some actions in response to z-axis strength are indeed unavoidable. However, the slot depth can be controlled so that the fiber shaft does not move due to these external forces. π This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) Order:-丨 line. 1245138 A7 B7 V. Description of the invention (>) In other embodiments, the grip 136 will be used and follow the arrow (please read the precautions on the back before filling this page) The U-shaped slot is used to protect optical components such as optical fibers. FIG. 3B is an exemplary size of the third embodiment. In particular, the h of the illustrated embodiment is 1.1 mm (mm). Usually the structure will have greater than 0. 5 mm height for easy handling. In order to provide proper headroom in standard packaging, these structures are generally designed to be less than 2. 0 mm height. The width w of the structure is 1. 9 mm. Here again, the width is preferably greater than 0. 5 mm height for smooth installation on the bench. In order to provide acceptable component packaging density and headroom among many components, the width w is usually less than 4 mm. Fig. 4 shows a third embodiment of the fixing and calibration structure 100, which shares many similarities with the structure described in Figs. 1-3. The other has a pedestal 110 and a traverse base surface 116. In addition, the third described embodiment would have an optical element interface 112 with an optical chirp 152. In this example, the grip 136 will be more emphasized, and the person extends vertically upward from the interface 112. A V-shaped calibration feature 210 is provided on the surface of the base to facilitate engagement with a complementary V-shaped calibration slot on the workbench. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. One of the more prominent features is the film 114A and 114B. Rather than having two sections extending parallel to the X and y axis directions, each tab includes two opposing sections 212, 214, which intersect at a substantially right angle to each other. In addition, these tabs do not have a decentralized bending system, but rather have fairly constant cross-section sections along the length of the tabs. In addition, the optical element interface 112 contains relatively closed trough-shaped light. 18 This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) 1245138 A7 B7. 5. Description of the invention (Λ) (Please read the back first (Notes on this page, please fill in this page again)-Fixed slot 152 between students. In one embodiment, the optical fiber is inserted into the slot 152, and then the slot is closed to protect the optical fiber therein. In addition, a grip 136 vertically extending from the optical element interface 112 may be provided. In this example, the grip 136 has right and left ends extending on one side of the slot I52. Fig. 4 shows another difference with respect to the third embodiment from the previous one, which uses the z-axis bending. In detail, the 'base 11' includes a front sheet portion 422 and a rear sheet portion (not shown in the figure). In this way, the base 11 becomes a hollow box configuration. The use of z-axis tabs allows controlled bending to be pulled in rotation around the X-axis or anti-direction when stressed. • Line-FIG. 5A is an example in which the base is divided into two different base parts 110A, 110B in order to provide a stable structure-workbench interface while minimizing the contact surface subject to thermal expansion tension Into. In order to make the device stronger in the structure manufacturing process and in the process of installing to the optical table, the spring-type connection element 310 can connect the two lock valves of the bases 110A and 110B. This element is clamped or deliberately compressed prior to installation. Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Figure 5B is a related example with similar reference numbers representing similar ministries. What is noticeable in this embodiment is that the angle between the vertical section 126 and the flat section 124 constitutes an obtuse angle. In some applications, this configuration can facilitate calibration operations. The fifth embodiment shown in Fig. 6 is very relevant to the fourth embodiment of Fig. 5. In the sub-interface, the optical element interface includes two separate, cut sections 1ΠA, ΙΠΒ. In this embodiment, an optical element, such as an optical fiber f 19 ^ paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love) 1245138 A7 B7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Description of the invention (d) 'is within the volume measurement range between the two lock valves 112A and U2B inserted into the interface. These two lock valves Π2A and 112B will be closed around the optical fiber f. FIG. 7 is a sixth embodiment of the fixing and calibration structure. Compared with the previously disclosed examples, this embodiment notices that the tabs 114A, 114B have continuous bends distributed over the entire length of the tabs. These bends are not located at specific bend points as in some of the foregoing embodiments. In this embodiment, these tabs are used as distributed bending elements that are affected by plastic deformation. FIG. 8 shows a seventh embodiment of the fixing and calibration structure. In this embodiment, it should be noted that the tabs 4A, 114B are quite rigid, so that they can resist any bending or plastic deformation. In detail, these tabs Π4A, 114B do not have the distributed bending as shown in FIG. 1 above, nor do they have the continuous bending system as shown in the aforementioned FIG. 7 by the corresponding thickness of the tabs. Therefore, the embodiment in FIG. 8 is generally used to fix the optical fibers passing through the optical fiber feedthrough outside the module or the package. This seventh embodiment can resist any tensile force applied to the optical fiber F such as being held in the interface 112. Generally, this seventh embodiment is used in conjunction with a second fixing and calibration structure. The first fixing and aligning structure is close to the fiber end, and the fiber end is aligned on the X, y plane. The calibration structure of the seventh embodiment can be used to minimize the tensile force transmitted to the structure through the optical fiber for calibration of the fiber end. Fig. 9 shows an eighth embodiment of continuous bending tabs 114A, 114B and an optical interface 112, which is suitable for optical components other than optical fibers. In detail, a reflector or a lens is fixed to the optical interface 112 by a method such as welding or resin bonding. The port 134 can provide access to the 20 paper sizes applicable to China National Standard (CNS) A4 specifications (210 X 297 public love) — ------- !? 丨 (Please read the precautions on the back before filling in this Pages) Order:. Line-1245138 A7 B7 V. Description of the invention (d) The optical access feature of the element, in which the optical signal will be reflected by the optical element or transmitted through the element, and thus pass through the port 134. Fig. 10 is a ninth embodiment in which the base 110 is a relatively wide one-piece base. FIG. 11 shows another embodiment, in which four structures 100A-100D are integrated on a common base 110. This system is suitable for holding the optical fiber of an optical element like four physical parallel optical channels or paths. According to the present invention, each optical fiber is individually calibrated according to the individual calibration characteristics of the architectures. However, the common base can provide multiple, simultaneous structure / fiber passive calibration features in a single selection and placement step. Fig. 12 is a non-transverse symmetry fixing and calibration structure according to the eleventh embodiment. The other includes a base 110 and a tab 114 extending perpendicularly from the base. The tab includes a vertical section 122 and a flat section 124. The flattening section 124 ends at a device interface 112. The grip 136 may extend vertically from the interface. Fig. 13 shows a non-transverse symmetrical fixing and calibration structure according to a twelfth embodiment of the present invention. Here, the base 110 is extended in a vertical, y-axis direction so that it can be attached to a module or other fixed and calibrated structure side wall. The person may further have a flattening section 114, and a component interface 112 adapted to hold the optical fiber in a centered or leaning manner against the optical fiber to improve its calibration result. Fig. 14 is a plan view of a fixing structure for passively fixing an optical element. In detail, the thirteenth embodiment has a base 112 and an integrated optical element interface 112. And this one has a port 134 so that 21 paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (21 × 297 mm) -----:! # · 11 (Please read the notes on the back before filling (This page) _-Line · Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1245138 A7 B7 5. Description of the invention (/) 'Access to the optical components. This embodiment is not provided with a tab ' and is therefore only suitable for finely calibrating displacements. This is mostly used for holding them when the horizontal or vertical positioning of the components is not critical, which is like a folding mirror in some system designs. Fig. 15A is a fixing and calibration structure for a relatively large-scale MEMS filter device, a practical implementation method. In detail, the fourteenth embodiment has a divided base 110A, 110B. The individual tabs 114A, 114B extend from each base. Each of these tabs includes a vertical portion 122A, 122B, and a flat portion 124A, 124B. The optical element interface 112 is relatively large and is designed to hold an optical element that is both mounted on, for example, the fixed surface 132, for example. In this embodiment, the grip 136 is integrated on the interface. Fig. 15B illustrates a deployment diagram of the calibration structure 100B of the fourteenth embodiment together with one of the previously disclosed calibration structures 100A. In a general installation and calibration operation, the fixing and calibration structure 100A is first mounted on an optical table 10. Then, for example, in the active calibration process, the shape of the calibration structure is changed, and the optical element can be properly positioned relative to the optical path. Therefore, after the optical element held by the fixing and calibration structure 100A is calibrated, the calibration structure 100B can be installed according to its own optical element. Next, for example, in an active calibration process, the second calibration structure 100B is adjusted so that the second optical lift element can be properly positioned on the optical path. The relative dimensional difference between the calibration structures iOOA and 100B allows them to perform ~ series of calibration operations on their individual optical elements' even if these optical elements are closely adjacent to each other and 22 paper standards are applicable to Chinese National Standards (CNS) A4 size (210 X 297 mm) (Please read the notes on the back before filling out this page) ------- Order --------- * ^ 1 -n ϋ n Intellectual property of the Ministry of Economic Affairs Printed by the Bureau's Consumer Cooperatives 1245138 Α7 Β7 V. Description of Invention (M) 'Fixed to the workbench 10'. Fabrication of Fixed Structures Figures 16A-16C are cross-sectional views of the fixed and calibrated structure 100 during the manufacturing process. In detail, as shown in FIG. 16A, the thick PMMA resistive layer 414 is a seed / release layer 412 attached to the substrate 410. The thickness d of the PMMA resistance layer 414 may determine the maximum thickness of the quasi-projection portion of the fixing and calibration structure to be manufactured later. Therefore, the depth may determine the robustness of the fixing and calibration structure 100 to the force along the z-axis. In a preferred embodiment, the depth and the z-axis thickness of the fixing and calibration structure are in the range of 500-1000 microns. Thicker structures are typically used in tension-releasing structures & according to the procedure of the invention, the structure and therefore the depth of the PMMA layer is 2000 microns to produce a structure of the same thickness. FIG. 16B is the next manufacturing step of the fixing and calibration structure 100. In detail, the thick PMMA impedance layer 414 is exposed to X-ray sight for model processing. In detail, the mask 416, which can be a positive or negative mask having a desired structural model, is placed between an X light source such as a synchrotron and the PMMA impedance layer 4 '. Next, the Yanhai PMMA impedance layer 414 is made into a model layer 4MA, as shown in FIG. 1βB. FIG. 16C shows the structure of the 100 quasi-projection portion of the fixing and calibration structure. In detail, in a preferred embodiment, the quasi-projection portion can be constructed by electroplating. According to the present invention, the preferred electroplated metal is nickel. And in the other 23 ------ 1 丨 Dream 丨 丨 丨 (Please read the notes on the back before filling this page) Order: -The size of the paper is applicable to China National Standard (CNS) A4 (210 X 297) (Centi) 1245138 A / _B7 5. Description of the Invention (/) 'In the alternative, a nickel alloy such as a nickel-iron alloy is used. In addition, rhenium may be made of gold or gold alloy in other embodiments. At present, alternative metals and alloys can include silver, silver alloys, copper bronzes, coppers, golds, and alloys filled with colloidal oxide particles to pinpoint the microstructure. Figure 1? A-PF is the procedure for making the z-axis bending 422 described in Figure 4 above. In detail, as shown in FIG. ΠA, after the quasi-projection portion of the fixing and calibration structure is constructed, the substrate 410 is then removed from the seed source layer 412. Then, an additional photoresist layer 420 is added, and the z-axis bent coating is modeled as shown in FIG. 17B. Then, a plating step is further performed to form a z-axis bend 422 coating on the existing constant solid cross-section section 100. In FIG. 17D, a second photoresist layer is constructed on the opposite sides of the structure 100 and the first PMMA layer 414 and then processed by a model. An etching operation can be performed through the seed layer 412. That is, as shown in FIG. 17E, another plating step is performed, and a second plating layer with a z-axis bend 428 is made. Next, as shown in FIG. 17F, the remaining photoresist layer 424, the seed source layer 412, and the PMMA layer 414 are removed, and the remaining hollow box structure is shown. The box-type structure may constitute the bottom base section 422 of the fixing and alignment structure as shown in FIG. 4. Fixed Structure-Optical Element Table Installation Figure 18A shows the procedure for installing optical elements on the optical table 10. The workbench is preferably constructed of materials that are mechanically strong, chemically stable and temperature stable, such as silicon, beryllia, aluminum nitride, silicon aluminum carbide, copper 24 210 X 297 mm) (Please read the notes on the back before filling out this page)-. . 丨 Line Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1245138 A7 B7 V. Invention Description (A) 'Beryllium and so on. This is usually a metal or a ceramic plated with, for example, gold or a gold alloy. In detail, at step 450, the optical element 20 is mounted on some first fixing and alignment structure 100-1. In detail, it is preferable that the optical element 20 is attached to the fixing and alignment structure 100-1. In a preferred embodiment, a soldering attachment method may be used, in which the surroundings of the optical element and / or the attachment surface 132 of the optical element interface Π2 are first welded. The optical element is then brought into contact with the attachment surface 132 of the optical element interface 112. It is then fused and cured. At the same time, in a preferred embodiment, the complementary calibration features of the optical element 20 and the interface 112 will facilitate calibration operations and proper seating processing between the element 20 and the structure 100-1. In detail, the calibration channel 113 (see Figs. 1 and 2) is formed on the interface of the structure. The mask or projection 45 on the optical element 20 will be connected to the slot 113 to ensure the reproducible installation method of the element 20 on the structure 100-1. In other embodiments, the component 20 may be attached to the structure by a resin adhesive or an adhesive technology using other adhesives. Then, in the structure-workbench fixing step 452, the structure 100-1 is brought into contact with the optical workbench 10 and attached to the workbench. In a preferred embodiment, a welding attachment method can be used, in which the workbench is held at a heated neck post on an optional machine, and the pre-heat treated structure is brought into contact with the Workbench. The heat is then removed to solidify the solder joint. That is, as shown in connection with the calibration structure 100-2, for other engineering components, this fixing step is reversed. In this example, step 25 is attached to the structure-workbench. The paper size applies to the Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page). · Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs and printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs and printed by 1245138 A7 ______B7 V. Description of the invention (: bucket) In step 454, the fixed and calibrated structure 10 () _ 2 will come into contact with and Attached to the station. The optical fiber is then seated in the U-shaped port 152 of the fixing and alignment structure 100-2. Next, the optical fiber may be attached to the interface attachment surface 132 'or the u-shaped socket may be folded and the optical fiber may be protected at the bottom of the U-shaped socket. In this way, the fiber end face EF will be protected on the optical table near engineering elements such as the membrane filter or mirror 20 held by the structure 100-1. FIG. 18B also illustrates a procedure for mounting a MEMS type optical element on the optical quantity 10. In detail, in this embodiment, first, in the first attaching step 474, the front-end mirror 470 is attached to the reflective film of the MEMS device 472. Then, in a second attaching step 476, the MEMS device 472 is attached to the calibration structure 100. Next, in the workbench-attachment step 478, the combined MEMS / structure is attached to the workload 10. Deformation of the fixed structure during the calibration operation Figure 19 is an external view of an optical fiber laser signal source system, which is indeed constructed in accordance with the principles of the present invention. In detail, the laser source system 610 is fixed on the hybrid substrate 614. Generally, the substrate can support electronic connections to the wafer 612, or it can include a thermoelectric cooler to maintain a certain operating temperature of the wafer 612. The hybrid substrate 614 is then mounted on the optical table portion 10 of the packaging substrate 622. The detector 616 is located behind the wafer 612 of the workbench 10 to detect the light on the rear end surface and thereby monitor the operation status of the laser 612. 26 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ------ !!!. # ·! (Please read the notes on the back before filling this page). 'Line · 1245138 A7 B7 V. Description of the invention (4)' The light transmitted by the front end surface 618 of the wafer 612 will be collected by the optical fiber f and transmitted to the outside of the optical system 610. In an embodiment, the light transmitted in the optical fiber f is used to optically pump a gain fiber according to the Raman pumping rule, such as a rare earth element doped fiber or a normal fiber. In other embodiments, the laser chip 612 is modulated in response to the information signal to facilitate the optical fiber to transmit the optical information signal to the remote detector. In still other embodiments, the laser chip 612 can be controlled to perform CW mode and another modulator, such as a Mach-Zehner interferometer, can perform the modulation operation. According to the present invention, the optical element fixing and aligning structure 100 is mounted on the optical table portion 10 of the packaging substrate 622. That is, as mentioned above, the optical workbench has the calibration feature 62, which can be matched with the alignment calibration feature on the surface of the base of the fixing and calibration structure 100 as described in the previous illustration. That is, as described above, the g-fiber f is installed in the U-shaped 璋 1S2, which is part of the optical element interface U2 of the fixing and alignment structure 100. Figure 20 is § clarified in the production of the light as shown in _19, learned from the solution, can be used for active calibration of the deformable optical element fixed structure; ^ printed by the consumer property cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs (Please read the notes on the back before filling this page). Procedure diagram. In detail, at step 65, the laser mold 614 and the calibration structure 100 are fixed on the optical table 10 in the selection and attachment process. In detail, an optional robotic arm will place the search mode 614 and the f-quasi structure 100 on the optical table by passive calibration. It is best to use mechanical vision technology, and / or the optical table 10 and fix and calibrate the paper standard applicable Chinese National Standard (CNS) A4 specifications (210 X 297 1245138 A7 __B7 V. Description of the invention (4) 'Structure 100 , And the calibration characteristics of the mold 614 or significantly related to the defined coordinate system of the station 10 / module 622 to complete this calibration process (please read the notes on the back before filling this page). At step 652, once the laser hybrid 614 and the structure 100 are attached to the station 10, the laser hybrid will be attached by wire. Then at step 654, the laser 612 will be excited with energy. Decide whether the laser can operate normally. If the laser fails to operate normally, the optical system will be rejected and return to step 656. However, if it is determined at step 654 that the laser can be operated normally, the work station will be at At step 658, it is moved to a calibration fix of the production system. At step 660, the optical fiber f is inserted into and attached to the U-shaped port 152 of the optical element interface 112. In a preferred embodiment, the The fiber is soldered to the Attach the surface 132. At step 664, the calibration system will grab or insert the fixing and calibration structure 100 in response to the intensity or level of the signal transmitted by the optical fiber f from the laser 612, and the fixing and The calibration structure 100 is deformed. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, Figure 21 is a diagram of the socketing operation between the calibration system and the fixed and calibration structure 100 to calibrate the optical fiber f. 710A and 710B will bite the grip 136 of the fixing and aligning structure 100, and then move the fixing and aligning structure to facilitate the displacement operation of the optical fiber f on the xy plane, which is an axis orthogonal to the optical fiber f At the same time, the intensity of the signal transmitted by the optical fiber f will be monitored until the strongest signal is indeed detected at step 666 in Fig. 20. It should be noted that the right 28 of the grip 136 paper size is applicable to China National Standard (CNS) A4 specification (210 X 297 mm) 1245138 A7 ____B7 V. Description of the invention (11) The end and left end lock valves can be used to complete the best calibration results, so that these tooth clamps of the calibration system can change the structure Pull away with Push to the station 1 0. Now return to Figure 20. Once the strongest signal is detected at step 666, the calibration system will further deform the fixing and calibration structure 100, and let the fixing and calibration structure be released when After that, he can flexibly jump back to the desired calibration position detected at step 666. In other words, the fixing and calibration structure will be deformed in a plastic way, so that when the tooth clamps 710A, 710B of the calibration system are released from The fixation and calibration structure will have a proper calibration result at 100. If the optical element, that is, the optical fiber, is subsequently determined at step 670, it is not located at the position with the highest coupling result, it will be executed again. This deformation step 668 is performed until it is within the acceptable tolerance range. Figure 22 is a diagram of the calibration procedure. In detail, the benefits or coupling benefits of inserting light into the fiber are plotted as a function of the fiber's displacement. In detail, when the fiber is in the best calibration position and falls on either side of the position, the coupling benefit will be maximized. Figure 22 also illustrates the function of pulling force or displacement during many calibration procedure steps. To indicate strength or tension. In detail, in the first step 710, a force is applied to the fixing and calibration structure so that they can be elastically deformed. Within this range, a roughly linear relationship exists between the applied force on the y-axis and the displacement 値 or pull force on the X-axis. However, once the output strength level is exceeded, the fixation and calibration structure 100 will undergo plastic deformation as described in step 720. This plastic deformation applies to the Chinese paper standard (CNS) A4 (210 X 297 mm) for 29 paper sizes (please read the precautions on the back before filling this page). -丨 Line Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 1245138 A7 ^ __ B7_ V. Description of the invention () 'The fixed and calibrated structure is permanently deformed. When the external force is removed, the fixing and calibration structure will have the elastic "jump back" as described in step 720. That is, when the force is removed, the structure produces some elastic movement. However, since the output strength level was indeed exceeded, the fixed and calibrated structure did have a permanent deformation of the distance indicated by A. Even with plastic deformation, the fiber is still not in its optimal alignment position. For this reason, the plastic deformation of another cycle begins. In detail, an external force is applied to cause the fixing and calibration structure to have an elastic deformation as indicated by the solid line 724. Once the new output strength level is exceeded again, the other will produce plastic deformation as indicated by the solid line 726. During the second calibration cycle, the output was indeed increased due to the increased work. Then remove the force, and the fixing and calibration structure will spring back as indicated by the solid line 728. Since the output force is indeed exceeded, this second plastic deformation step will result in a movement towards the best calibration position 4. However, to achieve the best calibration results, more plastic deformation operations are required. In detail, the elastic deformation is performed again at step 730 until the output strength is reached. Next, a small amount of plastic deformation is performed as described by the solid line 732. The force is then removed and the fixing and calibration structure will spring back to the optimal calibration position as indicated by the solid line 734. This illustration shows a graphic of the advantages during the calibration procedure. During the first plastic deformation cycle, the position will pass the best calibration position. The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) --------- -------- (Please read the notes on the back before filling this page). 1245138 A7 B7 V. Description of the invention (called) (Please read the notes on the back before filling this page), but after removing the strength, the elastic jump will pull it away from the best calibration place. However, in the second cycle, when the velocity is removed, the calibration result can be improved. Finally, the third cycle brings the fiber into this optimal alignment position. Key Criteria for Design of Fixed Structures Figure 23 is a graph of the force FY as a function of the displacement 値, which can be used as a design tab for an application according to the present invention. The output strength is the strength when the structure begins to deform plastically on the elastic deformation range. The lower bound of FY (1200) printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs is subject to environmental shocks such as acceleration, and Limited by the ability of a fixed structure to withstand it. Some specifications require the optical system to withstand a shock test of 5,000 grams. Usually for some optical components, it is generally required to exceed 0. 5 Newton's output strength. However, this number can be reduced by size and therefore the quality of the optical elements must be reduced. If there is no minimum output force limit, it includes the unavoidable forces such as manufacturing, heat treatment, plating, selection, calibration, packaging and other processing processes, which may cause plastic deformation at the bending joint. . More seriously, any impact on the calibration system may cause it to lose its accuracy, thus offsetting the purpose of the present invention. The FY (125) upper bound is affected by three factors. First, the strength of the plastic deformation that would cause the tabs or bending must not be too high, and weaken or damage the attachment between the fixed structure and the substrate. Secondly, the output force should not be too high and cause obvious elastic deformation in the micromanipulator that exerts the force. The 31st paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1245138 A7 B7 V. Description of the invention (π) ' The strength of the sheet or bending deformation should not be too high, and it will damage the other parts of the overall construction and fixed structure. In addition to limiting the strength of the splice output, it is also best to limit the amount of displacement required to reach the output point. First of all, the lower bound (solid line 1300) indicates the range of the solid structure. If there is indeed sufficient plastic deformation range to reach this calibration position, the fixed structure will only operate as needed. Normally, the calibration structure must be able to move or shift the optical element from 0 to 50 microns. A commonly used calibration algorithm will require a 4 to 5 micron optical element position shift to achieve plastic deformation of the calibration result. The second limit of minimum hardness is determined by the amount of "overload" that the calibration algorithm sets to be acceptable. If the structure is too elastic, in order to perform even only minor calibration adjustments, it is still necessary to depress a longer distance beyond the desired calibration point. The final limit is the maximum bending stiffness (solid line 1350). If the hardening of the work is not the focus, then there is no restriction on the maximum hardness (except, of course, for the material). However, nickel and nickel alloys are hardened. Therefore, the upper limit of hardness can be selected without exceeding the solid line of 1250, even if the work hardens during the subsequent plastic deformation cycle during the search for the correct calibration result. In a preferred embodiment, FY, y, that is, the output strength in the y-axis direction, will be less than 3 Newtons (N), and usually 0. Between 2 and 1 N. As for the output strength along the X axis, FY, X are similarly limited to less than 3 Newtons (N), and usually 0. Between 2 and 1 N. However, if a small optical element is used, an output strength lower than 0 · 2 N can be adopted. These lower limits will be related to the optical elements that the structure must hold and do not want to produce plastic deformation. 32 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 public love) ------ !. #. ! (Please read the note on the back? Matters before filling this page) 丨 Online. 1245138 A7 B7 V. Description of the invention (M) 'The quality is related. In this way, a lower output strength can be applied to small components in the subsequent production process. In contrast, the output strength in the Z-axis direction, that is, FY, Z, or Pγ, θ ′, is a strong person to calibrate only the x-y plane. The FY, ZS Fy is preferably greater than 5 N or 10 N. In addition, this is especially true in the version of the calibration structure used to secure the fiber end to the stage. Thermal expansion can cause the resulting tension on the fiber to fail. The purpose is to design a structure that allows the tensile force to move the fiber end surface as low as possible. In particular, it is best to use the position where the selection tab is attached to the interface of the optical fiber component to balance the structure in order to avoid any shaking action as much as possible. Further Embodiment FIG. 24 shows another embodiment of the present invention, in which the structure 100 is a combination of the protrusion-like portion 101, which has a constant solid cross-section section along the z-axis, and two z-axis bending components 102, which can be used to control the movement around the X axis or the direction of the angle Θ, so as to determine the impedance of the component of the force along the z axis. The z-axis bending assembly 101 is preferably fabricated and attached to the base surface of the portion 101 individually. Adapter 'attaches the base surface of the components to the station. FIG. 25 is an example of a fixed structure provided by the present invention, in which two different materials are used in the fixed structure (herein designated as “A” and “B”) to thereby expand the optical axis position due to thermal expansion and / or Minimize any changes due to structural shrinkage. In one exemplary configuration, together with the design on the structural scope, 'the' A 'material is selected so as to expand upward due to temperature changes, and the' B 'material and its related fixed design features are selected for Because 33 paper sizes are in accordance with Chinese National Standard (CNS) A4 specifications (210 X 297 public love) (Please read the precautions on the back before filling out this page) · • Line · Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 1245138 A7 B7 V. Description of the invention (v7) 'The temperature has a tendency to expand downwards. These relative swelling tendencies will result in compensating actions to obtain stability over the structural geometry and position over the operating temperature range. Optical System Production Line FIG. 26 is a schematic diagram of an optical system manufacturing process according to the principles of the present invention. Generally speaking, the program includes accuracy selection to set the optical element to a certain accuracy better than 10 microns, which is set to 2 microns in the preferred embodiment, and then active calibration is performed. The position of the component is adjusted to an accuracy of about 1 micron, and preferably better than 1 micron. In detail, the calibration structure supplier 2010 may be provided, such as an adhesive seal or other mechanical vision compatible holder, together with an optical component supplier 2012 configured similar thereto. Each supplier will be picked up by Selection Machinery 2014. In detail, the selection mechanism places an optical element on a calibration structure and attaches the element. Generally, either the calibration structure and / or the optical element is a solder plating, or a welding method is used. The optional mechanism heats the calibration structure and the optical element, brings the two components into contact with each other, and then melts it by welding and then solidifies it. In this embodiment, the selection machine is a model FC-150 or FC-250 manufactured by Karl Siiss, France. These selection machines have a vacuum neck for selecting optical components, and a holder for gripping the calibration structure. The calibration structure with the fixed optical element will then be fed to another 34 (please read the precautions on the back before filling out this page). Order: Printed on the paper by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Standard (CNS) A4 specification (210 X 297 mm) 1245138 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Invention description (Vi) ¥ or the same optional machinery, the person can access a certain optical Workbench supplier 2018. In this second selection operation, the selection machine 2016 will hold the optical bench on a vacuum neck or a holder, and then use its vacuum neck to apply the calibration structure, together with the optical components, to the Place on the optical bench. Next, the workbench and the structure are heated for welding attachment. After that, by using the matching calibration features of the workbench and the calibration features of the fixed structure, placement accuracy of less than 5 microns can be achieved. In a preferred embodiment, these structures are located on a workbench in a production environment with an accuracy of better than 2-3 microns. In the preferred embodiment, the optical bench, along with the calibration structure fixed to it, is then sent to a calibration system. The calibration system 2020 has tooth clamps 710A, 710B, and they will snap into the grips of the calibration structure 100 for calibration operations. In the preferred embodiment, this calibration is an active calibration, in which the intensity of the optical signal 2022 is detected by the detector 2024. The calibration structure 100 can be manipulated and deformed until the optical signal 2022 detected by the detector 2024 is indeed maximized. It is best to use a calibration search strategy such as the “Deng Ling method” or “spiral scanning method”. In other cases, such as when the optical fiber is mounted on the workbench 10, the calibration structure is most suitable for installation. Fortunately, it is better not to attach the optical fiber to the selection machine 2016. Then at the calibration system, the optical fiber is fed through the optical fiber feedthrough in the module, and is attached to the calibration structure 100 by soldering. The calibration system then manipulates the structure for calibration operations. After the calibration is completed, the optical station and module will then be passed to a capping operation 2026, where you can perform operations such as capping and drying operations 35 (please read the precautions on the back before filling in (This page) · The size of the paper used for the paper is in accordance with the Chinese National Standard (CNS) A4 (210 X 297 mm) printed by the Consumer Property Cooperative of the Intellectual Property Bureau of the Ministry of Economy 1245138 A7 B7 V. Description of the invention (vv) 'Final production steps.
圖27A、27B與27C說明三種不同的校準通道llS 組態,即如圖1所引介者。 接 圖27A爲簡式設計,不過當基座表面爲焊接或其I 附介質所預鑛時,會有關於實作於機械視覺應用下的缺 。焊接會塡充於摺縫處,使得通道邊緣變爲平坦,而旨襄依 據諸特徵爲基礎的校準方式成爲不甚準確。 圖27B和WC爲諸特徵上倂同有嵌洞之通道,可有助 於辨識出邊緣USA,即使是經焊接鍍層之後亦然。其結果 的淸晰邊緣特徵,即使是經鍍層後,仍可於工臺安裝過程 裡協助校準。 $ 本發明雖按特定方式所繪述,並參酌於其較佳實施例 而說明,然對於熟習本項技藝之人士,確得明瞭彼可採行 各種型式與細節變化’而仍不偏離由後列申請專利範 纂訂之發明範圍。 36 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 广請先闕讀背面之江音5^-)Figures 27A, 27B, and 27C illustrate three different calibration channel llS configurations, as shown in Figure 1. Figure 27A is a simplified design. However, when the surface of the base is pre-mineralized by welding or its I-attached medium, there are some shortcomings in the implementation of machine vision applications. Welding will fill the crease, making the channel edge flat, and the calibration method based on various features becomes inaccurate. Figures 27B and WC show channels with embedded cavities in the features, which can help identify the edge USA, even after welding plating. The resulting clear edge features can assist in calibration during bench installation, even after coating. Although the present invention is described in a specific way and explained with reference to its preferred embodiments, for those who are familiar with this technique, it is clear that he can adopt various types and changes in details, without departing from the following. The scope of inventions set by the patent application. 36 This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm). Please read Jiangyin 5 ^-on the back first.
Claims (1)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16543199P | 1999-11-15 | 1999-11-15 | |
US18692500P | 2000-03-03 | 2000-03-03 | |
US09/648,148 US6559464B1 (en) | 1999-11-15 | 2000-08-25 | Optical system active alignment process including alignment structure attach, position search, and deformation |
US09/648,348 US6625372B1 (en) | 1999-11-15 | 2000-08-25 | Mounting and alignment structures for optical components |
US09/648,349 US6416937B1 (en) | 1999-11-15 | 2000-08-25 | Optical component installation process |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI245138B true TWI245138B (en) | 2005-12-11 |
Family
ID=37190022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW89123772A TWI245138B (en) | 1999-11-15 | 2000-11-10 | Mounting and alignment structures for optical components |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI245138B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI558946B (en) * | 2014-12-10 | 2016-11-21 | 鄭博文 | Light source system |
CN113681522A (en) * | 2021-08-23 | 2021-11-23 | 安徽光智科技有限公司 | Method for assembling and fixing optical element |
-
2000
- 2000-11-10 TW TW89123772A patent/TWI245138B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI558946B (en) * | 2014-12-10 | 2016-11-21 | 鄭博文 | Light source system |
CN113681522A (en) * | 2021-08-23 | 2021-11-23 | 安徽光智科技有限公司 | Method for assembling and fixing optical element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1230571B1 (en) | Optical fiber active alignment using support device with plastic deformation | |
US6416937B1 (en) | Optical component installation process | |
US6559464B1 (en) | Optical system active alignment process including alignment structure attach, position search, and deformation | |
JP6994258B2 (en) | Optical alignment of optical subassemblies for optoelectronic devices | |
US6164837A (en) | Integrated microelectromechanical alignment and locking apparatus and method for fiber optic module manufacturing | |
US7126078B2 (en) | Sub-micron adjustable mount for supporting a component and method | |
US6253011B1 (en) | Micro-aligner for precisely aligning an optical fiber and an associated fabrication method | |
US7075028B2 (en) | Sub-micron adjustable mount for supporting a component and method | |
US6678458B2 (en) | System and method for precise positioning of microcomponents | |
CN106461890A (en) | Demountable optical connector for optoelectronic devices | |
EP1068552A1 (en) | Chip-to-interface alignment | |
US6280100B1 (en) | Fiber optic connector with micro-alignable sensing fiber and associated fabrication method | |
US7003211B2 (en) | Optical system production system | |
JP2002503355A (en) | Alignment of optical components | |
EP1168011A1 (en) | Hybrid alignment of optical components using calibrated substrates | |
TWI245138B (en) | Mounting and alignment structures for optical components | |
EP1259844B1 (en) | Production line for mounting and alignment of an optical component | |
US6210046B1 (en) | Fiber optic connector with micro-alignable lens having autofocus feature and associated fabrication method | |
CN102906609A (en) | Mems-based levers and their use for alignment of optical elements | |
CA2187961A1 (en) | Method and apparatus for alignment and bonding | |
JP2002529789A (en) | A device that stably supports miniaturized components. | |
JPH1184174A (en) | Optical connector head with built-in optical fiber | |
US20030076664A1 (en) | Micro-functional unit | |
CN1508582B (en) | Method for producing optical device | |
Kravitz et al. | A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging-The CLASP concept |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |