TWI242898B - Epitaxial substrate for solid-state semiconductor device, solid-state semiconductor device and method for producing the same - Google Patents

Epitaxial substrate for solid-state semiconductor device, solid-state semiconductor device and method for producing the same Download PDF

Info

Publication number
TWI242898B
TWI242898B TW93134276A TW93134276A TWI242898B TW I242898 B TWI242898 B TW I242898B TW 93134276 A TW93134276 A TW 93134276A TW 93134276 A TW93134276 A TW 93134276A TW I242898 B TWI242898 B TW I242898B
Authority
TW
Taiwan
Prior art keywords
solid
epitaxial
semiconductor device
item
film
Prior art date
Application number
TW93134276A
Other languages
Chinese (zh)
Other versions
TW200616252A (en
Inventor
Jyh-Rong Gong
Yu-Li Tsai
Tai-Yuan Lin
Original Assignee
Jyh-Rong Gong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jyh-Rong Gong filed Critical Jyh-Rong Gong
Priority to TW93134276A priority Critical patent/TWI242898B/en
Application granted granted Critical
Publication of TWI242898B publication Critical patent/TWI242898B/en
Publication of TW200616252A publication Critical patent/TW200616252A/en

Links

Abstract

This invention provides an epitaxial substrate for solid-state semiconductor device, which comprises a slab, a buffer film connected with the slab, and at least one of first epitaxial film having a first surface connected with the buffer film and a roughened second surface opposite to the first surface and appearing a variation irregularly. This invention also provides a solid-state semiconductor device, which comprises an epitaxial substrate stated above, and an emitting unit set on one side of the epitaxial substrate that formed the first epitaxial film. Furthermore, this invention also provides a method for producing the solid-state semiconductor device stated above.

Description

1242898 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種半導體裝置及其製作方法,特別 是指一種固態(solid-state)半導體裝置用之蠢晶 (epitaxy)基板、固態半導體裝置及其製作方法。 【先前技術】 目前常見的固態半導體裝置,大致上有發光二極體 (light-emitting diode ;簡稱 LED)裝置、雷射二極體 (laser diode ;簡稱LD)裝置或半導體射頻(radi〇 frequency)裝置等。一般而言,前述的led裝置、ld裝置 及半導體射頻裝置,是由一磊晶基板及一形成在該磊晶基 板上的半導體元件(例如··射頻元件,或是含有p—n接合的 發光元件)所構成。 舉例來說,基本的藍光或綠光發光二極體結構,是由 一藍寶石(sapphire)基板、一形成於該藍寶石基板上的緩 衝層(buffer layer)、一形成於該緩衝層上的n型氮化鎵 (n type GaN)半導體層、一局部地覆蓋該n_fype 半導 體層的發光層(active layer)、一形成於該發光層的p型 氮化鎵(p-type GaN)半導體層及兩分別形成於該等半導體 層上的接觸電極層所構成。 影響發光二極體之發光效率值的因素分別有内部量子 效率(internal quantum efficiency)及外部(external)量 子效率,其中,構成低内部量子效率的主要原因,則是开^ 成於發光層中的差排(dislocation)量。然而,藍寶石基板 1242898 與氮化鎵兩者材料間存在相當大的晶格不匹配(lattice mismatch)的問題,因此,在蠢晶過程中亦同時地構成了大 量的貫穿式差排(threading dislocation)。 參閱圖1,一種半導體發光元件(中華民國專利公告案 號為561632),包含:一藍寶石基板1〇、一形成在該藍寶 石基板10上的n型半導體層11、一形成在該n型半導體層 11並可產生一預定波長範圍的光源的發光層12,及一形成 在該發光層12上的ρ型半導體層13。 该藍寶石基板1〇的一上表面是利用微影 (photolithography)設備及反應式離子蝕刻(reactive i〇n etching;簡稱RIE)形成有複數呈週期性變化地排列的凹部 14。其中’該藍寶石基板1〇是使用c面(〇〇〇1)的藍寶石基 板,且構成该尊凹部14的邊是大致平行於該n型半導體層 11的成長穩定面(stabilized growth surface;此處所提 及的成長穩定面為Μ面;意即彳1 1 〇〇丨面),以使形成在該藍 寶石基板10上的η型半導體層u不產生結晶缺陷 (crystal defect)地填滿該等凹部14。每一凹部14的深度 及尺寸分別是1 μιη及1〇 μπι,並藉由每一凹部14的一中心 界定出一 10 μπι的間距。 A. Bell、R. Liu、F. A. Ponce、H. Amano、I.1242898 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a semiconductor device and a manufacturing method thereof, and particularly to an epitaxy substrate and a solid-state semiconductor device for a solid-state semiconductor device. And how to make it. [Previous technology] At present, common solid-state semiconductor devices generally include a light-emitting diode (LED) device, a laser diode (LD) device, or a semiconductor radio frequency (radio frequency). Device, etc. Generally speaking, the aforementioned LED device, LD device, and semiconductor radio frequency device are composed of an epitaxial substrate and a semiconductor element (such as a radio frequency element or a light emitting device including a p-n junction) formed on the epitaxial substrate. Components). For example, a basic blue or green light emitting diode structure is composed of a sapphire substrate, a buffer layer formed on the sapphire substrate, and an n-type formed on the buffer layer. N-type GaN semiconductor layer, an active layer partially covering the n_fype semiconductor layer, a p-type GaN semiconductor layer formed on the light-emitting layer, and two A contact electrode layer formed on the semiconductor layers. The factors that affect the luminous efficiency of a light-emitting diode are internal quantum efficiency and external quantum efficiency. The main reason for the low internal quantum efficiency is that it is formed in the light-emitting layer. Amount of dislocation. However, there is a considerable lattice mismatch between the sapphire substrate 1242898 and gallium nitride. Therefore, a large number of threading dislocations are also formed during the stupid crystal process. . Referring to FIG. 1, a semiconductor light emitting device (Republic of China Patent Publication No. 561632) includes: a sapphire substrate 10, an n-type semiconductor layer 11 formed on the sapphire substrate 10, and an n-type semiconductor layer 11 can generate a light emitting layer 12 of a light source with a predetermined wavelength range, and a p-type semiconductor layer 13 formed on the light emitting layer 12. On one upper surface of the sapphire substrate 10, a plurality of recesses 14 are formed in a periodically varying manner using photolithography equipment and reactive ion etching (reactive ion etching for short). Wherein, the sapphire substrate 10 is a sapphire substrate using a c-plane (001), and a side constituting the recessed portion 14 is a stabilized growth surface (stabilized growth surface; approximately here) The mentioned growth-stable surface is the M-plane; that is, the 彳 11 1 OO plane), so that the n-type semiconductor layer u formed on the sapphire substrate 10 fills these without generating crystal defects. Concave portion 14. The depth and size of each of the recesses 14 are 1 μm and 10 μm, respectively, and a pitch of 10 μm is defined by a center of each recess 14. A. Bell, R. Liu, F. A. Ponce, H. Amano, I.

Akasaki 及 D· Cherns 等人於 幻· vol· 82, N〇_ 3, ΡΡ· 349 —351中,揭露一種成長於圖案化 藍寶石基板上摻雜鎂的氮化鋁鎵之發光特性及其顯微結構 。參閱附件一,文中說明利用微影及反應式離子蝕刻等黃 1242898 光製程,沿著一藍寳石基板的&lt;11 2 〇&gt;方向蝕刻,以製得一 由複數條狀溝槽所構成的圖案化藍寶石(patterned sapphire)基板,並於該圖案化藍寶石基板上形成一摻雜鎮 的氮化鋁鎵(AlGaN : Mg)磊晶膜,其中,直接形成於該等條 狀溝槽之間平台上的磊晶膜含有大量的貫穿式差排,而懸 置於每一條狀溝槽處上方的橫向蟲晶(epitaxial lateral overgrowth ;簡稱ELOG)膜則構成了一無缺陷區。因此,由 該等無缺陷區所取得的陰極螢光影像(cathode luminescence image;簡稱CL影像)之亮度亦顯著地增加 。關於前述的貫穿式差排及CL影像,則可見於前述論文中 的說明。 jtb 夕卜,Shulij Nakamura 、 Masayuki Senoh 、 Shin-ichi Nagahama、Naruhito Iwasa 及 Takao Yamada 等曰亞 化工的研究員於 Appl. Phys. Lett· 72(2),211-213 中, 揭露一種具有成長於橫向磊晶氮化鎵基材上的調變摻雜應 變層 超晶格(modulation-doped strained-layer super lattices)的雷射二極體。參閱圖2,文中說明於一藍 寶石基板90的C面上依序形成一緩衝層91及一 2 μπι厚的 氮化鎵膜92後,進一步地藉由微影設備於該氮化鎵膜92 上形成複數厚度為0. 1 μπι的氧化矽膜93,且藉相鄰的氧化 矽膜93構成複數4 μιη寬的條狀窗口 94以定義出形成於該 氮化鎵膜92上的遮罩(Si〇2 mask),最後,依序地於該遮罩 上利用雙喷流有機金屬化學氣相沉積法(two-flow M0CVD) 形成一 n-GaN層95等以完成後續的元件製程。 1242898 曰亞化工的研究員利用非晶質(⑽〇rph〇us)遮罩,致使 形成於该等fo 94 4的垂直蟲晶膜橫向地合併以構成形成 於遮罩上方的橫向磊晶膜,藉此達到降低差排密度的目的 〇 丽面所提及的專利前案及論文文獻,雖然可以降低於 蟲晶過程中形成於蟲晶膜内的貫穿式差排,但,不論是形 成圖案化的基板亦或是於蠢晶膜上形成圖案化的非晶膜, 皆須使用到微影設備及製程,因此,無形中亦增加設 本及時間成本。 〜此外前面所提及的專利前案及論文文獻之整體揭示内 容’在此併入本案作為參考資料。 口此如何在磊晶過程中降低差排密度以改善蟲晶膜 的光學特性,同時亦可減少製作成本,則是目前研究開發 磊晶相關業者所需克服的一大難題。 【發明内容】 〈發明概要〉 § 一下方晶體與一位於其上方的磊晶膜之間具有一高 又寺(例如·於下方晶體形成凹槽),將致使貫穿式差排 然法由下方晶體延伸之上層磊晶膜,其可能原因有二: 一、當凹槽深度達一足夠的預定深度時,上層磊晶膜 將由下方晶體的平台處開始沉積並且往兩側延伸 出去,以使得凹槽正上方的磊晶膜構成橫向磊晶 機制,致使原本形成於下方晶體内的貫穿式差排 無法繼續延伸至位於凹槽正上方的橫向磊晶膜區 1242898 域。 二、上層蟲晶媒亦可能由凹槽處往外横向地成長,造 成原本位於下方晶冑内的貫穿式差排無法延伸至 上層蟲晶膜,且貫穿式差排僅被彎曲並限制於凹 槽内的蟲晶膜内,因此使得凹槽處蟲晶膜内的差 排密度較低。 因此,藉由增加下方晶體的凹槽密度,可使得形成於 蟲晶膜内的差排密度顯著地下降。 此外,當下方晶體經過姓刻處理並形成複數凹槽時, 可減少形成於其上方的第一磊晶膜内的差排量。若對該第 一磊晶膜進一步地直接施予蝕刻以在該第一磊晶膜上形成 複數凹槽,且於該第一磊晶膜上繼續地形成一第二層磊晶 膜即可再度減少形成於該第二層磊晶膜内的差排量。因 此田相互堆豐的蠢晶膜層數越多時,形成最後一層之蟲 晶膜内的差排量越少。 由上所述,本發明是於一磊晶用之板本體上依序形成 一緩衝膜及至少一具有一粗化表面的磊晶膜。該磊晶膜是 藉由磊晶形成於該緩衝膜上,且未經由微影設備而是直接 地對該磊晶膜施予蝕刻以在該磊晶膜上形成複數凹槽並定 義出該粗化表面。由於該磊晶膜的數目增加可降低形成於 上層蟲晶膜内的差排量,因此,亦可於該緩衝膜上形成複 數分別具有一粗化表面的磊晶膜(亦即;重複地施予磊晶及 餘刻製程),藉以大量地減少形成於磊晶膜内的差排量並構 成本發明之固態半導體裝置用之磊晶基板。此外,於前述 1242898 本發明之功效,在於藉由省略上光阻、硬化、去光阻 或光罩等黃光微影製程,以簡化製作流程及降低時間成本 ,並利用增加具有粗糙表面之磊晶膜的數量,大量地降低 差排密度,以改善所製得的磊晶膜及其裝置之光學特性。 〈發明詳細說明〉 參閱圖3,本發明之固態半導體裝置用之磊晶基板2的 一較佳實施例,包含:一板本體21、一連接於該板本體21 的緩衝膜22,及複數相互疊置於該緩衝膜22上的第一磊晶 膜23。 猫曰曰 上十每一第一磊晶膜23具有一第一表面231,及一相反於 該第-表面231且呈一不規則變化之粗糙的第二表面现。 其中,位於最下方的第一磊晶膜23的第一表面231是連接 於該緩衝膜22。 較佳地,每一第-磊晶膜23的第二表面232上是形威 有複數呈不規則尺寸變化,且由該第二表面232向該第-表面231方向凹陷的六邊形凹槽232,。 較佺地’該磊晶基板2更包含一形成於最上方的第一 磊晶膜23之第二表面232的第二磊晶膜24。 土車1 佳地δ亥第二蟲晶膜24具有一相對該等第一蟲晶膜 H離該板本體21且呈一不規則變化之粗糖表面241。更 二:=—磊晶膜24上具有複數呈不規則尺寸變化且由 口只第一猫日日膜24向該板本體21古a 如,,藉該等六邊_二二方向凹陷的六邊形凹槽 趟表面241。川槽241疋義出該第二蟲晶膜24的粗 1242898 值得一提的是,當太蘇^ ^明之固態半導體裝置用之磊晶 基板包含一第一磊晶膜23時亦可實施。 適用於本發明之每-&quot;日膜=24是由—含有瓜族及 V㈣之半導體化合物所製成。較佳地,每一蟲晶膜23 24疋由—含有鎵(Ga)及氮(N)之半導體化合物所製成。 幸“土地,每一磊晶膜23、24的一預定厚度是至少大於 10 0 nm。更佳地,备一磊曰赠。。 ^ 母猫日日膜23、24的預定厚度是介於 100 nm 至 10 μπι 之間。 較佳地,該板本體21是由一具有六方晶(hexag〇nal y 1)、、。構之材料或具有鑽石立方(di amond cubic » 間稱DC)結構之材料其中一者所製成。更佳地,該板本體 21疋由一具有六方晶結構之材料所製成。 適用於本發明之該六方晶結構之材料是一選自於下列 所構成之群體:藍寶石(sapphire)、氮化鎵(GaN)、氮化鋁 (A1N)、氮化鋁鎵(A1GaN)及碳化矽(Sic)。此外,適用於本 發明之該鑽石立方結構之材料可以是矽(Si)。 值得一提的是’由於該等相互地層狀堆疊之第一蠢晶 膜23的數目增加,相對地,最終所構成的貫穿式差排密度 亦隨著降低,因此,如圖4所示,該第二磊晶膜24的上表 面亦可以是一未經過粗化(r0Ughen)處理的平坦面242。 此外,參閱圖5,本發明之固態半導體裝置之一較佳實 施例’包含:一如前面所述之磊晶基板2,及一設置於形成 有該等第一磊晶膜23的磊晶基板2上的一侧之發射單元3 。該磊晶基板2之相關結構及變化已揭示於前,在此不再 12 1242898 多加詳述。 較佳地,該發射單元3具有一形成在該遙晶基板2上 的蟲晶體31及兩分別形成在該蟲晶體31上的接觸電極32 Ο 較佺地《亥猫曰曰體31由該磊晶基板2向遠離該磊晶基 板2的方向依序具有一形成於該蟲晶基板2的第一型半導 體層川、-局部地覆蓋該第一型半導體| 3ιι的發光層 312及-形成於該發光層312的第二型半導體層313,該; 接觸電極32分別形成於該第—及第二型半導體層3ιι、川 上0 …較佳地,該第-型半導體層311是—n型半導體層, °亥第一型半導體層313是一 p型半導體層。 _適用於本發明之該蟲晶體3卜是由-含有皿族及乂族 兀素之半導體化合物所製成。較佳地,該磊晶體31是由一 含有鎵及氮之半導體化合物所製成。 、,值得-提的是,在此是利用一可產生—特定頻率範圍 的平面導通式發光二極體說明該發射單元3,因此,在配合 杨=之該蟲晶㈣2的使⑽件下,適特本發明之: 發射單元3亦可以是一垂直導通式發光二極體、一雷射二 極體或是一射頻元件(圖未示)。 、 參閱圖6,前面所提及之固態半導體裝置的製作方法, 包含下列步驟·· 、彳 (a) 提供一板本體; (b) 於该板本體上形成一緩衝膜; 13 1242898 施例之固態半導體裝置的製作方法。 參閱附件二之掃描式電子顯微鏡(scanning electr〇n microscope;簡稱SEM)表面形貌圖,圖中顯示GaN磊晶膜 表面經過粗化後留下複數尺寸介於1 μιη至3 μιη之間的六 邊形凹槽。 此外,亦參閱附件三之穿透式電子顯微鏡 (transmission electron microscope;簡稱 ΤΕΜ)形貌圖, 圖中顯示出貫穿式差排是由下層蠢晶膜的姓刻凹槽區域兩 側延伸至上層磊晶膜,而位於蝕刻凹槽區域上方的上層蠢 晶膜則藉由橫向磊晶成長以構成一無差排區。 以下配合參閱圖7,說明附件三之TEM形貌圖的磊晶機 制。圖7是由一粗化氮化鎵磊晶膜4及一氮化鎵再磊晶膜5 所構成’其中,該粗化氮化鎵磊晶膜4上形成有一蝕刻凹 槽區41,位於該粗化凹槽區41兩側的差排由該蝕刻氮化鎵 蠢晶膜4延伸至上層的再磊晶氮化鎵膜5,而位於該蝕刻凹 才曰區41上方的氮化鎵再蠢晶膜5,則是以橫向蟲晶(el〇g) 的機制構成一無差排區51。 多閱圖8,說明由第二蠢晶膜取得的室溫光激發光 Cph〇toluminescence ;簡稱pL)特性。橫軸代表蝕刻凹槽的 尺寸(亦即;藉由調配不同hPOVHdO4比值所取得的凹槽尺 寸)j隨著凹槽尺寸越大,PL之近能隙邊緣(near bandedge 簡稱BE)發光訊號的半高寬(fuii ;簡稱FWHM)越小,且近能隙邊緣發光訊號強度對 汽光(YL)戒號強度比值(ibe/iyl)越大。因此,凹槽尺寸越大 17 1242898 ,磊晶膜的光學特性越好。 &gt;閱3 9 ’ δ兒明凹槽尺寸的變化與差排密度(以以pi 士 density ’簡稱EpD)間的關係。圖9顯示,EpD值是隨著凹 槽尺寸增加而下降,且當凹槽尺寸約3.0 _時,EPD值已 降至4· 0 x 106 CUT2以下。 利用本發明之方法以構成具有該磊晶基板2及該發射 單元3的半導體裝置,由於形成於每-蟲晶膜23、24 内4的差排达度大量地減少,因此,使得本發明之固態半 V體裝置的内邛里子效率增加。此外,亦可藉由粗化的磊 晶膜以增加由本發明之固態半導體裝置所產生的特定波段 之反射(reflectlon)現象,藉以提高其外部量子效率。 綜上所述,本發明之固態半導體裝置用之蟲晶基板、 固態半導體裝置及且掣作太、、土 g ^ ^ 置汉八I作方法,具有製程簡化、形成於磊 晶膜的差排密度低、内部量子效率高及增加外部量子效率 等特點,確實達到本發明之目的。 ▲惟以上所述者,僅為本發明之較佳實施例而已,當不 ,以此限定本發明實施之範圍,即大凡依本發明申請^利 範圍及發明說明内容所作夕錡@ 各所作之間早的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是-側視示意圖,說明中華民國專利 561632號的一種半導體發光元件; α茶疵馬 Β曰 圖2是-側視示意圖,說明一種具有成長於橫向石_ 亂化鎵基材上的調變摻雜應變層超晶格的雷射二極體;猫 18 1242898 圖3是一局部剖視示意圖,說明本發明固態半導體裝 置用之屋晶基板的一較佳貫施例; 圖4是一側視示意圖,說明本發明之固態半導體裝置 用之蠢晶基板的另一可實施態樣; 圖5疋一側視示思圖,說明本發明之固態半導體裝置 之一較佳實施例; 圖6是一流程圖,說明本發明之製作固態半導體裝置 的方法; 圖7疋一成長機制示意圖,說明一附件三之形貌 &lt; 圖的蠢晶機制, 圖8是一曲線圖,說明本發明之磊晶膜的室溫特性 ;及 圖9是一曲線圖,說明凹槽尺寸的變化與差排密度之 關係。 附件一 ··說明沿著一藍寶石基板的&lt;112〇&gt;方向蝕刻, 以製得一由複數條狀溝槽所構成的圖案化藍寶石基板,並 於該圖案化藍寶石基板上形成一摻雜鎂的氮化鋁鎵(AiGaN ^ • Mg)蠢晶膜。 附件一 · SEM表面形貌圖,顯示磊晶膜上形成有複數六 邊形凹槽。 附件二:TEM形貌圖,顯示貫穿式差排是由下層磊晶膜- 的I虫刻凹#區域兩側延伸至上層蠢晶冑,而位於兹刻凹槽· 區域上方的上層纟曰曰曰膜則藉由橫向蟲晶成長以才冓成一無^ 排區。 19 1242898 【主要元件符號說明】 2........ ‘…猫日日基板 3....... •…發射單元 21…… •…板本體 31 ··… •…;&amp;5曰曰體 22…… …·緩衝膜 311… •…第一型半導體層 23···.·. …弟 成日日膜 312… •…發光層 23卜… …第一表面 313… •…第二型半導體層 232 …. …第二表面 32…… …·接觸電極 232,… …六邊形凹槽 4....... …·粗化氮化鎵磊晶膜 24…… …弟^^挪日日膜 41 &quot;… •…蝕刻凹槽區 24卜… …粗链表面 5....... 241,… …六邊形凹槽 51 _·.·· •…無差排區 242 …· …平坦面 20Akasaki and D. Cherns et al. In Vol. 82, No. 3, PP. 349-351, disclosed the luminescence characteristics and microscopy of a magnesium-doped aluminum gallium nitride grown on a patterned sapphire substrate. structure. Referring to Annex I, the paper describes the use of photolithography and reactive ion etching, such as the yellow 1242898 light process, to etch along the &lt; 11 2 〇 &gt; direction of a sapphire substrate to produce a plurality of grooves. A patterned sapphire substrate, and a doped township aluminum gallium nitride (AlGaN: Mg) epitaxial film is formed on the patterned sapphire substrate, wherein the epitaxial film is directly formed on the platform between the stripe grooves The epitaxial film on the top contains a large number of through-difference rows, and an epitaxial lateral overgrowth (ELOG) film suspended above each of the grooves forms a defect-free area. Therefore, the brightness of the cathode luminescence image (CL image) obtained from these defect-free areas has also increased significantly. Regarding the aforementioned through-difference row and CL image, it can be found in the description in the aforementioned paper. Jtb Xibu, Shulij Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, and Takao Yamada, and other researchers at the Asia Chemical Industry in Appl. Phys. Lett. 72 (2), 211-213, revealed a kind of Modulation-doped strained-layer super lattices laser diode on a crystalline gallium nitride substrate. Referring to FIG. 2, it is illustrated that a buffer layer 91 and a 2 μm-thick GaN film 92 are sequentially formed on the C surface of a sapphire substrate 90, and then the GaN film 92 is further formed by a lithography device. A silicon oxide film 93 having a thickness of 0.1 μm is formed, and a plurality of 4 μm wide strip-shaped windows 94 are formed by adjacent silicon oxide films 93 to define a mask (Si) formed on the gallium nitride film 92. 〇2 mask), and finally, an n-GaN layer 95 and the like are formed on the mask by using a two-flow organic metal chemical vapor deposition method (two-flow MOCVD) in order to complete the subsequent device process. 1242898 A researcher of Yueya Chemical Co., Ltd. used an amorphous (⑽〇ρph〇us) mask to cause the vertical worm crystal films formed on the fo 94 4 to merge horizontally to form a lateral epitaxial film formed on the mask. This achieves the goal of reducing the density of differential rows. Although the pre-patent case and the papers mentioned by Remy can reduce the penetrating differential rows formed in the worm crystal film during the worm crystal process, whether it is patterned Both the substrate and the patterned amorphous film formed on the stupid crystal film require the use of lithographic equipment and processes. Therefore, the installation cost and time cost are also increased. ~ In addition, the entire disclosure of the pre-patent case and the dissertation mentioned above is incorporated herein by reference. How to reduce the differential density during the epitaxial process to improve the optical characteristics of the worm crystal film, and also reduce the production cost, is a major problem that the current research and development of epitaxial related industry need to overcome. [Summary of the invention] 〈Summary of the invention〉 § A high crystal structure is formed between a lower crystal and an epitaxial film located above it (for example, a groove is formed in the lower crystal), which will cause the penetrating differential exclusion method to pass from the lower crystal. There are two possible reasons for extending the upper epitaxial film: 1. When the depth of the groove reaches a sufficient predetermined depth, the upper epitaxial film will be deposited from the platform of the lower crystal and extend out to both sides to make the groove The epitaxial film directly above constitutes the lateral epitaxial mechanism, so that the through-difference row originally formed in the lower crystal cannot continue to extend to the lateral epitaxial film region 1242898 domain directly above the groove. 2. The upper worm crystal medium may also grow laterally from the groove, causing the penetrating differential row originally located in the lower crystal ridge cannot extend to the upper crystalline membrane, and the penetrating differential row is only bent and limited to the groove. Inside the worm lens film, so that the difference in density of the worm lens film at the groove is lower. Therefore, by increasing the groove density of the crystal below, the density of the differential rows formed in the worm crystal film can be significantly reduced. In addition, when the lower crystal is engraved and a plurality of grooves are formed, the differential displacement in the first epitaxial film formed thereon can be reduced. If the first epitaxial film is further directly etched to form a plurality of grooves on the first epitaxial film, and a second layer of epitaxial film is continuously formed on the first epitaxial film, it can be repeated again. The amount of differential discharge formed in the second epitaxial film is reduced. Therefore, the larger the number of stupid crystal film layers that the fields pile up with each other, the less the differential displacement in the insect film film that forms the last layer. From the above, the present invention sequentially forms a buffer film and at least one epitaxial film with a roughened surface on a plate body for an epitaxial wafer. The epitaxial film is formed on the buffer film by epitaxy, and the epitaxial film is directly etched without the lithographic equipment to form a plurality of grooves on the epitaxial film and define the rough化 surface. Since the increase in the number of epitaxial films can reduce the differential displacement formed in the upper worm crystal film, it is also possible to form a plurality of epitaxial films each having a roughened surface on the buffer film (that is, repeatedly applying the epitaxial film) And epitaxial processes), thereby greatly reducing the differential displacement formed in the epitaxial film and forming the epitaxial substrate for the solid-state semiconductor device of the present invention. In addition, the effect of the present invention described in 1242898 is that by omitting the yellow photolithography process such as photoresist, hardening, photoresist removal, or photomask, the process is simplified and the time cost is reduced, and an epitaxial film with a rough surface is added. In order to improve the optical characteristics of the epitaxial film and its device, the differential row density is reduced by a large amount. <Detailed Description of the Invention> Referring to FIG. 3, a preferred embodiment of an epitaxial substrate 2 for a solid-state semiconductor device according to the present invention includes a plate body 21, a buffer film 22 connected to the plate body 21, and a plurality of mutually The first epitaxial film 23 is stacked on the buffer film 22. The cat said that each of the ten first epitaxial films 23 has a first surface 231 and a rough second surface opposite to the first surface 231 and showing an irregular change. The first surface 231 of the first epitaxial film 23 located at the bottom is connected to the buffer film 22. Preferably, the second surface 232 of each of the first-epitaxy films 23 is a hexagonal groove having a plurality of irregular dimensional changes and recessed from the second surface 232 in the direction of the first-surface 231. 232 ,. The epitaxial substrate 2 further includes a second epitaxial film 24 formed on the second surface 232 of the first epitaxial film 23 at the top. The second earthworm film 24 of the earthen vehicle 1 Jiadi δ11 has a coarse sugar surface 241 that is irregularly changed away from the plate body 21 relative to the first insect crystal films H. More second: = —Epimorphic film 24 has a plurality of irregularly sized changes and the mouth of the first cat day and day film 24 toward the plate body 21 ancient a. Edge-shaped grooves surface 241. The groove 241 defines the coarse 1242898 of the second worm crystal film 24. It is worth mentioning that it can also be implemented when the substrate of the solid-state semiconductor device for Tai Su Ming includes a first epitaxial film 23. Suitable for the present invention is that "-day film = 24" is made of a semiconductor compound containing melons and V㈣. Preferably, each of the insect crystal films 23 to 24 疋 is made of a semiconductor compound containing gallium (Ga) and nitrogen (N). Fortunately, "Earth, a predetermined thickness of each epitaxial film 23, 24 is at least greater than 100 nm. More preferably, prepare a gift. ^ The predetermined thickness of female cat day film 23, 24 is between 100 nm to 10 μπι. Preferably, the plate body 21 is made of a material having a hexagonal crystal structure (hexagonal y 1), or a material having a diamond cubic (DC) structure. One of them is made. More preferably, the plate body 21 疋 is made of a material having a hexagonal structure. The material suitable for the hexagonal structure of the present invention is a group selected from the group consisting of: Sapphire, gallium nitride (GaN), aluminum nitride (A1N), aluminum gallium nitride (A1GaN), and silicon carbide (Sic). In addition, the material suitable for the diamond cubic structure of the present invention may be silicon ( Si). It is worth mentioning that 'because the number of the first stupid crystal films 23 stacked on top of each other increases, relatively, the final through-difference density is also reduced, so, as shown in Figure 4 As shown, the upper surface of the second epitaxial film 24 may also be a roughened (r0Ughen) treatment. Further, referring to FIG. 5, a preferred embodiment of the solid-state semiconductor device according to the present invention includes: an epitaxial substrate 2 as described above, and a first epitaxial film provided on the substrate. The emission unit 3 on one side of the epitaxial substrate 2 on 23. The related structure and changes of the epitaxial substrate 2 have been disclosed previously, and will not be described in detail here 12 1242898. Preferably, the emission unit 3 has a The worm crystal 31 formed on the remote crystal substrate 2 and the two contact electrodes 32 respectively formed on the worm crystal 31 are relatively small. A direction includes a first-type semiconductor layer formed on the worm-crystal substrate 2 in sequence,-a part of the first-type semiconductor layer that partially covers the first-type semiconductor | 3m light-emitting layer 312, and-a second-type semiconductor layer formed on the light-emitting layer 312. 313, the; contact electrodes 32 are formed on the first and second type semiconductor layers 3m, 0 on the river ... Preferably, the first type semiconductor layer 311 is an n-type semiconductor layer, and the first type semiconductor layer 313 Is a p-type semiconductor layer. _ The worm crystal 3 suitable for the present invention is- It is made of semi-conducting compounds of the tris and tris. It is preferable that the epitaxial crystal 31 is made of a semi-conducting compound containing gallium and nitrogen. It is worth mentioning that it is to use a Can produce-a plane-conducting light-emitting diode of a specific frequency range illustrates the emitting unit 3, therefore, with the use of the worm crystal 2 by Yang =, the invention is particularly suitable: The emitting unit 3 can also be a A vertical-conduction light-emitting diode, a laser diode, or a radio-frequency component (not shown). Refer to FIG. 6. The manufacturing method of the aforementioned solid-state semiconductor device includes the following steps. a) providing a board body; (b) forming a buffer film on the board body; 13 1242898 manufacturing method of the solid-state semiconductor device according to the embodiment. See the surface morphology of a scanning electron microscope (SEM) in Annex II. The figure shows that the surface of the GaN epitaxial film is roughened to leave six complex dimensions between 1 μm and 3 μm. Edge groove. In addition, please also refer to the topography of the transmission electron microscope (TEM) in Appendix III, which shows that the through-difference row extends from the two sides of the grooved area of the lower layer of the stupid crystal film to the upper layer. The crystalline film, and the upper stupid crystal film located above the etched groove region is grown by lateral epitaxy to form a non-defective row region. The following description refers to FIG. 7 to explain the epitaxial mechanism of the TEM morphology in Annex III. FIG. 7 is composed of a roughened gallium nitride epitaxial film 4 and a gallium nitride re-epitaxial film 5. Among them, an etching groove region 41 is formed on the roughened gallium nitride epitaxial film 4 and is located in the The difference between the two sides of the roughened groove region 41 extends from the etched gallium nitride film 4 to the upper re-epitaxial gallium nitride film 5, and the gallium nitride located above the etched region 41 is stupid. The crystal film 5 is formed by a horizontal worm crystal (el0g) mechanism with an indifference row region 51. Read more about FIG. 8 to explain the room-temperature photoexcitation light Cphotoluminescence (abbreviated as pL) characteristics obtained from the second crystallized film. The horizontal axis represents the size of the etched groove (that is, the groove size obtained by adjusting different ratios of hPOVHdO4). J As the groove size becomes larger, the PL near the half band edge (BE) is half of the luminous signal. The smaller the height and width (fuii; FWHM for short), and the greater the ratio (ibe / iyl) of the intensity of the luminous signal to the vapor light (YL) or the intensity of the sirens near the edge of the energy gap. Therefore, the larger the groove size 17 1242898, the better the optical characteristics of the epitaxial film. &gt; See the relationship between the change in the size of the grooves and the difference in row density (referred to as pi density) for EpD. Figure 9 shows that the EpD value decreases as the groove size increases, and when the groove size is about 3.0 mm, the EPD value has dropped below 4.0 · 106 CUT2. By using the method of the present invention to construct a semiconductor device having the epitaxial substrate 2 and the emitting unit 3, the difference in the degree of formation of the 4 formed in each of the worm-crystal films 23 and 24 is greatly reduced. The efficiency of internal ions in solid-state semi-V body devices is increased. In addition, a roughened epitaxial film can also be used to increase the reflectlon phenomenon in a specific band generated by the solid-state semiconductor device of the present invention, thereby improving its external quantum efficiency. In summary, the worm crystal substrate, the solid-state semiconductor device, and the solid-state semiconductor device used in the solid-state semiconductor device of the present invention have a simplified process and a difference row formed on the epitaxial film. The characteristics of low density, high internal quantum efficiency, and increased external quantum efficiency do indeed achieve the objectives of the present invention. ▲ However, the above are only the preferred embodiments of the present invention. If not, the scope of implementation of the present invention is limited, that is, those who apply according to the scope of the invention and the contents of the description of the invention made by 锜 @each made by Early equivalent changes and modifications are still within the scope of the invention patent. [Schematic description] Figure 1 is a schematic side view illustrating a semiconductor light emitting element of the Republic of China Patent No. 561632; Laser diode of a modulating doped strain layer superlattice on a gallium substrate; cat 18 1242898 FIG. 3 is a schematic partial cross-sectional view illustrating a preferred embodiment of a house crystal substrate for a solid-state semiconductor device of the present invention Example; Figure 4 is a schematic side view illustrating another embodiment of a stupid substrate for a solid-state semiconductor device of the present invention; and Figure 5 (a) is a schematic view illustrating a comparison of one of the solid-state semiconductor devices of the present invention. FIG. 6 is a flowchart illustrating a method for manufacturing a solid-state semiconductor device according to the present invention; FIG. 7 is a schematic diagram of a growth mechanism, illustrating the appearance of the morphology of an attachment III &lt; stupid crystal mechanism of the diagram, and FIG. 8 is a curve FIG. Illustrates room temperature characteristics of an epitaxial film according to the present invention; and FIG. 9 is a graph illustrating a relationship between a change in groove size and a difference in row density. Attachment 1 · Describes etching along the &lt; 112〇 &gt; direction of a sapphire substrate to obtain a patterned sapphire substrate composed of a plurality of stripe grooves, and forming a doping on the patterned sapphire substrate Magnesium aluminum gallium nitride (AiGaN ^ • Mg) film. Attachment 1 · SEM surface morphology, showing a plurality of hexagonal grooves formed in the epitaxial film. Attachment 2: TEM morphology, showing that the through-difference row extends from the lower side of the epitaxial film-I 虫 刻 槽 # area to both sides of the upper layer of stupid crystal, and the upper layer located above the notch groove area The membrane is formed by a horizontal parasite crystal so as to form a rowless zone. 19 1242898 [Explanation of symbols of main components] 2 ........ '... Cat's Day Substrate 3 ....... • ... Emitting Unit 21 ... • ... Board Body 31 ··· • ...; & amp 5; body 22 ...… buffer film 311… • first type semiconductor layer 23…… ri ri day film 312…… light emitting layer 23…… first surface 313… … Second type semiconductor layer 232….… Second surface 32 …… · Contact electrode 232,…… Hexagonal groove 4 .......… Roughened gallium nitride epitaxial film 24 …… … Brother ^^ Nouriri film 41 &quot; ... • etched groove area 24…… rough chain surface 5 ....... 241,…… hexagonal groove 51 _ ·. ···… No-difference row area 242… ·… flat surface 20

Claims (1)

1242898 十、申請專利範圍: 1 · 一種固態半導體裝置用之磊晶基板,包含: 一板本體; 一連接於該板本體的緩衝膜;及 至少一第一磊晶膜,具有一連接於該緩衝膜的第 一表面及一相反於該第一表面且呈一不規則變化之粗糙 的第二表面。 2 ·依據申清專利範圍第1項所述之固態半導體裝置用之石 晶基板,其中,該第一磊晶膜的第二表面上是形成有複 數呈不規則尺寸變化且由該第二表面向該第一表面方向 凹陷的六邊形凹槽。 3·依據申請專利範圍第2項所述之固態半導體裝置用之磊 晶基板,更包含一形成於該第一磊晶膜之第二表面的第 二蠢晶膜。 4. 5. 依據申請專利範圍第3項所述之固態半導體裝置用之磊 晶基板,其中,該第二磊晶膜具有一相對該第一磊晶膜 遠離該板本體且呈一不規則變化之粗糙表面。 依據申請專利範圍第4項所述之固態半導體裝置用之磊 晶基板,其中,該第二磊晶膜上具有複數呈不規則尺寸 ’炎化且由5亥第一磊晶膜向該板本體方向凹陷的六邊形凹 槽,藉該等六邊形凹槽定義出該第二蟲晶膜的粗糖表面 6_依據申請專利範圍第5項所述之固態半導體裝置用之石 晶基板,包含複數相互堆疊且被夾置於該緩衝膜及該J 21 1242898 二磊晶膜之間的第一磊晶膜。 7.:據申請專利範圍第6項所述之固態半導體裝置用之磊 曰曰基板,其中,每一磊晶膜是由一含有瓜族及V族元素 之半導體化合物所製成。 8·,據中請專利範圍第7項所述之固態半導體裝置用之遙 曰曰基板,其中,每一磊晶膜是由一含有鎵及氮之半導體 化合物所製成。 9·依據申請專利範圍第6項所述之固態半導體裝置用之磊 曰曰基板,其中,每一磊晶膜的一預定厚度是至少大於 100 nm 〇 I 0 ·依據申明專利範圍第9項所述之固態半導體裝置用之磊 晶基板,其中,每一磊晶膜的預定厚度是介於100 nm 至10 μπι之間。 II ·依據申請專利範圍第丨項所述之固態半導體裝置用之磊 晶基板,其中,該板本體是由一具有六方晶結構之材料 或具有鑽石立方結構之材料其中一者所製成。 12. 依據申請專利範圍第u項所述之固態半導體裝置用之 磊晶基板,其中,該板本體是由一具有六方晶結構之材 料所製成。 13. 依據申請專利範圍第12項所述之固態半導體裝置用之 磊晶基板,其中,該六方晶結構之材料是一選自於下列 所構成之群體:藍寶石、氮化鎵、氮化鋁、氮化鋁鎵及 碳化石夕。 14· 一種固態半導體裝置,包含: 22 1242898 15 16 17 18 19. 20. 一如申請專利範圍第1項所述之磊晶基板;及 一設置於形成有該第一磊晶膜的磊晶基板上的一 側之發射單元。 •依據申請專利範圍第14項所述之固態半導體裝置,其 中,忒第一磊晶膜的第二表面上是形成有複數呈不規則 尺寸麦化且由a亥第一表面向該第一表面方向凹陷的六邊 形凹槽。 •依據申請專利範圍第15項所述之固態半導體裝置,其 中,該蟲晶基板更具有-才皮炎置於該第一蠢晶膜及該發 射單元之間的第二磊晶膜。 •依據申請專利範圍第丨6項所述之固態半導體裝置,其 中,该第二磊晶膜具有一連接該發射單元且呈一不規則 變化之粗糙表面。 .依據申請專利範圍第17項所述之固態半導體裝置,其 中,该第二磊晶膜上具有複數呈不規則尺寸變化且由該 第二磊晶膜向該板本體方向凹陷的六邊形凹槽,藉該等 六邊形凹槽定義出該第二磊晶膜的粗糙表面。 依據申請專利範圍第18項所述之固態半導體裝置,其 中,該磊晶基板具有複數相互堆疊且被夾置於該緩衝膜 及該第二磊晶膜之間的第一磊晶膜。 依據申請專利範圍第19項所述之固態半導體裝置,其 中,母一磊晶膜是由一含有π族及v族元素之半導體化 合物所製成。 依據申請專利範圍第2〇項所述之固態半導體裝置,盆 23 21. 1242898 中’母-蟲晶膜是由—含有鎵及氮之半導體化合物所製 成。 22. ,據申請專利範圍第19項所述之固態半導體裝置用之 蟲晶基板’其中ϋ晶膜的m厚度是至少大於 1 00 nm 〇 23. =據申請專利範圍第22項所述之固態半導體裝置用之 蟲晶基板’其中’每-磊晶膜的預定厚度是介於1〇〇 nm 至10 μπι之間。 24·依據申請專利範圍第14項所述之固態半導體裝置,其 中&quot;亥板本體疋由一具有六方晶結構之材料或一具有鑽 石立方結構之材料其中一者所製成。 25·依據申請專利範圍第24項所述之固態半導體裝置,其 中,該板本體是由一具有六方晶結構之材料所製成。 26·依據申請專利範圍第25項所述之固態半導體裝置,其 中,該六方晶結構之材料是一選自於下列戶斤構成之群體 •藍寶石、氮化鎵、氮化鋁、氮化鋁鎵及碳化矽。 27.依據申請專利範圍第14項所述之固態半導體裝置,其 中,該發射單元具有一形成在該磊晶基板上的磊晶體及 兩分別形成在該磊晶體上的接觸電極。 28·依據申請專利範圍第27項所述之固態半導體裝置,其 中,該磊晶體由該磊晶基板向遠離該磊晶基板的方向依 序具有一形成於該磊晶基板的第一型半導體層、一局部 地覆蓋該第一型半導體層的發光層及一形成於該發光層 的第一型半導體層,該等接觸電極分別形成於該第一及 24 1242898 (d ) ’每一步驟(d’)是依序由該步驟(c)及該步驟(d)所 構成,藉以形成複數具有複數呈不規則尺寸變化的六邊 形凹槽的第一蠢晶膜。 35. 36. 37. 38. 39. 40. 依據申請專利範圍第34項所述之製作固態半導體裝置 的方法,於最後一次該步驟(d’)及該步驟(e)之間更包含 一步驟(d,,),該步驟(d,,)是形成一第二磊晶膜。 依據申請專利範圍第35項所述之製作固態半導體裝置 的方法,於該步驟(d,,)及該步驟(e)之間更包含一步驟 (e’),該步驟(e,)是對該第二磊晶膜施予粗化,藉以使 。亥第一磊晶膜上形成有複數呈不規則尺寸變化的六邊形 凹槽。 依據申請專利範圍第33項所述之製作固態半導體裝置 的方法,其中,該濕式蝕刻是使用一含有磷酸的蝕刻劑 或έ有氫氧化鉀的蝕刻劑其中一者進行粗化。 依據申請專利範圍帛37 _述之製作固態半導體裳置 的方去,其中,該濕式蝕刻是使用_含有磷酸的蝕刻劑 進行粗化。 依據U利關帛35 $所述之製作固態半導體褒置 的方法’其中’每-磊晶膜是由-含有m族及ν族元素 之半導體化合物所製成。 ^據申請專利範圍第39項所述之製作固態半導 的方法,豆中,益 化合物所製成。晶膜是由—含有鎵及氮之半導體 依據申清專利範圍第35項所述之製作固態半導體裝置 26 41.1242898 10. Scope of patent application: 1 · An epitaxial substrate for a solid-state semiconductor device, comprising: a plate body; a buffer film connected to the plate body; and at least one first epitaxial film having a connection to the buffer The first surface of the film and a rough second surface opposite to the first surface and showing an irregular change. 2. The stone crystal substrate for a solid-state semiconductor device according to item 1 of the scope of Shenqing Patent, wherein the second surface of the first epitaxial film is formed with a plurality of irregular dimensional changes and is formed by the second surface. A hexagonal groove recessed in the direction of the first surface. 3. The epitaxial substrate for a solid-state semiconductor device according to item 2 of the scope of the patent application, further comprising a second stupid film formed on the second surface of the first epitaxial film. 4. 5. The epitaxial substrate for a solid-state semiconductor device according to item 3 of the scope of the patent application, wherein the second epitaxial film has an irregular change away from the plate body relative to the first epitaxial film. Rough surface. The epitaxial substrate for a solid-state semiconductor device according to item 4 of the scope of the patent application, wherein the second epitaxial film has a plurality of irregularly sized 'inflammation' and the first epitaxial film from the 5th Hai toward the board body The hexagonal grooves recessed in the direction define the coarse sugar surface of the second insect crystal film by the hexagonal grooves. 6_ A stone crystal substrate for a solid-state semiconductor device according to item 5 of the patent application scope, including A plurality of first epitaxial films are stacked on each other and sandwiched between the buffer film and the J 21 1242898 two epitaxial film. 7. The substrate for solid-state semiconductor devices according to item 6 of the scope of the patent application, wherein each epitaxial film is made of a semiconductor compound containing melon and group V elements. 8. The substrate for solid-state semiconductor devices described in item 7 of the patent, wherein each epitaxial film is made of a semiconductor compound containing gallium and nitrogen. 9. The substrate for solid-state semiconductor devices according to item 6 of the scope of the patent application, wherein a predetermined thickness of each epitaxial film is at least greater than 100 nm. 0 0 The epitaxial substrate for a solid-state semiconductor device, wherein the predetermined thickness of each epitaxial film is between 100 nm and 10 μm. II. The epitaxial substrate for a solid-state semiconductor device according to item 丨 of the patent application scope, wherein the plate body is made of one of a material having a hexagonal crystal structure or a material having a diamond cubic structure. 12. The epitaxial substrate for a solid-state semiconductor device according to item u of the scope of patent application, wherein the plate body is made of a material having a hexagonal crystal structure. 13. The epitaxial substrate for a solid-state semiconductor device according to item 12 of the scope of the patent application, wherein the material of the hexagonal structure is a group selected from the group consisting of sapphire, gallium nitride, aluminum nitride, Aluminum gallium nitride and carbide carbide. 14. · A solid-state semiconductor device, comprising: 22 1242898 15 16 17 18 19. 20. An epitaxial substrate as described in item 1 of the scope of patent application; and an epitaxial substrate provided on the first epitaxial film. The firing unit on the side. • The solid-state semiconductor device according to item 14 of the scope of patent application, wherein the second surface of the first epitaxial film is formed with a plurality of irregular-sized wheat grains from the first surface to the first surface. Directionally recessed hexagonal groove. • The solid-state semiconductor device according to item 15 of the scope of patent application, wherein the worm crystal substrate further has a second epitaxial film with dermatitis interposed between the first stupid crystal film and the emission unit. • The solid-state semiconductor device according to item 6 of the patent application scope, wherein the second epitaxial film has a rough surface connected to the emitting unit and exhibiting an irregular change. The solid-state semiconductor device according to item 17 of the scope of the patent application, wherein the second epitaxial film has a plurality of hexagonal recesses having irregular dimensional changes and recessed by the second epitaxial film toward the plate body. The groove defines the rough surface of the second epitaxial film by the hexagonal grooves. The solid-state semiconductor device according to item 18 of the scope of patent application, wherein the epitaxial substrate has a plurality of first epitaxial films stacked on each other and sandwiched between the buffer film and the second epitaxial film. The solid-state semiconductor device according to item 19 of the application, wherein the mother-epitaxial film is made of a semiconductor compound containing a group π and a group v element. According to the solid-state semiconductor device described in item 20 of the scope of the patent application, the 'mother-worm crystal film in basin 23 21. 1242898 is made of a semiconductor compound containing gallium and nitrogen. 22. According to the worm crystal substrate for solid-state semiconductor devices described in item 19 of the scope of the patent application, wherein the m thickness of the sacral crystal film is at least greater than 100 nm 〇23. = According to the solid state described in the scope of patent application item 22 A worm crystal substrate for a semiconductor device, wherein the predetermined thickness of the per-epitaxial film is between 100 nm and 10 μm. 24. The solid-state semiconductor device according to item 14 of the scope of the patent application, wherein the &quot; Hai plate body &quot; is made of one of a material having a hexagonal crystal structure or a material having a diamond cubic structure. 25. The solid-state semiconductor device according to item 24 of the scope of patent application, wherein the plate body is made of a material having a hexagonal crystal structure. 26. The solid-state semiconductor device according to item 25 of the scope of the patent application, wherein the material of the hexagonal crystal structure is selected from the group consisting of: sapphire, gallium nitride, aluminum nitride, aluminum gallium nitride And silicon carbide. 27. The solid-state semiconductor device according to item 14 of the scope of the patent application, wherein the emission unit has an epitaxial crystal formed on the epitaxial substrate and two contact electrodes respectively formed on the epitaxial crystal. 28. The solid-state semiconductor device according to item 27 of the scope of the patent application, wherein the epitaxial crystal has a first type semiconductor layer formed on the epitaxial substrate sequentially from the epitaxial substrate in a direction away from the epitaxial substrate. A light-emitting layer partially covering the first-type semiconductor layer and a first-type semiconductor layer formed on the light-emitting layer; the contact electrodes are respectively formed on the first and 24 1242898 (d) 'each step (d ') Is composed of the step (c) and the step (d) in order to form a first stupid crystal film having a plurality of hexagonal grooves with irregular size changes. 35. 36. 37. 38. 39. 40. According to the method for manufacturing a solid-state semiconductor device described in item 34 of the scope of patent application, a step is further included between the last step (d ') and the step (e) (D ,,). This step (d ,,) is to form a second epitaxial film. According to the method for manufacturing a solid-state semiconductor device described in Item 35 of the scope of patent application, a step (e ') is further included between the step (d ,,) and the step (e), and the step (e,) is The second epitaxial film is roughened to make it. The first epitaxial film has a plurality of hexagonal grooves with irregular size changes. The method for manufacturing a solid-state semiconductor device according to item 33 of the scope of patent application, wherein the wet etching is roughened by using an etchant containing phosphoric acid or an etchant containing potassium hydroxide. The method for making solid-state semiconductor devices is described in accordance with the scope of application patent 帛 37_, where the wet etching is roughened using an etchant containing phosphoric acid. According to the method for making solid-state semiconductor devices described in U Liguan, $ 35, wherein each of the epitaxial films is made of a semiconductor compound containing group m and group v elements. ^ According to the method for making solid semiconductors described in item 39 of the scope of patent application, beans and beneficial compounds are made. The crystal film is made of a semiconductor containing gallium and nitrogen.
TW93134276A 2004-11-10 2004-11-10 Epitaxial substrate for solid-state semiconductor device, solid-state semiconductor device and method for producing the same TWI242898B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93134276A TWI242898B (en) 2004-11-10 2004-11-10 Epitaxial substrate for solid-state semiconductor device, solid-state semiconductor device and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93134276A TWI242898B (en) 2004-11-10 2004-11-10 Epitaxial substrate for solid-state semiconductor device, solid-state semiconductor device and method for producing the same

Publications (2)

Publication Number Publication Date
TWI242898B true TWI242898B (en) 2005-11-01
TW200616252A TW200616252A (en) 2006-05-16

Family

ID=37022640

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93134276A TWI242898B (en) 2004-11-10 2004-11-10 Epitaxial substrate for solid-state semiconductor device, solid-state semiconductor device and method for producing the same

Country Status (1)

Country Link
TW (1) TWI242898B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456777A (en) * 2010-10-21 2012-05-16 展晶科技(深圳)有限公司 Manufacturing method of solid semiconductor
TWI401729B (en) * 2008-10-16 2013-07-11 Advanced Optoelectronic Tech Method for interdicting dislocation of semiconductor with dislocation defects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401729B (en) * 2008-10-16 2013-07-11 Advanced Optoelectronic Tech Method for interdicting dislocation of semiconductor with dislocation defects
CN102456777A (en) * 2010-10-21 2012-05-16 展晶科技(深圳)有限公司 Manufacturing method of solid semiconductor

Also Published As

Publication number Publication date
TW200616252A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
JP3852000B2 (en) Light emitting element
JP4696285B2 (en) R-plane sapphire substrate, epitaxial substrate and semiconductor device using the same, and manufacturing method thereof
JP5635013B2 (en) Epitaxial growth template and manufacturing method thereof
TWI401729B (en) Method for interdicting dislocation of semiconductor with dislocation defects
KR101118268B1 (en) High Quality Non-polar/Semi-polar Semiconductor Device on Prominence and Depression Patterned Substrate and Manufacturing Method thereof
TWI425560B (en) Semiconductor device, light emitting device and method for manufacturing the same
JP3712770B2 (en) Method for manufacturing group 3 nitride semiconductor and semiconductor device
KR100878512B1 (en) Method of manufacturing semiconductor substrate having GaN layer
JPH11233391A (en) Crystalline substrate, semiconductor device using the same and manufacture of the semiconductor device
US20110175126A1 (en) Light-emitting diode structure
TWI755306B (en) Led precursor and method of manufacturing the same
TWI520325B (en) Manufacture of nitride semiconductor structures
JP4743989B2 (en) Semiconductor device, method for manufacturing the same, and method for manufacturing a semiconductor substrate
TWI755047B (en) Led precursor incorporating strain relaxing structure
TWI242898B (en) Epitaxial substrate for solid-state semiconductor device, solid-state semiconductor device and method for producing the same
US11688825B2 (en) Composite substrate and light-emitting diode
JP4924498B2 (en) Nitride-based semiconductor light-emitting device, epitaxial wafer, and method for manufacturing nitride-based semiconductor light-emitting device
JP4548117B2 (en) Semiconductor light emitting device manufacturing method, integrated semiconductor light emitting device manufacturing method, image display device manufacturing method, and lighting device manufacturing method
TW202107734A (en) Light-emitting diode and fabrication method thereof
TWI796590B (en) Light emitting diode and method of forming a light emitting diode
KR101250475B1 (en) Heterogeneous substrate having insulating material pattern and nitride-based semiconductor device using the same
KR101379341B1 (en) Manufacturing Method of Semiconductor Substrate having Mask Pattern for High Quality Semiconductor Device
WO2007078065A1 (en) Gallium nitride-based compound semiconductor
TW202211501A (en) Composite substrate and light-emitting diode
KR20160129447A (en) Light emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees