TWI241593B - Structure and fabricating method of an anti-fuse memory device - Google Patents

Structure and fabricating method of an anti-fuse memory device Download PDF

Info

Publication number
TWI241593B
TWI241593B TW92118967A TW92118967A TWI241593B TW I241593 B TWI241593 B TW I241593B TW 92118967 A TW92118967 A TW 92118967A TW 92118967 A TW92118967 A TW 92118967A TW I241593 B TWI241593 B TW I241593B
Authority
TW
Taiwan
Prior art keywords
layer
fuse
type
item
conductive layer
Prior art date
Application number
TW92118967A
Other languages
Chinese (zh)
Other versions
TW200502982A (en
Inventor
Chih-Ming Lin
Kern-Huat Ang
Chia-Chen Liu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW92118967A priority Critical patent/TWI241593B/en
Publication of TW200502982A publication Critical patent/TW200502982A/en
Application granted granted Critical
Publication of TWI241593B publication Critical patent/TWI241593B/en

Links

Abstract

A method of fabricating an anti-fuse memory device. A substrate is provided with a metal film formed thereon. A silicon layer is formed on the metal film, reacting with part of the silicon layer to form a silicide layer. The unreacted silicon layer is used as a first type conductive layer, and an anti-fuse layer is formed thereon. Then, the first type conductive layer, the silicide layer and the anti-fuse layer are patterned to form word lines and a second type conductive layer is formed on the anti-fuse layer. Thus poly silicon layer formation is shortened, the silicide process is simplified and process time, cost and resistance of the conductive layer are all reduced.

Description

12415931241593

發明所屬之技術領域 本發明係有關於一 ~種改進反炫絲型記憶 結構與方法。 種半導體製程之改良,特別有關於 體凡件多晶石夕和金屬矽化物製程的 先前技術 反熔絲型記憶體元件是一二 憶晶胞係應用一設在二 隹:記憶體元件’其記 以做控制。當反溶絲層是完=極:負極之間的反炫絲層 路,但是當反熔絲層被破壞二;=負極:彼此斷 ς:且其線路設計為正極和負極的材料彼=三二 S 元件和傳統的二微結構記憶體比較 以積憶體小,也因此,可 :型記憶體元件由心有=二積二 保岔性上提供較佳的保護。 、 在 多曰;:::1么t:Ξ ’其顯示習知反炼絲型記憶體元件 夕日日矽之金屬矽化物製程之剖面示意圖。 金屬導線及其導線間介電層|y θ ^ 不, 上,糸綷畋固- 凡成在半導體基底1⑽ 電乂 : 省略,於金屬導線及其導線.間介 1層上盆儿積-摻納的多晶石夕層,以做為底部多晶石夕層 應夕日日矽層111於底部多晶矽層11〇上。接 屬層119及後續的氮化鈦層12〇於無摻雜的多晶矽或非晶:TECHNICAL FIELD The present invention relates to an improved anti-glare type memory structure and method. This kind of semiconductor process improvement, especially the prior art anti-fuse type memory element for polycrystalline silicon and metal silicide process is a two-memory cell system application one is located in two: memory element 'its Take control. When the anti-solubilizing layer is finished = pole: the anti-dazzle silk layer between the negative electrode, but when the anti-fuse layer is destroyed; = negative electrode: disconnected from each other: and the wiring is designed as the material of the positive and negative electrodes The two-S element is smaller than the traditional two-microstructure memory, and therefore, the type-type memory element provides better protection from the core product = the two-product two-holding property. , 在 多 说 ; ::: 1 Mod t: Ξ ′ It shows a cross-sectional schematic diagram of the metal silicide process of the conventional anti-refining type memory element. Metal wire and the dielectric layer between wires | y θ ^ No, on, solid-Fan Cheng on semiconductor substrate 1⑽ Electricity: omitted, apply to the metal wire and its wire. The polycrystalline silicon layer is accepted as the polycrystalline silicon layer at the bottom. The polycrystalline silicon layer 111 is on the polycrystalline silicon layer 110 at the bottom. The contact layer 119 and the subsequent titanium nitride layer 12 are made of undoped polycrystalline silicon or amorphous:

1241593 五、發明說明(2) 層1 11上。 接下來,如第1 B圖所示,佶田 /5施夕曰A《 文用—快速回火製程,以使 反應夕日日石夕層和鈦金屬層1 1 9及邱 -鈦石夕化合物層13〇。其形成之::氬化鈦層120反應形成 S雷後奴《 * , & ^ 之敛石夕化合物層1 30具有低的 V電係數及良好的熱穩定性,可小 後,於鈦矽化合物上沉積一層摻’二¥線間的阻值。之 型導電層135。 曰的多晶石夕層做為第- 後續,如第1 C圖所示,進;ί千 ^ φ ^ 進仃一熱氧化製程以第一型導 ίϋΐ成—反熔絲層136 1形成的反料層136係 做為控制反熔絲型記憶體晶胞的主要元件。豆後,定義之 前形成的反炫絲層136 ’鈦碎化合物層13〇,第一型導電層 35及^部多晶石夕層110以形成字元線,其包括微影,蝕刻 2成V線後於導線間填入介電材料和後續的化學機械研 磨衣程’其係為-般習知之技藝’不在此詳加描述。最 後,如第1D圖所示,沉積一摻雜Ν的多晶矽層係做為第二 型導電層140,並定義第二型導電層14〇以形成位元線。 凊芩閱第3圖所示,其係顯示習知反熔絲型記憶體元 件多晶矽之金屬矽化物製程之立體圖,底部多晶矽層丨i 〇 係形成夸半導體基底1 00上,其上依序有底部多晶石夕層 11 0、鈦矽化合物層1 3 〇、氮化鈦層1 2 〇、第一型導電層 1 3 5。底部多晶矽層11 〇、鈦矽化合物層1 3 〇和第一型導電 層135係做為字元線(WL)。第二型導電層14〇係做為位元 線(BL )且其和第一型導電層135中夾有一反熔絲層136。 此製程在形成鈦金屬石夕化物時,需先沉積一 p +的多晶1241593 V. Description of the invention (2) On layer 1 11. Next, as shown in Fig. 1B, Putian / 5 Shi Xiyue A "Common-rapid tempering process, so that the reaction of the day and night stone layer and titanium metal layer 119 and Qiu-titanium stone compound Layer 13〇. The formation of it: the titanium argon layer 120 reacts to form Squeen's slave, "*, & ^ 's convergence of the Xixi compound layer 1 30 has a low V coefficient and good thermal stability. A layer of resistance is deposited on the compound. Of type conductive layer 135. The polycrystalline stone layer is used as the first-following step, as shown in Fig. 1C. In the first step, a thermal oxidation process is performed in the first type—the anti-fuse layer 136 1 is formed. The anti-material layer 136 is used as the main element for controlling the anti-fuse memory cell. After the bean, define the anti-dazzle silk layer 136 'titanium compound layer 13 formed before, the first type conductive layer 35 and the polycrystalline silicon layer 110 to form word lines, which include lithography, and etch 2V Filling the dielectric material between the wires after the wire and the subsequent chemical mechanical polishing process 'It is a conventional technique' will not be described in detail here. Finally, as shown in FIG. 1D, an N-doped polycrystalline silicon layer is deposited as the second-type conductive layer 140, and the second-type conductive layer 14 is defined to form bit lines.凊 芩 See Figure 3, which is a perspective view showing the metal silicide process of the conventional antifuse memory element polycrystalline silicon. The bottom polycrystalline silicon layer 丨 i 〇 is formed on the semiconductor substrate 100 in order. The bottom polycrystalline silicon layer 110, the titanium-silicon compound layer 130, the titanium nitride layer 1220, and the first-type conductive layer 135. The bottom polycrystalline silicon layer 110, the titanium silicon compound layer 130, and the first type conductive layer 135 are used as word lines (WL). The second type conductive layer 14 is used as a bit line (BL) and an antifuse layer 136 is sandwiched between the second type conductive layer and the first type conductive layer 135. When this process is used to form a titanium metal oxide, a p + polycrystal must be deposited first.

0503-9867TWF(Nl) ; TSMC2002-1345;wayne.ptd0503-9867TWF (Nl); TSMC2002-1345; wayne.ptd

12415931241593

矽層及後續無摻雜的多晶矽或非晶矽層。加熱沉積的鈦金 屬層以使鈦金屬層和其下的無摻雜的多晶矽或非晶矽層反 應形成鈦金屬矽化物層。其後再沉積一層摻雜P+的多晶矽 層。其形成第一型導電層的步驟相當繁瑣,並且多層的多 晶石夕沉積必需不斷將整批晶圓由先前的反應器取出再置入 預進行反應的反應器中,不但步驟繁雜,且需要長時間等 待抽真空,以達到標準之反應室壓力,相當耗費製程時 間。 美國 的記憶晶 層,當反 是當反熔 絲層接通 使其二極 電流,另 化,非揮 物,其中 反炫絲層 亦是根據 儲存的資 極和負極 發明於多 即可減少 絲型記憶 專利申 胞,其 熔絲層 絲層被 ,也因 體具有 外美國 發性的 包含二 ,並依 反熔絲 料。然 元件皆 晶矽下 多晶秒 體元件Silicon layer and subsequent undoped polycrystalline or amorphous silicon layer. The deposited titanium metal layer is heated so that the titanium metal layer and the undoped polycrystalline or amorphous silicon layer underneath react to form a titanium metal silicide layer. Thereafter, a polycrystalline silicon layer doped with P + is deposited. The steps for forming the first-type conductive layer are quite tedious, and the multilayer polycrystalline stone deposition must continuously take out the entire batch of wafers from the previous reactor and then put them into the pre-reaction reactor. Not only are the steps complicated, but also the Waiting for a long time to evacuate to reach the standard reaction chamber pressure is quite time consuming. In the United States, when the anti-fuse layer is turned on, the anti-fuse layer is turned on to cause its bipolar current, which is non-volatile. The anti-dazzle wire layer is also based on the storage of the electrode and the negative electrode. The type-memory patent is applied for, and its fuse layer is also covered by anti-fuse material because of its external appearance. However, the components are all under polycrystalline silicon.

睛號第0 9 / 5 6 0 6 2 6號有揭示一種低漏電流 中在正極和負極的二極體間放置一反溶^ 疋完好時’其正極和負極是彼此斷路,a 破壞時,其正極和負極在一小區域的反爲 此形成二極體,也因為其很小區域的熔舍 很小的範圍區域,也因此其具相對小之>:| 專利弟6 5 2 5 9 5 3號揭示一種三維,可程式 記憶晶胞,其是藉由一自我對準的柱狀 極體的正極和負極元件,以及介於其中白彳 此柱狀物形成其記憶體晶胞,其運;|乍原β 層是完好和破壞與否,形成電路,並決货 ,由上述習知的方法,在形成二極體之上 疋使用摻雜之多晶石夕’相較於引證案,^ 所形成之金屬矽化物層,僅需增加一製老 和矽化物層的總體阻質,並藉此增加反超 的驅動電流。No. 0 9/5 6 0 6 2 6 reveals a kind of low leakage current where a reverse solution is placed between the positive and negative diodes ^ When intact 'the positive and negative electrodes are disconnected from each other, when a is broken, The positive and negative electrodes of a small area form a diode for this purpose, and because of the small area of the melting area, it also has a relatively small >: Patent Patent 6 5 2 5 9 5 3 reveals a three-dimensional, programmable memory cell, which is composed of a positive and negative element of a self-aligned columnar polar body, and a white cell formed by the columnar body. Transport; | The original β layer is intact and damaged or not, forming a circuit, and the order is determined by the conventional method described above, using a doped polycrystalline stone on the formation of a diode, compared to the cited case The formation of the metal silicide layer only needs to increase the overall resistance of the system and the silicide layer, and thereby increase the overdrive driving current.

1241593 五、發明說明(4) 發明内容 有幾於此,為了解決上述問題,本發明之一目的在於 挺彳、種間化的反炼絲型記憶體元件的結構和製造方法, 其:以,少多晶矽的沉積步驟,以簡化形成金屬矽化物的 製私’縮減製程時間,並減低製造成本。 本發明之另一目的在於提供/種反熔絲型記憶體元件 的了,和製造方法,其藉著減少〆多晶矽層,可以達到減 少ί晶矽和矽化物層的總體阻質,並藉此增加反熔絲型記 憶體元件的驅動電流。 辦-ί ^上述目的,本發明提供〆種簡化的反熔絲型記憶 :2結構與製造方法,包括下列步驟:首&,提供- 成一 f屬層於該基板上。其後,%成-矽層於該 化物二且Ϊ 5 °玄金屬層與部分該矽層反應以形成-金屬石夕 护成二反i ϊ ΐ應的矽層係做為第-型導電層。接下來, φ展 ^ Η 弟型導電層上。圖形化該第一型導1241593 V. Description of the invention (4) There are several aspects of the invention. In order to solve the above problems, one object of the present invention is the structure and manufacturing method of a stiff, interspecialized anti-refined memory element, which: Fewer polycrystalline silicon deposition steps are used to simplify the fabrication of metal silicides, reduce process time, and reduce manufacturing costs. Another object of the present invention is to provide an antifuse memory device and a manufacturing method thereof. By reducing the polycrystalline silicon layer, the total resistance of the crystalline silicon and silicide layer can be reduced, and thereby Increase the drive current of the anti-fuse type memory element. According to the above-mentioned object, the present invention provides a simplified anti-fuse-type memory: 2 structure and manufacturing method, including the following steps: first & providing-forming a f layer on the substrate. Thereafter, the% -Si layer is formed on the compound and the Ϊ 5 ° metametallic layer reacts with a part of the Si layer to form a -metal oxide layer to form a second anti-silicon layer as the first-type conductive layer. . Next, φ is spread on the ^ -type conductive layer. Graphical first guide

電層、金屬矽化物層、反 IV -剞導雷爲认e卜μ 久疋絲層以形成字元線並形成一第 一虫V電層於反熔絲層上, Λ 弗 成位元線。 最後圖形化第二型導電層以形 和矽化物結構,其包括Γ 一反熔絲型記憶體元件之多晶 電層於該金屬矽化物層上、一一金屬矽化物層、一第一型; 上、以及一第二型導電芦 反熔絲層於該第一型導電 構,由於其比習知技術減^ j ^熔絲層上。依本發明之 夕晶石夕層,故其多晶石夕和The electrical layer, the metal silicide layer, and the anti-IV-conducting lightning are identified as the μ long-term filament layer to form a character line and form a first V-electric layer on the anti-fuse layer. . Finally, the second type conductive layer is patterned with a silicide structure, which includes a polycrystalline electrical layer of an anti-fuse memory element on the metal silicide layer, a metal silicide layer, and a first type. ; And a second-type conductive reed anti-fuse layer is on the first-type conductive structure, because it reduces the ^ j ^ fuse layer compared with the conventional technology. According to the invention, the polycrystalline spar and the polycrystalline spar

12415931241593

可增加反炫絲型記憶體元件的驅 化物層的總體阻質較低 動電流。 的、特徵、和優點能更 ,並配合所附圖示,作 為了讓本發明之上述和其他目 明顯易懂,下文特舉一較佳實施例 詳細說明如下: 實施方式 實施例 -明ί ^ f2A至2D圖,其顯示本發明簡化的反熔絲型 =…施例的製程剖面圖。在本實施例L :、’:土反一詞係包括半導體晶圓上已形成的元件,· 首先如第2A圖所不,提供一半導體基板2 00,並且 金屬導線及其導線間介電層已形成在半導體基板2〇〇上, 其孟屬‘線可以是銅金屬或是鎢金屬,且其導線間介電層 可=是未㈣的石夕玻璃’四乙氧基石夕烧為石夕源的二氧化矽 或疋其它介電材料。其後,沉積一氮化鈦層2丨〇及後續的 欽金屬層2 1 2 ’氮化鈦可應用化學氣相沉積法(CVD )或是 物理氣相沉積法(PVD )的方式形成,鈦金屬係應用物理 氣相沉積法(PVD )沉積,氮化鈦的厚度為25〜250埃,.其 4 係做為鈦矽化合物和其下金屬導線的黏合層,鈦金屬的厚 度為2 0 0〜8 0 0埃,其係提供做之後形成鈦矽化合物的來 源0 其後’沉積一無摻雜的多晶矽層或非晶矽層係做為反It can increase the overall resistance of the driver layer of the anti-dazzle type memory device and lower the current. In order to make the above and other objects of the present invention obvious and comprehensible in conjunction with the accompanying drawings, a preferred embodiment is described below in detail as follows: Embodiments Examples-Ming ^ f2A to 2D diagrams showing process cross-sections of a simplified antifuse type = ... embodiment of the present invention. In this embodiment L :, ': The word "inverse" refers to the components formed on the semiconductor wafer. First, as shown in Figure 2A, a semiconductor substrate 200 is provided, and the metal wires and the dielectric layer between the wires are provided. Already formed on the semiconductor substrate 200, its Mons wire can be copper metal or tungsten metal, and the dielectric layer between the wires can be a non-titanium shixi glass' tetraethoxy shixi sintered as shixi Source of silicon dioxide or hafnium other dielectric materials. Thereafter, a titanium nitride layer 20 and a subsequent metal layer 2 1 2 ′ titanium can be deposited by chemical vapor deposition (CVD) or physical vapor deposition (PVD). Titanium The metal system is deposited by physical vapor deposition (PVD). The thickness of titanium nitride is 25 ~ 250 angstroms. The 4 series is used as the bonding layer of the titanium silicon compound and the underlying metal wires. The thickness of the titanium metal is 2 0 0 ~ 80 0 Angstroms, which provides the source for the formation of titanium silicon compounds after the formation of 0. Then, an undoped polycrystalline silicon layer or an amorphous silicon layer is deposited as

0503-9867T^rF(Nl) . TSMC2002-1345;wayne .ptd 第9頁 1241593 五、發明說明(6) ' _ "~ - 應多晶矽層2 2 0於鈦金屬層2 1 2上,其係應用一化學氣相沉 積法(CVD ),在反應溫度在45〇。c〜8〇〇。c,反應壓力 在0· ITorr〜10 Torr的條件下沉積,其反應多晶矽層22〇的 厚度為2 0 0〜1 5 0 0埃,係做為和其下的鈦金屬層2丨2及部分 氮化鈦層2 1 0反應以形成後續的鈦矽化合物層。接下來, 於反應多晶矽層上沉積第一型導電層2 3 〇,其可以是摻雜 p+的多晶矽層,亦是應用化學氣相沉積法(CVD )形成^ 但此多晶矽層係做為傳導及形成二極體作用,需具較低的 電阻率’故藉由摻雜以降低其本身的電㈣,所摻雜的雜 質為棚或其它三價元素。並且,彳在其多晶碎的化學氣相 沉積(CVD )反應後,藉由一高溫擴散法把雜質趨入,或 是於沉積後採離子植入的方式,將雜質以離子型態,植入 多晶矽内,或是在多晶矽的沉積反應時,同時(丨卜以饨 )進行雜質的滲入,其形成的第一型導電層23 0厚度為 3 0 0 〜2 0 0 0 埃。 ,後縯’如第2B圖所示,以一熱製程,其可以是快速加 熱製程或是爐管製程,在溫度為4〇〇。c〜12〇〇。c,通入 性氣體,以使之前形成的鈦/氮化鈦層2丨〇和反應多晶矽屛 220反應以形成鈦金屬矽化物層24〇,其形成的鈦金 曰 物層240具有低阻質及熱穩定的特性。 其後’如第圖所示,進行一熱製程,其可以是快 加熱製程或是爐管製程,在溫度為4〇〇。c〜12〇〇。c 入 氧孤,以使第一型導電層表面產生二氧化石夕層,其二 矽層厚度為5 2 0 0埃’係做為控制反熔絲型記憶體元件的0503-9867T ^ rF (Nl). TSMC2002-1345; wayne .ptd Page 9 1241593 V. Description of the invention (6) '_ " ~-The polycrystalline silicon layer 2 2 0 should be on the titanium metal layer 2 1 2 and its system A chemical vapor deposition (CVD) method was used at a reaction temperature of 45 °. c ~ 800. c. The reaction pressure is deposited under the conditions of 0 ITorr to 10 Torr, and the thickness of the reactive polycrystalline silicon layer 22 is 200 to 1 500 Angstroms, which is used as the titanium metal layer 2 and a part thereof. The titanium nitride layer 210 reacts to form a subsequent titanium silicon compound layer. Next, a first-type conductive layer 23 is deposited on the reactive polycrystalline silicon layer, which can be a polycrystalline silicon layer doped with p +, or formed using a chemical vapor deposition (CVD) method. However, the polycrystalline silicon layer is used as a conductive and conductive layer. To form a diode, it needs to have a lower resistivity. Therefore, its doping can be reduced by doping. The doped impurities are shed or other trivalent elements. In addition, after its polycrystalline fragmented chemical vapor deposition (CVD) reaction, thorium is introduced into the impurity by a high-temperature diffusion method, or ion implantation is performed after the deposition to implant the impurity in an ionic form. Into the polycrystalline silicon, or during the deposition reaction of the polycrystalline silicon, impurities are simultaneously infiltrated into the polycrystalline silicon, and the thickness of the first-type conductive layer 230 formed therein is 300 to 2000 angstroms. As shown in FIG. 2B, the post-production process is a thermal process, which can be a rapid heating process or a furnace control process, at a temperature of 400. c ~ 12〇〇. c. Permeate the gas so that the previously formed titanium / titanium nitride layer 2 and 0 react with the polycrystalline silicon wafer 220 to form a titanium metal silicide layer 24. The titanium gold layer 240 formed thereon has a low resistance. And thermal stability. Thereafter, as shown in the figure, a thermal process is performed, which may be a fast heating process or a furnace control process, at a temperature of 400. c ~ 12〇〇. c. Oxygen isolation is used to generate a dioxide layer on the surface of the first type conductive layer. The second silicon layer has a thickness of 5200 Angstroms.

1241593 五、發明說明(7) 反熔絲層2 3 5 ,因此反熔絲層2 3 5的品質和均勻性的控制相 當的重要。 接著,定義之前形成的反熔絲層235,鈦矽化合物層 =〇 >和第型導電層μ 〇以形成字元線,其包括微影及姓刻 等習知技術再此不詳加描述。形成導線後於導線間填入介 電材料,其可以是以一高密度電漿(HDP )的化學氣相沉 積法所形成的二氧化矽,其電漿内的離子濃度較一般的電 ='化本軋相/儿積法為濃,故能利用沉積/钱刻/沉積的 法拉具,較佳的溝填能力,可填入形成導線後的間隙 。二’以化學機械研磨法(CMP )移除多餘的介電 層,並使其平坦化。 熔絲m’如圖所示’沉積第二型導電層250在反 與老;<:曰目” # $ 乂是摻雜1^的多晶矽層,係應用—化 反應壓力在0 1Torr 1n τ在反It C〜800。c, • 1 〇 r r〜1 〇 τ 〇 r r的條件下沉籍,甘痄命达 1000〜6500埃。第二刑道 + gy 下l積其居度為 一 t ¥電層係做為傳導及:ί 口:?俞抑4、 第一型導電層形成- H寻夺夂和之刖形成的 f ^ 一^極體作用’所以其亦需条$ 4氏的雷P日 方法,亦是可蕤*:貝為砷或其它五價元素。其植入的 子植入的方式:需;ί擴散法把雜質趨入’或是於採用離 和之前形成的第電層250的型態需 沉積的多晶矽層亦可 曰相反,易言之,在此步驟 型。 κρ+型,而之前沉積的多晶矽為N + 其後’定義第—;丨、# —V電層2 5 0以形成位元線,其包括 1241593 五、發明說明(8) 光罩’顯影,及蝕刻。形成導線後於導線間填入介電材 料’其亦是以一高密度電漿(HDP )的化學氣相沉積法所 形成的二氧化矽,填入形成導線後的間隙中,其後,以化 學機械研磨法(CMP )移除多餘的介電層,並使其平坦 化。 。月參閱第4圖所示’其係顯示本發明反炫絲型記慢體 元件多晶石夕之金屬矽化物製程之立體圖,鈦金屬矽化物層 240係形成在半導體基底2〇〇上,其和第一型導電層23〇係曰 做為字元線(WL )且第二型導電層250係做為位元9線(BL )。其中鈦金屬矽化物層240和半導體基底2〇〇間有一氣化 鈦層210係做為黏合作用,且第一型導電層23〇和第二型導 電層2 5 0中間有一反炫絲層2 3 5。 本發明之特徵與優點 本發明之特徵在反熔絲記憶體元件的製程中,於在金 屬導線上沉積一金屬層,於其後沉積一反應層,並藉由加 熱製程’使金屬層向上反應形成一金屬矽化物,可減少^ 之技術的多晶矽沉積步驟,以簡化形成金屬矽化物的製 程,縮減製程時間,並減低製造成本。 Χ 本發明另可藉著減少一多晶矽層,達到減少多晶砂和 矽化物層的總體阻質,並藉此增加反炼絲型記憶體元件、❶ 驅動電流。 % 雖然本發明已以較佳實施例揭露如上,然其並非用、 限定本發明,任何熟習此技藝者,在不脫離本發明之精=1241593 V. Description of the invention (7) The anti-fuse layer 2 3 5, so the control of the quality and uniformity of the anti-fuse layer 2 3 5 is quite important. Next, the previously formed anti-fuse layer 235, the titanium silicon compound layer = 0 > and the first type conductive layer μ 0 are formed to form word lines, which include conventional techniques such as lithography and surname engraving, which will not be described in detail here. After the wires are formed, a dielectric material is filled between the wires, which can be silicon dioxide formed by a high-density plasma (HDP) chemical vapor deposition method. The ion concentration in the plasma is higher than that of ordinary electricity = ' The rolling phase / child product method is thickened, so the method of deposition / money engraving / deposition can be used. The better trench filling ability can fill the gap after forming the wire. Second, chemical mechanical polishing (CMP) is used to remove the excess dielectric layer and planarize it. The fuse m 'is shown in the figure' and the second type conductive layer 250 is deposited in the opposite direction. ≪: 曰 目 &##; 乂 is a polycrystalline silicon layer doped with 1 ^, which is applied—the reaction pressure is 0 1Torr 1n τ Under the conditions of anti-It C ~ 800.c, • 1 〇rr ~ 1 〇τ 〇rr, Shen Ji, Gan Gan life reached 1000 ~ 6500 Angstroms. The second criminal road + gy under the product of one product t t ¥ The electrical layer is used for conduction and: 口:? Yu Yi 4, the formation of the first type of conductive layer-H seeks the formation of 夂 and 刖 f ^ a ^ polar body effect 'so it also needs a $ 4's thunder The P-day method is also available *: Shellfish is arsenic or other pentavalent elements. The method of implantation of the sub-implantation: required; the diffusion method brings impurities into the 'or the first electricity formed before the ionization and the The type of layer 250 of the polycrystalline silicon layer to be deposited can also be reversed, in other words, the type at this step. Κρ + type, and the previously deposited polycrystalline silicon is N + and then the 'definition first'; #, # —V electrical layer 2 5 0 to form a bit line, which includes 1241593 V. Description of the invention (8) Photomask 'development and etching. After forming the wires, fill the dielectric material between the wires' It is also a high density The silicon dioxide formed by the chemical vapor deposition method of the HDP is filled into the gap after the wires are formed. Thereafter, the excess dielectric layer is removed by chemical mechanical polishing (CMP) and planarized. Please refer to FIG. 4 for reference. It is a perspective view showing the metal silicide process of the anti-dazzling silk type slow-body element polysilicon of the present invention. A titanium silicide layer 240 is formed on the semiconductor substrate 200. The first type conductive layer 23 is used as a word line (WL) and the second type conductive layer 250 is used as a bit 9 line (BL). The titanium silicide layer 240 and the semiconductor substrate 2 There is a titanium carbide layer 210 between 〇 for adhesion, and an anti-dazzling silk layer 2 3 5 between the first type conductive layer 23 and the second type conductive layer 250. Features and advantages of the present invention Features In the process of the anti-fuse memory element, a metal layer is deposited on the metal wire, and then a reaction layer is deposited, and the metal layer is reacted upward to form a metal silicide by the heating process, which can reduce ^ Polysilicon deposition steps to simplify metal silicide formation The process can reduce the process time and reduce the manufacturing cost. Χ The present invention can also reduce the overall resistance of polycrystalline sand and silicide layer by reducing a polycrystalline silicon layer, and thereby increase the anti-fiber memory device, ❶ Driving current.% Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit or limit the present invention. Anyone skilled in this art will not depart from the essence of the present invention.

12415931241593

0503-9867TWF(Nl) ; TSMC2002-1345;wayne.ptd 第13頁 1241593 圖式簡單說明0503-9867TWF (Nl); TSMC2002-1345; wayne.ptd Page 13 1241593 Schematic description

第1 A至1 D圖顯示習知反溶絲型記憶體元件多晶石夕和金 屬矽化物製程之剖面示意圖。 第2A至2D圖顯示本發明實施例之反熔絲型記憶體元件 多晶矽和金屬矽化物製程剖面示意圖。 第3圖所示係顯示習知反溶絲型記憶體元件多晶石夕之 金屬矽化物製程之立體圖。 第4圖所示係顯示本發明反熔絲型記憶體元件多晶石夕 之金屬矽化物製程之立體圖。 符號說明 習知技術 100〜半導體基底; 111〜反應多晶矽層; 1 2 0〜氮化鈦層; 1 3 5〜第一型導電層; 140〜第二型導電層。 本發明技術 20 0〜半導體基板; 212、鈦金屬層; 230〜第一型導電層; 2 3 5〜反熔絲層; 110〜底部多晶秒層; 11 9〜鈦金屬層; 1 3 0〜鈦矽化合物層; 136〜反熔絲層; 2 1 0〜氮化鈦層; 2 2 0〜反應多晶矽層; 2 4 0〜鈦金屬矽化物層 250〜第二型導電層。Figures 1A to 1D show cross-sectional schematic diagrams of the polycrystalline stone polysilicon and metal silicide manufacturing processes of conventional anti-solvent silk memory elements. Figures 2A to 2D show schematic cross-sectional views of the polysilicon and metal silicide process of the anti-fuse type memory device according to the embodiment of the present invention. FIG. 3 is a perspective view showing a metal silicide process of a polycrystalline stone of a conventional anti-dissolved silk memory element. Fig. 4 is a perspective view showing a metal silicide process for the antifuse memory element polysilicon of the present invention. Explanation of symbols Conventional technology 100 ~ semiconductor substrate; 111 ~ reactive polycrystalline silicon layer; 120 ~ titanium nitride layer; 135 ~ first type conductive layer; 140 ~ second type conductive layer. The technology of the present invention is 200 to semiconductor substrate; 212, titanium metal layer; 230 to first type conductive layer; 2 3 5 to antifuse layer; 110 to bottom polycrystalline second layer; 11 9 to titanium metal layer; 1 3 0 ~ Titanium silicon compound layer; 136 ~ antifuse layer; 2 1 0 ~ titanium nitride layer; 2 2 0 ~ reactive polycrystalline silicon layer; 2 0 0 ~ titanium metal silicide layer 250 ~ second type conductive layer.

0503-9867TWF(Nl) TSMC2002-1345;wayne.ptd 第14頁0503-9867TWF (Nl) TSMC2002-1345; wayne.ptd p. 14

Claims (1)

1241593 六、申請專利範圍 種反熔絲迆記憶體元件的製造方法,包括下列步 驟: 提供~ 形成一* 形成一 形成一 使該金 一金屬矽化 形成— 圖形化 形成字元線 形成一 圖形化 2 ·如申 的製造方法 3 ·如申 的製造方法 4 ·如申 的製造方法 錄的氮化物 5 ·如申 的製造方法 基板; 黏合層 金屬層 矽層於 屬層及 物層且 反熔絲 §亥第一 , 第二型 該第二 請專利 ,其中 請專利 ,其中 請專利 ,其中 晴專利 ,其中 雜的多 6 _如申請專利 型離子摻 於該基板上; 於該黏合層上; 該金屬層上; 部分該黏合層與部分該矽層反應以形成 未被反應的矽層係做為第一型導電層; 層於該第一型導電層上; 型導電層、金屬矽化物層、反熔絲層以 導電層於該反熔絲層上;以及 型導電層以形成位元線。 範圍第1項所述之反熔絲型記憶體元件 該基板為一半導體基板。 ί巳圍第1項所述之反熔絲型記憶體元件 屬層為欽’钻,或是錄所組成。 :^:第1項所述之反熔絲型記憶體元件 合層為鈦的氮化物、鈷的氮化物或 哼:ί ?頁所述之反熔絲型記憶體元件 二矽I為依序—未推雜的多晶矽及一第 曰日石夕堆疊構成 祀圍第1項所述之反熔絲型記憶體元件1241593 VI. Patent application method for manufacturing anti-fuse memory device, including the following steps: Provide ~ form a * form a form-siliconize the metal-form a pattern-form word lines-form a pattern 2 · Rushen's manufacturing method 3 · Rushen's manufacturing method 4 · Rushen's manufacturing method Nitride 5 · Rushen's manufacturing method substrate; Adhesive layer metal layer Silicon layer belongs to the physical layer and the physical layer and antifuse§ The first and second types are patented, of which the patents are claimed, of which the patents are patented, among which the patents are more mixed. If patent-type ions are doped on the substrate; on the adhesive layer; the metal On the layer; part of the adhesive layer reacts with part of the silicon layer to form an unreacted silicon layer system as a first type conductive layer; layer on the first type conductive layer; type conductive layer, metal silicide layer, The fuse layer is a conductive layer on the antifuse layer; and a conductive layer is formed to form a bit line. The anti-fuse type memory element described in item 1 of the scope The substrate is a semiconductor substrate. The anti-fuse type memory element described in item 1 of 巳 巳 巳 is composed of Qin 'diamond or recording. : ^: The anti-fuse type memory element described in item 1 is composed of titanium nitride, cobalt nitride, or hum: The anti-fuse type memory element described in the first two pages of silicon I is in order — Un-doped polycrystalline silicon and a stack of first-day sun and evening eves constitute the anti-fuse type memory element described in item 1 0503-9867TWF(Nl) : TSMC2002-1345;wayne.ptd 第15頁 1241593 六、申請專利範圍 的製造方法,其中該金屬矽化物層的形成係為金屬層和該 矽層之未摻雜的多晶矽層反應所形成。 7. 如申請專利範圍第1項所述之反熔絲型記憶體元件 的製造方法,其中該第一型導電層是P型且第二型導電層 是N型。 8. 如申請專利範圍第1項所述之反熔絲型記憶體元件 的製造方法,其中該第一型導電層是N型且第二型導電層 是P型。 9. 如申請專利範圍第1項所述之反熔絲型記憶體元件 的製造方法,其中該金屬矽化物層是鈦矽化合物,鈷矽化 〇 合物,或是鎳$夕化合物所組成。 1 0.如申請專利範圍第1項所述之反熔絲型記憶體元件 的製造方法,其中形成一反熔絲層的方法為加熱該第一型 導電層。 1 1.如申請專利範圍第1項所述之反熔絲型記憶體元件 的製造方法,其中該反熔絲層為二氧化矽或是氮化矽。 1 2. —種反熔絲型記憶體元件之結構,其包括: 一金属石夕化物層; 一第一型導電層於該金屬矽化物層上; 一反熔絲層於該第一型導電層上;以及 , 一第二型導電層於該反熔絲層上。 1 3.如申請專利範圍第1 2項所述之反熔絲型記憶體元 件之結構,其中該第一型導電層是P型且第二型導電層是N 〇0503-9867TWF (Nl): TSMC2002-1345; wayne.ptd Page 15 1241593 6. Manufacturing method in the scope of patent application, wherein the formation of the metal silicide layer is a metal layer and an undoped polycrystalline silicon layer of the silicon layer The reaction formed. 7. The method of manufacturing an anti-fuse type memory element according to item 1 of the scope of the patent application, wherein the first-type conductive layer is a P-type and the second-type conductive layer is an N-type. 8. The manufacturing method of the anti-fuse type memory element according to item 1 of the scope of the patent application, wherein the first type conductive layer is an N type and the second type conductive layer is a P type. 9. The method for manufacturing an anti-fuse type memory device according to item 1 of the scope of the patent application, wherein the metal silicide layer is composed of a titanium silicon compound, a cobalt silicide compound, or a nickel compound. 10. The method for manufacturing an anti-fuse type memory element according to item 1 of the scope of the patent application, wherein the method of forming an anti-fuse layer is to heat the first-type conductive layer. 1 1. The method for manufacturing an anti-fuse type memory device according to item 1 of the scope of the patent application, wherein the anti-fuse layer is silicon dioxide or silicon nitride. 1 2. A structure of an anti-fuse type memory element, comprising: a metal oxide layer; a first type conductive layer on the metal silicide layer; an anti-fuse layer on the first type conductive Layer; and, a second type conductive layer on the antifuse layer. 1 3. The structure of the anti-fuse type memory element according to item 12 of the scope of the patent application, wherein the first type conductive layer is a P type and the second type conductive layer is N 〇 0503-9867TWF(Nl) ; TSMC2002-1345;wayne.ptd 第 16 頁0503-9867TWF (Nl); TSMC2002-1345; wayne.ptd page 16 1241593 六、申請專利範圍 / 1 4·如申請專利範圍第1 2項所述之反熔絲型記憶體= 件之結構,其中該第一型導電層是N型且第二型導電層是P 型。 1 5 ·如申請專利範圍第1 2項戶斤述之反炫絲型έ己彳思體元 件之結構,其中該金屬矽化物層是鈦矽化合物,始石夕化合 物,或是鎳6夕化合物所組成。 1 6 ·如申請專利範圍第1 2項所述之反熔絲逛記憶體元 件之結構,其中該反熔絲層為二氧化矽或是氮化矽。 1 7 · —種反炫絲型記憶體元件之結構,其包括·1241593 VI. Scope of patent application / 1 4 · The structure of the anti-fuse type memory as described in Item 12 of the scope of patent application = item, where the first type conductive layer is N type and the second type conductive layer is P type. 15 · According to the structure of the anti-dazzle silk-type self-thinking body element described in item 12 of the scope of patent application, wherein the metal silicide layer is a titanium silicon compound, a starting stone compound, or a nickel compound Composed of. 16 · The structure of the anti-fuse memory device described in item 12 of the patent application scope, wherein the anti-fuse layer is silicon dioxide or silicon nitride. 1 7 · —The structure of an anti-hyun silk memory element, which includes: 一第一導線; 一黏合層位於該第一導線上; 一金屬矽化物層位於該黏合層上; 一第一型導電層位於該第一導線上; 一反炼絲層位於該第一型導電層上;以及 一第二型導電層位於一第二導線下,該第一導線和第 二導線互相垂直,且該第一型導電層和該第二型導電層中 間的反絲層是一矩型區域,且只有在該反炫絲層崩裂時 第一型導電層和第二型導電層才會形成二極體。A first wire; an adhesive layer on the first wire; a metal silicide layer on the adhesive layer; a first type conductive layer on the first wire; an anti-refining layer on the first type conductive Layer; and a second type conductive layer is located under a second conductive line, the first conductive line and the second conductive line are perpendicular to each other, and the anti-wire layer between the first conductive layer and the second conductive layer is a moment Region, and the first type conductive layer and the second type conductive layer will form a diode only when the anti-glare wire layer is broken. 1 8 ·如申請專利範圍第丨7項所述之反熔絲型記憶體一 件之結構,其中該第一導線和第二導線係為鎢、〜& 70 銅所構成。 、、或是 1 9·如申請專利範圍第丨7項所述之反熔絲型記情風 件之結構,其中該金屬矽化物層是鈦矽化合物,麵二也元 物,或是錄石夕化合物所組成。 夕化合1 8 The structure of a one-piece anti-fuse memory as described in item 7 of the scope of the patent application, wherein the first and second wires are made of tungsten, ~ & 70 copper. 19, or 19 · The structure of the anti-fuse type wind-remembering device as described in item 7 of the patent application scope, wherein the metal silicide layer is a titanium silicon compound, the surface is also a element, or is a recording stone. Evening compounds. Xihuahe II 0503-9867TWF(Nl) : TSMC2002-1345;wayne.ptd 第17頁 1241593 六、 申請專利範圍 20 ·如申請專利範圍第1 7項所述之反熔絲型記憶體元 件之結構,其中該第一型導電層和第二型導電層是P型或 是N型。 2 1 ·如申請專利範圍第1 7項所述之反熔絲型記憶體元 件之結構,其中該第一型導電層和第二型導電層彼此型態 不同。 2 2 ·如申請專利範圍第1 7項所述之反熔絲型記憶體元 件之結構,其中該反溶絲層為二氧化石夕或是氮化石夕。 2 3 ·如申請專利範圍第丨7項所述之反熔絲型記憶體元 件之結構,其中該黏合層為鈦的氮化物、鈷的氮化物或鎳 的氮化物。 ⑩ 2 4 · —種反熔絲型記憶體元件的製造方法,包括下列 步驟: 提供一基板; 形成一金屬層於該基板上; 形成一矽層於該金屬層上; 使該金屬層與部分該石夕層反應以形成一金屬矽化物層 且未被反應的矽層係做為第一变導電層; 形成一反熔絲層於該第一裂導電層上;以及 圖形化該第一型導電層、金屬矽化物層、反熔絲層以 _ 形成字元線。 2 5 ·如申清專利範圍第2 4項所述之反炫絲型記憶體元 件的製造方法,其中該基板為二半導體基板。 2 6 ·如申請專利範圍第2 4項所述之反熔絲型記憶體元II 0503-9867TWF (Nl): TSMC2002-1345; wayne.ptd Page 17 1241593 6. Application for patent scope 20 • The structure of the anti-fuse type memory element described in item 17 of the scope of patent application, where the first The first-type conductive layer and the second-type conductive layer are P-type or N-type. 2 1 · The structure of the anti-fuse type memory element as described in item 17 of the scope of patent application, wherein the first type conductive layer and the second type conductive layer are different from each other in shape. 2 2 · The structure of the anti-fuse type memory element as described in item 17 of the scope of the patent application, wherein the anti-solvent layer is a dioxide or a nitride. 2 3 · The structure of the anti-fuse type memory device according to item 7 of the patent application scope, wherein the adhesive layer is a nitride of titanium, a nitride of cobalt, or a nitride of nickel. ⑩ 2 4 · —A method for manufacturing an anti-fuse memory device, including the following steps: providing a substrate; forming a metal layer on the substrate; forming a silicon layer on the metal layer; and making the metal layer and a part The stone layer reacts to form a metal silicide layer and the unreacted silicon layer is used as the first variable conductive layer; forming an antifuse layer on the first split conductive layer; and patterning the first type The conductive layer, metal silicide layer, and anti-fuse layer form word lines with _. 2 5 · The method for manufacturing an anti-hyun silk type memory device as described in item 24 of the patent application, wherein the substrate is two semiconductor substrates. 2 6 · Anti-fuse type memory cell as described in item 24 of patent application 0503-9867TWF(Nl) : TSMC2002-1345;wayne.ptd 第18頁 1241593 六 、申請專利範圍 -- 件的製造大、 27 法,其中該金屬層為銶,鈷,或是鎳所組成。 件的製·、^申請專利範圍第24項所述之反炫絲型記憶體元 層。方法’其中該金屬層和該基板間尚包含一黏合 件的製造^申請專利範圍第2 7項所述之反炫絲型記憶體元 或鎳的f方去,其中該黏合層為然的氮化物、始的氮化物 鼠化物。 2 9 件的製造申%專利範圍第2 4項所述之反熔絲型記憶體元 第一 ί 法,其中該矽層為依序一未摻雜的多晶矽及一 3〇子掺雜的多晶矽堆疊構成。 件的势、^^申請專利範圍第24項所述之反熔絲型記憶體元 該矽層:ί法,其中該金屬矽化物層的形成係為金屬層和 未摻雜的多晶矽層反應所形成。 曰 件&」^如申請專利範圍第24項所述之反熔絲型記_ 製造方法,其中該金屬石夕化物層是鈦石夕化人己:體凡 化合物,或、是鎳石夕化合物所組成。 匕口物,銘石夕 从32·如申請專利範圍第24項所述之反熔絲型々政 衣化方法,其中形成一反熔絲層的方法為 凡 型導電層。 為加熱該第一 33·如申請專利範圍第24項所述之反熔絲 件的製造方法,其中該反熔絲層為二氧化思體tl 4疋氮化矽。0503-9867TWF (Nl): TSMC2002-1345; wayne.ptd Page 18 1241593 VI. Scope of patent application-Large-scale manufacturing of 27 pieces, where the metal layer is made of thorium, cobalt, or nickel. The anti-dazzle silk memory element layer described in item 24 of the patent application scope. Method 'wherein the metal layer and the substrate still include the manufacture of an adhesive member ^ The anti-dazzle silk-type memory cell or nickel as described in item 27 of the patent application scope, wherein the adhesive layer is nitrogen Compound, starting nitride rat compound. The first method of anti-fuse type memory cell described in item 24 of the patent application of 29 items, wherein the silicon layer is an undoped polycrystalline silicon and a 30-doped polycrystalline silicon in order. Stacked composition. The silicon layer of the anti-fuse memory cell described in item 24 of the scope of patent application: the silicon layer: method, wherein the metal silicide layer is formed by a metal layer and an undoped polycrystalline silicon layer. form. "A piece &" ^ The anti-fuse type recording method described in item 24 of the scope of application for patents_ The manufacturing method, wherein the metal stone material layer is a titanium stone material: an ordinary compound, or a nickel stone Composed of compounds. The anti-fuse method of fabricating as described in item 24 of the scope of patent application, wherein the method of forming an anti-fuse layer is an ordinary conductive layer. To heat the first 33. The method of manufacturing an anti-fuse device as described in item 24 of the scope of the patent application, wherein the anti-fuse layer is titanium dioxide silicon nitride. 0503-9867TWF(Nl) : TSMC2002-1345;wayne.ptd 第19頁0503-9867TWF (Nl): TSMC2002-1345; wayne.ptd Page 19
TW92118967A 2003-07-11 2003-07-11 Structure and fabricating method of an anti-fuse memory device TWI241593B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92118967A TWI241593B (en) 2003-07-11 2003-07-11 Structure and fabricating method of an anti-fuse memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92118967A TWI241593B (en) 2003-07-11 2003-07-11 Structure and fabricating method of an anti-fuse memory device

Publications (2)

Publication Number Publication Date
TW200502982A TW200502982A (en) 2005-01-16
TWI241593B true TWI241593B (en) 2005-10-11

Family

ID=37013991

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92118967A TWI241593B (en) 2003-07-11 2003-07-11 Structure and fabricating method of an anti-fuse memory device

Country Status (1)

Country Link
TW (1) TWI241593B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878235B2 (en) 2007-12-31 2014-11-04 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element and methods of forming the same
US10854545B1 (en) * 2019-09-26 2020-12-01 Nanya Technology Corporation Anti-fuse structure

Also Published As

Publication number Publication date
TW200502982A (en) 2005-01-16

Similar Documents

Publication Publication Date Title
TWI331769B (en) Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US9190610B2 (en) Methods of forming phase change memory with various grain sizes
TWI255007B (en) Method of fabricating a semiconductor device having reduced contact resistance
US7005666B2 (en) Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory cell and structures obtained thereby
TWI422014B (en) Memory device and manufacturing method thereof
US8975114B2 (en) Method for forming metal oxides and silicides in a memory device
TWI446523B (en) Junction diode with reduced reverse current
JP2006352082A (en) Semiconductor memory device and its manufacturing method
KR20110029115A (en) Carbon nano-film reversible resistance-switchable elements and methods of forming the same
TWI291217B (en) Phase change memory device and method of manufacturing
TW201145632A (en) Memory cell with silicon-containing carbon switching layer and methods for forming the same
JP2007511068A (en) SiGe (SGOI) substrate on insulator, Ge (GOI) substrate on insulator manufacturing method, semiconductor wafer, and semiconductor structure
CN101461071A (en) A vertical phase change memory cell and methods for manufacturing thereof
CN101009220A (en) A method of fabricating a composite substrate with improved electrical properties
TW200908293A (en) Phase change memory device and fabrications thereof
US20120045866A1 (en) Method of forming an electronic device using a separation technique
US20020074658A1 (en) High-resistivity metal in a phase-change memory cell
TW201208160A (en) Memory employing diamond-like carbon resistivity-switchable material and methods of forming the same
TWI602284B (en) Resistive switching device for a non-volatile memory device and method of forming the same
US20100181549A1 (en) Phase-Changeable Random Access Memory Devices Including Barrier Layers and Metal Silicide Layers
TW200824164A (en) Phase change memory device and method of fabricating the same
JPS62126627A (en) Manufacture of three-dimensional epitaxial structure
TW200810018A (en) Ultrashallow semiconductor contact by outdiffusion from a solid source
TWI241593B (en) Structure and fabricating method of an anti-fuse memory device
WO2006013898A1 (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent