TWI240742B - Acrylic polymer powder, acrylic sol and molding - Google Patents

Acrylic polymer powder, acrylic sol and molding Download PDF

Info

Publication number
TWI240742B
TWI240742B TW93101455A TW93101455A TWI240742B TW I240742 B TWI240742 B TW I240742B TW 93101455 A TW93101455 A TW 93101455A TW 93101455 A TW93101455 A TW 93101455A TW I240742 B TWI240742 B TW I240742B
Authority
TW
Taiwan
Prior art keywords
acrylic polymer
acrylic
mass
stage
latex
Prior art date
Application number
TW93101455A
Other languages
Chinese (zh)
Other versions
TW200417573A (en
Inventor
Katsuji Miyake
Takao Hoshiba
Toshiyuki Muramatsu
Original Assignee
Kuraray Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002270370A external-priority patent/JP3953924B2/en
Priority claimed from JP2003009577A external-priority patent/JP4080899B2/en
Priority claimed from JP2003011755A external-priority patent/JP4499364B2/en
Priority claimed from JP2003026965A external-priority patent/JP4083029B2/en
Priority claimed from JP2003127676A external-priority patent/JP4629315B2/en
Application filed by Kuraray Co filed Critical Kuraray Co
Publication of TW200417573A publication Critical patent/TW200417573A/en
Application granted granted Critical
Publication of TWI240742B publication Critical patent/TWI240742B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

The present invention provides acrylic polymer powder which is obtained form the latex having acrylic polymer particle by solidifying and drying, wherein the said particle has 5 to 100 mum of the average particle size, less than 70% of porosity and less than 0.9 mL/g of the porous volume for the porous diameter more than 1 mum. The acrylic acid sol obtained by the said particle has excellent storage stability and flow behavior. Modulating the macro diameter and micro diameter of acrylic polymer powder, the ratio of the each 1 gram particle of the macro fine porous volume and micro fine porous volume, or the said particle size ratio of the long diameter and short diameter within in specific range, and the said latex has soluble high molecule, adding the reactive surfactant with the said acrylic polymer particle as the constitutive component, the mix latex having two latexes independently with different acrylic polymer particles, would promote the storage stability and flow behavior of the acrylic acid sol and the heterogeneous effect (promoting the mixture ability of the said particle and plasticity agent, the low adhesivity and destroy resistance by the particle, promoting the bleed-out resistance, the coating uniformity, softness and the formation of the smooth coat membrane). Additionally, the former of the present invention is different from the former produced by the vinyl chloride sol, the hydrogen chloride gas has not been produced.

Description

1240742 玖、發明說明: 【發明所屬之技術領域】 本發明係有關一種適合於丙烯酸溶膠的丙烯酸系聚合 體粉末、含有該丙烯酸系聚合物粉末及可塑劑之丙烯酸溶 膠、及由該丙烯酸溶膠所得的成形物。 【先前技術】 塑膠溶膠係爲使樹脂粉末及塡充劑分散於可塑劑之溶 膠狀態者,使該物進行塗覆等後加熱凝膠化形成成形品。 目前以該方法工業上廣泛使用的樹脂係爲聚氯化乙烯(氯乙 烯),稱爲氯乙烯溶膠或氯乙烯漿料。視用途而定該氯乙烯 組成物使用作爲汽車用、地毯用、壁紙用、床用等之塗覆 劑、含浸劑、塡縫劑等,在很多領域中以各種目的使用。 另外’由氯乙烯組成物所得的成形品於燃燒處理時因 聚氯化乙烯產生氯化氫氣體,會有燒卻爐顯著受損的缺點, 此外,最近爲環境問題、酸性雨原因、且地球臭氧層的破 壞原因物質,在各商品領域中企求沒有該缺點、可取代氯 乙烯溶膠組成物的塑膠溶膠組成物出現。 對該要求而言,提案使用丙烯酸系樹脂之丙烯酸溶膠 作爲燃燒時不會產生氯化氫氣體之塑膠溶膠。例如使用均 勻組成系丙烯酸聚合物粒子(參照日本特開昭5 1 -7 1 344號 公報或對應於此之〇81516510人(特別是申請專利範圍)), 使用一辛基駄酸酯之一般可塑劑時上述粒子對該可塑劑之 溶解性高、混合後在數分鐘內會引起丙烯酸溶膠之黏度上 升、無法成膜,會有實用上無法使用的問題。而且,爲提 一 6 - 1240742 高丙烯酸溶膠之成膜性及儲藏安定性時,提案使丙烯酸聚 合物中與可塑劑之相溶性低的單體成分共聚合方法(特開平 5_2 7 95 3 9號公報或對應於此之EP 5 3 3 0 2 6A(特別是參照申請 專利範圍)),使用該溶膠組成物時在所得皮膜表面上會有 可塑劑容易滲出的問題。 而且,已提案二次平均粒徑爲0.1〜500μπι之範圍,在 可塑劑中分散丙烯酸溶膠所得的塑膠溶膠組成物(特開昭 5 1 - 7 1 3 44號公報或對應於此之GB1 5 165 10Α(特別是申請專 利範圍)、特開昭5 4- 1 1 7 5 5 3號公報(特別是參照申請專利範 圍))°然而,使用二次平均粒徑微細的丙烯酸系聚合物之 丙烯酸溶膠時,由於丙烯酸系聚合物粒子之單位體積的粒 子面積大時初期黏度高,容易產生膨脹現象,流動性降低 且塗覆時塗覆膜之厚度不均勻或產生掠過情形,噴霧塗覆 時產生噴霧粉末不均勻等問題。爲使該含有二次平均粒徑 微細的丙烯酸系聚合物之丙烯酸溶膠爲實用黏度時,可塑 劑量變多’且必須添加稀釋用有機溶劑等。結果,此時在 皮膜表面上可塑劑會滲出且機械強度降低,添加的有機溶 劑殘留於塗膜中容易形成成膜性受損之問題。 另外’使用含有二次平均粒徑大的丙烯酸系聚合物之 丙燒酸溶膠時,其黏度會有較含有二次平均粒徑微細的丙 燃-酸系聚合物之丙烯酸溶膠爲低的傾向,丙烯酸溶膠中丙 烯酸系聚合物之均勻性不佳,會有成膜中產生顆粒、無法 形成平滑皮膜的問題,另外,皮膜因加熱凝膠化的時間必 須很長’故會有丙烯酸溶膠塗覆品之生產性降低的問題。 -7- 1240742 此外,提案有含丙烯酸聚合物粒子之平均粒徑爲〇. 1〜 2.0μηι者與3.0〜50μπι者之混合物的低黏度丙烯酸溶膠(特 開平8 -7 3 60 1號公報)(特別是參照申請專利範圍),惟會有 必須使乾燥的樹脂(二次粒子)藉由分級或粉碎達成企求的 粒度分布、混合的複雜工程,因與可塑劑混合時產生的切 變力致使粒子受到破壞,溶膠安定性降低的問題。 如上所述,在丙烯酸溶膠中使用二辛基酞酸酯之一般 可塑劑時,該可塑劑對上述粒子之溶解性高,混合後在數 分鐘內丙烯酸溶膠之黏度上升而無法成膜,會有無法實用 的問題。此外,爲提高丙烯酸溶膠組成物之儲藏安定性時, 使用在丙烯酸聚合物中與可塑劑之相溶性低的單體成分共 聚合的丙烯酸溶膠組成物時,所得皮膜表面上會有可塑劑 容易滲出的問題。如此使用丙烯酸聚合物粒子時,由於儲 藏安定性與成膜後之可塑劑保持性(耐滲出性)的關係相 反,無法滿足均勻構造的聚合物粒子。 因此,特開平 5 -2 795 3 9號公報或對應於此的 ΕΡ5 3 3 〇26 Α(特別是參照申請專利範圍)中提案使用芯核構造 粒子之丙烯酸溶膠組成物,使用在聚合物架構中含有酸之 丙烯酸系聚合物。然而,該公報中提案的聚合物對可塑劑 而言相溶性低’使用如酞酸酯系可塑劑之極性低的可塑劑 時,可塑化狀態不佳,無法製得良好的塗膜。另外,於特 開平6 - 3 2 2 2 2 5號公報或對應此之US 544 1 994A(特別是參照 申請專利範圍)中,提案使用相同芯核構造粒子之塑膠溶膠 組成物。此處,芯核構造粒子於製造均勻構造粒子且藉由 -8 - 1240742 使該物進行鹼加水分解處理,該粒子表面部分之酯基會變 換成羧基。然而,核部之厚度極薄,實質上粒子體積不會 超過1 %左右。作爲核部之效果所企求的儲藏安定性之改良 效果極低。另外,藉由鹼加水分解導入的核部,酸價極高, 對可塑劑之相溶性極低,使成膜性顯著降低。而且,該具 有高酸價核部之構造粒子在塑膠溶膠組成物中,粒子間容 易形成凝聚構造,結果塑膠溶膠組成物因切變速度而使黏 性提高,作業性降低。 而且,使用芯核構造之塑膠溶膠組成物的另一例於特 開平7-23 3299號公報(特別是參照申請專利範圍)及特開平 8 -2 95 8 5 0號公報(特別是參照申請專利範圍)中提案。此處, 基本上使用對可塑劑具相溶性之芯部與對可塑劑不具相溶 性之核部所成芯核聚合物時,可實現該基本性能(低水準儲 藏安定、低水準可塑劑保持性等)。然而,爲於工業上實用 化時,要求極高性能(高水準儲藏安定性、高水準可塑劑保 持性、高水準機械性能(拉伸強度、拉伸度等)等),藉由上 述公報提案的聚合物與可塑劑之相溶性平衡性無法最適 化,儲藏安定性、塗膜之可塑劑保持性及塗膜之柔軟性皆 爲低水準,不適於工業上實用化。 另外,於上述特開平8-295 85 0號公報(特別是參照申 請專利範圍)或特開平9-7 795 〇號公報(特別是參照申請專利 範圍)中提案,使用含有與可塑劑相溶性良好的特定單體所 成(a)成分、與可塑劑相溶性低的特定單體所成(b)成分,且 (a)成分之構成比例由丙烯酸系聚合物粒子之中心部朝最外 1240742 層多階段或連續減少,(b)成分之構成比例由丙烯酸系聚合 物粒子之中心部朝最外層多階段或連續增加的丙烯酸系聚 合物粒子之丙烯酸溶膠,由於所使用的丙烯酸系聚合物粒 子之形態或性質皆沒有明確規定,故粒子表面層與可塑劑 之相溶性低,可塑劑對二次粒子內之滲出性不佳,因成膜 中二次粒子殘留產生顆粒/無法形成平滑的皮膜,會有實 用上不爲企求的結果。 爲使該塑膠溶膠最基本的性質之儲藏安定性、可塑劑 保持性、塗膜柔軟性等並立時,進行各種檢討,由於所使 用的丙燒酸系聚合物等粒子之形態或性質沒有明確規定, 作爲氯乙烯之取代材料時皆爲低水準,故目前無法達到工 業上實用水準。 【發明之揭示】 本發明之目的係提供一種可形成儲藏安定性及流動性 優異的丙烯酸溶膠之丙嫌酸系聚合物粉末、具有使用該粉 末之上述特性的丙烯酸溶膠、以及由該丙烯酸溶膠所得的 成形物。 藉由發明之形態,本發明之目的係提供除上述特性外, 至少具有一種下述例舉特性之丙烯酸系聚合物粉末, (1) 可容易與可塑劑等混合。 (2) 可由該丙嫌酸系聚合物粉末形成低黏度丙烯酸溶 膠。 (3 )可由該丙燒酸系聚合物粉末形成流動性更爲提高的 丙烯酸溶膠。 1240742 (4) 可由該丙烯酸系聚合物粉末形成儲藏安定性更爲提 高的丙烯酸溶膠。 (5) 可由該丙烯酸系聚合物粉末形成耐粒子破壞性優異 的丙烯酸溶膠。 (6) 由該丙烯酸系聚合物粉末形成的丙烯酸溶膠所得的 成形物具有優異的可塑劑保持性或耐滲出性。 (7) 由該丙烯酸系聚合物粉末形成的丙烯酸溶膠所得的 成形物具有優異的皮膜均勻性。而且,由該丙烯酸系聚合 物粉末形成的丙烯酸溶膠可形成沒有顆粒的平滑塗膜。 (8 )由該丙烯酸系聚合物粉末形成的丙烯酸溶膠所得的 成形物具有優異的柔軟性。 (9)由該丙烯酸系聚合物粉末形成的丙烯酸溶膠所得的 發泡成形物具有優異的發泡狀態均勻性。 本發明之目的係提供一種具有使用上述各粉末之各種 特性的丙烯酸溶膠、及由該丙烯酸溶膠所得的成形物。 本發明之另一目的係提供一種使由該物形成的成形物 燒卻時與由氯乙烯溶膠形成的成形物不同,不會產生氯化 氫氣體之丙烯酸溶膠。 爲解決上述課題之本發明,由主要形態之形態1與另 外改良形態1之形態2、形態3、形態4及形態5所成。 形態1(空隙率)之特徵係爲使用具有特定構造特性之丙 烯酸系聚合物粉末。 換言之,形態1係有關使含有丙烯酸系聚合物粒子之 乳膠凝固乾燥所得的丙烯酸系聚合物粉末(二次粒子)中, -11- 1240742 該粉末之平均粒徑爲5〜1 ο ο μηι,空隙率爲7 0 %以下,且孔 直彳空Ιμτη以上之積分空隙體積爲〇.9mL/g以下之丙烯酸系 聚合物粉末。 該丙稀酸系聚合物粉末以粗孔直徑爲7μιη以下,且微 孔直徑爲0.5 μ m以下較佳。 而且’每1克該丙烯酸系聚合物粉末之粗孔細孔體積 A與微孔細孔體積B之比例(a / B )以0.5〜5較佳。 形態1之丙烯酸系聚合物粉末可形成儲藏安定性及流 動性優異的丙烯酸溶膠。 开> 悲2 (粒徑比)之特徵係爲使形態1之丙燒酸系聚合物 粉末之長徑與短徑的粒徑比設定於特定範圍內。 換言之’形態2係有關以電子顯微鏡觀察的該丙烯酸 系聚合物粉末之長徑a與短徑b之粒徑比a/b爲1 . 〇〜2之 丙烯酸系聚合物粉末。 形態2之丙烯酸系聚合物粉末係除形態〗之特性外, 另具有低黏度、優異流動性及儲藏安定性優異、且由該物 所得的成形物之可塑劑保持性優異的丙烯酸溶膠。 形態3 (水溶性高分子)之特徵係爲使用含有作爲形態i 或形態2之乳膠的丙烯酸系聚合物粒子及含有特定分子量 之水溶性高分子乳膠。 換言之’形態3係有關該乳膠含有丙烯酸系聚合物粒 子及重量平均分子量爲10,000以上之水溶性高分子的乳膠 中,使該水溶性高分子之使用量相對於1 〇〇質量份丙烯酸 系聚合物粒子而言爲0.001〜1 0質量份之乳膠噴霧乾燥, 1240742 製得的形態1或形態2之丙烯酸系聚合物粉末。 形態3之丙烯酸系聚合物粉末係除上述形態1或形態 2之特性外’另具有與可塑劑容易混合、低黏度、流動性、 儲藏安定性及耐粒子破壞性優異、且由該物所得的成形物 具有優異的耐滲出性及皮膜均勻性優異的丙烯酸溶膠。 於形態1〜3之任一形態中,丙烯酸系聚合物粒子以下 述規定的丙烯酸系聚合物粒子(I)或丙烯酸系聚合物粒子(n) 較佳。 丙烯酸系聚合物粒子(I): 係爲在含有前階段聚合物(I-a)之乳膠中形成後階段聚 合物(I-b)所得的多階段聚合物粒子, BU階段聚合物(I - a)係爲含有5質量%〜5 0質量%甲基丙 烯酸甲酯單位,藉由使〗階段或單體組成互相不同的2階 段以上聚合反應形成的共聚物, 後階段聚合物(I-b)係爲含有50質量%以上甲基丙烯酸 甲酯’藉由使1階段或單體組成互相不同的2階段以上聚 合反應形成的聚合物, 前階段聚合物(I-a)/後階段聚合物(I_b)之質量比爲5/95 〜9 5 / 5, 之丙烯酸系聚合物粒子。 丙烯酸系聚合物粒子(11): 係爲在含有前階段聚合物(n_a)之乳膠中形成後階段聚 合物(ΙΙ-b)所得的多階段聚合物粒子, 前階段聚合物(ΙΙ-a)係爲含有50質量%〜99.99質量% 1240742 丙烯酸烷酯單位,4 9 · 9 9質量%以下可與丙烯酸烷酯共聚合 的單官能性單體單位及〇 · 〇 1〜1 0質量%多官能性單體單位 所成,藉由使1階段或單體組成互相不同的2階段以上聚 合反應形成的共聚物, 後階段聚合物(π-b)係爲含有50質量%以上甲基丙烯酸 甲酯,藉由使1階段或單體組成互相不同的2階段以上聚 合反應形成的聚合物, 前階段聚合物(II-a)/後階段聚合物(Π-b)之質量比爲 5/95 〜95/5, 之丙烯酸系聚合物粒子。 形態4(反應性界面活性劑)之特徵係爲使用具有使用反 應性界面活性劑作爲形態1〜形態3中任一形態之丙烯酸系 聚合物粉末所聚合層之丙烯酸系聚合粒子所成的丙烯酸系 聚合粉末。 換言之’形態4係有關形態1〜形態3中任一形態的 丙烯酸系聚合物粉末中,該丙烯酸系聚合物粒子係爲 (1) 在含有前階段聚合物(I-a)之乳膠中形成後階段聚合 物(I-b)所得的多階段聚合物粒子,至少具有以反應性界面 活性劑爲構成成分之共聚物所成層的上述丙烯酸系聚合物 粒子(I),或 (2) 在含有前階段聚合物(Π-a)之乳膠中形成後階段聚合 物(11 - b )所得的多階段聚合物粒子,至少具有一層以反應性 界面活性劑爲構成成分之共聚物所成層的上述丙烯酸系聚 合物粒子(11), 一 14 一 1240742 形態1〜形態3之任一形態丙烯酸系聚. 形態4之丙烯酸系聚合物粉末,除具有 中任一形態的特性外’可具有優異儲藏安定 所得成形物具有優異的柔軟性及可塑劑保持 膠。而且,該成形物爲發泡成形物時,該成 態均勻性優異。 形感5 (混合乳膠)之特徵,係爲使各含有 烯酸系聚合物粒子之2種乳膠混合。 換言之,形態5使用的乳膠係有關於含 態3中任一形態丙烯酸系聚合物粒子(π)之 (ΙΙ-a)相同的聚合物(形態5中稱爲丙烯酸系, a))之乳膠,與含有形態1〜形態3中任一形 合物粒子(I)所包含的丙烯酸系聚合物粒子(1-烯酸系聚合物粒子(II-a)/丙烯酸系聚合物粒 = 5/95〜40/60混合所得的乳膠外,形態!〜形 態之丙烯酸系聚合物粉末。 形態5之丙烯酸系聚合物粉末除具有形 之任何特性外,儲藏安定性優異,且可形成 滑塗膜。 於形態1〜形態5中任何形態中凝固乾 較佳。 而且’本發明係有關含有形態1〜形態 丙嫌酸系聚合物粉末及可塑劑的丙烯酸溶膠。 另外’本發明係有關由該丙烯酸溶膠所得 含物粉末。 形態1〜形態3 性、且由該物 性的丙烯酸溶 形物之發泡狀 ‘特定不同的丙 有形態1〜形 前階段聚合物 资合物粒子(II-態丙烯酸系聚 • 1)之乳膠以丙 子(1-1)質量比 態3中任一形 態1〜形態3 沒有顆粒的平 燥以噴霧乾燥 5中任一形態 :的成形物。 - 1 5- 1240742 較佳形態之詳細說明 於下述中更詳細的說明本發明,首先有關全部的形態 1,即說明有關丙烯酸系聚合物粒子、丙烯酸系聚合物粉末、 丙烯酸溶膠及成形物,且有關形態2、形態3、形態4及形 態5以形態1之附加點及/或不同點爲中心予以說明。 1形態1 (空隙率) 首先,說明有關形態1使用的丙烯酸系聚合物粒子(一 次粒子)。 形態1使用的丙烯酸系聚合物粒子係爲至少具有一層 層構造之聚合物粒子,可使丙烯酸酯(例如丙烯酸甲酯、丙 烯酸乙酯、丙烯酸丁酯、丙烯酸2 -乙基己酯等)及/或甲基 丙烯酸酯(例如甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙 烯酸丁酯、甲基丙烯酸異丁酯、甲基丙烯酸2_乙基己酯、 甲基丙烯酸環己酯等)爲主要的單體單獨聚合、共聚合、接 枝聚合等所得的丙烯酸系聚合物粒子。 形態1所使用的丙烯酸系聚合物粒子以下述(1)及(2 )之 甲基丙烯酸甲酯單位作爲必須成分較佳。 (1)在含有前階段聚合物(I-a)之乳膠中形成後階段聚合 物(I-b)所成的多階段聚合物粒子, 前階段聚合物(I-a)係爲含有5質量%〜50質量%甲基丙 烯酸甲酯’藉由1階段或單體組成互相不同的連續2階段 以上聚合反應形成的共聚物, 後階段聚合物(I-b)係爲含有50質量%以上甲基丙烯酸 甲酯單位、藉由1階段或單體組成互相不同的連續2階段 一 1 6 - 1240742 以上聚合反應形成的聚合物, 則階段聚合物(I - a) /後階段聚合物(丨_ b )之質量比爲5 / 9 5 〜95/5,之丙烯酸系聚合物粒子(1)。 前階段聚合物(I-a)可以在1階段聚合反應形成,或含 有藉由最初聚合反應所得的聚合物粒子之乳膠中進行單體 組成互相不同的連續1階段以上聚合反應形成的共聚物, 藉由前階段所含的各階段(包含僅由1階段所成者)之聚合 反應形成的共聚物,皆含有5質量%〜5 0質量%甲基丙烯酸 甲酯單位與5 0質量%〜9 5質量%可與甲基丙烯酸甲酯共聚 合的其他單體。甲基丙烯酸甲酯單位之比例以2 0〜5 0質量 %較佳,以30質量%〜50質量%更佳。前階段聚合物(I-a) 之甲基丙烯酸甲酯單位小於5質量%時,含有使含本形態丙 烯酸系聚合物粒子之乳膠凝固乾燥所得丙烯酸系聚合物粉 末與可塑劑之丙烯酸溶膠(以下簡稱爲「丙烯酸溶膠」)形 成的皮膜強度降低、故不爲企求;甲基丙烯酸甲酯單位大 於5 0質量%時,皮膜表面之耐滲出性或柔軟性降低、故不 爲企求。 後階段聚合物(I-b)係在含有前階段聚合物(I-a)粒子之 乳膠中在1階段之聚合反應形成,或在含有前階段聚合物 (I-a)粒子之乳膠中藉由單體組成互相不同的連續2階段以 上聚合反應形成的(共)聚合物,後階段所含的各階段(包含 僅由1階段所成者)之聚合物反應形成的(共)聚合物’皆爲 含有50質量%以上甲基丙烯酸甲酯單位與50質量%以下可 1240742 與甲基丙烯酸甲酯共聚合的其他單體所成者。後階段聚合 物(I - b )之甲基丙烯酸甲酯單位之比例以5 5〜9 5質量%較 佳、更佳者爲6 0〜9 0質量%。後階段聚合物(1_ b )之甲基丙 烯酸甲酯小於5 0質量%時,所得丙烯酸溶膠之儲藏安定性 降低,故不爲企求。 上述可與甲基丙烯酸甲酯共聚合的其他單體例如甲基 丙烯酸乙酯、甲基丙烯酸正丙酯、甲基丙烯酸異丙酯、甲 基丙烯酸正丁酯、甲基丙烯酸異丁酯、甲基丙烯酸環己酯 等除甲基丙烯酸甲酯外之甲基丙烯酸酯;丙烯酸甲酯、丙 嫌酸乙酯、丙烯酸丙酯、丙烯酸正丁酯、丙烯酸2 -乙基己 酯、丙烯酸2-羥基乙酯等之丙烯酸酯;甲基丙烯酸2-羥基 乙酯、甲基丙烯酸羥基丙酯等之甲基丙烯酸羥基烷酯;丙 烯酸、甲基丙烯酸、檸檬酸、衣康酸等之α,β-不飽和羧酸; 苯乙烯、Ρ-甲基苯乙烯' 甲基苯乙烯等芳香族乙烯化合 物;Ν-丙基馬來醯亞胺、Ν-環己基馬來醯亞胺、Ν-ο-氯苯 基馬來醯亞胺等之馬來醯亞胺系化合物;丙烯腈、甲基丙 嫌腈等之氰化乙嫌化合物;等,其中,就調整玻璃轉移溫 度(Tg)或提高與金屬之密接性而言,以甲基丙烯酸異丁酯、 甲基丙烯酸環己酯等之甲基丙稀酸酯、甲基丙烯酸2_羥基 乙酯等之甲基丙烯酸羥基烷酯較佳。此等其他單體可以單 獨或2種以上組合使用,視目的或用途而定適當選擇。 形態1中使用的丙烯酸系聚合物粒子(1)之前階段聚合 物(I-a)及後階段聚合物(ΐ-b)各獨立製造時之重量平均分子 量(Mw)可視其用途適當選擇,皆以5〇,〇〇〇〜3,〇〇〇,〇〇〇較 1240742 佳’更佳者爲1 00,000〜2,000,000。重量平均分子量爲 ’ J u ? u 〇 〇 以上時可提高所成形的皮膜強度,而爲3,000,000以下^日寺胃 可塑劑之溶解速度適當且可提高生產性。調整重羹平均分 子量時,可使用硫醇類等之連鏈移動劑進行,該硫醇_ _ 如η-辛基硫醇、正十二烷基硫醇、正月桂基硫醇、第三_十 二烷基硫醇等。另外,可視用途或目的之性狀而定使多官 能性單體共聚物導入交聯構造或接枝構造。 丙烯酸系聚合物粒子(I)中佔有的前階段聚合物(I_a)〇^ 階段聚合物(I-b)之質量比爲5/95〜95/5,較佳者爲20/80〜 80/20。後階段聚合物(I-b)之比例小於5質量%時所得丙嫌 酸溶膠之儲藏安定性降低,而大於95質量%時容易引起可 塑劑之滲出情形。 (2)在含有前階段聚合物(II-a)之乳膠中形成後階段聚合 物(ΙΙ-b)所得的多階段聚合物粒子, 前階段聚合物(II-a)係爲含有50質量%〜99.99質量% 丙烯酸烷酯、49· 99質量%以下可與丙烯酸烷酯共聚合的其 他單官能性單體單位及0 · 0 1〜1 0質量%多官能性單體單位 所成,藉由1階段或單體組成互相不同的連續2階段以上 聚合反應形成的共聚物, 後階段聚合物(ΙΙ-b)係爲含有50質量%以上甲基芮烯酸 甲酯單位、藉由1階段或單體組成互相不同的連續2階段 以上聚合反應形成的聚合物, 前階段聚合物(II-a)/後階段聚合物(π-b)之質纛比爲 5/95〜95/5,之丙烯酸系聚合物粒子(η)。 1240742 前階段聚合物(ΙΙ-a)可以在1階段聚合反應形成,或含 有藉由最初聚合反應所得的聚合物粒子之乳膠中進行單體 組成互相不同的連續1階段以上聚合反應形成的共聚物’ 藉由前階段所含的各階段(包含僅由1階段所成者)之聚合 反應形成的共聚物,皆含有50質量%〜99· 99質量%丙烯酸 烷酯單位、49.99質量%以下可與丙烯酸烷酯共聚合的其他 單體單位及0 · 0 1〜1 〇質量%多官能性單體單位。上述各共 聚物單體單位組成皆爲以60〜99.95質量%丙烯酸烷酯單 位、39.95質量%以下該其他單體單位及0.05〜5質量%多 官能性單體單位較佳,更佳者爲70〜99.9質量%丙烯酸烷 酯單位、29.9質量%以下該其他單體單位及0.1〜3質量% 多官能性單體單位。 丙烯酸烷酯單位小於50質量%時,丙烯酸溶膠形成的 皮膜之耐寒性降低。而且,多官能性單體單位小於0.0 1質 量%時由丙烯酸溶膠形成的皮膜強度降低,大於1 0質量% 時該皮膜之耐寒性滲出性降低。 有關前階段聚合物(II-a)之丙烯酸烷酯例如丙烯酸甲 酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸正丁酯、丙烯酸2-乙基己酯、丙烯酸2-羥基乙酯等,其中,以碳數1〜4烷基 之丙烯酸烷酯較佳,更佳者爲丙烯酸甲酯、丙烯酸丙酯及 丙烯酸正丁酯。 有關上述前階段聚合物(II-a)之可與丙烯酸烷酯共聚合 的其他單體例如甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基 - 20 - 1240742 丙燦酸正丙酯、甲基丙烯酸異丙酯、甲基丙烯酸正 甲基丙烯酸異丁酯、甲基丙烯酸環己酯等之甲基丙輝 甲基丙烯酸厂羥基乙酯、甲基丙烯酸羥基丙酯等之 稀酸羥基烷酯;丙烯酸、甲基丙烯酸、0 _甲基苯乙 芳香族乙烯化合物;N-丙基馬來醯亞胺、N-環己基 亞胺、N-o-氯苯基馬來醯亞胺等之馬來醯亞胺系化 汽烯腈、甲基丙烯腈等之氰化乙烯化合物;等,其 整玻璃轉移溫度(Tg)而言以甲基丙烯酸甲酯等之甲 酸酯較佳。此等其他單體可以單獨或2種以上組合 視其目的或用途而定予以適當選擇。 有關前階段聚合物(II-a)之多官能性單體例如乙 甲基丙烯酸酯、二乙二醇二甲基丙烯酸酯、三乙二 基丙烯酸酯、丙二醇二甲基丙烯酸酯、聚乙二醇二 燦酸酯、己二醇二甲基丙烯酸酯、三羥甲基丙烷三 燦酸酯、乙二醇二丙烯酸酯、二乙二醇二丙烯酸酯 =醇二丙烯酸酯、己二醇二丙烯酸酯、三羥甲基丙 燦酸酯、二乙烯苯、二烯丙基酞酸酯、二烯丙烯馬來 二乙烯基己二酸酯、烯丙基丙烯酸酯、烯丙基甲基 酯、三烯丙基氰酸酯、三烯丙基異氰酸酯等,其中 子量爲2 5 0以上者較佳,構成的聚乙二醇以具有平 4 400〜600之聚乙二醇二(甲基)丙烯酸酯。 而且,後階段聚合物(Π-b)係爲在含有前階段 (Il-a)粒子之乳膠中藉由進行1階段聚合反應形成, 有前階段聚合物(Π-a)粒子之乳膠中藉由使單體組成 丁酯、 ?酸酯; 甲基丙 烯等之 馬來醯 合物; 中就調 基丙烯 使用, 二醇二 醇二甲 甲基丙 甲基丙 、三乙 烷三丙 酸酯、 丙烯酸 ,以分 均分子 聚合物 或在含 互相不 -21- 1240742 同的連續2階段以上聚合反應形成的(共)聚合物,後階段 所含的各階段(包含僅由1階段所成)聚合反應形成的(共)聚 合物,含有5 〇質量%以上甲基丙烯酸甲酯單位與5 0質量% 以下可與甲基丙烯酸甲酯共聚合的其他單體所成單位。後 階段聚合物(ΙΙ-b)之甲基丙烯酸甲酯單位之比例以60〜100 質量%較佳,更佳者爲70〜95質量%。後階段聚合物(II-b) 之甲基丙烯酸甲酯單位小於5 0質量%時,所得丙烯酸溶膠 之儲藏安定性降低,故不爲企求。 上述中可與甲基丙烯酸甲酯共聚合的其他單體例如與 製造後階段聚合物(II-b)時使用的可與甲基丙烯酸甲酯共聚 合的其他單體相同者。 各單獨製造形態1中使用的丙烯酸系聚合物粒子(II)之 前階段聚合物(II-a)及後階段聚合物(II-b)時之重量平均分 子量(Mw)係視用途而定予以適當選擇,皆以50,000〜 35000,000較佳,更佳者爲1〇〇,〇〇〇〜2,000,00(^重量平均 分子量爲5 0,000以上時可提高成形的皮膜強度,而若爲 3,000,000以下時對可塑劑之溶解速度適當且可提高生產 性。調整重量平均分子量時可使用與丙烯酸系聚合物粒子⑴ 記載者相同的連鏈移動劑進行,而且,視用途或目的之性 狀而定可使多官能性單體共聚合導入交聯構造或接枝構 造。 丙烯酸系聚合物粒子(II)所佔的前階段聚合物後 階段聚合物(II-b)之質量比爲5/95〜95/5,較佳者爲20/80 〜80/20。後階段聚合物(n-b)之比例小於5質量%時所得丙 -22- 1240742 引 系 05 以 均 系 酸 聚 聚 段 刖 聚 不 b) 合 行 系 製 非 劑 烯酸溶膠之儲藏安定性降低,而若大於%質量%時容易 起可塑劑滲出情形。 形態1使用的丙烯酸系聚合物粒子,較佳者丙烯酸 聚合物粒子(I)及/或(II)之平均粒徑沒有特別的限制,以〇. 〜3 0μιη較佳,更佳者爲〇1〜2μιη。平均粒徑爲〇·〇5μιη 上時溶膠狀態之儲藏安定性佳,爲3 〇 μιΏ以下時容易形成 勻的溶膠狀態。 而且’不僅爲丙烯酸系聚合物粒子,亦包含丙烯酸 聚合物粉末,本發明之平均粒徑係指算術平均粒徑。 形態1使用的丙烯酸系聚合物粒子、較佳者爲丙烯 系聚合物粒子(I)及/或(II),例如藉由乳化聚合法或片板 合物法之習知聚合方法,可在乳膠狀態下製造,以乳化 合法製造較佳。例如丙烯酸系聚合物粒子⑴在含有前階 聚合物(I-a)之乳膠中藉由形成後階段聚合物(I_b)製得, 階段聚合物(I-a)可以1階段聚合反應形成,或藉由最初 合反應製得含有聚合物粒子之乳膠中進行單體組成互相 同的連續1階段以上聚合反應進行形成,後階段聚合物(1_ 係可在含有前階段聚合物(I-a)粒子之乳膠中以1階段聚 反應形成,或藉由在前階段聚合物(I-a)粒子之乳膠中進 單體組成互相不同的2階段以上聚合反應形成。丙烯酸 聚合物粒子(II)可以與丙烯酸系聚合物粒子(I)相同方法 造。 乳化聚合中可使用的乳化劑包含陰離子系乳化劑、 離子系乳化劑、非離子•陰離子系乳化劑、反應性乳化 -23- 1240742 等。陰離子系乳化物例如二辛基磺基琥珀酸鈉、二月桂基 擴基琥拍酸鈉等之二院基磺基號拍酸鹽;十二院基苯磺酸 鈉等之烷基苯磺酸鹽;十二烷基硫酸鈉等之烷基硫酸鹽; 等。非離子系乳化劑例如聚環氧乙烷烷醚、聚環氧乙烷壬 基苯醚等。非離子•陰離子系乳化劑例如聚環氧乙烷壬基 苯醚硫酸鈉等之聚環氧乙烷苯醚硫酸鹽··聚環氧乙烷烷醚 硫酸鈉等之聚環氧乙烷烷醚硫酸鹽;聚環氧乙烷十三烷醚 醋酸鈉等之烷醚羧酸鹽等;等。反應性乳化劑例如烷基苯 氧基聚乙二醇丙烯酸酯、酸性磷酸甲基丙烯酸酯、烷基芳 基苯氧基聚環乙二醇、鈉丙烯醯氧基烷基(三烷基)銨-對 甲苯磺酸酯鹽、鈉-聚苯乙烯苯醚硫酸鹽、二甲基胺基乙基 甲基丙烯酸鹽四級化物、鈉-磺基琥珀酸烷基烯酯、聚環氧 乙烷烷醚、聚環氧乙烷烷基苯醚磺酸酯、烷基苯氧基乙氧 基乙基磺酸酯、鈉-二烷基磺基癸二酸鹽、烷基二苯醚二磺 酸酯、壬基丙烯基苯酚環氧乙烷1 0莫耳加成物硫酸銨鹽等。 此等乳化劑可以單獨使用或2種以上組合使用。上述例示 的非離子系乳化劑或陰離子•非離子系乳化劑之例示化合 物中環氧乙烷單位的平均重複數,爲使乳化劑之發泡性極 大時,以30以下較佳,更佳者爲20以下,最佳者爲10以 下。 乳化聚合時可使用過硫酸鉀、過硫酸銨等之過硫酸鹽 系起始劑、過磺醯氧酸酯/有機過氧化物、過硫酸鹽/亞硫酸 鹽等之螯合系起始劑中任何聚合起始劑。而且,視其所需 可使用習知連鏈移動劑。 1240742 於乳化聚合中單體、乳化劑、起始劑、連鏈移動劑等 視目的之階段聚合反應而定可以一起加入、分批添加、連 續添加等習知任意方法添加。 乳化劑及聚合起始劑之使用量,於乳化聚合中爲達成 各目的時爲一般使用量即可,沒有特別的限制,於各聚合 層中對單體全部而言乳化劑爲〇· 1〜1 〇質量%,聚合起始劑 爲0 · 0 1〜1質量%。 形態1使用的乳膠係使含有藉由上述聚合所得的丙烯 酸系聚合物粒子、較佳者爲丙烯酸系聚合物粒子(I)或丙嫌 酸系聚合物粒子(II)之乳膠、或含有丙烯酸系聚合物粒子之 乳膠與丙烯酸系聚合物粒子(II)之乳膠以任意比例混合的乳 膠。 形態1所使用的乳膠可以爲另使各含有粒徑分布不同 的丙烯酸系聚合物粒子以數種,例如2種或3種乳膠混合 的乳膠。 以形態1記載的聚合法,特別是由乳化聚合法製得的 含有丙烯酸系聚合物粒子之乳膠所得丙烯酸系聚合物粉末 的方法’沒有特別的限制,可以爲噴霧乾燥法、凍結乾燥 法、在該乳膠中加入酸或鹽以使丙烯酸系聚合物粒子凝固 後脫水乾燥的方法等各種方法。於此等方法中以具有容易 調整丙烯酸系聚合物粉末之平均粒徑、粒徑分布及形狀(以 球形較佳)優點之噴霧乾燥法更佳。由該乳膠製得丙烯酸系 聚合物粉末時丙烯酸系聚合物粒子部分凝聚,且丙烯酸系 聚合物粉末之平均粒徑通常較丙烯酸系聚合物粒子之平均 -2 5 - 1240742 粒徑爲大。 該丙烯酸系聚合物粉末主要使用於與可塑劑混合以調 整丙細酸彳谷膠’形態1之丙稀酸系聚合物粉末的平均粒徑 必須爲5〜1 0 0 μχη,以1 0〜5 0 μπι較佳。若平均粒徑小於5 μιη 時’丙烯酸系聚合物粉末於調製丙烯酸溶膠時不易處理微 粉飛舞等情形,而若大於1 ΟΟμπι時,會有形成顆粒的缺點、 外觀受損且容易引起皮膜強度降低的情形(形成顆粒時容易 產生龜裂情形)。 而且,形態1之丙烯酸系聚合物粉末的空隙率大於7 〇 % 時’使用該物之丙烯酸溶膠中可塑劑對丙烯酸系聚合物粉 末之吸收顯著,丙烯酸溶膠之流動性降低或產生膨脹等情 形、成形加工性降低,故不爲企求。然而,形態1之丙烯 酸系聚合物粉末之空隙率必須爲70%以下,較佳者爲60% 以下。 另外,形態1中空隙率係表示丙烯酸系聚合物粉末之 ~定體積佔有的粒子間空間體積比例,且可藉由水銀壓入 法測定該粉末之細孔體積求取。 此外’形態1之丙烯酸溶膠的儲藏安定性係使丙烯酸 系聚合物粉末與可塑劑之接觸面積愈大時愈容易降低。而 且,有關形態1之丙烯酸系聚合物粉末,以水銀壓入法測 定的孔徑ιμπι以上積分空隙體積在lg粉末中必須爲〇.9mL 以下,較佳者爲〇.8mL。 而且,形態1中積分空隙體積係表示丙烯酸系聚合物 粉末之細孔全部體積(mL)。 一 26- 1240742 另外,形態1使用的水銀壓入法之操作條件係如下述 實施例之項目所述。 形態1之丙烯酸系聚合物粉末的上述平均粒徑、空隙 率及積分空隙體積設定於上述範圍內,上述丙烯酸系聚合 物之製造及由乳膠取的丙烯酸系聚合物粉末之過程中適當 調整乳膠中丙烯酸系聚合物粒子之濃度等條件,丙烯酸系 聚合物之製法特別是乳化聚合物、丙烯酸系聚合物粉末之 處理法尤以噴霧乾燥法較佳。 形態1之丙烯酸系聚合物粉末之粗孔直徑爲7μηι以 下’且微孔直徑爲0 · 5 μιη以下較佳,更佳者係粗孔直徑爲 2〜6μιη,且微孔直徑爲〇· 1〜〇·4μιη。於形態1中粗孔直徑 係表示大於1 μιη之孔直徑的細孔中具有最大體積之細孔直 徑,微孔直徑係表示1 μιη孔直徑之細孔中具有最大體積之 細孔直徑,藉由水銀壓入法觀察該粉末之孔直徑與細孔體 積之關係求取。 丙烯酸系聚合物粉末之粗孔直徑爲7μιη以下,且微孔 直徑爲0·5 μιη以下時,調製丙烯酸溶膠時不易產生該粉末 破壞情形,結果可防止儲藏安定性或流動性降低的情形。 丙烯酸系聚合物粉末之粗孔直徑及微孔直徑設定於所 定範圍時,通常可滿足作爲乳膠條件之 〇·1< [固成分濃度X標準偏差(μιη) /乳膠中丙烯酸系聚 合物粒子之平均粒徑(μχη)] 及作爲乳膠噴霧乾燥條件之 〇·ι< [(熱風入口溫度-熱風出口溫度)(°c) /丙烯酸系聚 -27 - 1240742 合物粉末之平均粒徑(pm)] < 1 ο 上述固成分濃度係爲計量乳膠爲一定質量(wi)、且在 100°C下乾燥3小時,且測定乾燥後之質量(W2)時,以W2/W1 所求得之値,標準偏差係表示丙烯酸系聚合物粒子(一次粒 子)之平均粒徑的標準偏差。 形態1之丙烯酸系聚合物粉末以每1克的粗孔細孔體 積A(mL)與微孔細孔體積B(mL)之比例(A/B)以0.5〜5較 佳、更佳者爲0.6〜2。粗孔細孔體積及微孔細孔體積藉由 水銀壓入法求得。此處,粗孔係指孔直徑爲1 μιη以上之細 孔,微孔係指直徑爲1 μιη以下之細孔。而且,粗孔細孔體 積係指粗孔之合計細孔體積,微孔細孔體積係指微孔之合 計細孔體積。 上述比例爲0 · 5〜5時,可控制可塑劑對該粉末之吸收, 結果可抑制丙烯酸溶膠之流動性降低或丙烯酸溶膠之膨脹 現象。 丙烯酸系聚合物粉末之上述比例Α/Β設定於所定範 圍,通常滿足作爲乳膠條件之 〇·1 < [固成分濃度X標準偏差(μιη)/乳膠中丙烯酸系聚 合物粒子之平均粒徑(μιη)] 及作爲乳膠之噴霧乾燥條件之 〇」< [(熱風入口溫度-熱風出口溫度)rc)/丙燒酸系聚 合物粉末之平均粒徑hm)]< 1〇, 以及上述[固成分濃度x標準偏差(μιη)/乳膠中丙稀酸系 聚合物粒子之平均粒徑(pm)]之値爲c,上述[(熱風入口斤 -28- 1240742 度-熱風出口溫度)(。(:)/丙烯酸系聚合物粉末之平均粒徑 (μηι)]之値爲D時,可滿足0.1CCXD(兩者之積)<5。 形態1之丙烯酸系聚合物粉末的用途沒有特別的限 制,可有效地使用作爲丙烯酸溶膠、樹脂改質劑、粉體塗 料等之原料。其中,形態1之丙烯酸系聚合物粉末作爲丙 烯酸溶膠之原料特別有用。 然而,形態1包含上述丙烯酸系聚合物粉末及可塑劑。1240742 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to an acrylic polymer powder suitable for an acrylic sol, an acrylic sol containing the acrylic polymer powder and a plasticizer, and an acrylic sol obtained from the acrylic sol. Shaped article. [Prior art] Plastisol is a resin powder and a filler dispersed in a plasticized state. The plastisol is coated, etc., and then gelled to form a molded article. At present, the resin widely used in the industry by this method is polyvinyl chloride (chloroethylene), which is called vinyl chloride sol or vinyl chloride slurry. Depending on the application, the vinyl chloride composition is used as a coating agent, an impregnating agent, a quilting agent, and the like for automobiles, carpets, wallpapers, beds, and the like, and is used in various fields for various purposes. In addition, the molded product obtained from the vinyl chloride composition has the disadvantage of being significantly damaged by the burning furnace due to the generation of hydrogen chloride gas from polyvinyl chloride during the combustion treatment. In addition, it has recently been caused by environmental problems, acid rain, and global ozone Substances of destruction cause plastisol compositions that do not have this disadvantage and can replace vinyl chloride sol compositions. For this requirement, it is proposed to use an acrylic sol of acrylic resin as a plastisol that does not generate hydrogen chloride gas during combustion. For example, use acrylic polymer particles of uniform composition (refer to Japanese Patent Application Laid-Open No. 5 1 -7 1 344 or 081516510 (corresponding to the scope of patent application)), and the general plasticity of an octyl gallate The above-mentioned particles have a high solubility in the plasticizer, and the viscosity of the acrylic sol rises within a few minutes after mixing, and the film cannot be formed, which causes problems in practical use. In addition, in order to improve the film-forming properties and storage stability of 6-1240742 high acrylic sols, a method for copolymerizing monomer components having low compatibility with plasticizers in acrylic polymers has been proposed (Japanese Patent Laid-Open No. 5_2 7 95 3 9 The publication or corresponding EP 5 3 3 0 2 6A (especially refer to the scope of patent application), when using the sol composition, there is a problem that the plasticizer easily leaks out on the surface of the obtained film. Moreover, it has been proposed that the secondary average particle diameter is 0. In the range of 1 to 500 μm, a plastisol composition obtained by dispersing an acrylic sol in a plasticizer (Japanese Patent Application Laid-Open No. 5 1-7 1 3 44 or corresponding GB 1 5 165 10 Α (particularly patent application scope), special Kaizhao 5 4- 1 1 7 5 5 3 (especially refer to the scope of the patent application) ° However, when using an acrylic sol with an acrylic polymer having a fine secondary average particle size, the unit of acrylic polymer particles is When the volume of the particle area is large, the initial viscosity is high, it is easy to produce swelling, the fluidity is reduced, and the thickness of the coating film is uneven or skimming during coating, and the spray powder is uneven during spray coating. In order to make the acrylic sol containing a fine acrylic polymer having a secondary average particle diameter into practical viscosity, the plastic amount is increased 'and an organic solvent for dilution must be added. As a result, at this time, the plasticizer will ooze out on the surface of the film, and the mechanical strength will be reduced, and the added organic solvent will remain in the coating film, which is likely to cause the problem of impaired film formation. In addition, when using an acrylic sol containing an acrylic polymer having a large secondary average particle diameter, the viscosity tends to be lower than that of an acrylic sol containing a fine secondary average particle diameter of an acrylic-acid polymer. The uniformity of the acrylic polymer in the acrylic sol is not good, and there are problems that particles are formed during film formation and a smooth film cannot be formed. In addition, the film must be gelled for a long time due to heating. The problem of reduced productivity. -7- 1240742 In addition, it is proposed that the average particle diameter of the acrylic polymer-containing polymer particles is 0.  1 ~ 2. 0μηι and 3. Low viscosity acrylic sol (mixture of 0 to 50 μm) (Japanese Unexamined Patent Application Publication No. 8-7-760) (especially referring to the scope of patent application), but it is necessary to classify or pulverize the dried resin (secondary particles) To achieve the complex project of desired particle size distribution and mixing, due to the shear force generated when mixing with the plasticizer, the particles are destroyed and the stability of the sol is reduced. As mentioned above, when a general plasticizer of dioctyl phthalate is used in an acrylic sol, the plasticizer has high solubility to the above particles, and the viscosity of the acrylic sol rises within a few minutes after mixing, preventing film formation. Impractical question. In addition, in order to improve the storage stability of the acrylic sol composition, when an acrylic sol composition copolymerized with an acrylic polymer and a monomer component having low compatibility with the plasticizer is used, the plasticizer may easily leak out on the surface of the obtained film. The problem. When acrylic polymer particles are used in this way, the relationship between storage stability and plasticizer retention (bleed-out resistance) after film formation is inverse, and polymer particles with a uniform structure cannot be satisfied. Therefore, in Japanese Patent Application Laid-Open No. 5-2795795 or corresponding EP5 3 3 〇26 A (especially referring to the scope of patent application), an acrylic sol composition using core structure particles is proposed for use in polymer architecture. Acrylic polymer containing acid. However, the polymer proposed in this publication has low compatibility with plasticizers. When a plasticizer with a low polarity such as a phthalate-based plasticizer is used, the plasticization state is not good, and a good coating film cannot be obtained. In addition, in Japanese Patent Application Laid-Open No. 6-3 2 2 2 2 5 or US 544 1 994A corresponding thereto (especially referring to the scope of patent application), a plastisol composition using particles having the same core structure has been proposed. Here, the core structure particles are used to produce uniform structure particles, and the substance is subjected to alkali hydrolysis treatment by -8-1240742. The ester group on the surface of the particles is converted into carboxyl groups. However, the thickness of the core is extremely thin, and the particle volume does not exceed about 1%. The improvement effect of the stability of storage as the effect of the nuclear department is extremely low. In addition, the core portion introduced by the hydrolysis of the alkali has an extremely high acid value, has extremely low compatibility with plasticizers, and significantly reduces film-forming properties. In addition, the structural particles having a high acid value core portion are easily formed into a coacervate structure among the plastisol composition. As a result, the plastisol composition has increased viscosity due to shear rate and reduced workability. In addition, another example of a plastisol composition using a core structure is disclosed in Japanese Patent Application Laid-Open No. 7-23 3299 (especially referring to the scope of patent application) and Japanese Patent Application Laid-Open No. 8-2 95 8 50 (especially referring to the scope of patent application) ). Here, the basic properties (low-level storage stability, low-level plasticizer retention) can be achieved when a core polymer formed from a core that is compatible with the plasticizer and a core that is not compatible with the plasticizer is basically used. Wait). However, for industrial practical use, extremely high performance (high-level storage stability, high-level plasticizer retention, high-level mechanical properties (tensile strength, elongation, etc.), etc.) is required. The compatibility between the compatibility of the polymer and the plasticizer cannot be optimized. The storage stability, the plasticizer retention of the coating film, and the softness of the coating film are low, which is not suitable for industrial practical use. In addition, it is proposed in Japanese Patent Application Laid-Open No. 8-295 85 0 (especially referring to the scope of patent application) or Japanese Patent Laying-Open No. 9-7 795 0 (especially referring to the scope of patent application) to use materials that contain good compatibility with plasticizers. (A) component made of specific monomers, (b) component made of specific monomers with low compatibility with plasticizer, and the composition ratio of (a) component is from the center portion of the acrylic polymer particles toward the outermost 1240742 layers Multi-stage or continuous decrease, (b) The composition ratio of the acrylic polymer particles from the center of the acrylic polymer particles to the outermost layer is increased in stages or continuously. Because of the acrylic polymer particles used, There is no clear regulation on the form or nature, so the compatibility between the particle surface layer and the plasticizer is low, and the plasticizer has poor exudation in the secondary particles. Due to the secondary particles remaining during the film formation, particles / unsmooth coatings can be formed There will be results that are not practical. In order to ensure the stability of the basic properties of the plastisol, the stability of the plasticizer, and the flexibility of the coating film, various reviews were conducted. Because the form or nature of the particles such as the propionic acid polymer is not clearly defined As a substitute material for vinyl chloride, they are all of a low level, so they cannot currently reach the industrial practical level. [Disclosure of the invention] The object of the present invention is to provide a acrylic acid polymer powder capable of forming an acrylic sol having excellent storage stability and fluidity, an acrylic sol having the above-mentioned characteristics using the powder, and an acrylic sol Shaped article. According to the aspect of the invention, the object of the present invention is to provide an acrylic polymer powder having at least one of the following characteristics in addition to the above-mentioned characteristics. (1) It can be easily mixed with a plasticizer or the like. (2) A low viscosity acrylic sol can be formed from the acrylic polymer powder. (3) An acrylic sol having a higher fluidity can be formed from the acrylic acid polymer powder. 1240742 (4) This acrylic polymer powder can be used to form an acrylic sol with improved storage stability. (5) An acrylic sol having excellent particle destruction resistance can be formed from the acrylic polymer powder. (6) A molded article obtained from an acrylic sol formed from the acrylic polymer powder has excellent plasticizer retention or exudation resistance. (7) A molded article obtained from an acrylic sol formed from the acrylic polymer powder has excellent film uniformity. The acrylic sol formed from the acrylic polymer powder can form a smooth coating film without particles. (8) A molded article obtained from an acrylic sol formed from the acrylic polymer powder has excellent flexibility. (9) A foamed molded article obtained from an acrylic sol formed from the acrylic polymer powder has excellent uniformity in the foamed state. An object of the present invention is to provide an acrylic sol having various characteristics using each of the above powders, and a molded article obtained from the acrylic sol. Another object of the present invention is to provide an acrylic sol which does not generate a hydrogen chloride gas when a molded article formed from the object is different from a molded article formed from a vinyl chloride sol when it is fired. In order to solve the above-mentioned problems, the present invention is constituted by the first aspect of the first aspect and the second aspect, the second aspect, the third aspect, the fourth aspect, and the fifth aspect. Form 1 (void ratio) is characterized by using an acrylic polymer powder having specific structural characteristics. In other words, Form 1 refers to the acrylic polymer powder (secondary particles) obtained by solidifying and drying the latex containing acrylic polymer particles. The average particle diameter of the powder is -11-1240742, and the voids are The rate is 70% or less, and the integrated void volume of the hole is more than 1 μτη. Acrylic polymer powder of 9 mL / g or less. The acrylic polymer powder has a coarse pore diameter of 7 μιη or less, and a micro pore diameter of 0. 5 μm or less is preferred. And the ratio (a / B) of the coarse pore volume A to the micro pore volume B per 1 gram of the acrylic polymer powder is 0. 5 to 5 is preferred. The acrylic polymer powder of the form 1 can form an acrylic sol excellent in storage stability and fluidity. Kai > Trap 2 (particle size ratio) is characterized in that the particle diameter ratio of the major axis to the minor axis of the propionic acid polymer powder of the form 1 is set within a specific range. In other words, the morphology 2 is related to the particle size ratio a / b of the major axis a and minor axis b of the acrylic polymer powder observed by an electron microscope of 1.  〇 ~ 2 of acrylic polymer powder. The acrylic polymer powder according to the aspect 2 is an acrylic sol having low viscosity, excellent fluidity, excellent storage stability, and excellent plasticizer retention of a molded article obtained from the product in addition to the characteristics of the form. Aspect 3 (water-soluble polymer) is characterized by using acrylic polymer particles containing the latex as form i or form 2 and a water-soluble polymer latex containing a specific molecular weight. In other words, the aspect 3 is that the latex contains acrylic polymer particles and a water-soluble polymer having a weight average molecular weight of 10,000 or more. In the latex, the amount of the water-soluble polymer is used relative to 1,000 parts by mass of the acrylic polymer. 0 for particles. 001 ~ 10 parts by mass of the latex is spray-dried, and the acrylic polymer powder of Form 1 or Form 2 prepared by 1240742. The acrylic polymer powder of the form 3 is in addition to the properties of the form 1 or the form 2 described above, and it is easy to mix with a plasticizer, low viscosity, flowability, storage stability, and resistance to particle destruction, and is obtained from the product. The molded article has an acrylic sol excellent in exudation resistance and film uniformity. In any of the aspects 1 to 3, the acrylic polymer particles (I) or acrylic polymer particles (n) defined below are preferred. Acrylic polymer particles (I): Multi-stage polymer particles obtained by forming a post-stage polymer (Ib) in a latex containing a pre-stage polymer (Ia). BU-stage polymer (I-a) is Copolymers containing 5 to 50% by mass of methyl methacrylate units, which are formed by two or more stages of polymerization in which the stages or monomer compositions are different from each other. The polymer (Ib) in the latter stage contains 50 masses. % Or more methyl methacrylate 'is a polymer formed by polymerizing two or more stages in which the first stage or the monomer composition is different from each other. The mass ratio of the first stage polymer (Ia) / post stage polymer (I_b) is 5 / 95 to 9 5/5, acrylic polymer particles. Acrylic polymer particles (11): These are multi-stage polymer particles obtained by forming a post-stage polymer (II-b) in a latex containing a pre-stage polymer (n_a), and the pre-stage polymer (III-a) The system contains 50% to 99% by mass. 99% by mass of 1240742 alkyl acrylate units, 49.99% by mass or less of monofunctional monomer units that can be copolymerized with alkyl acrylate and 〇1. 0-10% by mass of polyfunctional monomer units, The copolymer formed by the polymerization reaction of one stage or two or more stages in which the monomer composition is different from each other. The post-stage polymer (π-b) contains 50% by mass or more of methyl methacrylate. A polymer formed by two or more stages of polymerization with different monomer compositions. The mass ratio of the front stage polymer (II-a) / post stage polymer (Π-b) is 5/95 to 95/5. Polymer particles. Aspect 4 (reactive surfactant) is characterized by using acrylic polymer particles having acrylic polymerized particles having a layer polymerized with an acrylic polymer powder using a reactive surfactant as one of aspects 1 to 3. Polymer powder. In other words, Form 4 is an acrylic polymer powder according to any one of Forms 1 to 3, and the acrylic polymer particles are (1) polymerized after formation in a latex containing a pre-stage polymer (Ia). The multi-stage polymer particles obtained from the substance (Ib) have at least the above-mentioned acrylic polymer particles (I) formed of a copolymer composed of a reactive surfactant as a constituent component, or (2) a polymer containing a pre-stage polymer ( The multi-stage polymer particles obtained by forming the post-stage polymer (11-b) in the latex of Π-a) have at least one layer of the above-mentioned acrylic polymer particles ( 11), one 14 one 1240742 any one of form 1 to form 3 acrylic polymer.  The acrylic polymer powder according to the aspect 4 can have excellent storage stability in addition to the characteristics of any of the aspects. The resulting molded product has excellent flexibility and a plasticizer-retaining glue. In addition, when the molded article is a foamed molded article, the state uniformity is excellent. Shape 5 (mixed latex) is characterized by mixing two types of latex each containing olefinic polymer particles. In other words, the latex used in the aspect 5 is a latex containing the same polymer (II-a) as the acrylic polymer particles (π) in any of the aspects 3, Contains acrylic polymer particles (1-enoic acid polymer particles (II-a) / acrylic polymer particles) included in any of the shape particles (I) of the form 1 to 3 = 5/95 to In addition to the latex obtained by mixing 40/60, the shape is the acrylic polymer powder of the shape. The acrylic polymer powder of the shape 5 has the characteristics of shape, excellent storage stability, and can form a slip coating film. In any of the modes 1 to 5, solidification and drying are preferred. In addition, the present invention relates to an acrylic sol containing a propionic acid polymer powder and a plasticizer according to aspects 1 to 5. In addition, the present invention relates to an acrylic sol obtained from the acrylic sol. The powder is in the form of 1 to 3, and the foamed form of the acrylic acid soluble matter of this physical property is different from the pre-formed polymer polymer particles (II-state acrylic poly • 1). Latex with Acrylic (1-1) Any of the aspect 1 to the aspect 3 of the mass ratio 3, and the flatness without particles is spray-dried to any of the aspects of the form 5:-1 5- 1240742 A detailed description of a preferred aspect is described in more detail below. The invention first relates to all aspects 1, that is, to explain acrylic polymer particles, acrylic polymer powders, acrylic sols, and formed articles. Aspects 2, 3, 4, and 5 are added with the points of form 1 and The differences are mainly explained. 1 Aspect 1 (Voidage) First, the acrylic polymer particles (primary particles) used in the aspect 1 will be described. The acrylic polymer particles used in the aspect 1 have at least a layer structure. Polymer particles, such as acrylate (such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.) and / or methacrylate (such as methyl methacrylate, methacrylic acid) Ethyl, butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, etc.) are the main monomers that are polymerized separately, Acrylic polymer particles obtained by polymerization, graft polymerization, etc. The acrylic polymer particles used in aspect 1 preferably have the following methyl methacrylate units (1) and (2) as an essential component. (1) In In the latex containing the pre-stage polymer (Ia), the multi-stage polymer particles formed by the post-stage polymer (Ib) are formed. The pre-stage polymer (Ia) contains 5% to 50% by mass of methyl methacrylate. 'The copolymer formed by one or more consecutive two or more stages of polymerization with different monomer compositions. The polymer (Ib) in the latter stage is a copolymer containing 50% by mass or more of methyl methacrylate units. A polymer formed by two or more consecutive stages of polymer composition with different body compositions ranging from 1 6 to 1240742. The mass ratio of stage polymer (I-a) / post stage polymer (丨 _ b) is 5/9 5 to 95 / 5, acrylic polymer particles (1). The pre-stage polymer (Ia) can be formed in a single-stage polymerization reaction, or a copolymer containing polymer particles obtained by the initial polymerization reaction and having a monomer composition different from each other in successive one-stage polymerization reactions. The copolymers formed by the polymerization reaction in each stage (including only one stage) contained in the previous stage all contain 5 mass% to 50 mass% methyl methacrylate units and 50 mass% to 95 mass. % Other monomers copolymerizable with methyl methacrylate. The proportion of the methyl methacrylate unit is preferably 20 to 50% by mass, and more preferably 30 to 50% by mass. When the methyl methacrylate unit of the polymer (Ia) in the previous stage is less than 5% by mass, an acrylic sol containing an acrylic polymer powder and a plasticizer (hereinafter referred to as "plastic" "Acrylic sol") is not desirable because the strength of the film formed is reduced; when the methyl methacrylate unit is greater than 50% by mass, the exudation resistance or softness of the surface of the film is reduced, so it is not desirable. The post-stage polymer (Ib) is formed by the polymerization reaction in the stage 1 in the latex containing the pre-stage polymer (Ia) particles, or is different from each other by the monomer composition in the latex containing the pre-stage polymer (Ia) particles. (Co) polymers formed by two or more consecutive polymerization reactions, and (co) polymers' formed by polymer reactions in each of the stages (including those formed by only one stage) in the subsequent stages are all 50% by mass The above methyl methacrylate unit is formed by 50% by mass or less of other monomers that can be copolymerized with 1240742 and methyl methacrylate. The proportion of methyl methacrylate units of the polymer (I-b) in the later stage is preferably 55 to 95% by mass, and more preferably 60 to 90% by mass. When the methyl methacrylate of the polymer (1_b) in the later stage is less than 50% by mass, the storage stability of the obtained acrylic sol is reduced, so it is not desirable. Other monomers that can be copolymerized with methyl methacrylate such as ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, Methacrylates other than methyl methacrylate, such as cyclohexyl acrylate; methyl acrylate, ethyl propionate, propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxy acrylate Acrylates such as ethyl esters; hydroxyalkyl methacrylates such as 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, etc .; α, β-not of acrylic acid, methacrylic acid, citric acid, itaconic acid, etc. Saturated carboxylic acid; aromatic vinyl compounds such as styrene, P-methylstyrene 'methylstyrene; N-propylmaleimide, N-cyclohexylmaleimide, N-ο-chlorobenzene Maleimide compounds such as methyl maleimide; ethyl cyanide compounds such as acrylonitrile and methacrylonitrile; etc., among which, the glass transition temperature (Tg) is adjusted or the adhesion with metal is increased Isobutyl methacrylate, methacrylic acid Hexyl esters of acrylic methyl methacrylate, hydroxyethyl methacrylate, etc. 2_ methacrylate, hydroxyalkyl acrylate preferred. These other monomers may be used singly or in combination of two or more kinds, and are appropriately selected depending on the purpose or application. The weight-average molecular weight (Mw) of the acrylic polymer particles (1) before the stage polymer (Ia) and the latter stage polymer (ΐ-b) used in the first stage when each is independently produced can be appropriately selected depending on the application, and both are 5 〇〇〇〇〇〜3, 〇〇〇〇〇〇〇 is better than 1240742 ', the better is 100,000 ~ 2,000,000. When the weight-average molecular weight is ′ J u? U 〇 〇 or higher, the strength of the formed film can be increased, but it is 3,000,000 or lower. The dissolution rate of the plasticizer is appropriate and productivity can be improved. When adjusting the weight average molecular weight, a chain shifting agent such as a thiol can be used. The thiol _ _ such as η-octyl mercaptan, n-dodecyl mercaptan, n-lauryl mercaptan, third _ Dodecyl mercaptan and so on. In addition, the multifunctional monomer copolymer may be introduced into a crosslinked structure or a grafted structure depending on the properties of the application or purpose. The mass ratio of the pre-stage polymer (I_a) and the pre-stage polymer (I-b) occupied by the acrylic polymer particles (I) is 5/95 to 95/5, preferably 20/80 to 80/20. When the proportion of the polymer (I-b) in the later stage is less than 5% by mass, the storage stability of the acrylic sol obtained is reduced, and when it exceeds 95% by mass, the exudation of the plasticizer is likely to occur. (2) The multi-stage polymer particles obtained by forming the post-stage polymer (II-b) in the latex containing the pre-stage polymer (II-a), the pre-stage polymer (II-a) contains 50% by mass ~ 99. 99% by mass of alkyl acrylate, 49.99% by mass or less of other monofunctional monomer units that can be copolymerized with alkyl acrylate and 0. 0 1 to 1 0% by mass of polyfunctional monomer unit. A copolymer formed by two or more consecutive stages of polymerization with different stages or monomer compositions. The polymer (II-b) in the latter stage is a copolymer containing 50% by mass or more of methyl renenoic acid units. Polymers formed by two or more consecutive polymerization reactions with different body compositions. The mass ratio of the front-stage polymer (II-a) / post-stage polymer (π-b) is 5/95 ~ 95/5. System polymer particles (η). 1240742 The pre-stage polymer (III-a) can be formed in a one-stage polymerization reaction, or a copolymer formed by polymerizing the polymer particles obtained by the initial polymerization reaction in successive stages of one or more stages in which the monomer composition is different from each other. '' The copolymers formed by the polymerization reaction of each stage (including only one stage) contained in the previous stage, all contain 50% to 99.99% by mass of alkyl acrylate units, 49. 99% by mass or less of other monomer units which can be copolymerized with the alkyl acrylate and 0. 0 1 to 10% by mass of a polyfunctional monomer unit. Each of the above copolymer monomer units has a composition of 60 to 99. 95% by mass of alkyl acrylate units, 39. 95 mass% or less of the other monomer units and 0. 05 ~ 5 mass% polyfunctional monomer unit is preferred, more preferably 70 ~ 99. 9% by mass of alkyl acrylate units, 29. 9 mass% or less of the other monomer units and 0. 1 to 3% by mass of a polyfunctional monomer unit. When the alkyl acrylate unit is less than 50% by mass, the cold resistance of the film formed by the acrylic sol is reduced. Moreover, the polyfunctional monomer unit is less than 0. When the content is 0.01% by mass, the strength of the film formed from the acrylic sol decreases, and when it exceeds 10% by mass, the cold-resistant exudation of the film is reduced. The alkyl acrylate of the pre-stage polymer (II-a) is, for example, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, etc., among which, Alkyl acrylates having 1 to 4 carbon atoms are preferred, and more preferred are methyl acrylate, propyl acrylate, and n-butyl acrylate. Other monomers which can be copolymerized with the alkyl acrylate in the aforementioned pre-stage polymer (II-a) such as methyl methacrylate, ethyl methacrylate, methyl-20-1240742 n-propyl propionate, Diisopropyl methacrylate, isobutyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, etc. Methacrylic methacrylate factory hydroxyethyl esters, dilute hydroxy alkyl methacrylates, etc. ; Acrylic acid, methacrylic acid, 0-methylphenethyl aromatic vinyl compounds; N-propylmaleimide, N-cyclohexylimine, No-chlorophenylmaleimide, etc. Imidated vinyl cyanide, methacrylonitrile, and other vinyl cyanide compounds; and the like, in terms of the glass transition temperature (Tg), formic esters such as methyl methacrylate are preferred. These other monomers can be appropriately selected individually or in combination of two or more kinds depending on the purpose or application. Polyfunctional monomers related to the pre-stage polymer (II-a) such as ethyl methacrylate, diethylene glycol dimethacrylate, triethylene diacrylate, propylene glycol dimethacrylate, polyethylene glycol Alcohol diglyceride, hexanediol dimethacrylate, trimethylolpropane triglyceride, ethylene glycol diacrylate, diethylene glycol diacrylate = alcohol diacrylate, hexanediol diacrylic acid Ester, trimethylolpropionate, divinylbenzene, diallyl phthalate, diallyl maleate divinyl adipate, allyl acrylate, allyl methyl ester, Allyl cyanate, triallyl isocyanate, etc., with a molecular weight of 2 50 or more are preferred. The polyethylene glycol is composed of polyethylene glycol di (meth) acrylic acid having a flat thickness of 4 400 to 600. ester. In addition, the post-stage polymer (Π-b) is formed by performing a 1-stage polymerization reaction in the latex containing the pre-stage (Il-a) particles, and the latex having the pre-stage polymer (Π-a) particles is borrowed from the latex. It consists of monomers: butyl esters and esters; maleic adducts of methacrylic acid; etc .; used for propylene, glycol dimethyl dimethyl propyl propyl propylene, triethane tripropionate Acrylic acid, which is a polymer formed by dividing molecular polymers or polymerizing in two or more consecutive stages containing -21-1240742, and each stage in the latter stage (including only one stage) The (co) polymer formed by the polymerization reaction contains units of 50% by mass or more of methyl methacrylate units and 50% by mass or less of other monomers copolymerizable with methyl methacrylate. The ratio of the methyl methacrylate unit of the polymer (II-b) in the latter stage is preferably 60 to 100% by mass, and more preferably 70 to 95% by mass. When the methyl methacrylate unit of the polymer (II-b) in the later stage is less than 50% by mass, the storage stability of the obtained acrylic sol is lowered, so it is not desirable. The other monomers copolymerizable with methyl methacrylate among the above are the same as the other monomers copolymerizable with methyl methacrylate used in the polymer (II-b) in the post-production stage. The weight-average molecular weight (Mw) of the acrylic polymer particles (II) before the stage polymer (II-a) and the latter stage polymer (II-b) used in each of the individually manufactured forms 1 is appropriately determined depending on the application. The choice is preferably 50,000 ~ 35000,000, more preferably 100,000 ~ 2,000,00 (^ When the weight average molecular weight is more than 50,000, the strength of the formed film can be improved, and if it is less than 3,000,000 The dissolution rate of the plasticizer is appropriate and the productivity can be improved. The weight average molecular weight can be adjusted by using the same chain shifting agent as described in the acrylic polymer particles ⑴, and it can be increased depending on the properties of the application or purpose. The functional monomer is copolymerized to introduce a cross-linked structure or a graft structure. The mass ratio of the first-stage polymer and the later-stage polymer (II-b) occupied by the acrylic polymer particles (II) is 5/95 to 95/5 , Preferably 20/80 to 80/20. Propylene-22-1240742 obtained when the proportion of the polymer (nb) in the later stage is less than 5% by mass. Introducer 05 is a homogeneous acid polymer segment. Reduced storage stability of non-agent enoic acid sol If greater than the percent by mass%, plasticizer bleed easily from the case. The acrylic polymer particles used in the aspect 1, the average particle diameter of the acrylic polymer particles (I) and / or (II) is preferably not particularly limited, but is not more than 0.  ~ 30 μm is preferred, and more preferred is 0 ~ 2 μm. When the average particle diameter is 0.05 μm, the storage stability of the sol state is good, and when it is 30 μm or less, a uniform sol state is easily formed. Further, '' is not only acrylic polymer particles but also acrylic polymer powder, and the average particle diameter in the present invention means the arithmetic average particle diameter. The acrylic polymer particles used in the aspect 1 are preferably propylene polymer particles (I) and / or (II). For example, a conventional polymerization method such as an emulsion polymerization method or a plate-and-plate method can be used in latex. It is better to make it under the condition of emulsification. For example, acrylic polymer particles are prepared in a latex containing a pre-stage polymer (Ia) by forming a post-stage polymer (I_b), and the stage polymer (Ia) may be formed by a single-stage polymerization reaction, or by initially combining In the latex prepared by the reaction, the polymer having the same monomer composition as each other is continuously polymerized for more than one stage to form. The polymer in the later stage (1_ can be used in one stage in the latex containing the polymer (Ia) particles in the previous stage. Polymerization is formed, or it is formed by polymerizing the monomers in the late stage of the polymer (Ia) particles in two or more stages with different monomer compositions. The acrylic polymer particles (II) can be formed with the acrylic polymer particles (I). The same method is used. Emulsifiers that can be used in emulsion polymerization include anionic emulsifiers, ionic emulsifiers, nonionic and anionic emulsifiers, reactive emulsification-23-1240742, etc. Anionic emulsifiers such as dioctylsulfo Sodium succinate, dilauryl sodium succinate, and other two-membered sulfo number salt; alkyl dodecyl benzene sulfonate and other alkyl benzene sulfonates; dodecyl sulfate Alkyl sulfates of sodium, etc .; etc. Nonionic emulsifiers such as polyethylene oxide alkyl ether, polyethylene oxide nonylphenyl ether, etc. Nonionic and anionic emulsifiers such as polyethylene oxide nonyl Poly (ethylene oxide) phenyl ether sulfates such as sodium phenyl ether sulfate ·· Polyethylene oxide ether sulfates such as polyethylene oxide alkyl sulfate sodium; polyethylene tridecyl ether sodium acetate, etc. Alkyl ether carboxylates, etc .; etc. Reactive emulsifiers such as alkylphenoxy polyethylene glycol acrylate, acid phosphate methacrylate, alkylarylphenoxy polyethylene glycol, sodium propylene Oxyalkyl (trialkyl) ammonium-p-toluenesulfonate, sodium-polystyrene phenyl ether sulfate, dimethylamino ethyl methacrylate quaternary, sodium-sulfosuccinate Alkylene oxide, polyethylene oxide alkyl ether, polyethylene oxide alkyl phenyl ether sulfonate, alkyl phenoxy ethoxy ethyl sulfonate, sodium-dialkyl sulfo sebacate , Alkyl diphenyl ether disulfonate, nonylpropenylphenol ethylene oxide 10 mol adduct ammonium sulfate, etc. These emulsifiers can be used alone or in combination of two or more. Use. The average repeating number of ethylene oxide units in the exemplified compounds of the non-ionic emulsifiers or anionic and non-ionic emulsifiers described above is preferably 30 or less when the foaming properties of the emulsifier are maximized. The preferred is 20 or less, and the most preferred is 10 or less. Persulfate-based initiators such as potassium persulfate and ammonium persulfate, persulfonate / organic peroxide, and persulfate can be used in the emulsion polymerization. / Sulfurate, etc. Any polymerization initiator in the chelating system initiator. Also, if necessary, a conventional chain shifting agent can be used. 1240742 Monomer, emulsifier, initiator, and copolymer in emulsion polymerization Depending on the stage of the polymerization reaction, the chain-shifting agent can be added together in any conventional manner, such as batchwise addition, continuous addition, etc. The amount of emulsifier and polymerization initiator used in the emulsion polymerization is to achieve each purpose. Generally, the amount used is not particularly limited, and the emulsifier is 0.1 to 10% by mass for all the monomers in each polymerization layer, and the polymerization initiator is 0.1 to 1% by mass. The latex used in the aspect 1 is a latex containing acrylic polymer particles obtained by the above polymerization, preferably acrylic polymer particles (I) or propionic acid polymer particles (II), or containing acrylic The latex of the polymer particles and the latex of the acrylic polymer particles (II) are mixed at an arbitrary ratio. The latex used in the aspect 1 may be a latex in which a plurality of types of acrylic polymer particles each having a different particle size distribution are mixed, for example, two or three types of latex. The method of polymerization according to the aspect 1, particularly the method of the acrylic polymer powder obtained from the emulsion containing the acrylic polymer particles prepared by the emulsion polymerization method is not particularly limited, and may be a spray drying method, a freeze drying method, or the like. Various methods such as a method of adding an acid or a salt to the latex to coagulate the acrylic polymer particles and dehydrating and drying. Among these methods, the spray-drying method having the advantage of easily adjusting the average particle diameter, particle size distribution, and shape (preferably spherical) of the acrylic polymer powder is more preferable. When the acrylic polymer powder is obtained from the latex, the acrylic polymer particles are partially aggregated, and the average particle diameter of the acrylic polymer powder is usually larger than the average -2 5-1240742 particle diameter of the acrylic polymer particles. The acrylic polymer powder is mainly used for mixing with a plasticizer to adjust the acrylic polymer powder in the form of acrylic acid gluten gum 'Form 1' must have an average particle diameter of 5 to 100 μxη, and 10 to 5 0 μπι is preferred. If the average particle size is less than 5 μm, the acrylic polymer powder is not easy to deal with flying powder when preparing an acrylic sol, and if it is larger than 100 μm, there are disadvantages of particle formation, the appearance is damaged, and the strength of the film is easily reduced. Situation (easy to crack when forming particles). In addition, when the porosity of the acrylic polymer powder in the form 1 is more than 70%, the plasticizer in the acrylic sol using the material has a significant absorption of the acrylic polymer powder, and the flowability of the acrylic sol is reduced or swelling occurs. Deterioration of formability is not desirable. However, the porosity of the acrylic polymer powder of the form 1 must be 70% or less, and more preferably 60% or less. In addition, the porosity in the aspect 1 represents the volume ratio of space between particles occupied by a predetermined volume of the acrylic polymer powder, and can be obtained by measuring the pore volume of the powder by a mercury intrusion method. In addition, the storage stability of the acrylic sol of 'Form 1 makes it easier to decrease the contact area between the acrylic polymer powder and the plasticizer. In addition, the acrylic polymer powder of Form 1 must have an integrated void volume of at least 1 μm and a pore diameter measured by a mercury intrusion method of 0.1 g in the lg powder. 9mL or less, preferably 0. 8mL. The integrated void volume in the aspect 1 indicates the total volume (mL) of the pores of the acrylic polymer powder. 1 26-1240742 In addition, the operating conditions of the mercury indentation method used in Form 1 are as described in the items of the following examples. The above-mentioned average particle diameter, porosity, and integrated void volume of the acrylic polymer powder of the form 1 are set within the above-mentioned ranges. During the production of the acrylic polymer and the acrylic polymer powder obtained from the latex, the emulsion is appropriately adjusted The conditions such as the concentration of the acrylic polymer particles, the method of preparing the acrylic polymer, especially the method of treating the emulsified polymer and the acrylic polymer powder are particularly preferably the spray drying method. The acrylic polymer powder of Form 1 has a diameter of coarse pores of 7 μηι or less and a diameter of micropores of 0 · 5 μιη or less, and a diameter of coarse pores of 2 to 6 μιη and a diameter of pores of 0.1 to 1 〇4μιη. In Form 1, the diameter of the coarse pore is the diameter of the pore with the largest volume among the pores with a diameter greater than 1 μm, and the diameter of the micropore is the diameter of the pore with the largest volume among the pores with a diameter of 1 μιη Observe the relationship between the pore diameter and pore volume of the powder by mercury intrusion method. When the diameter of the coarse pores of the acrylic polymer powder is 7 μm or less and the diameter of the micro pores is 0.5 μm or less, the powder is less likely to be damaged when the acrylic sol is prepared, and as a result, storage stability or reduced fluidity can be prevented. When the diameters of the coarse pores and micro pores of the acrylic polymer powder are set in a predetermined range, they can usually satisfy the conditions of latex as 0.1. < [Solid component concentration X standard deviation (μιη) / average particle diameter of acrylic polymer particles in the latex (μχη)] and the conditions of latex spray drying < [(hot air inlet temperature-hot air outlet temperature) (° c) / acrylic poly -27-1240742 average particle size of the compound powder (pm)] < 1 ο The above solid content concentration is determined by measuring W2 / W1 when the latex is a certain mass (wi) and dried at 100 ° C for 3 hours, and the mass (W2) after drying is measured. The standard deviation indicates the standard deviation of the average particle diameter of acrylic polymer particles (primary particles). The acrylic polymer powder of Form 1 has a ratio (A / B) of coarse pore volume A (mL) to micropore pore volume B (mL) per 1 gram of 0.5 to 5, preferably, more preferably 0.6 ~ 2. The volume of the coarse pores and the volume of the fine pores were obtained by the mercury intrusion method. Here, the coarse pores refer to pores having a pore diameter of 1 μm or more, and the micro pores refer to pores having a diameter of 1 μm or less. Moreover, the volume of coarse pores and fine pores refers to the total pore volume of coarse pores, and the volume of micropores and pores refers to the total pore volume of micropores. When the above ratio is 0.5 to 5, absorption of the powder by the plasticizer can be controlled, and as a result, the decrease in the flowability of the acrylic sol or the expansion of the acrylic sol can be suppressed. The above-mentioned ratio A / B of the acrylic polymer powder is set in a predetermined range, and usually satisfies 〇 · 1 as a latex condition. < [Solid content concentration X standard deviation (μιη) / average particle diameter of acrylic polymer particles in the latex (μιη)] and spray drying conditions for the latex 〇 " < [(hot air inlet temperature-hot air outlet temperature) rc) / average particle diameter of propionic acid polymer powder hm)] < 10, and the above [solid content concentration x standard deviation (μιη) / average particle diameter of acrylic polymer particles in latex (pm)] is c, and the above [(hot air inlet kg-28-1240742) Degree-Hot Air Outlet Temperature) When (値 (:) / average particle diameter of acrylic polymer powder (μηι)] is D, 0.1CCXD (product of both) can be satisfied < 5. The application of the acrylic polymer powder according to the aspect 1 is not particularly limited, and it can be effectively used as a raw material for acrylic sol, resin modifier, powder coating, and the like. Among them, the acrylic polymer powder of Form 1 is particularly useful as a raw material of an acrylic sol. However, aspect 1 includes the above-mentioned acrylic polymer powder and a plasticizer.

使上述丙烯酸系聚合物粉末與可塑劑混合形成丙烯酸 溶膠時使用的丙烯酸系聚合物粉末,可使2種以上粒徑不 同的丙烯酸系聚合物粉末混合者。The acrylic polymer powder used when the acrylic polymer powder is mixed with a plasticizer to form an acrylic sol can be used as a mixture of two or more acrylic polymer powders having different particle sizes.

形態1之丙烯酸溶膠中使用的可塑劑沒有特別的限 制,可使用二甲氧基乙基酞酸酯、二丁基酞酸酯、二辛基 酞酸酯、二異壬基酞酸酯、二異癸基酞酸酯、二—十一烷基 酞酸酯、丁基苯甲基酞酸酯、雙(甲氧基乙基)酞酸酯、雙(乙 氧基乙基)酞酸酯、雙(丁氧基乙基)酞酸酯等酞酸酯系可塑 劑、二苯基辛基磷酸酯、三丁基磷酸酯、三甲基磷酸酯、 三甲酚基磷酸酯、三苯基磷酸酯、三二甲苯基磷酸酯、參(2-乙基己基)_酸酯、2 -乙基己基二苯基磷酸酯、參(異丙基苯 基)磷酸酯、間苯二酚雙(二苯基磷酸酯)、雙酚Α雙(二苯基磷 酸酯)、雙酚A雙(二甲酚磷酸酯)等之磷酸酯系可塑劑、雙(2-乙基己基)己二酸酯等之己二酸酯系可塑劑、雙(2_乙基己基) 癸二酸酯等之癸二酸酯系可塑劑、雙(2 -乙基己基)壬二 酸酯等之壬二酸酯系可塑劑、參(2-乙基己基)偏苯三酸 酯等之偏苯三酸酯系可塑劑、富馬酸二丁酯等之富馬酸系 一 29 - 1240742 可塑劑、乙醯基檸檬酸三丁酯等之檸檬酸酯系可塑劑、 酸丁酯等之油酸酯系可塑劑、聚酯系可塑劑、4-環己烯-1 2 -二羧酸二異壬酯等之環己烯二羧酸系可塑劑等。 此等可塑劑可以單獨使用或2種以上組合使用,爲 由丙烯酸溶膠所得的成形物具有難燃性時以使用磷酸酯 可塑劑較佳。 丙烯酸系聚合物粉末與可塑劑之混合比例沒有特別 限制’對1 00質量份丙烯酸系聚合物粉末而言可塑劑以 〜500質量份較佳,更佳者爲50〜200質量份。 形態1之丙烯酸溶膠另可含有塡充劑。可使用的塡 劑例如碳酸鈣、氧化鋇、黏土、膠體二氧化矽、雲母、 藻土、高嶺土、滑石、膨潤土、玻璃粉末、氧化鋁、氫 化鋁、三氧化銻、二氧化鈦、碳黑、金屬皂、染料、顏 等。塡充劑之含量沒有特別的限制,對1 00質量份而言以 〜5 0 0質量份較佳。 形態1之丙烯酸溶膠除上述外,稀釋劑例如爲加入 油溶劑等溶劑之有機溶膠組成物。另外視其目的可含有 種添加劑。該添加劑例如增黏劑、水平劑、防皺紋劑、 模劑、消泡劑、發泡劑、界面活性劑、紫外線吸收劑、 滑劑、難燃劑、光安定劑、防老化劑、抗氧化劑、香料等 此等可以單獨使用或2種以上組合使用。此等成分之含 沒有特別的限制,一般對1 00質量份丙烯酸系聚合物粉 而言以0.01〜20質量份較佳。 形態1之丙烯酸溶膠除上述外,另可添加多官能性 - 3 0 - 油 使 系 的 50 充 矽 氧 料 50 石 各 脫 平 〇 量 末 單 1240742 體及起始劑等,可於凝膠形成後交聯。此等成分之含量 有特別的限制,一般而言對1 00質量份丙烯酸系聚合物 末而言爲0.001〜30質量份。 有關形恶1丙稀酸溶膠中之固成分含量沒有特別的 制,就使丙烯酸溶膠之黏度保持於容易處理的範圍且適 噴霧乾燥者等而言,該固成分含量對丙烯酸溶膠全體而 以20〜80質量%較佳。 形態1之丙烯酸溶膠可藉由使丙烯酸系聚合物粉末 液狀可塑劑、粉末狀塡充劑等使用混合器或捏合機或輥 合、捏合製得。通常使製造的均勻組成之丙烯酸溶膠藉 常法脫泡,以金網過濾或過濾後脫泡。 使用形態1之丙烯酸溶膠製得成形物的方法,可採 浸漬塗覆法、刀塗覆法、輥塗覆法、簾幕流動塗覆法等 覆法、或浸漬模塑法、鑄造模塑法、塗擬模塑法、旋轉 塑法等之模塑法、以及浸漬、毛刷塗覆、噴霧、靜電塗 等各種加工方法。 使用形態1之丙烯酸溶膠形成成形物予以凝膠時, 須使丙烯酸溶膠保持於適當的凝膠形成溫度及處理時間 件下。凝膠形成溫度爲7 0〜2 6 0 °c,處理時間爲1 0秒〜 分鐘較佳。形態1之丙烯酸溶膠可在該凝膠化條件下形 均勻膜。而且,視用途而定可另外在硬化皮膜上進行印刷 壓花加工、發泡處理等。 形態1之丙烯酸溶膠可使用作爲塗料、油墨、黏合劑 接合密封劑等,可使此等使用於雜貨、玩具、工業零件 - 3 1 - 沒 粉 限 於 言 混 由 用 塗 模 覆 必 條 90 成 1240742 電氣零件、汽車零件等成型品。而且,例如使用於紙或布 等片板物時,可製得壁紙、人工皮革、包裝物、醫療用片 板、防水板等,使用於金屬板時可作爲防腐蝕性金屬板。 說明有關上述說明之形態之效果時,形態1之丙録酸 系聚合物粉末可製得儲藏安定性及流動性優異的丙烯酸溶 膠。而且,由該丙烯酸溶膠製得的成形物與由氯乙烯製得 的成形物不同,於燒卻時不會產生氯化氫氣體。 2形熊2 (粒徑bh ) 其次,說明有關形態2。 形態2係爲在形態1之丙烯酸系聚合物粉末中另外附 加丙烯酸系聚合物粉末之長徑與短徑的粒徑比條件之形 恶°換S之’形態2係有關以電子顯微鏡照片觀察該丙燃 酸系聚合物粉末(二次粒徑)之長徑a與短徑b的粒徑比a/b 爲1·〇〜2·0之形態1的丙烯酸系聚合物粉末、含有該丙烯 酸系聚合物粉末及可塑劑之丙烯酸溶膠、及由該丙烯酸溶 膠所得的成形物。 形態2中使用的丙烯酸系聚合物粒子(一次粒子),除 丙細酸系聚合物粒子(I)及丙稀酸系聚合物粒子(Η)中玻璃轉 移溫度(T g)爲2 3 °C以上較佳外,與形態1中使用的丙烯酸 系聚合物粒子相同。T g爲2 3 °C以上時,於膜成形後不會產 生或不易產生表面黏合性、黏連性等。 形態2中製造丙烯酸系聚合物粒子可與形態1相同地 進行。 形悲2所使用的乳膠除下所述外,亦與形態1相同。 -32- 1240742 形態2中丙烯酸系聚合物粉末之長徑a與短徑b之粒 徑比a/b爲上述特定範圍時,乳膠之表面張力爲50(^N/cm 以下。換言之,含有丙烯酸系聚合物粉末之乳膠的表面張 力必須爲5 00 μΝ/cm以下,較佳者爲45 0 μΝ/cm以下。若表 面張力大於5〇〇μΝ/(:πι時,於乳膠噴霧乾燥時不易製得長徑 a與短徑b之粒徑比a/b在形態2之特定範圍的丙烯酸系聚 合物粉末,且容易使使用該物調製丙烯酸溶膠之流動性、 儲藏安定性降低。 有關使含有丙烯酸系聚合物粒子之乳膠的表面張力爲 5 00 μΝ/cm以下之方法,沒有特別的限制,例如以在聚合後 之乳膠中添加乳化劑的方法、或在丙烯酸系聚合物製造前 於系中添加水溶性有機溶劑的方法、或聚合物之乳膠中添 加該有機溶劑的方法等爲較佳例。恐會對聚合產生影響時, 以後添加的方法較佳。 上述之乳化劑可使用如乳化聚合時形態1所述的乳化 劑’可與乳化聚合時使用者相同或不同。爲使乳膠之表面 張力調整爲5 00μΝ/(:ιη以下之乳化劑可使用烷基磺酸鈉、芳 香族磷酸酯、聚環氧乙烷醚磷酸鉀鹽等。另外,水溶性有 機溶劑沒有特別的限制,例如乙醇、.甲醇、正丙醇、異丙 醇等低元醇類、丙酮等水溶性酮類、乙醯腈、二噁烷、四 氫呋喃、吡啶等。水溶性有機溶劑中就容易處理而言以乙 醇、甲醇較佳。 有關藉由形態2所得的丙烯酸系聚合物粉末.,除空隙 率等形態1之條件外,必須使以電子顯微鏡觀察的丙烯酸 -33- 1240742 系聚合物粉末之長徑a與短徑b的粒徑比a/b爲l . 〇〜2.0。 該粒徑比a/b以1 ,〇〜1 .5較佳。粒徑比a/b爲2以上時, 丙烯酸系聚合物粉末之比表面積(=表面積/體積)變大、且與 可塑劑之接觸面積增大,容易產生(1 )丙烯酸溶膠之流動性 降低(高黏度)情形、(2)丙烯酸溶膠之儲藏安定性降低情形。 上述形態2之丙烯酸系聚合物粉末的用途與形態1之 用途相同,調製形態2之丙烯酸溶膠及成形物時,除使用 形態2之丙烯酸系聚合物粉末外,與形態丨相同地進行。 說明上述說明的形態2效果時,形態2除形態1之效 果外具有下述之效果。換言之,形態2之丙烯酸系聚合物 粉末可製得具有低黏度、流動性及儲藏安定性優異的丙烯 酸溶膠。而且,由該丙烯酸溶膠所得的成形物與由氯乙烯 所得的成形物不同,於燒卻時不會產生氯化氫氣體。 形態3 (水溶性高分子、 其次,說明有關形態3。 形態3係爲形態1或形態2之乳膠中另附加含水溶性 高分子之條件形態。換言之,形態3中乳膠係爲含有丙烯 酸系聚合物粒子及重量平均分子量爲1〇, 000以上水溶性高 分子之乳膠,該水溶性高分子之使用量對丨00質量份丙烯 酸系聚合物粒子而g爲〇·〇〇1〜10質量份,使該乳膠噴霧 乾燥所得的形態1或形態2之丙烯酸系聚合物粉末、含有 該丙烯酸系聚合物粉末及可塑劑之丙烯酸溶膠、及由該丙 烯酸溶膠所得的成形物。 形態3中使用的丙烯酸系聚合物粒子除丙烯酸系聚合 -34 - 1240742 物粒子(I)及丙烯酸系聚合物粒子(II)中玻璃轉移溫度爲 23t以上較佳外,與形態丨中使用的丙烯酸系聚合物粒子 相同。Tg爲23C以上時,於膜成形後不會產生或不易產生 表面之黏合性、黏連性等。 形態3中製造丙烯酸系聚合物粒子可與形態丨或形態 2相同地進行。 形態3中使用的乳膠除下述外,可與形態1或形態2 相同地進行。 形態3中在與所得的形態丨或形態2相同的乳膠中含 有水溶性高分子。形態3中使用的水溶性高分子沒有特別 的限制。具體例如聚苯乙烯磺酸鈉、聚丙烯酸鈉、聚乙燒 酉孚、羧基甲基纖維素等,以聚苯乙烯磺酸鈉、聚丙烯酸鈉、 殘基甲基纖維素較佳,以聚苯乙烯磺酸鈉、聚丙烯酸鈉更 佳。 水溶性高分子之重量平均分子量必須爲1〇,00〇以上, 較佳者爲 1 0,000〜1 0,000,000,更佳者爲 50,000〜 1,000,000。重量平均分子量小於1〇,〇〇〇時,丙嫌酸聚合物 粒子(一次粒子)間之黏合力不充分,調製溶膠時丙烯酸系 聚合物粉末(二次粒子)容易受到破壞,故不爲企求。重量 平均分子量之上限沒有特別的限制,惟爲避免乳膠黏稠致 使處理受阻,且添加於聚合後乳膠時會產生凝聚現象時, 以如上述1 0,0 〇 〇,〇 〇 〇以下較佳。 使乳膠與水溶性高分子混合的方法沒有特別的限制, 可於丙烯酸系聚合物製造前添加於系中,亦可以添加於聚 -35- 1240742 合後之乳膠。恐會對聚合產生影響時,以後添加較佳。 水溶性高分子之配合量對1 0 0質量份丙烯酸系聚合物 粒子而言必須爲0.001〜10質量份,以0.005〜2質量份較 佳’更佳者爲〇 · 〇 〇 1〜1質量份。若該配合量小於〇. 〇 〇 1質 量份時,丙烯酸系聚合物粒子間之黏合力不充分,且調製 丙烯酸溶膠時丙烯酸系聚合物粉末會受到破壞,而若配合 量大於1 〇質量份時所形成皮膜之表面平滑性有降低的傾 向。 有關藉由形態3所得的丙烯酸系聚合物粉末,除形態 1之空隙率等條件、或形態1中空隙率等條件及形態2中粒 徑比條件外’如上所述爲製造两嫌酸系聚合物粉末時必須 在乳膠中含有特定量水溶性高分子。 形態3之丙烯酸系聚合物粉末的其他性質(例如平均粒 徑)、用途等與形態1或形態2相同。而且,形態3中調製 丙烯酸溶膠及成形物,除使用形態3之丙烯酸系聚合物粉 末外與形態1或形態2相同地進行。 說明上述說明的形態3效果時,形態3除形態1或形 態2之效果外具有下述效果。換言之,形態3之丙烯酸系 聚合物粉末可製得具有低黏度、流動性及儲藏安定性優異 的丙烯酸溶膠。而且,由該丙烯酸溶膠所得的成形物與由 氯乙烯所得的成形物不同,於燒卻時不會產生氯化氫氣體。 4形態4 (反應件界而活件劑) 其次,說明有關形態4。 形態4係爲形態1、形態2或形態3中附加有形態1、 - 36- 1240742 形態2或形態3之丙烯酸系聚合物粒子⑴或(π)中至少具有 一層由以反應性界面活性劑爲構成成分之共聚物所成層的 條件形態。換言之,形態4係有關丙烯酸系聚合物粒子在 含有前階段聚合物(I-a)之乳膠中形成後階段聚合物(I_b)所 得的多階段聚合物粒子,或在含有前階段聚合物(II_ a)之乳 膠中形成後階段聚合物(11 - b )所得的多階段聚合物粒子,至 少具有一層以反應性界面活性劑爲構成成分之共聚物的形 態1、形態2或形態3之丙烯酸系聚合物粉末、含有該丙烯 酸系聚合物粉末及可塑劑之丙烯酸溶膠、以及由該丙烯酸 溶膠所得的成形物。 形態4之丙烯酸聚合物粒子如上所述, (1) 在含有前階段聚合物(I-a)之乳膠中形成後階段聚合 物(I-b)所得的多階段聚合物粒子,至少具有一層以反應性 界面活性劑爲構成成分之共聚物所成層之上述丙烯酸系聚 合物粒子(I),或 (2) 在含有前階段聚合物(II-a)之乳膠中形成後階段聚合 物(ΙΙ-b)所得的多階段聚合物粒子,至少具有一層以反應性 界面活性劑爲構成成分之共聚物所成層的上述丙烯酸系聚 合物粒子(II)。 形態4中丙烯酸聚合物粒子(I)及/或丙烯酸聚合物粒子 (11)係除加入反應性界面活性劑單位作爲構成成分外,與形 態1、形態2或形態3相同。換言之,構成反應性界面活性 劑單位外之單位的單體及其具體例、前階段聚合物(I-a)/後 階段聚合物(I-b)之質量比、前階段聚合物(II-a)/後階段聚 1240742 口物(ΙΙ-b)之資里比、丙儲酸聚合物粒子(i)及/或丙烯酸聚 合物粒子(II)之分子量等與形態1、形態2或形態3相同。 另外,使此等比例或分子量保持範圍內之效果或之外的缺 點亦與形態1、形態2或形態3相同。 形態4中爲上述(1 )時,由反應性界面活性劑爲構成成 分之共聚物所成層可以爲前階段聚合物(I-a)、亦可以爲後 階段聚合物(I-b),亦可以爲兩者,就提高丙烯酸溶膠之儲 藏安定性而言以至少具有丙烯酸系聚合物粒子(I)作爲最外 層、即至少後階段聚合物(I-b)作爲最外層較佳。 如上所述,於形態1、形態2或形態3中前階段聚合 物(I-a)係爲含有5〜50質量%甲基丙烯酸甲酯單位及50〜95 質量%可與甲基丙烯酸甲酯共聚合的其他單體所成單位者。 於形態4中,由以反應性界面活性劑作爲構成成分之 共聚物所成層外,構成前階段聚合物(I-a)之層與形態1、形 態2或形態3相同。前階段聚合物(I- a)中以反應性界面活 性劑作爲構成成分之共聚物所成層係由甲基丙烯酸甲酯單 位、及作爲任意成分之可與甲基丙烯酸甲酯共聚合的其他 單體所成單位、及反應性界面活性劑單位所成,對甲基丙 烯酸甲酯單位及其他單體單位合計而言甲基丙烯酸甲酯單 位之比例爲5〜50質量%,其他單體單位之比例爲50〜95 質量%。甲基丙烯酸甲酯單位之比例以2 0〜5 0質量%較佳, 更佳者爲3 0〜5 0質量%。甲基丙烯酸甲酯單位之比例小於 5質量%時、或甲基丙烯酸甲酯單位之比例大於50質量%時 之缺點係與形態1、形態2或形態3相同。 1240742 此外’如上所述於形態1、形態2或形態3中,後階 段聚合物(I - b )係爲含有5 0質量%以上甲基丙烯酸甲酯及5 〇 質量%以下可與甲基丙烯酸甲酯共聚合的單體所成單位者。 於形恶4中,除由以反應性界面活性劑爲構成成分之 共聚物外的構成後階段聚合物(I_b)之層與形態1、形態2 或形態3相同。後階段聚合物(I中由反應性界面活性劑 作爲構成成分之共聚物所成層係由甲基丙烯酸甲酯單位、 作爲任意成分之可與甲基丙烯酸甲酯共聚合的其他單體所 成單位、及反應性界面活性劑單位所成,對甲基丙烯酸甲 酯單位及其他單體單位合計而言,甲基丙烯酸甲酯單位爲5〇 質量%以上,其他單體單位爲5 0質量%以下。甲基丙烯酸 甲酯單位之上述比例以5 5〜9 5質量%較佳,更佳者爲6 0〜 9 0質量%。丙烯酸甲酯單位小於5 〇質量%時之缺點係與形 態1、形態2或形態3相同。 反應性界面活性劑單位之含量係在各反應性界面活性 劑單位含有層中沒有特別的限制,僅在丙烯酸系聚合粒子(1) 全體有限制。換言之,反應性界面活性劑之使用量就儲藏 安定性、柔軟性及發泡性良好而言,對1 〇〇質量份形成構 成丙烯酸系聚合物粒子(I)之全部層所使用的甲基丙烯酸甲 酯與其他單體之合計量而言必須爲〇.〇〇 i〜20質量份,以 0.00 5〜15質量份較佳,更佳者爲〇.〇1〜1〇質量份。 形態4中爲上述(2)時,由以反應性界面活性劑爲構成 成分之共聚物所成層,可以爲前階段聚合物(ΙΙ-a)、亦可以 爲後階段聚合物(II-b),亦可以爲兩者,就提高丙烯酸溶膠 一 39一 1240742 之儲藏安定性而言以至少具有丙烯酸系聚合物粒子(II)作爲 最外層、即至少後階段聚合物(II_b)作爲最外層較佳。 如上所述’於形態1、形態2或形態3中前階段聚合 物(Π-a)係爲含有50〜99·99質量%丙烯酸烷酯單位、49·99 質量%以下可與丙烯酸烷酯共聚合的其他單官能性單體及 0.0 1〜1 0質量%多官能性單體單位。 於形態4中,由以反應性界面活性劑作爲構成成分之 共聚物所成層外構成前階段聚合物(Πι)之層與形態1、形 態2或形態3相同。前階段聚合物(II_ a)中以反應性界面活 性劑作爲構成成分之共聚物所成層係由丙烯酸烷酯單位、 其他單官能性單體所成單位、多官能性單體及反應性界面 活性劑單位所成,對丙烯酸烷酯單位、作爲任意成分之其 他單官能性單體單爲及多官能性單體單位合計而言丙烯酸 烷酯單位之比例必須爲5 0〜9 9 · 9 9質量%,其他單官能性單 體單位之比例必須爲49.99質量%以下及多官能性單體單位 必須爲0.01〜10質量%。丙烯酸烷酯單位之比例以60〜99.95 質量%、其他單官能性單體單位以39.95質量%以下及多官 能性單體單位以0.0 5〜5質量%較佳,更佳者丙烯酸烷酯爲 70〜99.9質量%、其他單官能性單體單位爲29.9質量%及 多官能性單體單位爲0. 1〜3質量%。丙烯酸烷酯單位小於 50質量%、多官能性單體單位小於0.01質量%時、或多官 能性單體單位大於1 0質量%時之缺點係與形態1、形態2 或形態3相同。 此外,如上所述於形態1、形態2或形態3中,後階 一 4 0 - 1240742 段聚合物(Π-b)係爲含有50質量%以上甲基丙烯酸甲酯及50 質量%以下可與甲基丙烯酸甲酯共聚合的單體所成單位。 於形態4中,除由以反應性界面活性劑爲構成成分之 共聚物外構成後階段聚合物(II-b)之層與形態1、形態2或 形態3相同。後階段聚合物(n-b)中由反應性界面活性劑作 爲構成成分之共聚物所成層係由甲基丙烯酸甲酯單位、作 爲任意成分之可與甲基丙烯酸甲酯共聚合的其他單體所成 單位、及反應性界面活性劑單位所成,對甲基丙烯酸甲酯 單位及其他單體單位合計而言,甲基丙烯酸甲酯單位爲50 質量%以上,其他單體單位爲5 0質量%以下。甲基丙烯酸 甲酯單位之上述比例以6 0〜1 0 〇質量%較佳,更佳者爲7 0 〜9 5質量%。丙烯酸甲酯單位小於5 〇質量%時之缺點係與 形態1、形態2或形態3相同。 反應性界面活性劑單位之含量係在各反應性界面活性 劑單位含有層中沒有特別的限制,僅在丙烯酸系聚合粒子⑴ 全體有限制。換言之,反應性界面活性劑之使用量就儲藏 安定性、柔軟性及發泡性良好而言,對1 〇〇質量份形成構 成丙烯酸系聚合物粒子(I)之全部層所使用的丙烯酸烷酯、 可與丙烯酸烷酯共聚合的其他單官能性單體、多官能性單 體、甲基丙烯酸甲酯、及可與甲基丙烯酸甲酯共聚合的其 他單體之合計量而言必須爲0.001〜20質量份,以0.005〜 1 5質量份較佳,更佳者爲〇 · 〇丨〜1 〇質量份。 作爲形態4使用的丙烯酸系聚合物粒子(I)之構成單體 單位的單體1必須成分的反應性界面活性劑係爲使甲基丙 一4卜 1240742 燒酸甲酯及至少一種可與使用時之甲基丙烯酸甲酯共聚合 的單體共聚合,且本身具有界面活性能或使具有藉由共聚 合所得的樹脂賦予界面活性能之性質者皆可使用。 而且,作爲形態4使用的丙烯酸系聚合物粒子之構 成單體單位的單體〗必須成分之反應性界面活性劑係爲使 則階段聚合物(11 - a)中丙烯酸烷酯、使用時至少一種可與使 用時之甲基丙烯酸甲酯共聚合的單官能性單體、及多官能 性單體、及/或後階段聚合物(Π — b)中甲基丙烯酸甲酯及使 用時至少一種可與甲基丙烯酸甲酯共聚合的單體共聚合, 且本身具有界面活性能或使具有藉由共聚合所得樹脂賦予 界面活性能之性質者皆可使用。 該反應性界面活性劑例如院基苯氧基聚乙二醇丙燃酸 酯、酸性磷酸甲基丙烯酸酯、烷基芳基苯氧基聚乙二醇、 鈉-ω-丙烯醯氧基烷基(三烷基)銨-對甲苯磺酸鹽、鈉-聚苯 乙嫌苯醚硫酸鹽、二甲基胺基乙基甲基丙燦酸酯4級化物、 鈉-磺基琥珀酸烷基烯酯、聚環氧乙烷烷醚、聚環氧乙院垸 基苯醚磺酸酯、烷基苯氧基乙氧基乙基磺酸酯、鈉_二院基 磺基琥珀酸酯、烷基二苯醚二磺酸酯、壬基丙燦基苯酹環 氧乙烷10莫耳加成物硫酸銨鹽、壬基丙烯基苯酌環氧乙院 2〇莫耳加成物硫酸銨鹽、辛基二丙烯基苯酚環氧乙院1〇莫 耳加成物硫酸銨鹽、辛基二丙烯基苯酚環氧乙院1〇〇莫耳 加成物硫酸銨鹽、十二烷基丙烯基苯酚環氧乙院2 〇莫耳· 環氧丙院10莫耳無規加成物硫酸鈉鹽、十二院基丙燃基苯 酚環氧丁院4莫耳•環氧乙烷3 0莫耳嵌段加成物硫酸鈉 - 42- 1240742 鹽、壬基丙烯基苯酚環氧乙烷10莫耳加成物 本酚璜氧乙烷2 0莫耳加成物、辛基二丙烯基 莫耳加成物、環氧丙烷1 〇莫耳無規加成物 吴耳無規加成物、環氧丙烷2 〇莫耳無規加成 30莫耳嵌段加成物、聚環氧乙烷(烯丙氧; 酸銨鹽等。 此等之反應性界面活性劑中,就丙烯酸 疋丨生或由該物所得皮膜之柔軟性更爲提高而 基苯酣環氧乙烷1 〇莫耳加成物硫酸銨鹽、壬 環氧乙院20莫耳加成物硫酸銨鹽、辛基二丙 院10莫耳加成物硫酸銨鹽、辛基二丙烯基苯酌 莫耳加成物硫酸銨鹽、十二烷基丙烯基苯酚環 耳•環氧丙院1 0莫耳無規加成物硫酸鈉鹽、 基苯酣環氧丁烷4莫耳•環氧乙烷30莫耳嵌 鈉鹽、壬基丙烯基苯酚環氧乙烷1〇莫耳加成 酸苯酹環氧乙烷20莫耳加成物、辛基二丙烯 垸10莫耳加成物、辛基二丙烯基苯酚環氧乙 成物、環氧乙烷1 〇莫耳無規加成物、環氧丙 規加成物、環氧乙烷3 0莫耳嵌段加成物、聚環 丙氧基甲基)烷醚硫酸銨鹽等較佳。 上述反應性界面活性劑可以單獨使用或 使用。 形態4中使用的界面活性劑可僅使用反 劑,就調整所得丙烯酸系聚合物粒子之平均: _ 4 3 - 、壬基丙烯基 環氧乙烷100 、環氧丙烷1 0 物、環氧乙院 S甲基)院釀硫 溶膠之儲藏安 言以壬基丙烯 基丙烯基苯酚 基苯酚環氧乙 〖環氧乙烷100 丨氧乙烷20莫 十二烷基丙烯 段加成物硫酸 物、壬基丙烯 基苯酚環氧乙 院100莫耳加 烷20莫耳無 丨氧乙烷-1-(烯 2種以上組合 應性界面活性 粒徑或減低聚 1240742 合時之凝聚物而言可倂用其他一般的界面活性劑。該一般 的界面活性劑之具體例如陰離子系乳化劑之二辛基磺基琥 珀鈉、二月桂基磺基琥珀酸鈉等二烷基磺基琥珀酸鹽、十 二烷基苯磺酸鈉等之烷基苯磺酸鹽、十二烷基硫酸鈉等之 烷基硫酸鹽;非離子系乳化劑之聚環氧乙烷烷醚、聚環氧 乙烷壬基苯醚等;非離子•陰離子系乳化劑之聚環氧乙烷 壬基苯醚硫酸鈉鹽等之聚環氧乙烷壬基苯醚硫酸鹽、聚環 氧乙烷烷醚硫酸鈉等之聚環氧乙烷烷醚硫酸鹽、聚環氧乙 烷十三烷醚醋酸鈉等之聚環氧乙烷烷醚羧酸鹽等,此等可 以單獨或2種以上組合使用。上述例示的非離子系乳化劑 及非離子•陰離子系乳化劑之例示化合物中環氧乙烷單位 之平均重複數,爲使乳化劑之發泡性必須極大時以3 〇以下 較佳’更佳者爲2 0以下,最佳者爲1 〇以下。 使用該其他界面活性劑時,其使用量爲可達成上述目 的下使用,沒有特別的限制,爲丙烯酸系聚合物粒子(1)時 通常對甲基丙烯酸甲酯及可與甲基丙烯酸甲酯共聚合的其 他單體之合計100質量份而言爲0.001〜20質量份。而且, 爲两燒酸系聚合物粒子(II)時通常丙烯酸烷酯、可與該丙燒 酸烷酯共聚合的其他單官能性單體、多官能性單體、甲基 丙烯酸甲酯、及可與甲基丙烯酸甲酯共聚合的其他單體之 合計100質量份而言爲〇·〇〇〗〜20質量份。 形_ 4之丙;酸系聚合物粒子(I)及(〗丨)之其他性質(例 如重量平均分子量等)與形態丨、形態2或形態3相同。 形態4中製造丙烯酸聚合物粒子⑴及(„)時,除使用反 一 4 4 - 1240742 應性界面活性劑或反應性界面活性劑及其他界面活性劑 外’與形態1、形態2或形態3中製造丙烯酸系聚合物粒子 (I)及(II)相同地進行。 將反應性界面活性劑添加於聚合系的方法,可以爲聚 合起始前加入的方法、在使用的單體(混合物)中滴入的方 法等任何方法’就聚合女定性及丙烯酸溶膠之儲藏安定性 而言以上述滴入方法較佳。 形態4使用的乳膠除含有形態4之丙烯酸系聚合物⑴ 或(11)外,與形態1、形態2或形態3相同。 形態4中由乳膠製得丙燃酸系聚合粉末的方法,或由 該丙烯酸系聚合物粉末與可塑劑製得丙烯酸溶膠的方法, 爲與形態1、形態2或形態3相同的方法。 使用形態4之丙烯酸溶膠製作發泡製品時,一般而言 可製得發泡狀態之均勻性優異的發泡製品。使用丙燒酸溶 膠製作發泡製品的方法,在丙烯酸溶膠中使氣泡機械性混 合,形成發泡溶膠,使該物凝膠化的方法(機械性發泡法),、 在微膠囊中封入低沸點烴之微膠囊型發泡劑配合於丙烯酸 溶膠予以凝膠化的方法、使在高溫下產生氣體之熱分解型 發泡劑配合於丙烯酸溶膠予以凝膠化的方法等,使用任何 物可達成上述效果,就達成上述效果而言以使用熱分解型 發泡劑的方法較佳。 使用熱分解型發泡劑時,調製含有上述丙烯酸系聚合 物粉末、可塑劑及熱分解型發泡劑之丙烯酸溶膠,使該物 藉由加熱發泡以形成發泡成形物(發泡體)。熱分解型發泡 一 45- 1240742 劑可使用習知熱分解型發泡劑,沒有特別的限制,具體例 如偶氮二羧酸醯胺、4,4’-氧化雙(苯磺醯基聯胺)、p-甲苯 磺醯基聯胺、偶氮雙異丁烯腈、偶氮二胺基苯、偶氮六氫 苯并二腈、鋇偶氮二羧酸酯、N,N ’ -二亞硝基五伸甲基四 胺、N,Ν’-二硝基-N,Ν’-二甲基對酞酸醯胺、t_丁基胺基 腈、p -甲苯磺醯基丙酮脘等之無機系熱分解型發泡劑。此 等可各單獨使用或2種以上任意組合使用。此等熱分解型 發泡劑中就容易處理、氣體產生量多等而言以偶氮二殘酸 醯胺系熱分解型發泡劑較佳。 熱分解型發泡劑之添加量係視目的之發泡體或發泡體 層之發泡倍率(比重)、發泡體或積層體之用途、發泡劑之 氣體發生量等而變化,通常對100質量份丙烯酸溶膠而言 以0.05〜30質量份較佳、更佳者爲0.1〜20質量份。 而且,形態4中以使用上述熱分解型發泡劑製造發泡 體時,爲可順利進行發泡、製得具有更均勻、微細氣泡之 發泡體時,可倂用發泡助劑、此時之發泡助劑對各熱分解 型發泡劑可使用習知發泡助劑。例如偶氮系發泡劑、重碳 酸鈉、對聯胺系發泡劑而言羧酸金屬鹽、碳酸鈣等之碳酸 金屬鹽、二氧化矽、氧化鋁等之金屬氧化物、滑石等礦物 等之發泡助劑,另外例如對N,N ’ -二硝基五伸甲基四胺而 言可使用尿素系化合物、有機酸等之發泡助劑。 形態4之丙烯酸溶膠中含有的其他成分(例如塡充劑、 稀釋劑、各種添加劑等)、丙烯酸溶膠之固成分含量等,可 與形態1、形態2或形態3相同。 '46- 1240742 使用形態4之丙烯酸溶膠形成成形物的方法亦與形態 1、形態2或形態3相同。而且,使用形態4之丙烯酸溶膠, 以習知發泡性溶膠之成形方法製得丙烯酸系發泡體。例如 爲製得片板狀發泡體時使含有習知適當發泡劑之丙烯酸溶 膠以適當厚度(例如厚度約爲0.5mm)塗覆於聚酯薄膜上後, 在約1 4〇t:之溫度下加熱熔融5分鐘且在發泡劑之發泡溫度 以上的溫度下約加熱1 0分鐘。 說明有關上述說明的形態4之效果時,形態4除形態 1、形態2或形態3之效果外具有下述效果。換言之,藉由 使形態4之丙烯酸系聚合物粉末與可塑劑混合所得的丙烯 酸溶膠,儲藏安定性及發泡性優異。而且,與由氯化乙烯 所得的成形物不同,於燒卻時不會產生氯化氫氣體。 5形態5(混合乳膠1 其次,說明有關形態5。 形態5之特徵爲各含有2種特定不同的丙烯酸系聚合 物粒子之乳膠。換言之,形態5係有關一種成形物,其特 徵爲使用的乳膠係使有關於含有形態i〜形態3中任一形態 丙烯酸系聚合物粒子(II)之前階段聚合物(II_a)相同的聚合 物(形態5中稱爲丙烯酸系聚合物粒子(II_a))之乳膠,與含 有形態1〜形態3中任一形態丙烯酸系聚合物粒子⑴所包 含丙烯酸系聚合物粒子(1-1)之乳膠乙丙烯酸系聚合物粒子 (II-a)/丙烯酸系聚合物粒子(μ)質量比=5/95〜4〇/6〇混合 所得的乳膠外,形態1〜形態3中任一形態之丙烯酸系聚合 物粉末、該丙稀酸系聚合物粉末及可塑劑之丙烯酸溶膠、 一 4 7 - 1240742 及由該丙烯酸溶膠所得的成形物。 更詳言之,形態5之丙烯酸系聚合物粉末係爲使含有 丙烯酸系聚合物粒子(Π-a)之乳膠與含有丙烯酸系聚合物粒 子(1-1)之乳膠以丙烯酸系聚合物粒子(II-a)/丙烯酸系聚合 物粒子(1-1)質量比爲5/95〜40/60混合後,凝固乾燥所得的 丙烯酸系聚合物粉末, (i) 丙烯酸系聚合物粒子(ΙΙ-a)係由50〜99.99質量%丙 烯酸烷酯單位、49.99質量%可與丙烯酸烷酯共聚合的其他 單官能性單體單位及0 · 0 1〜1 0質量%多官能性單體單位所 成’藉由1階段或單體組成互相不同的連續2階段以上聚 合反應形成的共聚物粒子, (ii) 丙烯酸系聚合物粒子(1-1)係爲在含有前階段聚合物 (1-1-a)之乳膠中形成多階段聚合物(I_b)所得的多階段聚合 物粒子,前階段聚合物(I -1 - a)係爲至少在最外層含有2 0質 量%〜5 0質量%甲基丙烯酸甲酯單位,藉由1階段或單體組 成互相不同的連續2階段以上聚合反應形成的共聚物,後 階段聚合物(I-b)係爲含有50質量%甲基丙烯酸甲酯單位, 藉由1階段或單體組成互相不同的連續2階段以上聚合反 應形成的聚合物,前階段聚合物(I-l_a)/後階段聚合物(I_b) 之値量比爲5/95〜9δ/5之丙烯酸聚合物粒子, 之丙烯酸系聚合物粉末。 而且’構成前階段聚合物(丨_ ;! _a)之最外層外甲基丙烯 酸甲酯單位之比例係與形態1、形態2或形態3中任一形態 中前階段聚合物(I-a)之甲基丙烯酸甲酯單位之比例相同。 -48- 1240742 形態5之丙烯酸系聚合物粒子(11_4係與形態1、形態 2或形態3中丙烯酸系聚合物粒子(11)之前階段聚合物(II-a) 相同,故相同地調製。 構成丙烯酸系聚合物粒子(Π-a)之聚合物,玻璃轉移溫 度(Tg)皆以50°C以下較佳。Tg爲5〇°C以下時,膜形成後可 製得可塑劑沒有滲出於皮膜表面之皮膜的丙烯酸溶膠。 丙烯酸系聚合物粒子(II-a)之平均粒徑(一次粒徑)沒有 特別的限制,以0 · 〇 1〜;[〇 μιη較佳、更佳者爲〇 · 〇 5〜1 μηι。 該平均粒徑爲0.01 μηι以上時可提高丙烯酸系聚合物粒子(1_ 1)之分散性良好,所形成皮膜之表面平滑性優異者。 形態5之丙烯酸系聚合物粒子(1_1}的前階段聚合物οι-a) ’ 僅與 在最外 層中甲 基丙烯 酸甲酯 單位爲 2〇 質 量 %〜 5〇 質量%之形態1、形態2或形態3中任何形態之前階段聚合 物(I-a)不同(前階段聚合物(I_a)中甲基丙烯酸甲酯單位5質 量%〜50質量%)。上述後階段聚合物(I-b)係與形態1、形 態2或形態3中任何形態之後階段聚合物(I_b)相同。然而, 形態5之丙烯酸系聚合物粒子(〗_〗)包含形態1、形態2或 形態3中任一形態之丙烯酸系聚合物粒子。 則階段聚合物(1-1-a)之最外層中甲基丙烯酸甲酯單位 必須爲2 0質量%〜5 〇質量%,較佳者爲3 〇質量%〜5 〇質量 %,最佳者爲35質量%〜50質量%。前階段聚合彳勿(卜1-a) 之最外層中甲基丙烯酸甲酯單位小於20質量%時,使含有 形態5之丙烯酸系聚合物粒子的乳膠凝固乾燥製得的含有 丙嫌酸系聚合物粉末與可塑劑之丙烯酸溶膠所形成皮膜強 一49 一 1240742 度降低’故不爲企求,甲基丙烯酸甲酯單位爲5 0質量%以 上時,皮膜表面之耐滲出性降低,故不爲企求。 前階段聚合物(I - 1 - a)係由該甲基丙烯酸甲酯單位及可 與甲基丙烯酸甲酯共聚合的其他單體所成單位構成,該其 他單體係與作爲形態1、形態2或形態3中任何形態之前階 段聚合物(I-a)的構成單位之「可與甲基丙烯酸甲酯共聚合 的單體」相同。 丙烯酸系聚合物粒子(I -1 )之粒徑(一次粒徑)沒有特別 的限制’以0 · 1 5〜3 0 μηι較佳,更佳者爲〇 · 1 5〜2 μιη。粒徑 在上述範圍時,丙烯酸系聚合物粒子之分散性佳,可 提高所形成皮膜之表面平滑性。 形態5之丙烯酸系聚合物粉末使含有丙烯酸系聚合物 粒子(II_a)之乳膠、與含有丙烯酸系聚合物粒子(1-;[)之乳膠 在乳膠狀態下混合,然後凝固乾燥所得者。形態5之丙烯 酸系聚合物粉末與由各種乳膠所得的2種丙烯酸系聚合物 粉末混合形成的丙烯酸系聚合物粉末相比時,具有混合狀 態均勻的優點,且所得丙烯酸溶膠之分散性經提高、且儲 藏安定性經提高。 形態5中2種乳膠之混合比例,丙烯酸系聚合物粒子 (II-a)/丙烯酸系聚合物粒子(^丨)之質量比必須爲5/95〜 4〇/60,較佳者爲W95〜3 5/65。丙烯酸系聚合物粒子(n-a)之 配合比小於5質量%時,丙烯酸系聚合物粒子(^丨)之分散 性不佳’所形成皮膜之表面平滑性降低。而且,丙烯酸系 聚合物粒子(II-a)之配合比大於4〇質量%時,膜形成後皮膜 -50 - 1240742 之強度降低。 悲5之其他優點,例如··製造丙烯酸系聚合物粒子 (II-a)或丙稀系聚合物粒子、使含有此等之乳膠凝固 乾燥、製造丙烯酸溶膠、由丙烯酸溶膠製造成形物等時, 與幵< 1、形態2或形態3相同地進行。 說明有關上述說明的形態5之效果時,形態5除形態 1、形恶2或形恶3之效果外,具有下述之效果。換言之, 藉由使形態5之丙烯酸系聚合物粉末與可塑劑混合所得的 丙細酸溶膠’儲藏安定性優異。而且,由該丙儲酸溶膠所 得的成形物不會有顆粒、表面平滑性優異,以及與由氯乙 烯所得的成形物不同,於燒卻時不會產生氯化氫氣體。 【實施例】 於下述中藉由參考例、實施例及比較例更具體地說明 本發明(形態1〜5 ),惟本發明不受此等所限制。 於下述之參考例、實施例及比較例之物性値測定或評 估,藉由下述方法進行。 (1)細孔體積及孔直徑 使用島津製作所/ Micromeritics製壓熱鍋孔9420測定 細孔體積及孔直徑。 測定壓力:0.5 〜60000Psi( = 3.4475kPa 〜41 3.7MPa)(細 孔直徑320μιη〜30埃) 手法:水銀壓入式The plasticizer used in the acrylic sol of the form 1 is not particularly limited, and dimethoxyethylphthalate, dibutylphthalate, dioctylphthalate, diisononylphthalate, di Isodecyl phthalate, di-undecyl phthalate, butyl benzyl phthalate, bis (methoxyethyl) phthalate, bis (ethoxyethyl) phthalate, Phthalate-based plasticizers such as bis (butoxyethyl) phthalate, diphenyloctyl phosphate, tributyl phosphate, trimethyl phosphate, tricresol phosphate, triphenyl phosphate , Trixylyl phosphate, ginseng (2-ethylhexyl) ester, 2-ethylhexyl diphenyl phosphate, ginseng (isopropylphenyl) phosphate, resorcinol bis (diphenyl) Phosphate ester), bisphenol A bis (diphenyl phosphate), bisphenol A bis (xylenol phosphate), etc. Phosphate-based plasticizers, bis (2-ethylhexyl) adipate, etc. Adipate-based plasticizers, adipate-based plasticizers such as bis (2-ethylhexyl) sebacate, and adipate-based plastics such as bis (2-ethylhexyl) azelate Agents, ginseng (2 -Ethylhexyl) trimellitate-based plasticizers, fumaric acid-based dibutyl fumarate, etc. 29-1240742 Plasticizers, triethyl butyl citrate, etc. Citrate-based plasticizer, oleate-based plasticizer, polyester-based plasticizer, 4-cyclohexene-1 2 -diisononyl dicarboxylic acid, etc. Plasticizer and so on. These plasticizers can be used singly or in combination of two or more. When a molded article obtained from an acrylic sol has flame retardancy, a phosphate plasticizer is preferably used. The mixing ratio of the acrylic polymer powder and the plasticizer is not particularly limited 'For 100 parts by mass of the acrylic polymer powder, the plasticizer is preferably ~ 500 parts by mass, and more preferably 50 to 200 parts by mass. The acrylic sol according to the aspect 1 may further contain a tincture. Usable elixir such as calcium carbonate, barium oxide, clay, colloidal silica, mica, diatomaceous earth, kaolin, talc, bentonite, glass powder, aluminum oxide, aluminum hydride, antimony trioxide, titanium dioxide, carbon black, metal soap , Dye, color, etc. The content of the tincture filler is not particularly limited, but it is preferably from 5,000 parts by mass to 100 parts by mass. In addition to the acrylic sol according to the aspect 1, the diluent is, for example, an organic sol composition containing a solvent such as an oil solvent. Depending on the purpose, it may contain additives. The additives such as tackifiers, leveling agents, anti-wrinkle agents, mold agents, defoamers, foaming agents, surfactants, ultraviolet absorbers, lubricants, flame retardants, light stabilizers, anti-aging agents, antioxidants And fragrances can be used alone or in combination of two or more. The content of these ingredients is not particularly limited, and it is generally 0. 0 for 100 parts by mass of the acrylic polymer powder. 01 to 20 parts by mass are preferred. In addition to the above, the polyacrylic sol of Form 1 can be added with polyfunctional-3 0-oil-based 50 silica-filled materials 50 stones each flattened. Amount of 1240742 body and initiator can be formed on the gel. After cross-linking. The content of these ingredients is particularly limited, and is generally 0 to 100 parts by mass of the acrylic polymer. 001 ~ 30 parts by mass. There is no special control on the solid content of the acrylic acid sol. For the purpose of keeping the viscosity of the acrylic sol in an easy-to-handle range and suitable for spray drying, the solid content is 20% to the total acrylic sol. ~ 80% by mass is preferred. The acrylic sol of the form 1 can be prepared by using an acrylic polymer powder, a liquid plasticizer, a powdery filler, or the like, using a mixer, a kneader, or rolling and kneading. Acrylic sols of uniform composition are usually defoamed by conventional methods, filtered through a gold mesh or defoamed after filtration. The method for producing a molded article using the acrylic sol of the form 1 may be a dip coating method, a knife coating method, a roll coating method, a curtain flow coating method, or other coating methods, or a dip molding method or a casting molding method. , Molding methods such as coating molding method, rotary molding method, and various processing methods such as dipping, brush coating, spraying, electrostatic coating, etc. When using the acrylic sol-forming molded article of Form 1 to gel, the acrylic sol must be kept at an appropriate gel-forming temperature and processing time. The gel formation temperature is 70 to 2 60 ° c, and the processing time is preferably 10 seconds to minutes. The acrylic sol of the form 1 can form a uniform film under these gelation conditions. Further, depending on the application, printing embossing, foaming, etc. may be separately performed on the cured film. Form 1 acrylic sol can be used as paint, ink, adhesive bonding sealant, etc., and can be used for miscellaneous goods, toys, industrial parts. Molded products such as electrical parts and automobile parts. In addition, for example, when used for sheet materials such as paper or cloth, wallpaper, artificial leather, packaging, medical sheets, waterproof plates, etc. can be produced, and when used for metal plates, they can be used as anticorrosive metal plates. When the effects of the form described above are described, the acrylic polymer powder of the form 1 can obtain an acrylic solvent having excellent storage stability and fluidity. In addition, unlike the molded product made from vinyl chloride, the molded product made from the acrylic sol does not generate hydrogen chloride gas when it is fired. 2-shaped bear 2 (particle diameter bh) Next, the related aspect 2 will be described. Form 2 is a form in which the particle size ratio of the longer and shorter diameters of the acrylic polymer powder is additionally added to the acrylic polymer powder of form 1. The 'form 2' is related to the observation of an electron microscope photograph. Propionic acid polymer powder (secondary particle diameter) The acrylic polymer powder having the aspect ratio a / b of particle diameter ratio a / b of major axis a to minor axis b of 1.0 to 2.0 and containing the acrylic An acrylic sol of a polymer powder and a plasticizer, and a molded article obtained from the acrylic sol. The acrylic polymer particles (primary particles) used in Form 2 except for the acrylic acid polymer particles (I) and acrylic polymer particles (ii) have a glass transition temperature (T g) of 2 3 ° C Except for the above, it is the same as the acrylic polymer particles used in the aspect 1. When the T g is 2 3 ° C or more, surface adhesion and adhesion are not generated or difficult to occur after film formation. In the second embodiment, the production of acrylic polymer particles can be performed in the same manner as in the first embodiment. The latex used in Xingbei 2 is the same as that in Form 1 except as described below. -32- 1240742 When the particle diameter ratio a / b of the long diameter a and the short diameter b of the acrylic polymer powder in the form 2 is in the above specific range, the surface tension of the latex is 50 (^ N / cm or less. In other words, it contains acrylic acid The surface tension of the polymer powder latex must be less than 500 μN / cm, preferably less than 45 0 μN / cm. If the surface tension is greater than 500 μN / (: πm, it is not easy to make when the latex is spray-dried Acrylic polymer powder having a particle diameter ratio a / b of major diameter a and minor diameter b in a specific range of Form 2 can be obtained, and the fluidity and storage stability of the acrylic sol can be easily reduced by using the same. There is no particular limitation on the method for the surface tension of the latex of the polymer-based polymer particles to be less than 500 μN / cm, for example, a method of adding an emulsifier to the polymerized latex, or adding it to the system before the production of the acrylic polymer A method of a water-soluble organic solvent, or a method of adding the organic solvent to a polymer latex is a preferable example. When the polymerization is likely to be affected, a method of adding it later is preferable. The above-mentioned emulsifier can be used, for example, emulsion polymerization The emulsifier 'in the aspect 1 may be the same as or different from the user during the emulsification polymerization. In order to adjust the surface tension of the latex to 500 μN / (: ιη or less, an emulsifier of sodium alkylsulfonate or an aromatic phosphate may be used. , Polyethylene oxide ether potassium phosphate, etc. In addition, the water-soluble organic solvent is not particularly limited, such as ethanol ,. Low alcohols such as methanol, n-propanol, and isopropanol; water-soluble ketones such as acetone; acetonitrile, dioxane, tetrahydrofuran, and pyridine. Among the water-soluble organic solvents, ethanol and methanol are preferred for ease of handling. This is an acrylic polymer powder obtained in the form 2. In addition to the conditions of Form 1 such as porosity, the particle diameter ratio a / b of the major axis a and minor axis b of the acrylic-33-1240742 polymer powder observed with an electron microscope must be l.  〇 ~ 2. 0. The particle size ratio a / b ranges from 1.0 to 1. 5 is better. When the particle size ratio a / b is 2 or more, the specific surface area (= surface area / volume) of the acrylic polymer powder becomes larger, and the contact area with the plasticizer increases, and (1) the flowability of the acrylic sol is likely to decrease ( High viscosity), (2) reduced storage stability of acrylic sol. The application of the acrylic polymer powder according to the above aspect 2 is the same as the application of the first aspect. The acrylic polymer sol and the molded article of the second aspect are prepared in the same manner as the first aspect except that the acrylic polymer powder of the second aspect is used. When the effects of the second embodiment described above are explained, the second embodiment has the following effects in addition to the effects of the first embodiment. In other words, the acrylic polymer powder of the form 2 can produce an acrylic sol having low viscosity, excellent fluidity, and excellent storage stability. In addition, unlike the molded product obtained from the acrylic sol, the molded product obtained from the vinyl sol does not generate hydrogen chloride gas upon burning. Form 3 (Water-soluble polymer, Form 3 is explained next. Form 3 is a conditional form containing a water-soluble polymer in the latex of Form 1 or Form 2. In other words, the latex in Form 3 contains an acrylic polymer. Particles and a latex having a weight average molecular weight of 10,000 or more water-soluble polymers, the amount of the water-soluble polymer used is 0.001 to 10 parts by mass to 00 parts by mass of acrylic polymer particles, so that The acrylic polymer powder of the form 1 or form 2 obtained by spray-drying the latex, an acrylic sol containing the acrylic polymer powder and a plasticizer, and a molded product obtained from the acrylic sol. Acrylic polymerization used in the form 3 The material particles are the same as the acrylic polymer particles used in the form, except that the glass transition temperature of the acrylic polymer-34-1240742 material particles (I) and the acrylic polymer particles (II) is preferably 23 t or more. Tg is When it is 23C or higher, the surface adhesion or blocking property does not occur or is difficult to occur after the film is formed. The acrylic polymer particles produced in the form 3 can be combined with State 丨 or Form 2 is performed in the same manner. The latex used in Form 3 can be performed in the same manner as in Form 1 or Form 2 except for the following. In Form 3, the same latex as the obtained Form 丨 or Form 2 contains water solubility. Polymer. The water-soluble polymer used in Form 3 is not particularly limited. Specific examples include sodium polystyrene sulfonate, sodium polyacrylate, polyethylene glycol, carboxymethyl cellulose, etc., and sodium polystyrene sulfonate Sodium polyacrylate and methylcellulose residues are preferred, with sodium polystyrene sulfonate and sodium polyacrylate being more preferred. The weight-average molecular weight of the water-soluble polymer must be 10,000 or more, preferably 1 0,000 ~ 1,000,000, more preferably 50,000 ~ 1,000,000. When the weight-average molecular weight is less than 10,000, the adhesion between the propionic acid polymer particles (primary particles) is insufficient, and the acrylic polymer is polymerized when the sol is prepared The powder (secondary particles) is easy to be destroyed, so it is not desirable. The upper limit of the weight average molecular weight is not particularly limited, but in order to avoid the stickiness of the latex, which will hinder the processing, and it will produce when added to the polymerized latex. In the case of agglomeration, it is preferable to be below 10,000, 000. The method for mixing latex and water-soluble polymer is not particularly limited, and it can be added to the system before the production of acrylic polymer. It can also be added to the poly-35-1240742 latex. When it may affect the polymerization, it is better to add it later. The amount of the water-soluble polymer must be 0 for 100 parts by mass of acrylic polymer particles. . 001 ~ 10 parts by mass to 0. 005 to 2 parts by mass are more preferred, and more preferred is 0 to 1 part by mass. If the blending amount is less than 0.  In the case of 0.001 parts by mass, the adhesion between the acrylic polymer particles is insufficient, and the acrylic polymer powder is destroyed when the acrylic sol is prepared, and if the compounding amount is more than 10 parts by mass, the surface smoothness of the coating film is formed. There is a tendency to decrease. Regarding the acrylic polymer powder obtained in the form 3, except for the conditions such as the porosity in the form 1, or the conditions such as the porosity in the form 1, and the particle size ratio in the form 2, as described above, it is the production of two acid-like polymerizations. In the case of powder, a certain amount of water-soluble polymer must be contained in the latex. The other properties (for example, average particle diameter), uses, and the like of the acrylic polymer powder of the aspect 3 are the same as those of the aspect 1 or the aspect 2. In the third aspect, the acrylic sol and the molded product were prepared in the same manner as in the first aspect or the second aspect except that the acrylic polymer powder of the third aspect was used. In describing the effects of the form 3 described above, the form 3 has the following effects in addition to the effects of the form 1 or the form 2. In other words, the acrylic polymer powder of Form 3 can produce an acrylic sol having low viscosity, excellent fluidity, and excellent storage stability. In addition, unlike the molded product obtained from the vinyl sol, the molded product obtained from the acrylic sol does not generate hydrogen chloride gas upon burning. 4 Form 4 (Responsive Agent and Activator) Next, the form 4 will be described. Form 4 is Form 1, Form 2, or Form 3 with Form 1,-36-1240742 Form 2 or Form 3 of the acrylic polymer particles ⑴ or (π) having at least one layer made of a reactive surfactant as Conditional form of the layer formed by the copolymer of the constituents. In other words, Form 4 is a multi-stage polymer particle obtained by forming an acrylic polymer particle in a latex containing a pre-stage polymer (Ia) into a late-stage polymer (I_b) or containing a pre-stage polymer (II_a). The multi-stage polymer particles obtained by forming the post-stage polymer (11-b) in the latex have at least one layer of the acrylic polymer in the form 1, form 2, or form 3 of the copolymer containing a reactive surfactant as a constituent. A powder, an acrylic sol containing the acrylic polymer powder and a plasticizer, and a molded article obtained from the acrylic sol. As described above, the acrylic polymer particles of form 4 are (1) a multi-stage polymer particle obtained by forming a post-stage polymer (Ib) in a latex containing a pre-stage polymer (Ia) and having at least one layer of reactive interfacial activity The agent is the acrylic polymer particles (I) formed as a layer of a copolymer of the constituent components, or (2) a late-stage polymer (II-b) formed from a latex containing a pre-stage polymer (II-a). The multi-stage polymer particles have at least one layer of the above-mentioned acrylic polymer particles (II) formed of a copolymer containing a reactive surfactant as a constituent. In the fourth aspect, the acrylic polymer particles (I) and / or the acrylic polymer particles (11) are the same as the first aspect, the second aspect, or the third aspect except that a reactive surfactant unit is added as a constituent. In other words, the monomers constituting a unit other than the unit of the reactive surfactant and specific examples thereof, the mass ratio of the pre-stage polymer (Ia) / post-stage polymer (Ib), and the pre-stage polymer (II-a) / post The phase ratio of the phase 1240742 mouthpiece (III-b), the molecular weight of the acrylic acid polymer particles (i) and / or the acrylic polymer particles (II) are the same as those of the form 1, form 2, or form 3. In addition, the effects of keeping these ratios or molecular weights in or out of the range are the same as those of Form 1, Form 2, or Form 3. In the case of the above (1) in the aspect 4, the layer formed of the copolymer containing the reactive surfactant as the constituent component may be the pre-stage polymer (Ia), the post-stage polymer (Ib), or both. In terms of improving the storage stability of the acrylic sol, it is preferable to have at least the acrylic polymer particles (I) as the outermost layer, that is, at least the later-stage polymer (Ib) as the outermost layer. As described above, the polymer (Ia) in the first stage in the form 1, the form 2 or the form 3 contains 5 to 50% by mass of methyl methacrylate units and 50 to 95% by mass can be copolymerized with methyl methacrylate. The other monomers are units. In the aspect 4, the layer constituting the pre-stage polymer (I-a) is the same as the aspect 1, the aspect 2 or the aspect 3, except for the layer formed of the copolymer containing the reactive surfactant as a constituent. In the previous stage polymer (I-a), the layer composed of a copolymer containing a reactive surfactant as a constituent is composed of methyl methacrylate units and other monomers which can be copolymerized with methyl methacrylate as an optional component. The ratio of methyl methacrylate units and other monomer units is 5 to 50% by mass based on the total amount of methyl methacrylate units and other monomer units. The ratio is 50 to 95% by mass. The proportion of the methyl methacrylate unit is preferably 20 to 50% by mass, and more preferably 30 to 50% by mass. The disadvantages when the proportion of methyl methacrylate units is less than 5 mass%, or when the proportion of methyl methacrylate units is more than 50 mass% are the same as those of Form 1, Form 2, or Form 3. 1240742 In addition, as described above, in Form 1, Form 2, or Form 3, the polymer (I-b) at the later stage contains 50% by mass or more of methyl methacrylate and 50% by mass or less of methacrylic acid. Units formed by monomers copolymerized with methyl ester. In Form Evil 4, the layer constituting the post-stage polymer (I_b) is the same as that of Form 1, Form 2, or Form 3, except for a copolymer containing a reactive surfactant as a constituent. The polymer of the post-stage polymer (I) is composed of a copolymer of a reactive surfactant as a constituent, and the layer is composed of methyl methacrylate units and other monomers that can be copolymerized with methyl methacrylate as an arbitrary component. And reactive surfactant units. For the total of methyl methacrylate units and other monomer units, the methyl methacrylate unit is 50% by mass or more, and the other monomer units are 50% by mass or less. The above ratio of the methyl methacrylate unit is preferably 55 to 95% by mass, and more preferably 60 to 90% by mass. The disadvantages when the methyl acrylate unit is less than 50% by mass are related to the form 1. The form 2 or the form 3 is the same. The content of the reactive surfactant unit is not particularly limited in each reactive surfactant unit-containing layer, and is limited only to the acrylic polymer particles (1) as a whole. In other words, the reactive interface The amount of the active agent used is methyl propylene used to form all the layers constituting the acrylic polymer particles (I) in an amount of 1,000 parts by mass in terms of good storage stability, softness, and foamability. Acid methyl ester with the total amount of the other monomers must be in terms of square. 〇〇 i ~ 20 mass parts to 0. 00 5 to 15 parts by mass are preferred, and the more preferred is 〇. 〇1〜10 Mass parts. In the case of the above (2) in the aspect 4, the layer formed of the copolymer having a reactive surfactant as a constituent component may be a pre-stage polymer (II-a) or a post-stage polymer (II-b) It can also be both. In terms of improving the storage stability of acrylic sol-39-1240742, it is better to have at least acrylic polymer particles (II) as the outermost layer, that is, at least the post-stage polymer (II_b) as the outermost layer. . As described above, the polymer (Π-a) in the first stage in the form 1, the form 2, or the form 3 contains 50 to 99.99% by mass of alkyl acrylate units, and 49.99% by mass or less can be co-existed with the alkyl acrylate. Polymerized other monofunctional monomers and 0. 0 1 to 10% by mass of a polyfunctional monomer unit. In the aspect 4, the layer constituting the pre-stage polymer (Πι) outside the layer made of the copolymer containing the reactive surfactant as a constituent is the same as the aspect 1, the aspect 2, or the aspect 3. In the previous stage polymer (II_a), the layer formed by the copolymer containing a reactive surfactant as a constituent is a unit composed of an alkyl acrylate unit, other monofunctional monomers, a polyfunctional monomer, and a reactive interfacial activity. The ratio of the alkyl acrylate unit to the alkyl acrylate unit, other monofunctional monomers that are optional components, and the total of the polyfunctional monomer units must be 50 to 9 9 · 9 9 mass %, The proportion of other monofunctional monomer units must be 49. 99% by mass or less and the polyfunctional monomer unit must be 0. 01 to 10% by mass. The ratio of alkyl acrylate units is 60 ~ 99. 95% by mass, other monofunctional monomer units are 39. 95% by mass or less and the multifunctional monomer unit is 0. 0 5 ~ 5 mass% is better, more preferably alkyl acrylate is 70 ~ 99. 9% by mass, the unit of other monofunctional monomers is 29. 9% by mass and polyfunctional monomer unit is 0.  1 to 3% by mass. The alkyl acrylate unit is less than 50% by mass, and the polyfunctional monomer unit is less than 0. The disadvantages when 01 mass% or the multifunctional monomer unit is greater than 10 mass% are the same as those of Form 1, Form 2, or Form 3. In addition, as described above, in the form 1, the form 2 or the form 3, the polymer (Π-b) of the last stage 1 40 to 1240742 is composed of 50% by mass or more of methyl methacrylate and 50% by mass or less. A unit of monomers copolymerized with methyl methacrylate. In the aspect 4, the layer constituting the polymer (II-b) at the later stage is the same as the aspect 1, the aspect 2 or the aspect 3 except that the copolymer contains a reactive surfactant as a constituent. The layer of the copolymer composed of a reactive surfactant as a constituent component in the polymer (nb) in the latter stage is formed from methyl methacrylate units and other monomers which can be copolymerized with methyl methacrylate as an optional component. Units and reactive surfactant units. For the total of methyl methacrylate units and other monomer units, the methyl methacrylate unit is 50% by mass or more, and the other monomer units are 50% by mass or less. . The above ratio of the methyl methacrylate unit is preferably 60 to 100% by mass, and more preferably 70 to 95% by mass. The disadvantages when the methyl acrylate unit is less than 50% by mass are the same as those of the form 1, form 2, or form 3. The content of the reactive surfactant unit is not particularly limited in each reactive surfactant unit-containing layer, and is limited only to the acrylic polymer particles ⑴ as a whole. In other words, the use amount of the reactive surfactant is good in terms of storage stability, softness, and foamability, and it is used for forming an entire layer of acrylic polymer particles (I) in an amount of 1,000 parts by mass. The total amount of other monofunctional monomers, polyfunctional monomers, methyl methacrylates, and other monomers that can be copolymerized with methyl methacrylate must be 0. . 001 ~ 20 parts by mass, with 0. 005 to 15 parts by mass is preferable, and more preferable is 0 to 〇 丨 to 10 parts by mass. The reactive surfactant of the essential component of the monomer 1 constituting the monomer unit of the acrylic polymer particles (I) used as the form 4 is methyl propylene-1, 1240742 methyl sulphate, and at least one kind can be used together. The monomers copolymerized with methyl methacrylate at the time can be used as long as they have interfacial activity energy or properties that impart interfacial activity energy to the resin obtained by copolymerization. In addition, as the monomer constituting the monomer unit of the acrylic polymer particles used in the aspect 4, the reactive surfactant of the essential component is such that the alkyl acrylate in the stage polymer (11-a) is at least one kind when used. Monofunctional monomers and polyfunctional monomers that can be copolymerized with methyl methacrylate during use, and / or at least one of methyl methacrylate in the post-stage polymer (Π-b) may be used. Any monomer copolymerized with methyl methacrylate, which has interfacial activity energy itself, or has properties that impart interfacial activity energy to the resin obtained by copolymerization, can be used. The reactive surfactants are, for example, novolak phenoxy polyethylene glycol propionate, acidic phosphoric acid methacrylate, alkylarylphenoxy polyethylene glycol, sodium-omega-propenyloxyalkyl (Trialkyl) ammonium-p-toluenesulfonate, sodium-polyphenylene ether sulfate, dimethylaminoethylmethylpropionate 4th grade, sodium-sulfosuccinate alkylene Esters, polyethylene oxide alkyl ethers, polyethylene oxide phenyl phenyl ether sulfonates, alkylphenoxy ethoxy ethyl sulfonates, sodium-secondary sulfosuccinates, alkyl Diphenyl ether disulfonate, nonyl propanyl benzene fluorene ethylene oxide 10 mol adduct ammonium sulfate, nonyl propenylbenzene ethylene oxide 20 mol adduct ammonium sulfate, Octyl dipropenyl phenol epoxy ethylene compound 100 mol adduct ammonium sulfate, octyl dipropenyl phenol epoxy ethylene compound 100 mol adduct ammonium sulfate, dodecyl propenyl phenol Epoxy Resin 2 mol · Epoxy Resin 10 mol random adduct sodium sulfate, Dodecyl propane-based phenol epoxidine 4 Mor • Ethylene oxide 30 Mor Segment adduct sodium sulfate-42-1240742 , Nonylpropenyl phenol ethylene oxide 10 mol adduct Benzophenol ethoxylate 20 mol adduct, octyl dipropenyl mol adduct, propylene oxide 100 mol random Adduct Wuer random adduct, propylene oxide 200 mol random addition 30 mol block adduct, polyethylene oxide (allyloxy; ammonium acid salt, etc.) These reactions Among the surfactants, the softness of the film derived from acrylic acid or the product is more improved, and the phenylbenzene oxide ethylene oxide 100 mol adduct ammonium sulfate, nonane epoxy ethylene 20 mol Adduct ammonium sulfate, octyl dipropane 10 mol adduct ammonium sulfate, octyl dipropenyl benzene ammonium adduct ammonium sulfate, dodecyl propenyl phenol ring ear epoxy Bingyuan 1 0 Mol random addition adduct sodium sulfate, phenylbenzene butylene oxide 4 molar • ethylene oxide 30 molar sodium salt, nonyl propenyl phenol ethylene oxide 10 molar Addition acid phenylammonium oxide 20 mol adduct, octyl dipropylene fluorene 10 mol adduct, octyl dipropenyl phenol ethylene oxide, ethylene oxide 100 mol random Adduct, propylene oxide Adducts of ethylene oxide 30 mole block adduct, polyethylene propoxymethyl) alkyl ether sulfate ammonium salt and the like are preferred. The above-mentioned reactive surfactants can be used alone or in combination. The surfactant used in the form 4 can be adjusted by using only a reverse agent, and the average acrylic polymer particles obtained can be adjusted to: _ 4 3-, nonylpropenyl oxide 100, propylene oxide 10, ethylene oxide S S) Storage of sulfur sols in the brewery: Nonyl propenyl propenyl phenol based phenol ethylene oxide 〖ethylene oxide 100 丨 oxyethylene 20 mol dodecyl propylene segment addition product sulfate, Nonyl propenyl phenol epoxy ethylene compound 100 moles of alkane 20 moles of non-oxyethane-1- (ene 2 or more combinations of reactive surface active particle size or reduction of poly 1240742 time aggregates can be Other general surfactants are used. Specific examples of the general surfactant include dioctylsulfosuccinate sodium such as anionic emulsifiers, dialkylsulfosuccinates such as sodium dilaurylsulfosuccinate, twelve Alkylbenzene sulfonates such as sodium alkylbenzene sulfonate, alkyl sulfates such as sodium lauryl sulfate; polyethylene oxide alkyl ethers, polyethylene oxide nonylbenzene, nonionic emulsifiers Ethers, etc .; non-ionic and anionic emulsifiers, polyethylene oxide nonylphenyl ether sodium sulfate, etc. Polyethylene oxide ether sulfates such as ethylene oxide nonyl phenyl ether sulfate, sodium polyoxyethylene oxide ether sodium sulfate, polyethylene oxide triethylene oxide sodium triacetate etc. Alkyl ether carboxylates, etc., can be used alone or in combination of two or more. The average number of repetitions of ethylene oxide units in the exemplified compounds of the nonionic emulsifiers and nonionic and anionic emulsifiers described above is When the foaming property of the emulsifier must be extremely large, it is preferably 30 or less, more preferably 20 or less, and most preferably 10 or less. When using this other surfactant, the amount used is to achieve the above purpose. , There is no particular limitation, when the acrylic polymer particles (1) are usually 100 parts by mass of the total of methyl methacrylate and other monomers copolymerizable with methyl methacrylate is 0. 001 ~ 20 parts by mass. In addition, in the case of the double-burned acid-based polymer particles (II), an alkyl acrylate, other monofunctional monomers, polyfunctional monomers, methyl methacrylate, and other monofunctional monomers which can be copolymerized with the alkyl propionate, and The total of 100 parts by mass of other monomers copolymerizable with methyl methacrylate is 0.00 to 20 parts by mass. The other properties (e.g., weight average molecular weight, etc.) of the acid polymer particles (I) and (〗 丨) are the same as those of Form 丨, Form 2 or Form 3. When producing acrylic polymer particles ⑴ and („) in the form 4, in addition to the use of a reverse 4 4-1240742 reactive surfactant or reactive surfactant and other surfactants' and the form 1, the form 2 or the form 3 The production of acrylic polymer particles (I) and (II) is performed in the same manner as described above. The method of adding a reactive surfactant to the polymerization system may be a method of adding the polymerization surfactant before the start of polymerization, or a monomer (mixture) used. Any method, such as the method of dropping, is preferable to the method of dropping as described above in terms of polymer qualitative properties and storage stability of the acrylic sol. The latex used in the form 4 contains the acrylic polymer 形态 or (11) of the form 4, Same as Form 1, Form 2, or Form 3. In Form 4, the method for obtaining a propionic acid polymer powder from latex, or the method for obtaining an acrylic sol from the acrylic polymer powder and a plasticizer is the same as Form 1. The same method as in Form 2 or Form 3. When the foamed product is produced using the acrylic sol of Form 4, generally, a foamed product with excellent uniformity in the foamed state can be produced. It is produced using a propionic acid sol The method of foaming is to mechanically mix bubbles in an acrylic sol to form a foaming sol and gel the substance (mechanical foaming method). A microcapsule-type microencapsulated hair is encapsulated in a microcapsule. A method in which a foaming agent is mixed with an acrylic sol and gelled, a method in which a thermally decomposable foaming agent that generates a gas at a high temperature is mixed in an acrylic sol and gelated, and the like. A method using a thermally decomposable foaming agent is preferred. When using a thermally decomposable foaming agent, an acrylic sol containing the above-mentioned acrylic polymer powder, a plasticizer, and a thermally decomposable foaming agent is prepared, and the substance is borrowed. Foaming is formed by heating to form a foamed molded article (foamed body). The thermally decomposable foaming agent 45-1240742 can use a conventional thermally decomposable foaming agent, and is not particularly limited. Specific examples include azodicarboxylic acid 醯Amine, 4,4'-bis (benzenesulfenylhydrazine), p-tosylsulfenylhydrazine, azobisisobutyronitrile, azodiaminobenzene, azohexahydrobenzodinitrile, barium Azodicarboxylate, N, N '-Dinitrosopentamethyl tetramine, N, N'-dinitro-N, N'-dimethyl terephthalamide, t-butylaminonitrile, p-toluenesulfonyl Inorganic thermal decomposition type foaming agents such as acetone. These can be used individually or in combination of two or more. Among these thermal decomposition type foaming agents, azo is used for ease of handling and large gas generation. The di-residual acid ammonium-based thermally decomposable foaming agent is preferred. The addition amount of the thermally decomposable foaming agent is the foaming ratio (specific gravity) of the foam or foam layer, the foam or the laminate, depending on the purpose. Uses, the amount of gas generated by the foaming agent, etc. vary, usually 0 to 100 parts by mass of acrylic sol. 05 ~ 30 parts by mass are better, and the better is 0. 1 to 20 parts by mass. Furthermore, in the case where the foam is produced by using the above thermally decomposable foaming agent in the aspect 4, in order to smoothly foam and obtain a foam having more uniform and fine bubbles, a foaming aid may be used. As the foaming auxiliary agent, a conventional foaming auxiliary agent can be used for each thermally decomposable foaming agent. For example, azo-based foaming agents, sodium bicarbonate, metal carbonates such as carboxylic acid salts, calcium carbonate, etc., metal oxides such as silicon dioxide, alumina, and minerals such as talc, etc. For the foaming aid, for example, a urea-based compound, an organic acid or the like can be used as a foaming aid for N, N′-dinitropentamethyltetramine. The other components (such as fillers, diluents, various additives, etc.) contained in the acrylic sol of the aspect 4 and the solid content of the acrylic sol may be the same as those of the aspect 1, the aspect 2, or the aspect 3. '46 -1240742 The method for forming a molded article using the acrylic sol of the form 4 is the same as that of the form 1, the form 2, or the form 3. Furthermore, using the acrylic sol of the form 4 and the conventional foaming sol molding method, the acrylic foam was obtained. For example, in order to obtain a sheet-like foam, an acrylic sol containing a conventionally suitable foaming agent is formed to a suitable thickness (for example, a thickness of about 0. 5 mm) after being coated on the polyester film, it is heated and melted at a temperature of about 140 ° C for 5 minutes and at a temperature above the foaming temperature of the foaming agent for about 10 minutes. When describing the effects of the fourth aspect described above, the fourth aspect has the following effects in addition to the effects of the first aspect, the second aspect, or the third aspect. In other words, the acrylic sol obtained by mixing the acrylic polymer powder of the form 4 with a plasticizer is excellent in storage stability and foamability. In addition, unlike the molded product obtained from ethylene chloride, hydrogen chloride gas is not generated during burning. 5 Form 5 (Mixed Latex 1) Next, Form 5 will be described. Form 5 is characterized in that it is a latex each containing two specific different acrylic polymer particles. In other words, form 5 is a molded article characterized by the latex used The latex containing the same polymer (II_a) as the polymer (II_a) in the previous stage containing the acrylic polymer particles (II) in any of the forms i to 3 And latex ethacrylic polymer particles (II-a) / acrylic polymer particles (including acrylic polymer particles (1-1) contained in any of the forms 1 to 3) μ) Mass ratio = 5/95 ~ 4〇 / 6〇 In addition to the latex obtained by mixing, the acrylic polymer powder in any of the forms 1 to 3, the acrylic polymer powder and the acrylic sol of a plasticizer , 4 7-1240742, and a molded article obtained from the acrylic sol. More specifically, the acrylic polymer powder of Form 5 is a polymer made of a latex containing acrylic polymer particles (Π-a) and an acrylic polymer. The acrylic resin particles (1-1) are mixed with acrylic polymer particles (II-a) / acrylic polymer particles (1-1) in a mass ratio of 5/95 to 40/60, and the acrylic resin is solidified and dried. Polymer powder, (i) acrylic polymer particles (ΙΙ-a) is composed of 50 ~ 99. 99% by mass of alkyl acrylate units, 49. 99% by mass of other monofunctional monomer units that can be copolymerized with alkyl acrylate and 0 · 0 1 ~ 1 0% by mass of multifunctional monomer units are formed by one step or different monomer compositions. (Ii) Acrylic polymer particles (1-1) are copolymer particles formed by polymerization at or above stages, and are obtained by forming a multi-stage polymer (I_b) in a latex containing a previous stage polymer (1-1-a). Multi-stage polymer particles, the pre-stage polymer (I -1-a) contains at least 20% by mass to 50% by mass of methyl methacrylate units in the outermost layer. Copolymers formed by different consecutive two or more stages of polymerization. The polymer (Ib) in the latter stage is a continuous two or more stages of polymerization that contains 50% by mass of methyl methacrylate units and differs from each other by one stage or monomer composition. The polymer formed is acrylic polymer particles having an agglomerate ratio of the first stage polymer (I-1_a) / post stage polymer (I_b) of 5/95 to 9δ / 5, and an acrylic polymer powder. Moreover, the proportion of the outermost outer layer of methyl methacrylate constituting the pre-stage polymer (丨 _;! _ A) is the same as that of the pre-stage polymer (Ia) in any of the forms 1, 2, or 3 The proportion of methyl acrylate units is the same. -48- 1240742 Acrylic polymer particles of form 5 (11_4 series are the same as the polymer (II-a) before the acrylic polymer particles (11) in form 1, form 2 or form 3, so they are prepared the same.) For polymers of acrylic polymer particles (Π-a), the glass transition temperature (Tg) is preferably below 50 ° C. When the Tg is below 50 ° C, a plasticizer can be obtained after the film is formed without seeping out of the film Acrylic sol on the surface of the film. The average particle diameter (primary particle diameter) of the acrylic polymer particles (II-a) is not particularly limited, and it is 0 · 〇1 ~; [〇μιη is better, and more preferably 〇 · 〇5〜1 μηι. The average particle size is 0. When it is more than 01 μm, the acrylic polymer particles (1 to 1) can be improved in dispersibility, and the surface of the formed film is excellent in smoothness. Form 5 acrylic polymer particles (1_1} pre-stage polymer οι-a) ′ Only with form 1, form 2 or 50% by mass of methyl methacrylate in the outermost layer The polymer (Ia) in the previous stage in any of the forms in 3 is different (the unit of methyl methacrylate in the polymer (I_a) in the previous stage is 5% to 50% by mass). The above-mentioned post-stage polymer (I-b) is the same as the post-stage polymer (I_b) of any of the forms 1, 2, and 3. However, the acrylic polymer particles (〖_〗) in the form 5 include the acrylic polymer particles in any of the forms 1, 2, and 3. The unit of methyl methacrylate in the outermost layer of the stage polymer (1-1-a) must be 20% by mass to 50% by mass, preferably 30% by mass to 50% by mass, and the best It is 35 to 50 mass%. When the unit of methyl methacrylate in the outermost layer of the polymerized polymer (B1-a) in the previous stage is less than 20% by mass, the latex containing the acrylic polymer particles of Form 5 is solidified and dried, and the polymer containing propionic acid is polymerized. The strength of the film formed by the acrylic sol of plastic powder and plasticizer is reduced by 49 to 1240742 degrees, so it is not desirable. When the methyl methacrylate unit is 50% by mass or more, the exudation resistance of the film surface is reduced, so it is not desirable. . The polymer at the previous stage (I-1-a) is composed of the methyl methacrylate unit and other monomers that can be copolymerized with methyl methacrylate. The "units copolymerizable with methyl methacrylate" in the constituent units of the polymer (Ia) in the previous stage in any of 2 or 3 are the same. The particle size (primary particle size) of the acrylic polymer particles (I -1) is not particularly limited. It is preferably 0.15 to 30 μm, and more preferably 0. 15 to 2 μm. When the particle diameter is in the above range, the acrylic polymer particles have good dispersibility and can improve the surface smoothness of the formed film. In the acrylic polymer powder according to the aspect 5, a latex containing acrylic polymer particles (II_a) and a latex containing acrylic polymer particles (1-; [) are mixed in a latex state, and the resultant is solidified and dried. Compared with the acrylic polymer powder formed by mixing two kinds of acrylic polymer powders obtained from various latexes, the acrylic polymer powder of form 5 has the advantage of uniform mixing state, and the dispersibility of the obtained acrylic sol is improved. And storage stability has been improved. The mixing ratio of the two types of latex in the aspect 5, the mass ratio of the acrylic polymer particles (II-a) / acrylic polymer particles (^ 丨) must be 5/95 ~ 4〇 / 60, preferably W95 ~ 3 5/65. When the compounding ratio of the acrylic polymer particles (n-a) is less than 5% by mass, the surface smoothness of the film formed by the poor dispersibility of the acrylic polymer particles (^ 丨) is reduced. Further, when the compounding ratio of the acrylic polymer particles (II-a) is more than 40% by mass, the strength of the film -50 to 1240742 after the film formation is reduced. Other advantages of Sadness 5 include, for example, the production of acrylic polymer particles (II-a) or acrylic polymer particles, the setting and drying of latex containing these, the production of acrylic sols, and the production of molded articles from acrylic sols. With < 1. Form 2 or Form 3 is performed in the same manner. When the effects of the above-mentioned aspect 5 are explained, the aspect 5 has the following effects in addition to the effects of the aspect 1, the shape 2 and the shape 3. In other words, the acrylic acid sol 'obtained by mixing the acrylic polymer powder of the form 5 with a plasticizer is excellent in storage stability. In addition, the molded product obtained from the acrylic acid sol is free of particles, has excellent surface smoothness, and unlike the molded product obtained from chloroethylene, does not generate hydrogen chloride gas upon burning. [Examples] The present invention (Forms 1 to 5) will be described in more detail by reference examples, examples, and comparative examples below, but the present invention is not limited by these. The physical properties of the reference examples, examples, and comparative examples described below were measured or evaluated by the following methods. (1) Pore volume and pore diameter The pore volume and pore diameter were measured using Shimadzu Corporation / Micromeritics autoclave hole 9420. Measuring pressure: 0.5 to 60000Psi (= 3.4475kPa to 41 3.7MPa) (pore diameter 320μιη to 30 angstroms) Method: mercury press-in type

使用定數:試料細胞定數:1 O.Mp/pF、水銀接觸角: 130°水銀表面張力:4.84mN/cm、細胞容積:〇.4mL 1240742 (2) 平均粒徑(一次粒徑及二次粒徑之平均粒徑) 使用堀場製作所致雷射繞射/繞射式粒徑分布測定裝置 LA_ 3 0 0以測定平均粒徑。 (3) 乳膠之固成分濃度 使乳膠一定質量計量(W 1 ),且在1 〇 〇 °C下乾燥3小時且 計量乾燥後之質量(W2)。 (4) 表面張力 使用協和界面科學(股)製FACE自動表面張力計,在23 t下藉由壓製法(白金壓製)測定乳膠之表面張力。 (5) 粒徑比 由使用掃描型電子顯微鏡以3 3 0倍測定的丙烯酸系聚 合物粉末之電子顯微鏡照片任意選擇2 0個沒有被破壞的丙 烯酸系聚合物粉末粒子,測定各粒子之長徑a及短徑b,計 算比a/b,以該平均値作爲粒徑比。 [粒徑比之評估基準] 〇:粒徑比爲1 .2以下,圓度極高。 △:粒徑比爲1.2〜2,圓度高。 X :粒徑比爲2以上,圓度低。 (6) 耐粒子破壞性 實施例及比較例所得的丙烯酸溶膠調製1小時後,使 用BH型黏度計(頓奇梅克(譯音)公司製)之滾筒No.6,回轉 數4rpm,在25°C下測定丙烯酸溶膠的黏度(VI)。另外,與 調製上述丙烯酸溶膠所使用者相同,使丙烯酸系聚合物粉 末與可塑劑之混合物使用拉伯拉斯(譯音)磨練機(東洋精機 - 52 - 1240742 製作所公司製)以回轉數lOOrpm混合3分鐘後,以真空乾 燥機脫泡調製丙烯酸溶膠,調製1小時後與上述相同地測 定該丙烯酸溶膠之黏度(V2)。計算VhVl,且以下述評估 基準評估耐粒子破壞性。 [耐粒子破壞性之評估基準] 〇:V2/V1小於2時,耐粒子破壞性極佳。 △ : V2/V1爲2〜3時,耐粒子破壞性大致上良好。 X : V2/V1爲3以上時,耐粒子破壞性極爲不佳。 (7) 流動性 實施例或比較例所得的丙烯酸溶膠調製1小時後,在 25°C下以BH型黏度計(頓奇梅克公司製)使用滾筒No.6或 Νο·7,以回轉數4rpm及1 Orpm測定黏度(各黏度爲V1及 V3)。計算V3/V1,且以下述評估基準評估溶膠流動性。 [溶膠流動性之評估基準] 〇:V3/V1小於2時,溶膠流動性極佳。 △ : V3/V1爲2〜4時,溶膠流動性大致上良好。 x : V3/V;[爲4以上時,溶膠流動性極爲不佳。 (8) 儲藏安定性 實施例或比較例所得的丙烯酸溶膠調製1小時後2 5 °C 之黏度(初期黏度)爲VI及使該丙烯酸溶膠在4(rc下放置5 日後25°C之黏度爲V4,以BH型黏度計(頓奇梅克公司製) 使用滾筒Νο·6或Νο·7,以回轉數4rpm測定黏度。計算 V4/V1,且以下述評估基準評估溶膠流動性。 [儲藏安定性之評估基準] 一 53 - 1240742 〇:V4/V 1小於2時,儲藏安定性極佳。 △ : V4/V1爲2〜3時,儲藏安定性大致上良好。 X : V4/V1爲3以上時,儲藏安定性極爲不佳。 (9) 耐滲出性 由實施例或比較例所得丙烯酸溶膠,使用壓縮成形機, 在150°C下形成厚度1mm之片板後,在25 °C下保持I週後 以目視觀察該皮膜表面上可塑劑之滲出狀態,且以下述評 估基準評估耐滲出性。 [耐滲出性之評估基準] 〇:沒有可塑劑之滲出情形。 X :有可塑劑之滲出情形。 (10) 硬度 由實施例或比較例所得丙烯酸溶膠,使用壓縮成形機, 在150°C下形成厚度3mm之片板後,以JISK625 3爲基準, 使用A型硬度計(高分子計器股份有限公司製)測定硬度。 (1 1)拉伸強度及拉伸度 由實施例或比較例所得丙烯酸溶膠,使用壓縮成形機, 在l5〇°C下形成厚度1mm之片板後,使用壓熱鍋 AG-2000B(島津製作所製),以JISK6723爲基準測定拉伸強度 及拉伸度。 (12)發泡性 使實施例或比較例所得的丙烯酸溶膠以厚度1 mm塗覆 於厚度50 μιη之聚酯薄膜上,在140 °C下加熱5分鐘以作成 片板,使該片板在1 5 0 °C下加熱1 0分鐘以作成片板狀發泡 一 54- 1240742 體。該發泡體之發泡狀態以目視觀察,且以下述之評估基 準評估發泡性。 [發泡性之評估基準] 實施例或比較例所得的丙烯酸溶膠調製1小時後,在 25t下以BH型黏度計(頓奇梅克公司製)使用滾筒No. 6或 Νο·7,以回轉數4rpm及1 0rpm測定黏度(各黏度爲V 1及 V3)。計算V3/V1,且以下述評估基準評估溶膠流動性。 [溶膠流動性之評估基準] 〇:均勻發泡。 △:沒有均勻發泡處係爲沒有均勻發泡的部分。 X :因發泡使片板受到破壞。 有關下述之參考例、實施例及比較例中使用的化合物 之簡稱及其意如下所述。 MMA(甲基丙烯酸甲酯)、iBMA(甲基丙烯酸異丁酯)、 CHMA(甲基丙烯酸環己酯)、2HEMA(甲基丙烯酸-2-羥基乙 酯)、BA(丙烯酸正丁酯)、MAA(甲基丙烯酸)、ALMA (烯丙 基甲基丙烯酸酯)、PEG9G (聚乙二醇#4 00二甲基丙烯酸酯)、 n〇M(正辛基硫醇)、KPS(過硫酸鉀)、HS10(壬基丙醯基苯酚 環氧乙烷10莫耳加成物硫酸銨鹽)、ΚΗ0 5 (聚環氧乙烷- l-(烯 丙氧基甲基)烷醚硫酸銨鹽)、DIN P(二異壬基酞酸酯)、 RDP(間苯二酚雙二苯基磷酸酯)、3NEX(聚環氧乙烷十三烷 醚醋酸鈉;商品名;ECT-3NEX、日本洒法谷坦頓(譯音)工 業(股)製)、130K(聚環氧乙烷月桂醚;商品名:耶馬魯肯 130Κ、花王(股)製)。 -55 - 1240742 另外,下述參考例、實施例及比較例中使用的「份」 係表不質量份。 參考例1 丙烯酸系聚合物粒子(1-1)之製造 (1) 在具備攪拌機、溫度計、氮氣導入部、單體導入管 及回流冷卻器之反應器中加入2700質量份脫離子水、0.045 質量份月桂基硫酸鹽及1 . 8質量份碳酸鈉,使容器以氮氣 充分取代,實質上爲無氧狀態下,使內溫設定爲“^。因 此’投入0.18質量份KPS,攪拌5分鐘後,在15分鐘連 續滴入供應90質量份由5質量%MMA及95質量%iBMA所 成混合物與0.009質量份n0M所成的混合物,添加完成後 另進行聚合反應3 0分鐘直至聚合物爲9 8 %以上爲止。 (2) 然後,在同一反應器內投入0.63質量份KPS,攪拌 5分鐘後,在50分鐘內連續滴入供應由630質量份由39質 量 %MMA、60 質量。/oiBMA、0.5 質量 %MAA 及 0.5 質量 %KH05(反應性界面活性劑)所成混合物與0.063質量份nOM 所成混合物,添加完成後進行聚合反應3 0分鐘直至聚合率 爲98%以上爲止。 (3) 然後,在同一反應器中投入〇·36質量份KPS,攪拌 5分鐘後,在30分鐘內連續滴入供應由360質量份由58.5 質量%MMA、40質量%iBMA、0·5質量%MAA及1.0質量 %KH05(反應性界面活性劑)所成混合物與0.03 6質量份n0M 所成混合物,添加完成後進行聚合反應3 0分鐘直至聚合率 爲9 8 %以上爲止。 一 5 6 - 1240742 (4)然後,在同一反應器中投入0·72質量份KPS,攪拌 5分鐘後,在120分鐘內連續滴入供應由720質量份由64 質量%MMA、30質量%iBMA、2.5質量%MAA、2.5質量 %2HEMA及1.0質量%反110 5(反應性界面活性劑)所成混合物 與0.072質量份n〇M所成混合物,添加完成後進行聚合反 應60分鐘直至聚合率爲98 %以上爲止,製得含丙烯酸系聚 合粒子(I -1 )之乳膠。該丙烯酸系聚合粒子之平均粒徑爲 0·80μπι,標準偏差爲〇·21μιη,且該乳膠之固成分濃度物 0.40。 參考例2 丙烯酸系聚合粒子(1-2)之製造 除第1段聚合〜第4聚合中單體混合物之組成如表〗(參 考例2)所示外,與參考例1相周地進行操作,製得含丙烯 酸系聚合物粒子(1-2)之乳膠。該丙烯酸系聚合粒子之平均 粒徑爲〇·8 1μπι,標準偏差爲0·22μπι,且該乳膠之固成分濃 度物0.4 0。 參考例3 丙烯酸系聚合粒子(1-3)之製造 除第1段聚合〜第4段聚合中單體混合物之組成如表 1(參考例3)所示外,與參考例1相同地進行操作,製得含 丙烯酸系聚合物粒子(1-3)之乳膠。該丙烯酸系聚合粒子之 平均粒徑爲〇·77μιη,標準偏差爲〇·2 4 μπι,且該乳膠之固成 分濃度物〇·4〇。 參考例 - 57 - Ϊ240742 丙烯酸系聚合粒子(I_ 4)之製造 除第1段聚合〜第4段聚合中單體混合物之組成如表 1 (參考例4)所示外,與參考例1相同地進行操作,製得含 Η烯酸系聚合物粒子(1_4)之乳膠。該丙烯酸系聚合粒子之 平均粒徑爲0·77μιη,標準偏差爲0·22μηι,且該乳膠之固成 分濃度物0.4 〇。 參考例^ 丙烯酸系聚合粒子(1-5)之製造 除第1段聚合〜第4段聚合中單體混合物之組成如表 1 (參考例5)所示外,與參考例1相同地進行操作,製得含 丙烯酸系聚合物粒子(1-5)之乳膠。該丙烯酸系聚合粒子之 平均粒徑爲0.79μιη,標準偏差爲0·23μιη,且該乳膠之固成 分濃度物0.4 0。 參考例6 丙烯酸系聚合粒子(1-6)之製造 除第1段聚合〜第4段聚合中單體混合物之組成如表 1 (參考例6)所示外,與參考例1相同地進行操作,製得含 丙烯酸系聚合物粒子(1_ 6)之乳膠。該丙烯酸系聚合粒子之 平均粒徑爲0·79μιη,標準偏差爲〇·23μιη,且該乳膠之固成 分濃度物0.4 0。 參考例7 丙烯酸系聚合物粒子(II-1)之製造 (1)在具備攪拌機、溫度計、氮氣導入部、單體導入管 及回流冷卻器之反應器中加入2700質量份脫離子水、〇.〇9 -58 一 1240742 質量份月桂基硫酸鹽及1 . 8質量份碳酸鈉,使容器以氮氣 充分取代,實質上爲無氧狀態下,使內溫設定爲80 °C。因 此,投入0.36質量份KPS,攪拌5分鐘後,在90分鐘連 續滴入供應3 6 0質量份由30質量%MMA及69.9質量%BA、 0·05質量%PEG及0.05質量%人乙1^八所成的混合物,添加 完成後另進行聚合反應30分鐘直至聚合物爲98%以上爲 止。 (2)然後,在同一反應器中投入0.72質量份KPS,攪拌 5分鐘後,在180分鐘內連續滴入供應由1440質量份由93.5 質量%MMA、5質量%iBMA、1質量%MAA及 0.5質量 %HS 10 (反應性界面活性劑)所成混合物,添加完成後進行聚 合反應60分鐘直至聚合率爲98 %以上爲止,製得含丙烯酸 系聚合粒子(II-1)之乳膠。該丙烯酸系聚合粒子之平均粒徑 爲0·67μιη,標準偏差爲〇·19μιη,且該乳膠之固成分濃度物 0.40。 參考例8 丙烯酸系聚合粒子(ΙΙ-2)之製造 除第1段聚合〜第2段聚合中單體混合物之組成如表 1 (參考例8)所示,使第1段聚合之月桂基硫酸鈉及KPS之 使用里各爲〇 · 1 8質星份及0 · 2 7質量份,使單體混合物之滴 入時間爲7〇分鐘,第2段聚合之KPS之使用量爲0.77質 量份,使單體混合物之滴入時間爲2 0 0分外,與參考例7 相同地進行操作,製得含丙烯酸系聚合物粒子(11_2)之乳 膠。該丙嫌酸系聚合粒子之平均粒徑爲〇.42μηι,標準偏差 -59 - 1240742 爲〇·16μηι ’且該乳膠之固成分濃度物〇 4〇。 參考例g_ 丙烯酸系聚合粒子(Π-3)之製造 除第1段聚合〜第2段聚合中單體混合物之組成如表 1(參考例9)所示,使第1段聚合之月桂基硫酸鈉及KPS之 使用量各爲〇·27質量份及0.18質量份,使單體混合物之滴 入時間爲60分鐘,第2段聚合之KPS之使用量爲〇.81質 β份’使單體混合物之滴入時間爲2 4 0分鐘外,與參考例7 相同地進行操作,製得含丙烯酸系聚合物粒子(π-3)之乳 膠。該丙嫌酸系聚合粒子之平均粒徑爲〇·32μιη,標準偏差 爲〇·12μηι,且該乳膠之固成分濃度物〇.4〇。 參考例1 0_ 丙烯酸系聚合粒子(II-4)之製造 除第1段聚合〜第2段聚合中單體混合物之組成如表 1(參考例10)所示,使第1段聚合之月桂基硫酸鈉及KPS之 使用量各爲0 · 3 6質量份及〇 · 9質量份,使單體混合物之滴 入時間爲180分鐘,第2段聚合之Kps之使用量爲ο』質 4份’使單體混合物之滴入時間爲240分中外,與參考例7 相同地進行操作,製得含丙烯酸系聚合物粒子(11_4)之乳 膠。該丙嫌酸系聚合粒子之平均粒徑爲0·2〇μιη,標準偏差 爲0·09μιη ’且該乳膠之固成分濃度物ο."。 參考例1 1 丙稀酸系聚合粒子(11_ 5)之製造 除第1段聚合〜第2段聚合中單體混合物之組成如表 一 60 一 1240742 1 (參考例1 1)所示外,與參考例7相同地進行操作,製得含 丙烯酸系聚合物粒子(11 - 5 )之乳膠。該丙烯酸系聚合粒子之 平均粒徑爲〇.68μχη,標準偏差爲〇.18μιη’且該乳膠之固成 分濃度物〇 . 4 0。 參考例1 2 丙烯酸系聚合粒子(ΙΙ-6)之製造 除第1段聚合〜第2段聚合中單體混合物之組成如表 1 (參考例1 2)所示外,與參考例7相同地進行操作,製得含 丙烯酸系聚合物粒子(II-6)之乳膠。該丙烯酸系聚合粒子之 平均粒徑爲〇·69μιη,標準偏差爲0·20μιη,且該乳膠之固成 分濃度物〇 . 4 0。 參考例1 3 丙烯酸系聚合粒子(ΙΙ-7)之製造 除第1段聚合〜第2段聚合中單體混合物之組成如表 1 (參考例1 3 )所示外,與參考例7相同地進行操作,製得含 丙烯酸系聚合物粒子(II-13)之乳膠。該丙烯酸系聚合粒子 之平均粒徑爲0·70μιη,標準偏差爲0·20μιη,且該乳膠之固 成分濃度物0.40。 實施例1 在參考例1所得含丙烯酸系聚合物粒子(I -1 )之乳膠 中’對1 00質量份乳膠中之丙烯酸系聚合物粒子而言添加2 質量份十二烷基苯磺酸鈉及〇·2質量份聚丙烯酸鈉(愛龍(譯 音)A-2 0ML、東亞合成股份有限公司製、聚合度5 00〜 1 〇〇〇) ’充分攪拌且沒有不溶物。測定所得乳膠之表面張力。 1240742 使該乳膠使用噴霧乾燥器[L-8型、大川原化工機(股)製], 在噴霧壓〇.15MPa、熱風入口溫度120°C、熱風出口溫度67 °C、乳膠添加量2kg/hr之條件下粉體化,製得丙烯酸系聚 合物粉末(A - 1 )。使該粉末以掃描型電子顯微鏡觀察的結 果,使1 μπι以下聚合物粒子凝聚,且形成約3〇μητι之p粉 末。該粉末之各種物性以上述方法測定且評估。在;[〇〇質 惠份該粉末(Α-1)中加入1〇〇質量份DINP,使用巴伯布哈 斯(譯音)磨練機(東洋精機製作所製),以回轉數l〇rpm混合 3分鐘後,以真空乾燥機脫泡以調製丙烯酸溶膠。該丙烯酸 溶膠及由其所得的片板之各種物性(除發泡性外)以上述方 法進行測定及評估。而且,對1〇〇質量份該粉末(Ad)而言 加入100質量份DINP及5質量份偶氮二羧酸醯胺(商品名: 優尼弗姆(譯音)AZM-1、大塚化學),以拉伯布拉斯磨練機(東 洋精機製作所製)混合後,脫氣以調製丙烯酸溶膠,使由該 丙结酸溶膠所得片板之發泡性以上述方法評估。 實施例2 除沒有使用作爲表面張力調整劑之十二烷基苯磺酸 鈉I、使用0·2質量份聚苯乙烯磺酸鈉(聚那斯(譯音)ps_5、 東索(g睾音)(股)製、重量平均分子量5〇,〇〇〇〜1〇〇,〇〇〇)取代 0 · 2質量份作爲水溶性高分子之聚丙烯酸鈉外,與實施例1 相同地操作製得丙烯酸系聚合物粉末(A-2)。而且,除各丙 嫌酸系聚合物粉末(A-2)取代丙烯酸系聚合物粉末(Ad )外, 與實施例1相同地進行操作以調製2種丙烯酸溶膠。各種 物性測定或評估與實施例1相同地進行。 - 62- 1240742 實施例3Fixed number used: Sample cell fixed number: 1 O.Mp/pF, mercury contact angle: 130 ° Mercury surface tension: 4.84mN / cm, cell volume: 0.4mL 1240742 (2) average particle size (primary particle size and two The average particle diameter of the secondary particle diameter) The laser diffraction / diffraction particle size distribution measuring device LA_300 by Horiba was used to measure the average particle diameter. (3) Solid content concentration of the latex Make the latex a certain mass (W 1), and dry it at 1000 ° C for 3 hours, and measure the mass (W2) after drying. (4) Surface tension The surface tension of the latex was measured by a pressing method (platinum pressing) at 23 t using a FACE automatic surface tensiometer manufactured by Kyowa Interface Science Co., Ltd. (5) The particle size ratio is determined from an electron microscope photograph of an acrylic polymer powder measured at 330 times using a scanning electron microscope. Twenty acrylic polymer powder particles that are not damaged are arbitrarily selected, and the major diameter of each particle is measured. a and short diameter b, the ratio a / b is calculated, and this average 値 is used as a particle diameter ratio. [Evaluation criteria for particle size ratio]: The particle size ratio is 1.2 or less, and the roundness is extremely high. △: The particle diameter ratio is 1.2 to 2, and the roundness is high. X: The particle diameter ratio is 2 or more, and the roundness is low. (6) After the acrylic sols obtained in the Examples and Comparative Examples for resistance to particle destruction were prepared for one hour, a roller No. 6 of a BH viscometer (made by Dungemeck) was used, and the number of revolutions was 4 rpm at 25 °. The viscosity (VI) of the acrylic sol was measured at C. In addition, as for the user who prepared the acrylic sol, a mixture of acrylic polymer powder and plasticizer was mixed using a Labraser mill (manufactured by Toyo Seiki-52-1240742 Seisakusho) at a number of revolutions of 100 rpm. After 3 minutes, the acrylic sol was defoamed with a vacuum dryer to prepare an acrylic sol. After the preparation, the viscosity (V2) of the acrylic sol was measured in the same manner as described above. VhVl was calculated, and the particle destruction resistance was evaluated using the evaluation criteria described below. [Evaluation criteria for particle destruction resistance] ○: When V2 / V1 is less than 2, the particle destruction resistance is excellent. △: When V2 / V1 is 2 to 3, the particle destruction resistance is generally good. X: When V2 / V1 is 3 or more, the particle destruction resistance is extremely poor. (7) After the acrylic sol obtained in the fluidity example or the comparative example was prepared for one hour, a roller No. 6 or No. 7 was used at 25 ° C with a BH-type viscosity meter (manufactured by Tonchimec), and the number of revolutions Viscosity was measured at 4 rpm and 10 rpm (each viscosity was V1 and V3). V3 / V1 was calculated, and the sol fluidity was evaluated using the following evaluation criteria. [Evaluation criteria of sol fluidity] ○: When V3 / V1 is less than 2, the sol fluidity is excellent. Δ: When V3 / V1 is 2 to 4, the sol fluidity is generally good. x: V3 / V; [When it is 4 or more, the sol fluidity is extremely poor. (8) The viscosity (initial viscosity) of the acrylic sol obtained at the storage stability example or comparative example at 25 ° C after one hour of preparation is VI and the viscosity of the acrylic sol at 25 ° C after being stored at 4 ° C for 5 days is V4, using a BH-type viscometer (manufactured by Tonchimec). Viscosity was measured at 4 rpm using a roller No. 6 or No. 7. V4 / V1 was calculated and the sol fluidity was evaluated according to the following evaluation criteria. [Storage stability Evaluation Criteria]-53-1240742 〇: When V4 / V 1 is less than 2, the storage stability is excellent. △: When V4 / V1 is 2 to 3, the storage stability is generally good. X: V4 / V1 is 3 In the above cases, the storage stability is extremely poor. (9) Exudation resistance The acrylic sols obtained from the examples or comparative examples were formed into a sheet with a thickness of 1 mm at 150 ° C using a compression molding machine, and then maintained at 25 ° C. After 1 week, the exudation state of the plasticizer on the surface of the film was visually observed, and the exudation resistance was evaluated according to the following evaluation criteria. [Evaluation standard for exudation resistance] 〇: No exudation of the plasticizer. X: Exudation of the plasticizer (10) Acrylic hardness obtained from Examples or Comparative Examples After using a compression molding machine to form a sheet with a thickness of 3 mm at 150 ° C, the hardness was measured using an A-type hardness tester (manufactured by Polymer Meter Co., Ltd.) based on JISK625 3. (1 1) Tensile strength And elongation: Acrylic sols obtained from the examples or comparative examples were formed into a sheet with a thickness of 1 mm at 150 ° C using a compression molding machine, and then an autoclave AG-2000B (manufactured by Shimadzu Corporation) was used, based on JISK6723. Measure the tensile strength and elongation. (12) Foamability The acrylic sol obtained in the example or the comparative example was coated with a thickness of 1 mm on a polyester film having a thickness of 50 μm, and heated at 140 ° C for 5 minutes to A sheet was made, and the sheet was heated at 150 ° C for 10 minutes to make a sheet-like foamed body of 54-1240742. The foamed state of the foamed body was visually observed, and the following evaluation criteria were used. Evaluation of foamability [Evaluation criteria for foamability] After preparing the acrylic sols obtained in the examples or comparative examples for one hour, a roller No. 6 or No was used with a BH-type viscometer (manufactured by Tonchimec) at 25t. · 7, Viscosity is measured at 4rpm and 10rpm (each viscosity V1 and V3). Calculate V3 / V1 and evaluate the sol fluidity according to the following evaluation criteria. [Evaluation criteria for sol fluidity] 〇: Uniform foaming. △: The part where there is no uniform foaming is the part without uniform foaming. X: The sheet is damaged due to foaming. The abbreviations and meanings of the compounds used in the following reference examples, examples, and comparative examples are as follows. MMA (methyl methacrylate), iBMA (methyl Isobutyl acrylate), CHMA (cyclohexyl methacrylate), 2HEMA (-2-hydroxyethyl methacrylate), BA (n-butyl acrylate), MAA (methacrylic acid), ALMA (allyl methyl Acrylate), PEG9G (polyethylene glycol # 4 00 dimethacrylate), nOM (n-octyl mercaptan), KPS (potassium persulfate), HS10 (nonylpropionyl phenol ethoxylate) 10 mol adduct ammonium sulfate), K) 0 5 (polyethylene oxide-l- (allyloxymethyl) alkyl ether ammonium sulfate), DIN P (diisononyl phthalate), RDP (resorcinol bisdiphenyl phosphate), 3NEX (polyethylene oxide tridecyl ether sodium acetate; trade name; ECT-3NEX, Japanese Safagu Tanton (transliteration Industrial (shares), Ltd.), 130K (polyoxyethylene lauryl ether; trade name: Jemma Lucan 130Κ, Kao (shares) Ltd.). -55-1240742 The "parts" used in the following reference examples, examples, and comparative examples are parts by mass. Reference Example 1 Production of acrylic polymer particles (1-1) (1) In a reactor equipped with a stirrer, a thermometer, a nitrogen introduction part, a monomer introduction tube, and a reflux cooler, 2700 parts by mass of deionized water and 0.045 parts were added. Parts of lauryl sulfate and 1.8 parts by mass of sodium carbonate, the container was fully replaced with nitrogen, and the internal temperature was set to "^ in a substantially anaerobic state. Therefore, 0.18 parts by mass of KPS was put in, and stirred for 5 minutes, 90 minutes by mass of a mixture of 5% by mass of MMA and 95% by mass of iBMA and 0.009% by mass of n0M were continuously added dropwise over 15 minutes. After completion of the addition, a polymerization reaction was performed for 30 minutes until the polymer was 98%. (2) Then, put 0.63 parts by mass of KPS in the same reactor, and after stirring for 5 minutes, continuously drop in and supply from 630 parts by mass to 39% by mass MMA, 60 parts by mass within 50 minutes. / OiBMA, 0.5 part by mass % MAA and 0.5% by mass of KH05 (reactive surfactant) and 0.063 parts by mass of nOM, after the addition is completed, the polymerization reaction is performed for 30 minutes until the polymerization rate is 98% or more. (3) Then, 0.36 parts by mass of KPS was put into the same reactor, and after stirring for 5 minutes, continuous dropwise supply was performed within 30 minutes from 360 parts by mass of 58.5 mass% MMA, 40 mass% iBMA, 0.5 mass% MAA, and 1.0 mass% The mixture of KH05 (reactive surfactant) and 0.03 6 parts by mass of n0M was added, and the polymerization reaction was completed for 30 minutes until the polymerization rate was 98% or more. 5-6-1240742 (4) Then, Put 0.72 parts by mass of KPS into the same reactor, and after stirring for 5 minutes, continuously drop in and supply over 720 parts by mass from 720 parts by mass of 64% by mass MMA, 30% by mass iBMA, 2.5% by mass MAA, and 2.5% by mass 2HEMA And a mixture of 1.0% by mass of anti-110 5 (reactive surfactant) and 0.072% by mass of nOM. After completion of the addition, a polymerization reaction was performed for 60 minutes until the polymerization rate was 98% or more, and an acrylic-containing system was obtained. Latex of polymer particles (I -1). The average particle size of the acrylic polymer particles is 0.80 μm, the standard deviation is 0.21 μm, and the solid content concentration of the latex is 0.40. Reference Example 2 Acrylic polymer particles (1 -2) manufacturing except The composition of the monomer mixture in the first stage polymerization to the fourth polymerization is as shown in Table (Reference Example 2), and the same operation as in Reference Example 1 was performed to prepare acrylic polymer particles (1-2) containing Latex: The average particle size of the acrylic polymer particles is 0.81 μm, the standard deviation is 0.22 μm, and the solid content concentration of the latex is 0.40. Reference Example 3 Production of acrylic polymer particles (1-3) The same operation as in Reference Example 1 was performed except that the composition of the monomer mixture in the first stage polymerization to the fourth stage polymerization was shown in Table 1 (Reference Example 3). A latex containing acrylic polymer particles (1-3) was prepared. The average particle size of the acrylic polymer particles was 0.77 μm, the standard deviation was 0.24 μm, and the solid content concentration of the latex was 0.4. Reference Example-57-Ϊ240742 Production of acrylic polymer particles (I_ 4) The same as Reference Example 1 except that the composition of the monomer mixture in the first stage polymerization to the fourth stage polymerization is shown in Table 1 (Reference Example 4). The operation was carried out to obtain a latex containing a pinenoic acid-based polymer particle (1-4). The average particle diameter of the acrylic polymer particles was 0.77 μm, the standard deviation was 0.22 μm, and the solid content concentration of the latex was 0.4. Reference Example ^ Production of acrylic polymer particles (1-5) Except that the composition of the monomer mixture in the first stage polymerization to the fourth stage polymerization is shown in Table 1 (Reference Example 5), the operation was performed in the same manner as in Reference Example 1. A latex containing acrylic polymer particles (1-5) was prepared. The average particle diameter of the acrylic polymer particles was 0.79 µm, the standard deviation was 0.23 µm, and the solid content concentration of the latex was 0.40. Reference Example 6 Production of acrylic polymer particles (1-6) Except for the composition of the monomer mixture in the first-stage polymerization to the fourth-stage polymerization, as shown in Table 1 (Reference Example 6), the operation was performed in the same manner as in Reference Example 1. , To obtain a latex containing acrylic polymer particles (1-6). The average particle diameter of the acrylic polymer particles was 0.79 μm, the standard deviation was 0.23 μm, and the solid content concentration of the latex was 0.40. Reference Example 7 Production of acrylic polymer particles (II-1) (1) In a reactor equipped with a stirrer, a thermometer, a nitrogen introduction part, a monomer introduction tube, and a reflux cooler, 2700 parts by mass of deionized water, 〇9 -58-1240742 parts by mass of lauryl sulfate and 1.8 parts by mass of sodium carbonate, the container is fully replaced with nitrogen, and the internal temperature is set to 80 ° C in a substantially anaerobic state. Therefore, 0.36 parts by mass of KPS was added, and after stirring for 5 minutes, 360 parts by mass of 30% by mass of MMA and 69.9% by mass of BA, 0.05% by mass of PEG, and 0.05% by mass of human B were continuously dropped into 90 minutes. After the completion of the addition, the polymerization reaction was performed for another 30 minutes until the polymer was 98% or more. (2) Then, put 0.72 parts by mass of KPS in the same reactor, and after stirring for 5 minutes, continuously drip in and supply over 180 minutes from 1,440 parts by mass, 93.5% by mass MMA, 5% by mass iBMA, 1% by mass MAA, and 0.5 The mixture of mass% HS 10 (reactive surfactant) was polymerized for 60 minutes after the addition was completed until the polymerization rate was 98% or more, to obtain an emulsion containing acrylic polymer particles (II-1). The average particle diameter of the acrylic polymer particles was 0.67 μm, the standard deviation was 0.19 μm, and the solid content concentration of the latex was 0.40. Reference Example 8 Production of acrylic polymer particles (II-2) Except for the first stage polymerization to the second stage polymerization, the composition of the monomer mixture is shown in Table 1 (Reference Example 8). The first stage polymerization of lauryl sulfuric acid The use of sodium and KPS are each 0.18 parts by mass and 0.27 parts by mass, so that the dripping time of the monomer mixture is 70 minutes, and the amount of KPS polymerized in the second stage is 0.77 parts by mass. Except that the dropping time of the monomer mixture was 200 minutes, the same operation as in Reference Example 7 was performed to obtain an emulsion containing acrylic polymer particles (11_2). The average particle size of the acrylic acid-based polymer particles was 0.42 μm, the standard deviation of -59 to 1240742 was 0.16 μm, and the solid content concentration of the latex was 0.40. Reference example g_ Production of acrylic polymer particles (Π-3) Except for the first stage polymerization to the second stage polymerization, the composition of the monomer mixture is shown in Table 1 (Reference Example 9). The first stage polymerization of lauryl sulfuric acid The amount of sodium and KPS used was 0.27 parts by mass and 0.18 parts by mass, so that the dropping time of the monomer mixture was 60 minutes, and the amount of KPS polymerized in the second stage was 0.81 parts by mass. Except that the dropping time of the mixture was 240 minutes, the same operation as in Reference Example 7 was performed to obtain an emulsion containing acrylic polymer particles (π-3). The average particle size of the acrylic acid-based polymer particles was 0.32 μm, the standard deviation was 0.12 μm, and the solid content concentration of the latex was 0.4. Reference Example 1 0_ Production of acrylic polymer particles (II-4) Except for the first stage polymerization to the second stage polymerization, the composition of the monomer mixture is shown in Table 1 (Reference Example 10). The amount of sodium sulfate and KPS used is 0.36 parts by mass and 0.9 parts by mass respectively, so that the dripping time of the monomer mixture is 180 minutes, and the amount of Kps used in the second stage polymerization is 4 parts by mass. The dripping time of the monomer mixture was 240 minutes, and the same operation as in Reference Example 7 was performed to obtain an emulsion containing acrylic polymer particles (11_4). The average particle size of the acrylic acid-based polymer particles was 0.20 μm, the standard deviation was 0.09 μm, and the solid content concentration of the latex was ο. &Quot;. Reference Example 1 1 Production of acrylic polymer particles (11_5) Except for the composition of the monomer mixture in the first stage polymerization to the second stage polymerization, as shown in Tables 60 to 1240742 1 (Reference Example 1 1), and In the same manner as in Reference Example 7, a latex containing acrylic polymer particles (11-5) was obtained. The average particle size of the acrylic polymer particles was 0.68 μxη, the standard deviation was 0.18 μm 'and the solid content concentration of the latex was 0.4. Reference Example 1 2 Production of acrylic polymer particles (II-6) Except that the composition of the monomer mixture in the first stage polymerization to the second stage polymerization is shown in Table 1 (Reference Example 1 2), it was the same as Reference Example 7 The operation was performed to obtain an emulsion containing acrylic polymer particles (II-6). The average particle size of the acrylic polymer particles was 0.69 μm, the standard deviation was 0.20 μm, and the solid content concentration of the latex was 0.4. Reference Example 1 3 Production of acrylic polymer particles (III-7) Except that the composition of the monomer mixture in the first stage polymerization to the second stage polymerization is shown in Table 1 (Reference Example 1 3), it was the same as Reference Example 7. The operation was performed to prepare an emulsion containing acrylic polymer particles (II-13). The acrylic polymer particles had an average particle diameter of 0.70 μm, a standard deviation of 0.20 μm, and a solid content concentration of the latex of 0.40. Example 1 To the acrylic polymer particles (I -1) -containing latex obtained in Reference Example 1 was added 2 parts by mass of sodium dodecylbenzenesulfonate to 100 parts by mass of the acrylic polymer particles in the latex. And 0.2 parts by mass of sodium polyacrylate (Ailong (Transliteration) A-2 0ML, manufactured by Toa Kosei Co., Ltd., degree of polymerization: 5,000 to 10,000)) 'Stir well without insoluble matter. The surface tension of the obtained latex was measured. 1240742 Use a spray dryer [L-8, manufactured by Ogawara Chemical Industries, Ltd.] to make this latex at a spray pressure of 0.15 MPa, a hot air inlet temperature of 120 ° C, a hot air outlet temperature of 67 ° C, and a latex addition amount of 2 kg / hr. Powdering was performed under the conditions to obtain an acrylic polymer powder (A-1). As a result of observing this powder with a scanning electron microscope, polymer particles of 1 μm or less were aggregated to form a p-powder of about 30 μητι. Various physical properties of the powder were measured and evaluated by the methods described above. 100 parts by mass of DINP was added to [00 parts by mass of this powder (Α-1), and the mixture was mixed at a rotation speed of 10 rpm using a Barber Buchs (Tone) mill (manufactured by Toyo Seiki Seisakusho). After 3 minutes, it was defoamed with a vacuum dryer to prepare an acrylic sol. Various physical properties (except foamability) of the acrylic sol and the sheet obtained from the acrylic sol were measured and evaluated by the methods described above. In addition, 100 parts by mass of DINP and 5 parts by mass of ammonium azodicarboxylate were added to 100 parts by mass of the powder (Ad), (trade name: UNIFEM AZM-1, Otsuka Chemical), After mixing with a lablabraser (manufactured by Toyo Seiki Seisakusho Co., Ltd.), the mixture was degassed to prepare an acrylic sol, and the foamability of the sheet obtained from the acrylic acid sol was evaluated by the method described above. Example 2 Except that sodium dodecylbenzenesulfonate I was not used as a surface tension adjuster, 0.2 parts by mass of sodium polystyrene sulfonate (polynes (transliteration) ps_5, tonso (g test tone) (Weight), weight average molecular weight (50,000-100,000 to 100,000), except that 0.2 parts by mass of sodium polyacrylate was used as a water-soluble polymer, and acrylic acid was obtained in the same manner as in Example 1. Polymer powder (A-2). Furthermore, except that each acrylic polymer powder (A-2) was used in place of the acrylic polymer powder (Ad), the same operation as in Example 1 was performed to prepare two kinds of acrylic sols. Various physical properties were measured or evaluated in the same manner as in Example 1. -62- 1240742 Example 3

物粉末(A-1)外,與 種丙烯酸溶膠。各種物 性測定或評估與實施例1相同地進行。 實施例4 除使用爹考例2所得含丙烯酸系聚合物粒子之乳 膠取代參考例1所得含丙烯酸系聚合物粒子(1_1}之乳膠, 使用3質量份方香族磷酸酯(亞迪卡克魯(譯音)csi4ie、旭 電化工業(股)製)取代2質量份表面張力調整劑之十二烷基 本5貝酸納’使用〇 · 2質量份聚苯乙烯磺酸鈉(聚那斯(譯 音)PS-5、東索(譯音)(股)製、重量平均分子量5〇,〇〇〇〜 1 〇〇,〇0 0)取代0.2質量份作爲水溶性高分子之聚丙烯酸鈉, 使熱風入口溫度以1 0 〇 °c取代1 2 〇 °c,使熱風出口溫度以5 0 °C取代6 7 °C外’與實施例1相同地操作製得丙烯酸系聚合 物粉末(A-4)。而且,除各丙烯酸系聚合物粉末(A_4)取代丙 嫌酸系聚合物粉末(A-1)外,與實施例1相同地進行操作以 調製2種丙烯酸溶膠。各種物性測定或評估與實施例1相 同地進行。 實施例5 除使用參考例3所得含丙烯酸系聚合物粒子(卜3)之乳 1240742 膠取代參考例1所得含丙烯酸系聚合物粒子(Ι_υ之乳膠, 使用1質量份聚環氧乙院烷醚磷酸鉀鹽(耶雷谷頓羅斯頓里 伯(譯苜)F、化王(股)製)取代2質量份表面張力調整劑之十 一 k基苯磺酸鈉,使用0 · 5質量份取代〇. 2質量份作爲水溶 性高分子之聚丙稀酸鈉,使熱風入口溫度以8(rc取代12〇 C,使熱風出口溫度以3 9。(:取代6 7 °C外,與實施例1相同 地操作製得丙烯酸系聚合物粉末(Ad)。而且,除各丙烯酸 系聚合物粉末(A-5)取代丙烯酸系聚合物粉末(A_n外,與實 施例1相同地進行操作以調製2種丙烯酸溶膠。各種物性 測定或評估與實施例1相同地進行。 實施例6 除使用爹考例4所得含丙烯酸系聚合物粒子(1 _ 4)之乳 膠取代爹考例1所得含丙烯酸系聚合物粒子丨)之乳膠, 使用1質量份聚苯乙烯磺酸鈉(聚那斯(譯音)PS_5、東索(譯 音)(股)製、重量平均分子量5〇,〇〇〇〜1〇〇,〇〇〇)取代〇 2質 里份作爲水溶性高分子之聚丙烯酸鈉,使熱風入口溫度以 14〇°C取代12(TC,使熱風出口溫度以82。〇取代67t外,與 實施例1相同地操作製得丙烯酸系聚合物粉末(A_6)。而且, 除各丙烯酸系聚合物粉末(A-6)取代丙烯酸系聚合物粉末(a_ 1)外’與貫施例1相同地進行操作以調製2種丙烯酸溶膠。 各種物性測定或評估與實施例1相同地進行。 實施 在參考例7所得含有丙烯酸系聚合物粒子(II_2)之乳膠 中加入對100質量份乳膠中之丙烯酸系聚合物粒子而言2 -64- 1240742 質量份芳香族磷酸酯(亞迪卡克魯CS141E、旭電化工業(股) 製)及0.2質量份聚丙烯酸鈉(亞龍A-20ML、東亞合成股份 有限公司製、聚合度500〜1000),充分攪拌且確認沒有不 溶物。使該乳膠使用噴霧乾燥機[L-8型、大川原化工機(股) 製]、噴霧壓0.30MPa、熱風入口溫度140°C、熱風出口溫 度80°C、乳膠添加量2.5kg/hr之條件下粉體化,製得丙烯 酸系聚合物粉末(A-7)。使該粉末以掃描型電子顯微鏡觀察 的結果,使1 μπι以下之聚合物粒子凝聚,形成約20 μηι之 粉末。在100質量份該粉末(Α-7)中加入120質量份RPD, 使用拉伯布拉斯頓磨練機(東洋精機製作所公司製)以回轉 述lOrpm混合3 .分鐘後,以真空乾燥機脫泡且調製丙烯酸 溶膠。而且,在100質量份該粉末(A-7)中加入120RPD及 5質量份偶氮二羧酸醯胺(商品名:優尼弗姆(譯音)ΑΖ、Μ-ΐ 、 大 塚化學 ), 以 拉伯布 拉斯頓 磨練機 (東洋 精機製 作所公 司製)混合後,脫氣以調製丙烯酸溶膠。與實施例1相同地 進行各種物性之測定及評估。 實施例8 除沒有使用表面張力調整劑之芳香族憐酸酯,熱風入 口溫度以1 5 0 °C取代1 4 〇。(:,熱風出口溫度以8 5 °C取代8 0 °C 外’進行與貫施例7相同的操作,製得丙烯酸系聚合物粉 末(A-8)。而且,除各使用丙烯酸系聚合物粉末(A_8)取代丙 嫌酸系聚合物(A - 7 )外,與實施例7相同地進行操作,調製 2種類丙嫌酸溶膠。與實施例1相同地進行各種物性之測定 或評估。 1240742 實施例^ 除沒有使用水溶性高分子之聚丙烯酸鈉,使噴霧壓以 〇.2〇MPa取代〇.30MPa,使熱風入口溫度卩120°C取代140 °C,使熱風出口溫度以取代80。(:,使乳膠添加量以 2.0kg/hr取代2 5kg/hr外,與實施例7相同地進行操作, 製得丙烯酸系聚合物粉末(A-9)。而且,各使用丙烯酸系聚 合物粉末(A-9)取代丙烯酸系聚合物粉末(A-7)外,與實施例 7相同地操作調製2種類丙烯酸溶膠。與實施例〗相同地進 行各種物性測定或評估。Powder (A-1), with acrylic sol. Various physical properties were measured or evaluated in the same manner as in Example 1. Example 4 Except that the latex containing acrylic polymer particles obtained in Example 2 was used instead of the latex containing acrylic polymer particles (1_1} obtained in Reference Example 1, 3 parts by mass of fragrant phosphoric acid ester (Transliteration) csi4ie, manufactured by Asahi Denka Kogyo Co., Ltd.), replacing 2 parts by mass of dodecyl benzoate and 5 parts of sodium surface tension adjuster, and using 0.2 parts by mass of sodium polystyrene sulfonate (Pones) PS-5, manufactured by Toso (transliteration), and having a weight average molecular weight of 50,000 to 100,000, instead of 0.2 parts by mass of sodium polyacrylate, which is a water-soluble polymer, makes the hot air inlet temperature Substituting 100 ° c for 120 ° c and replacing hot air outlet temperature with 50 ° C instead of 67 ° C was carried out in the same manner as in Example 1 to obtain an acrylic polymer powder (A-4). Except that each acrylic polymer powder (A_4) replaces the propionic acid polymer powder (A-1), the same operation as in Example 1 was performed to prepare two kinds of acrylic sols. Various physical properties were measured or evaluated as in Example 1. The same procedure was carried out. Example 5 Except for using Acrylic-containing group obtained in Reference Example 3 The emulsion 1240742 glue of the compound particles (Bu 3) replaced the acrylic polymer particles (I_υ) containing the latex obtained in Reference Example 1, using 1 part by mass of polyethylene oxide alkyl ether phosphate potassium salt (Yereugton Roston Ribe (Translation alfalfa, F, chemical king (shares) system) instead of 2 parts by mass of 11-k sodium benzene sulfonate, and 0.5 parts by mass instead of 0.2 parts by mass of polypropylene as a water-soluble polymer The temperature of the hot air inlet was changed to 8 (rc instead of 120 ° C, and the temperature of the hot air outlet was changed to 39. (: instead of 67 ° C). The acrylic polymer powder (Ad ). Moreover, except that each acrylic polymer powder (A-5) was substituted for the acrylic polymer powder (A_n), the same operation as in Example 1 was performed to prepare two types of acrylic sols. Various physical properties were measured or evaluated as in Example 1. Example 6 Except the use of the latex containing acrylic polymer particles (1-4) obtained in Example 4 instead of the latex containing acrylic polymer particles (1) obtained in Example 1, using 1 part by mass of polybenzene Sodium ethylene sulfonate (Ponas (transliteration) PS_5, Soy (transliteration) (strand), weight average molecular weight (50,000, 100,000 ~ 100,000)) to replace 〇2 mass parts of sodium polyacrylate as a water-soluble polymer, so that the hot air inlet temperature of 14%. Substitute 12 ° C at ° C, and replace 67t with hot air outlet temperature at 82 ° C. The acrylic polymer powder (A-6) was prepared in the same manner as in Example 1. In addition, each acrylic polymer powder (A-6 ) Substituting the acrylic polymer powder (a_1) except for the same operation as in Example 1 to prepare two types of acrylic sol. Various physical properties were measured or evaluated in the same manner as in Example 1. The acrylic acid obtained in Reference Example 7 was contained. To the latex of the polymer particles (II_2), add 2 to 64-1240742 parts by mass of the aromatic phosphate ester to 100 parts by mass of the acrylic polymer particles in the latex (Yadikaru CS141E, Asahi Denka Kogyo Co., Ltd.) (Manufactured) and 0.2 parts by mass of sodium polyacrylate (Yalong A-20ML, manufactured by Toa Synthesis Co., Ltd., polymerization degree: 500 to 1,000), and thoroughly stirred to confirm that there are no insoluble matters. The latex was spray-dryer [L-8 type, manufactured by Ogawara Chemical Machinery Co., Ltd.], spray pressure was 0.30 MPa, hot air inlet temperature was 140 ° C, hot air outlet temperature was 80 ° C, and the latex addition amount was 2.5 kg / hr. Powdering was performed to obtain an acrylic polymer powder (A-7). As a result of observing this powder with a scanning electron microscope, polymer particles of 1 μm or less were aggregated to form a powder of about 20 μm. 120 parts by mass of RPD was added to 100 parts by mass of the powder (Α-7), and the mixture was rotated at a speed of 10 rpm for 3 minutes using a Labber Blaston mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), and then removed with a vacuum dryer Soak and prepare acrylic sol. Furthermore, 100 parts by mass of the powder (A-7) was added with 120 RPD and 5 parts by mass of ammonium azodicarboxylate (trade names: UNIFEM AZ, M-ΐ, Otsuka Chemical) to pull After being mixed by a Burbraston honing machine (manufactured by Toyo Seiki Seisakusho Co., Ltd.), it is degassed to prepare an acrylic sol. The measurement and evaluation of various physical properties were performed in the same manner as in Example 1. Example 8 Except for the aromatic phosphonate without the use of a surface tension modifier, the hot air inlet temperature was replaced with 150 ° C at 140 ° C. (: The hot air outlet temperature was replaced by 8 5 ° C instead of 80 ° C. The same operation as in Example 7 was performed to obtain an acrylic polymer powder (A-8). Further, except that an acrylic polymer was used The powder (A_8) was used in place of the propionic acid polymer (A-7), and two types of propionic acid sol were prepared in the same manner as in Example 7. Measurements and evaluations of various physical properties were performed in the same manner as in Example 1. 1240742 Example ^ Except sodium polyacrylate without using a water-soluble polymer, the spray pressure was replaced by 0.20 MPa by 0.30 MPa, the hot air inlet temperature 卩 120 ° C was replaced by 140 ° C, and the hot air outlet temperature was replaced by 80. (: An acrylic polymer powder (A-9) was prepared in the same manner as in Example 7 except that the addition amount of latex was replaced by 2.0 kg / hr and 2.5 kg / hr.) In addition, each acrylic polymer powder was used. (A-9) Instead of the acrylic polymer powder (A-7), two types of acrylic sols were prepared in the same manner as in Example 7. Various physical properties were measured or evaluated in the same manner as in Example VII.

實施fLjJI 使乡考例7所得含丙烯酸系聚合物粒子(11 - 1)之乳膠、 爹考例8所得含丙烯酸系聚合物粒子(Π-2)之乳膠、及參考 例9所彳守含两條酸系聚合物粒子(Η — ”之乳膠以質量比:,6對 2封2之比例混合。混合乳膠之固成分濃度爲〇·4、所含的 丙烯酸系聚合物粒子之平均粒徑貞。·62μιη、標準偏差爲 0.2 1 μηι。使用該混合乳膠取代實施例7之乳膠,使噴霧壓 以〇.20MPa取代〇.3〇MPa,使熱風入口溫度以12〇。〇取代“ο C’使熱風出口溫度以72。(:取代80。(:,使乳膠添加量以 2.0kg/hr取代2.5kg/hr外,與實施例7相同地進行操作, ^ ^丙燒酸系聚合物粉末(A-10)。而且,各使用丙烯酸系 水口物粉末(A-10)取代丙烯酸系聚合物粉末(A_7)外,與實 施例7相同地操作調製2種類丙烯酸溶膠。與實施例1相 同地進行各種物性測定或評估。 實施例1 1 ~ 6 6 - 1240742 使參考例1所得含丙烯酸系聚合粒子(1-1)之乳膠、及 參考例10所得含丙烯酸系聚合物粒子(11_4)之乳膠以質量 比7對3之比例混合。混合乳膠之固成分濃度爲0.4、所含 丙稀酸系聚合物粒子之平均粒徑爲〇·66μιη、標準偏差爲 Q ·2 8 μΐη °使用該混合乳膠取代實施例7之乳膠,使用2質 m份聚環氧乙烷醚磷酸鉀鹽(耶雷克頓羅斯頓里伯F、花王 (月又)製)取代2質量份表面張力調整劑之芳香族磷酸酯,使 用0·2質量份聚苯乙烯磺酸鈉(聚那斯(譯音)PS-5、東索(譯 曰)(股)製、重量平均分子量50,000〜100,000)取代〇2質 量份作爲水溶性高分子之聚丙烯酸鈉,使噴霧壓以〇 5 MPa 取代〇.3〇MPa,使熱風入口溫度以} 00°c取代140°c,使熱 風出口溫度以55°C取代80°C,使乳膠添加量以2.0kg/hr取 代2.5kg/hr外,與實施例7相同地進行操作,臀^丙烯酸 系聚合物粉末(A-l 1)。而且,各使用丙烯酸系聚合物粉末 (A-il)取代丙烯酸系聚合物粉末(A_7),使用1〇〇質量份DIPN 取代1 20質量份可塑劑之RDP外,與實施例7相同地操作 調製2種類丙烯酸溶膠。與實施例1相同地進行各種物性 測定或評估。 實施例1 2 使參考例1所得含丙烯酸系聚合粒子(bi)之乳膠、及 參考例10所得含丙烯酸系聚合物粒子(11-4)之乳膠以質量 比7對3之比例混合。混合乳膠之固成分濃度爲〇.4、所含 丙條酸系聚合物粒子之平均粒徑爲〇·66μιη、標準偏差爲 〇·28μιη。使用該混合乳膠取代實施例7之乳膠,使用2質 1240742 量份聚環氧乙烷醚磷酸鉀鹽(耶雷克頓羅斯頓里伯F、花王 (股)製)取代2質量份表面張力調整劑之芳香族磷酸酯,使 用〇.2貝里份聚本乙細5貝酸納(聚那斯(譯音)p|g_5、東苹(譯 音)(股)製、重量平均分子量5(M〇〇〜10〇5〇〇〇)取代〇·2質 量份作爲水溶性高分子之聚丙烯酸鈉,使噴霧壓以〇〗5 M P a 取代0 · 3 0 Μ P a,使熱風入口溫度以1 ο o 取代1 4 ο,使熱 風出口溫度以55。(:取代80。〇,使乳膠添加量以2〇kg/hr取 代2.5kg/hr外,與實施例7相同地進行操作,製得丙烯酸 系聚合物粉末(A-11)。而且,各使用丙烯酸系聚合物粉末 (A-11)取代丙烯酸系聚合物粉末(A-7),使用1〇〇質量份dipn 取代1 20質量份可塑劑之RDP外’與實施例7相同地操作 調製2種類丙烯酸溶膠。與實施例1相同地進行各種物性 測定或評估。 實施例1 2 除使用參考例11所得含丙烯酸系聚合粒子(11-5)之乳 膠取代參考例7所得含丙烯酸系聚合物粒子(Η—〗),使用2 質量份烷基磺酸鈉(拉迪姆魯PS、花王(股)製)取代2質量 份表面張力調整劑之芳香族磷酸酯,使用〇·2質量份聚苯 乙條擴酸鈉(聚那斯(譯音)PS-5、東索(譯音)(股)製、重量平 均分子量5〇,000〜1()(),〇()())取代〇.2質量份作爲冰溶性高分 子之聚丙烯酸鈉,使噴霧壓以〇.25MPa取代〇 3〇MPa,使 熱風出口溫度以85°C取代8〇t,使乳膠添加量以2 〇kg/hi· 取代2. :5kg/hr外,與貫施例7相同地進行操作,製得丙烯 酸系聚合物粉末而且,除各使用丙烯酸系聚合物 1240742 粉末(A-l2)取代丙烯酸系聚合物粉末(A_7)外,與實施例7 相同地操作調製2種類丙烯酸溶膠。與實施例i相同地進 行各種物性測定或評估。 實施例1 3 除使用參考例12所得含丙嫌酸系聚合粒子(ιι_6)之乳 膠取代參考例7所得含丙烯酸系聚合物粒子(ΙΙ_υ,使噴霧 壓以〇.25MPa取代0.30MPa,使熱風出口溫度以。它取代 8〇°C,使乳膠添加量以2.0kg/hr取代2.5kg/hr外,與實施 例7相同地進行操作,製得丙烯酸系聚合物粉末(A—〗3)。 而且,除各使用丙烯酸系聚合物粉末(A-1 3)取代丙烯酸系 聚合物粉末(A-7)外,與實施例7相同地操作調製2種類丙 烯酸溶膠。與實施例1相同地進行各種物性測定或評估。 實施例1 4 除使用參考例5所得含丙烯酸系聚合粒子(1-5)之乳膠 取代參考例1所得含丙烯酸系聚合物粒子(I- i ),沒有使用 表面張力g周整劑之十二烷基苯磺酸鈉及水溶性高分子之聚 丙燃酸鈉’使熱風入口溫度以i 〇 〇它取代1 2 〇它,使熱風出 口溫度以5 0 °C取代6 7。(:外,與實施例1相同地進行操作, 製得丙嫌酸系聚合物粉末(Ad 4)。而且,除各使用丙烯酸 系聚合物粉末(A-14)取代丙烯酸系聚合物粉末外,與 實施例1相同地操作調製2種類丙烯酸溶膠。與實施例1 相同地進行各種物性測定或評估。 實施例1 5 除使用參考例5所得含丙烯酸系聚合粒子(1-5)之乳膠 -69 - 1240742 取代參考例1所得含丙烯酸系聚合物粒子(I- 1 ),沒有使用 水溶性高分子之聚丙烯酸鈉,使熱風入口溫度以丨00t取代 2 0 c ’使熱風出口溫度以5 0 °c取代6 7 °c外,與實施例i相 同地進行操作,製得丙烯酸系聚合物粉末(A-15)。而且, 除各使用丙烯酸系聚合物粉末5)取代丙烯酸系聚合物 粉末(A-1)外,與實施例〗相同地操作調製2種類丙烯酸溶 膠。與實施例1相同地進行各種物性測定或評估。 實施例1 6 除使用參考例5所得含丙烯酸系聚合粒子(1_5)之乳膠 取代參考例1所得含丙烯酸系聚合物粒子(1_ 1},沒有使用 表面張力調整劑之十二烷基苯磺酸鈉,使熱風入口溫度以 1 0 〇 C取代1 2 0 °c,使熱風出口溫度以5 〇取代6 7外,與 實施例1相同地進行操作,製得丙烯酸系聚合物粉末(a_ 16)。而且,除各使用丙烯酸系聚合物粉末(A_16)取代丙烯 酸系聚合物粉末(A-1)外,與實施例丨相同地操作調製2種 類丙嫌酸溶膠。與實施例〗相同地進行各種物性測定或評 估。 實施例1 7 除使用參考例3所得含丙烯酸系聚合粒子(1_3)之乳膠 取代參考例1所得含丙烯酸系聚合物粒子(1_ 1;),沒有使用 表面張力調整劑之十二烷基苯磺酸鈉及水溶性高分子之聚 丙嫌酸鈉,使熱風入口溫度以8 〇它取代1 2 〇艽,使熱風出口 溫度以40°C取代67°C外,與實施例!相同地進行操作,製 得丙嫌酸系聚合物粉末(Ad 7)。而且,除各使用丙烯酸系 - 70~ 1240742 聚合 施例 同地 取代 表面 丙烯 口溫 製得 系聚 實施 相同 取代 表面 丙烯 口溫 製得 系聚 實施 相同 物末(A 1 7)取代丙烯酸系聚合物粉末(A」)外,與實 1相同地操作調製2種類丙烯酸溶膠。與實施例i相 進行各種物性測定或評估。 實施例1 8 除使用爹考例2所得含丙烯酸系聚合粒子(1-2)之乳膠 梦考例1所得含丙烯酸系聚合物粒子(ι_〗沒有使用 張力^ ^之十一烷基苯磺酸鈉及水溶性高分子之聚 酸鈉,使熱風入口溫度以1〇(rc取代l2(rc,使熱風出 度以5(TC取代67它外,與實施例i相同地進行操作, 丙烯酸系聚合物粉末(A_18)。而且,除各使用丙烯酸 合物粉末(A-18)取代丙烯酸系聚合物粉末(A —。外,與 例1相同地ί架作調製2種類丙烯酸溶膠。與實施例j 地進行各種物性測定或評估。 實施例1 9 除使用參考例6所得含丙烯酸系聚合粒子(1_6)之乳膠 參考例1所得含丙烯酸系聚合物粒子(1_ 1},沒有使用 張力e周整劑之十一烷基苯磺酸鈉及水溶性高分子之聚 酸鈉,使熱風入口溫度以丨〇 〇 〇C取代} 2 〇 〇c,使熱風出 度以5 0 C取代6 7 °C外,與實施例丨相同地進行操作, 丙烯酸系聚合物粉末(A_19)。而且,除各使用丙烯酸 合物粉末(A-19)取代丙烯酸系聚合物粉末(A — 〗)外,與 例1相同地操作調製2種類丙烯酸溶膠。與實施例1 地進行各種物性測定或評估。 實施例2 0 -71 - 1240742 P余彳吏參考例13所得含丙烯酸系聚合粒子(II_7)之乳 膠取代爹考例7所得含丙烯酸系聚合物粒子,沒有使 用表面張力調整劑之十二烷基苯磺酸鈉及水溶性高分子之 尔丙烯酸鈉外,與實施例7相同地進行操作,製得丙烯酸 系水合物粉末(A-20)。而且,除各使用丙烯酸系聚合物粉 末(A-20)取代丙烯酸系聚合物粉末(A_7)外,與實施例7相 同地操作調製2種類丙烯酸溶膠。與實施例1相同地進行 各種物性測定或評估。 實施例2 1 除使用參考例13所得含丙烯酸系聚合粒子(π_7)之乳 膠取代參考例7所得含丙烯酸系聚合物粒子(π-1),沒有使 用水溶性高分子之聚丙烯酸鈉外,與實施例7相同地進行 操作’製得两烯酸系聚合物粉末(A-21)。而且,除各使用 丙烯酸系聚合物粉末(A-21)取代丙烯酸系聚合物粉末 外’與實施例7相同地操作調製2種類丙烯酸溶膠。與實 施例1相同地進行各種物性測定或評估。 實施例2 2 除使用參考例1 3所得含丙烯酸系聚合粒子(1〗_ 7 )之乳 膠取代穸考例7所得含丙嫌酸系聚合物粒子(11 ),沒有使 用表面張力調整劑之十二烷基苯磺酸鈉,使用〇 . 2質量份 聚苯乙烯磺酸鈉(聚那斯(譯音)PS-5、東索(譯音)(股)製、重 量平均分子量5 〇,0 0 0〜1 0 0,0 0 0)取代〇 · 2質量份作爲水溶性 高分子之聚丙烯酸鈉外,與實施例7相同地進行操作,製 得丙烯酸系聚合物粉末(A-22)。而且,除各使用丙烯酸系 -72- 1240742 聚合物粉末(A-22)取代丙烯酸系聚合物粉末(A_7)外,與實 施例7相同地操作調製2種類丙烯酸溶膠。與實施例}相 同地進行各種物性測定或評估。 亶J拒例2 3 除使用參考例1 2所得含丙烯酸系聚合粒子(16 )之乳 膠取代參考例7所得含丙烯酸系聚合物粒子(π-1),沒有使 用表面張力調整劑之十二烷基苯磺酸鈉及水溶性高分子之 聚丙燒酸鈉,使噴霧壓以〇·25ΜΡα取代G.3〇MPa,使熱風 出口溫度以85°C取代80°C,使乳膠添加量以2.〇kg/hr取代 2 ^kg/hr外,與實施例7相同地進行操作,製得丙烯酸系 聚合物粉末(A-23)。而且,除各使用丙烯酸系聚合物粉末 (A-23)取代丙燒酸系聚合物粉末(a-7)外,與實施例7相同 地操作調製2種類丙烯酸溶膠。與實施例1相同地進行各 種物性測定或評估。 實施例2 4 除使用參考例1 1所得含丙烯酸系聚合粒子(II _ 5 )之乳 膠取代參考例7所得含丙條酸系聚合物粒子(I ^丨),沒有使 用表面張力調整劑之十二烷基苯磺酸鈉及水溶性高分子之 聚丙嫌酸鈉外,與實施例7相同地進行操作,製得丙嫌酸 系聚合物粉末(A-24)。而且,除各使用丙烯酸系聚合物粉 末(A-24)取代丙烯酸系聚合物粉末(A-7)外,與實施例7相 同地操作調製2種類丙烯酸溶膠。與實施例i相同地進行 各種物性測定或評估。 比較例 1 -73 - 1240742 對100質量份參考例丨所得含丙烯酸系聚合物粒子Gd) 之乳膠而言混合100質量份離子交換水。該乳膠固成分濃 度爲0.2 0。使用該乳膠取代實施例2之乳膠,使噴霧壓以 O’lOMPa取代〇·15ΜΡα,使熱風入口溫度以18〇t取代12〇 °c,使熱風出口溫度以82。(:取代67t,使乳膠添加量以ikg/hr 取代2kg/hr外,與實施例〗相同地進行操作,製得丙烯酸 系聚合物粉末(A-25)。使該粉末以掃描型電子顯微鏡觀察 的結果,使Ιμπι以下之聚合物粒子凝聚,形成約ι〇μηι之 粉末。而且,各使用丙烯酸系聚合物粉末(α_25)取代丙烯 酸系聚合物粉末(Α-1)外,與實施例】相同地操作調製2種 類丙烯酸溶膠。與實施例1相同地進行各種物性測定或評 估。 比較例2 對100質量份參考例1所得含丙烯酸系聚合物粒子(Zd) 之乳膠而g混合100質量份離子交換水。該乳膠固成分濃 度爲0 · 2 0。使用該乳膠取代實施例2之乳膠,使噴霧壓以 〇 · 1 0 Μ P a取代0.1 5 Μ P a,使熱風入口溫度以i 8 〇它取代1 2 〇 °c’使熱風出口溫度以82。(:取代67t,使乳膠添加量以lkg/hr 取代2kg/hr外,與實施例2相同地進行操作,製得丙烯酸 系聚合物粉末(A-26)。使該粉末以掃描型電子顯微鏡觀察 的結果,使Ιμιη以下之聚合物粒子凝聚,形成約ι5μιη之 粉末。而且,各使用丙烯酸系聚合物粉末(Α-26)取代丙烯 酸系聚合物粉末(Α-2)外,與實施例2相同地操作調製2種 類丙烯酸溶膠。與實施例1相同地進行各種物性測定或評 1240742 估。 比較例 對1 〇 〇質量份參考例1所得含丙烯酸系聚合物粒子(^ ) 之乳膠而言混合100質量份離子交換水。該乳膠固成分濃 度爲0 · 2 0。使用該乳膠取代實施例3之乳膠,使噴霧壓以 〇 . 1 0 Μ P a取代〇 · ;[ 5 Μ P a,使熱風入口溫度以i 8 〇艺取代1 2 〇 C ’使熱風出口溫度以8 2 C取代6 7 °C ’使乳膠添加量以1 k g / h r 取代2kg/hr外,與實施例3相同地進行操作,製得丙烯酸 系聚合物粉末(A-2 7)。使該粉末以掃描型電子顯微鏡觀察 的結果,使Ιμιη以下之聚合物粒子凝聚,形成約1〇μιη之 粉末。而且,各使用丙烯酸系聚合物粉末(Α_27)取代丙烯 酸系聚合物粉末(Α-3)外,與實施例3相同地操作調製2種 類丙稀酸溶膠。與實施例1相同地進行各種物性測定或評 估。 比較例4 使噴霧壓以〇.5MPa取代〇.15MPa,使熱風入口溫度以 1 4 〇 °C取代1 〇 〇 °C ’使熱風出口溫度以5 〇取代6 7。〇,使乳 膠添加量以3kg/hr取代2kg/hr外,與實施例4相同地進行 操作’製得丙烯酸系聚合物粉末(A_28)。而且,各使用丙 稀酸系聚合物粉末(A-28)取代丙烯酸系聚合物粉末(A-4) 外’與實施例4相同地操作調製2種類丙烯酸溶膠。與實 方也例1相同地進行各種物性測定或評估。 比較例5 使噴霧壓以〇」MPa取代〇.〗5MPa,使熱風入口溫度以 1240742 14〇°C®代80°c,使熱風出口溫度以39t取代67°C,使乳膠 添加里以3kg/hr取代2kg/hr外,與實施例5相同地進行操 作’製得丙烯酸系聚合物粉末(A _ 2 9)。而且,各使用丙烯 酸系聚合物粉末(A_29)取代丙烯酸系聚合物粉末(A_5)外, 與實施例5相同地操作調製2種類丙烯酸溶膠。與實施例1 相同地進行各種物性測定或評估。 比較例j 使噴霧壓以O.SMPa取代O.MMPa,使熱風出口溫度以 6 7°C取代82/C,使乳膠添加量以3kg/hr取代2kg/hr外,與 實施例6相同地進行操作,製得丙烯酸系聚合物粉末(a_ 3〇)。而且’各使用丙烯酸系聚合物粉末取代丙烯酸 系聚合物粉末(A-6)外,與實施例6相同地操作調製2種類 丙烯酸浴膠。與實施例〗相同地進行各種物性測定或評估。 比較例7 對1 00 里份參考例7所得含丙烯酸系聚合物粒子 1)之乳膠而言混合⑽質量份離子交換水。該乳膠固成分 te度爲0.2 0。使用該乳膠取代實施例7之乳膠,使噴霧壓 以0.50MPa取代〇.3〇MPa’使熱風入口溫度以2〇〇。。取代"ο c ’使熱風出口溫度以74。。取& 8。。。,使乳膠添加量以 1.5kg/hr取代2.5kg/hr外,與實施例7相同地進行操作, 製得丙嫌酸系聚合物粉末(A_31)。而且,各使用丙燒酸系 聚合物粉末(A-31)取代丙條酸系聚合物粉末(A。)外,與實 施例7相同地操作調製2種類丙稀酸溶膠。與實施例i相 同地進行各種物性測定或評估。 — 7 6- 1240742 比較例8 封1 00貝裏份爹考例7所得含丙烯酸系聚合物粒子⑴-1)之乳膠而言混合10。質量份離子交換水。該乳膠固成分 濃度爲〇.20。使用該乳膠取代實施例8之乳膠,使噴霧壓 以〇.〇5MPa取代〇.30MPa,使熱風入口溫度以刚。C取代150 I使熱風出口溫度以13Gt取K价,使乳膠添加量以 2.〇kg/hr取代2.5kg/hr外’與實施例"目同地進行操作, 製得丙稀酸系聚合物粉末(A_32)。而且,各使用丙嫌酸系 聚合物粉末(A-32)取代丙條酸系聚合物粉末(a_8)外’與實 施例8相同地操作調製2種類關酸溶膠。與實施例】相 同地進行各種物性測定或評估。 比較例9 對100質量份參考例7所得含丙烯酸系聚合物粒子(π_ 1)之乳膠而言混合1 〇〇質量份離子交換水。該乳膠固成分 濃度爲0.20。使用該乳膠取代實施例9之乳膠,使噴霧壓 以0.50MPa取代0.20MPa,使熱風入口溫度以i8〇<t取代12〇 C ’使熱風出口溫度以1 3 0 °C取代7 2 °C外,與實施例9相同 地進行操作’製得丙烯酸系聚合物粉末(A_33)。而且,各 使用丙嫌酸系聚合物粉末(A-3 3)取代丙烯酸系聚合物粉末 (A - 9 )外’與實施例1相同地操作調製2種類丙烯酸溶膠。 與實施例1相同地進行各種物性測定或評估。 比較例1 0 對1 0 0質量份參考例1 1所得含丙烯酸系聚合物粒子 (II-5)之乳膠而言混合100質量份離子交換水。該乳膠固成 -77- 1240742 分濃度爲0.2()。使用該乳膠取代實施例i2之乳膠,使噴霧 壓以0.5GMPa取K G.25MPa,使熱風人□溫度以2⑽。c取代 140 C ’使熱風出口溫度以74。。取R 85。。,使乳膠添加量以 1.5kg/hr取代2.0kg/hr夕卜與實施仿"2相同地進行操作, 製得丙稀酸系聚合物粉末(A_34)。而且,各使用丙嫌酸系 聚合物粉末(A-34)取代丙烯酸系聚合物粉末(A_i2)外,與實 施例相同地操作調製2種類丙烯酸溶膠。與實施例"目 同地進行各種物性測定或評估。 比較例1 1 封100質量份參考例12所得含丙烯酸系聚合物粒子 (II 6)之乳膠而。混合i⑽質量份離子交換水。該乳膠固成 分濃度爲G.20。使用該乳膠取代實施例13之乳膠,使噴霧 壓以(K5GMPa取代G.25MPa’使熱風人日溫度以2⑽。⑽代 140C ’使熱風出□溫度以7代取代的,使乳膠添加量以 1.5kg/hr取代2.0kg/hr外,與實施例13相同地進行操作, 製得丙烯酸系聚合物粉末(A_35)。而且,各使用丙烯酸系 聚合物粉末(A-35)取代丙烯酸系聚合物粉末(a_i3)外,與實 施例1 3相同地㉟作調製2種類丙嫌酸溶膠。與實施例1相 同地進行各種物性測定或評估。 / 100質厘份梦考例5所得含丙烯酸系聚合物粒子(1_ 5) 之乳膠而Θ混口 ;[ 0 0質量份離子交換水。該乳膠固成分濃 度爲〇.2〇。使用該乳膠取代實施例14之乳膠,使噴霧壓以 O.lOMPa取代〇15MPa,使熱風入口溫度以18代取代⑽ - 78- 1240742 lkg/h] 取代2kg/hr外’與實施例〗4相同地進行操作,製得丙烯酸 /、尔口物粉末(A-3 6)。而且,各使用丙烯酸系聚合物粉末 (A-36)取代丙稀酸系聚合物粉末…”外,與實施例i"目 同地操作調製2種類丙烯酸溶膠。與實施伊"相同地進行 各種物性測定或評估。 比較例1 3 封100質直份參考例13所得含丙烯酸系聚合物粒子 (7)之乳膠而曰混合1 〇 〇質量份離子交換水。該乳膠固成 分濃度爲0·20。使用該乳膠取代實施例2〇之乳膠,使噴霧 Ε以0.50MPa取代〇.3〇MPa,使熱風入口溢度以2〇〇。(^取代 14〇°C,使熱風出口溫度以74t取代8()t,使乳膠添加量以 1 .5kg/hr取代2.5kg/hr外,與實施例2〇相同地進行操作, 製丙烯酸系聚合物粉末(A-37)。而且,各使用丙烯酸系 聚合物粉末(A-37)取代丙烯酸系聚合物粉末(A-2〇)外,與實 施例2〇相同地操作調製2種類丙烯酸溶膠。與實施例〗相 同地進行各種物性測定或評估。 有關各參考例製造的丙烯酸系聚合物粒子之單體混合 物組成及使用量、以及該丙烯酸系聚合物粒子之平均粒徑 如表1所示。而且,於製造各實施例及比較例之丙烯酸系 聚合物粉末時所使用的丙烯酸系聚合物粒子、表面張力調 整劑及水溶性高分子之種類及使用量、以及反應性界面活 性劑之種類如表2所示。另外,有關於製造各實施例及比 較例之丙嫌酸系聚合物粉末時所使用的乳膠之表面張力、 -79- 1240742 乳膠條件及噴霧條件、以及該丙烯酸系聚合物粉末,粗孔 直徑、微孔直徑及粗孔細孔體積A與微孔細孔體積B之比 例(A / B )如表3所示。此外,有關各實施例或比較例中製造 的丙烯酸系聚合物粉末之平均粒徑、孔直徑1 μη以上之積 分空隙體積、空隙率及長徑a與短徑b之粒徑比(a/b)、以 及有關製造各實施例或比較例之丙烯酸溶膠時使用的丙烯 酸系聚合物粉末之種類及可塑劑之種類及使用量如表4所 示。另外,各實施例或比較例使用的丙烯酸溶膠之耐粒子 破壞性、流動性及儲藏安定性、以及由該丙烯酸溶膠所形 成片板之耐滲出性、硬度、拉伸強度、拉伸度及發泡性如 表5所示。 - 8 0 - 1240742 s 1轰 s__ ill 紙 ΜΜΑ/ΪΒΜΑ/ΜΑΑ/2ΗΕΜΑ/ΚΗ05 720(64/30/2. 5/2, 5/1) ΙΩ Ο £ s >\ g LO s c CO io r W \二 h >> 2 tD So r s >< b \\ M 論§ s 8 >\ Γ |sS Igl uiy nr, x—/ cn jB»(^ «RM1S MMA/iBMA/MAA/KH05 360(58. 5/40/0. 5/1) 1C II 2 K 1 Ks II 2 ΙΛ Is i! \? a〇〇 \iS li 2 X _ |c〇 s K \io X ^ IO 2 如赵 1SS 黠綱 mf 撕 *M1g MMA/iBMA/MAA/KH05 630(39/60/0. 5/0. 5) in 錢 S >< 1 s in S© \S is S X If 2 1, 11° 1 \| r o is |e \o S! S O |io \〇 is is 2 u5 2d i| o s$ Μ «Λ P o _s |3 \P 鈐 ^ ΙΛ 1 P is CQ LO C3 |is g_*l 5«g 齡-g 城 *N1g Is ¥ ¥ Ito 1 〇> 1¾ <3 Ik σ> <S ¥ is << Ci·» σ> V S φ p 兮to ^ CO Οι , \s \ CO s斉 op Sin SS h % s- CU 〇0 \G S Si 〇> . op <S 钱 s§ i 0> . a. as Ii 0- 05 il 2S 丙烯酸系聚 会物I持不、 平均 粒徑 _ fum) 0. 80 0. 81 卜 〇 卜 卜 d a 卜 d 卜 d 卜 «〇 6 0. 42 ! s d 5 6 00 CD 6 CD d 0. 70 ί 2 (I -1) (1—2) (I 一3) (1-4) (1-5) (I —6) T W-H HH V-X (I I 一2) (I 1-3) T ►—1 (I 1-5) (I 1-6) (I 1-7) 参考例1 参考例2 参考例3 参考例4 参考例5 参考例6 参考例7 参考例8 参考例9 参考例10 参考例11 参考例12 参考例13The implementation of fLjJI enabled the latex containing acrylic polymer particles (11-1) obtained in Township Examination Example 7, the latex containing acrylic polymer particles (Π-2) obtained in Example 8 and the reference sample 9 containing two The latex of strip acid polymer particles (Η — ”is mixed in a mass ratio of 6 to 2 and 2. The solid content concentration of the mixed latex is 0.4, and the average particle size of the acrylic polymer particles contained is · 62 μιη, standard deviation of 0.2 1 μηι. This mixed latex was used to replace the latex of Example 7, the spray pressure was replaced by 0.20 MPa by 0.30 MPa, and the hot air inlet temperature was replaced by 12.0 C. The hot air outlet temperature was set to 72. (: instead of 80. (: The addition amount of latex was replaced by 2.5 kg / hr at 2.0 kg / hr, and the same operation as in Example 7 was performed. ^ Propionic acid polymer powder ( A-10). In addition, the acrylic polymer powder (A-10) was used instead of the acrylic polymer powder (A_7), and two types of acrylic sol were prepared in the same manner as in Example 7. The same procedure as in Example 1 was performed. Measurement or evaluation of various physical properties. Example 1 1 to 6 6-1240742 Reference Example 1 The obtained latex containing acrylic polymer particles (1-1) and the latex containing acrylic polymer particles (11_4) obtained in Reference Example 10 were mixed at a mass ratio of 7 to 3. The solid content concentration of the mixed latex was 0.4. The acrylic polymer-containing polymer particles had an average particle diameter of 0.66 μm and a standard deviation of Q · 2 8 μΐη ° This mixed latex was used instead of the latex of Example 7 and 2 parts by mass of polyethylene oxide ether potassium phosphate was used. Salt (Yerekton Roston Ribe F, Kao (Yueyou)) to replace 2 parts by mass of the aromatic phosphate ester of the surface tension adjuster, using 0.2 parts by mass of sodium polystyrene sulfonate (Ponas ( (Transliteration) PS-5, Toso (translated) (weight), weight average molecular weight 50,000 ~ 100,000) to replace 0 2 parts by mass of sodium polyacrylate as a water-soluble polymer, so that the spray pressure is replaced by 0. 5 MPa 0.3 〇MPa, make the hot air inlet temperature} 00 ° c instead of 140 ° c, make the hot air outlet temperature 55 ° C instead of 80 ° C, and make the latex addition amount 2.0kg / hr instead of 2.5kg / hr. In the same manner, the acrylic polymer powder (Al 1) was used. Acrylic polymer powder (A-il) was used instead of acrylic polymer powder (A_7), and 100 parts by mass of DIPN was used instead of RDP of 20 parts by mass of plasticizer. The same procedure as in Example 7 was performed to prepare two types of acrylic sols. Various physical properties were measured or evaluated in the same manner as in Example 1. Example 1 2 Acrylic polymer particles (bi) -containing latex obtained in Reference Example 1 and acrylic polymer particles (11-4) containing Reference Example 10 were used. The latex is mixed in a mass ratio of 7 to 3. The solid content concentration of the mixed latex was 0.4, and the average particle diameter of the propionic acid polymer particles contained was 0.66 μm, and the standard deviation was 0.28 μm. This mixed latex was used in place of the latex of Example 7, and 1240742 parts by weight of polyethylene oxide ether phosphate potassium salt (Yerekton Roston Ribe F, Kao Co., Ltd.) was used in place of 2 parts by mass of surface tension adjustment. Aromatic phosphate ester of the agent, using 0.2 berry parts of polyethylene 5 pentanoate (polynesian (transliteration) p | g_5, Dong Ping (transliteration) (stock), weight average molecular weight 5 (M. 〇 ~ 10〇5〇〇) Replace 0.2 parts by mass of sodium polyacrylate as a water-soluble polymer, so that the spray pressure is replaced by 0 5 MP a to 0 · 3 0 MPa, and the hot air inlet temperature is 1 ο o Substitute 1 4 ο, set the hot air outlet temperature to 55. (: Substitute 80. 〇, replace the amount of latex with 20 kg / hr instead of 2.5 kg / hr, and perform the same operation as in Example 7 to obtain an acrylic system. Polymer powder (A-11). Each acrylic polymer powder (A-11) was used in place of the acrylic polymer powder (A-7), and 100 parts by mass of dipn was used in place of 1 to 20 parts by mass of the plasticizer. Except for RDP, two types of acrylic sols were prepared in the same manner as in Example 7. Various physical properties were measured or measured in the same manner as in Example 1. Example 1 2 Instead of using the latex containing acrylic polymer particles (11-5) obtained in Reference Example 11 instead of the acrylic polymer particles (Η—) obtained in Reference Example 7, 2 parts by mass of sodium alkylsulfonate was used. (La Dimru PS, Kao Co., Ltd.) Instead of 2 parts by mass of the aromatic phosphate ester of the surface tension adjuster, use 0.2 parts by mass of sodium polyphenylene terephthalate (Pones PS-5) 2. Made by Dongsuo (transliteration) (stock), weight average molecular weight 50,000 ~ 1 () (), 〇 () ()) instead of 0.2 parts by mass of sodium polyacrylate as an ice-soluble polymer, so that the spray pressure Replaced 0.30 MPa with 0.25 MPa, replaced 80 t at the temperature of the hot air outlet at 85 ° C, and replaced 2. 8 kg / hi · with the addition amount of latex at 2: 5 kg / hr, which was the same as in Example 7. An acrylic polymer powder was obtained by the same procedure. Except that the acrylic polymer powder (A-12) was used instead of the acrylic polymer powder (A_7), two types of acrylic sol were prepared in the same manner as in Example 7. Various physical properties were measured or evaluated in the same manner as in Example i. Example 1 3 Reference Example 12 A latex containing propionic acid-based polymer particles (ιι_6) was obtained in place of the acrylic polymer-containing polymer particles (ΙΙ_υ) obtained in Reference Example 7, and the spray pressure was replaced by 0.25 MPa to 0.30 MPa, and the hot air outlet temperature was replaced by 80 ° C. The acrylic polymer powder (A-> 3) was prepared in the same manner as in Example 7 except that the amount of latex was replaced by 2.0 kg / hr instead of 2.5 kg / hr. Further, each acrylic polymer powder was used. (A-1 3) Two types of acrylic sols were prepared in the same manner as in Example 7 except that the acrylic polymer powder (A-7) was replaced. Various physical properties were measured or evaluated in the same manner as in Example 1. Example 1 4 Except that the latex containing acrylic polymer particles (1-5) obtained in Reference Example 5 was used instead of the acrylic polymer polymer particles (I-i) obtained in Reference Example 1, no twelve surface modifiers were used. Sodium alkylbenzene sulfonate and sodium polypropionate, which are water-soluble polymers, make the hot air inlet temperature to replace it with 120, and the hot air outlet temperature to replace 6 7 with 50 ° C. (: Except that, the same operation as in Example 1 was carried out to obtain a propionic acid polymer powder (Ad 4). Further, except that the acrylic polymer powder (A-14) was used instead of the acrylic polymer powder, Two types of acrylic sols were prepared in the same manner as in Example 1. Various physical properties were measured or evaluated in the same manner as in Example 1. Example 1 5 Except for the latex-69 containing acrylic polymer particles (1-5) obtained in Reference Example 5 -1240742 replaces the acrylic polymer particles (I-1) obtained in Reference Example 1, without using water-soluble polymer sodium polyacrylate, so that the hot air inlet temperature is replaced by 00t instead of 2 0 c ', and the hot air outlet temperature is 50 ° Except for c instead of 6 7 ° c, an acrylic polymer powder (A-15) was prepared in the same manner as in Example i. Further, except that each acrylic polymer powder 5) was used in place of the acrylic polymer powder (A -1) Except that, two types of acrylic sols were prepared in the same manner as in the embodiment. Various physical properties were measured or evaluated in the same manner as in Example 1. Example 1 6 Except that the latex containing acrylic polymer particles (1_5) obtained in Reference Example 5 was used in place of the acrylic polymer polymer particles (1_1) obtained in Reference Example 1, dodecylbenzenesulfonic acid was not used. Sodium was used, and the hot air inlet temperature was replaced by 100 ° C to 120 ° C, and the hot air outlet temperature was replaced by 50 to 67. The same operation as in Example 1 was performed to obtain an acrylic polymer powder (a_ 16). In addition, except that the acrylic polymer powder (A_16) was used instead of the acrylic polymer powder (A-1), two types of acryl sol were prepared in the same manner as in Example 丨. Various operations were performed in the same manner as in the Example. Measurement or evaluation of physical properties. Example 1 7 Except that the latex containing acrylic polymer particles (1_3) obtained in Reference Example 3 was used in place of the acrylic polymer polymer particles (1_1;) obtained in Reference Example 1, no surface tension adjusting agent was used. Sodium dialkylbenzenesulfonate and sodium polypropionate, which is a water-soluble polymer, make the hot air inlet temperature 80 ° instead of 120 ° F, and the hot air outlet temperature 40 ° C instead of 67 ° C. Except for the examples! Do the same Acrylic acid-based polymer powder (Ad 7) was obtained. In addition, each acrylic polymer was used to replace the surface temperature of the acrylic propylene at the same temperature. Except that the same substance (A 1 7) was used instead of the acrylic polymer powder (A ″), two types of acrylic sols were prepared in the same manner as in Example 1. Various physical properties were measured or evaluated in the same manner as in Example i. Example 1 8 Except for using the latex containing acrylic polymer particles (1-2) obtained from Dao Case 2 and the acrylic polymer particles (1_) containing Sodium Undecylbenzene Sulfonate and water-soluble which are not used in tension ^ ^ The polymer is sodium polyacrylic acid. The hot air inlet temperature is 10 (rc instead of 12 (rc), and the hot air output is 5 (TC is replaced by 67). The same operation as in Example i is performed. The acrylic polymer powder (A_18 ). Except that the acrylic polymer powder (A-18) was used instead of the acrylic polymer powder (A ...), two types of acrylic sols were prepared in the same manner as in Example 1. Various physical properties were performed as in Example j. Measure or evaluate. Example 1 9 Except for using the acrylic polymer particles (1_6) containing the latex obtained in Reference Example 6 and containing the acrylic polymer particles (1_1) obtained in Reference Example 1, no undecylbenzenesulfonic acid was used. Sodium and water-soluble polymers of sodium polyacrylic acid were used in the same way as in Example 丨 except that the hot air inlet temperature was replaced by 丨 00 ° C} 2 00c, and the hot air outlet was replaced by 50 ° C at 67 ° C. The acrylic polymer powder (A_19) was operated. The acrylic polymer sol (A-19) was used instead of the acrylic polymer powder (A_), and two types of acrylic sol were prepared in the same manner as in Example 1. Various physical properties were measured or evaluated in the same manner as in Example 1. Example 2 0 -71-1240742 P. Yu Yuli Reference Example 13 The latex containing acrylic polymer particles (II_7) replaced the acrylic polymer particles obtained in Example 7 without using a dodecyl group as a surface tension modifier. An acrylic hydrate powder (A-20) was obtained in the same manner as in Example 7 except for sodium besylate and sodium acrylate, a water-soluble polymer. Furthermore, two types of acrylic sols were prepared in the same manner as in Example 7 except that the acrylic polymer powder (A-20) was used instead of the acrylic polymer powder (A_7). Various physical properties were measured or evaluated in the same manner as in Example 1. Example 2 1 Except that the latex containing acrylic polymer particles (π_7) obtained in Reference Example 13 was used in place of the acrylic polymer particle (π-1) containing reference polymer 7 and no water-soluble polymer sodium polyacrylate was used, and Example 7 was performed in the same manner to obtain a dienoic acid polymer powder (A-21). Further, two types of acrylic sols were prepared in the same manner as in Example 7 except that each of the acrylic polymer powder (A-21) was used instead of the acrylic polymer powder. Various physical properties were measured or evaluated in the same manner as in Example 1. Example 2 2 Except using acrylic emulsion containing acrylic polymer particles (1__7) obtained in Reference Example 13 instead of acrylic polymer polymer particles (11) obtained in Examination Example 7, no surface tension adjusting agent was used. Sodium dialkylbenzenesulfonate, 0.2 parts by mass of sodium polystyrene sulfonate (manufactured by Polynesian PS-5, manufactured by Tosho (Transliteration) Co., Ltd., and weight average molecular weight 50,000, 0 0 0 (~ 100, 0 0)) was replaced with 0.2 parts by mass of sodium polyacrylate as a water-soluble polymer, and the same operation was performed as in Example 7 to obtain an acrylic polymer powder (A-22). Furthermore, two types of acrylic sols were prepared in the same manner as in Example 7 except that the acrylic polymer powder (A-22) was used instead of the acrylic polymer powder (A-22). Various physical properties were measured or evaluated in the same manner as in Example}.亶 J Refusal Example 2 3 Except the use of the latex containing acrylic polymer particles (16) obtained in Reference Example 1 2 instead of the acrylic polymer particles (π-1) obtained in Reference Example 7, without using dodecane as a surface tension adjuster Sodium benzene sulfonate and sodium polypropionate of water-soluble polymer, the spray pressure was replaced by 0.25MPA G.30MPa, the hot air outlet temperature was replaced by 80 ° C at 85 ° C, and the latex addition amount was 2. An acrylic polymer powder (A-23) was obtained in the same manner as in Example 7 except that 0 kg / hr was substituted for 2 kg / hr. Further, two types of acrylic sols were prepared in the same manner as in Example 7 except that the acrylic polymer powder (A-23) was used instead of the propionic acid polymer powder (a-7). Various physical properties were measured or evaluated in the same manner as in Example 1. Example 2 4 Except that the acrylic polymer particles (II_5) containing latex obtained in Reference Example 1 was used instead of the acrylic acid polymer particles (I ^ 丨) obtained in Reference Example 7, the tenth surface tension modifier was not used. Except for sodium dialkylbenzenesulfonate and sodium polypropionate, which is a water-soluble polymer, the same operation as in Example 7 was performed to obtain a propionic acid polymer powder (A-24). Further, two types of acrylic sols were prepared in the same manner as in Example 7 except that the acrylic polymer powder (A-24) was used instead of the acrylic polymer powder (A-7). Various physical properties were measured or evaluated in the same manner as in Example i. Comparative Examples 1 -73-1240742 100 parts by mass of ion-exchanged water was mixed with 100 parts by mass of the latex containing acrylic polymer particles Gd) obtained in Reference Example 丨. This latex had a solids concentration of 0.20. This latex was used in place of the latex of Example 2. The spray pressure was replaced by O'10 MPa to 0.15 MPa, the hot air inlet temperature was replaced by 120 ° C with 180 t, and the hot air outlet temperature was adjusted to 82. (: Instead of 67t, except that the addition amount of latex was replaced by 2kg / hr at ikg / hr, the same operation as in Example 1 was performed to obtain an acrylic polymer powder (A-25). The powder was observed with a scanning electron microscope As a result, polymer particles having a size of 1 μm or less were aggregated to form a powder of about ι0 μm. In addition, the acrylic polymer powder (α_25) was used instead of the acrylic polymer powder (A-1), which was the same as in the Example] Two types of acrylic sols were prepared in the same manner. Various physical properties were measured or evaluated in the same manner as in Example 1. Comparative Example 2 100 parts by mass of ions were mixed with 100 parts by mass of 100 parts by mass of an acrylic polymer particle (Zd) -containing latex obtained in Reference Example 1. The water was exchanged. The concentration of the solid content of the latex was 0 · 20. The latex was used in place of the latex of Example 2, and the spray pressure was replaced with 0.1 5 MPa and 0.1 5 MPa. The inlet temperature of the hot air was i 8 〇 It replaced 1 2 0 ° C 'to set the hot air outlet temperature to 82. (: Replaced 67t, replaced the addition amount of latex with 1kg / hr instead of 2kg / hr, and operated in the same manner as in Example 2 to obtain an acrylic polymer powder. (A-26). Make As a result of observing the powder with a scanning electron microscope, polymer particles having a size of 1 μm or less were aggregated to form a powder of about 5 μm. In addition, an acrylic polymer powder (A-26) was used instead of the acrylic polymer powder (A-2). In addition, two types of acrylic sols were prepared in the same manner as in Example 2. Various physical properties were measured or evaluated in the same manner as in Example 1. 1240742 was evaluated. In the comparative example, 1,000 parts by mass of the acrylic polymer-containing polymer particles obtained in Reference Example 1 (^ ), 100 parts by mass of ion-exchanged water was mixed. The concentration of the solid content of the latex was 0 · 20. The latex was used in place of the latex of Example 3, and the spray pressure was replaced with 0.1 0 MPa; 5 MPa, make the hot air inlet temperature replace i 2 0 ° C with the hot air outlet temperature, replace the hot air outlet temperature with 8 2 C, 6 7 ° C, and make the addition amount of latex 1 kg / hr instead of 2 kg / hr. In the same manner as in Example 3, an acrylic polymer powder (A-2 7) was obtained. As a result of observing the powder with a scanning electron microscope, polymer particles of 1 μm or less were aggregated to form a powder of about 10 μm. The acrylic polymer powder (A_27) was used instead of the acrylic polymer powder (A-3), and two types of acrylic acid sols were prepared in the same manner as in Example 3. Various physical properties were performed in the same manner as in Example 1. Measurement or evaluation. Comparative Example 4 The spray pressure was replaced by 0.5 MPa by 0.15 MPa, the hot air inlet temperature was replaced by 140 ° C by 100 ° C, and the hot air outlet temperature was replaced by 50 by 67. Except that the addition amount of latex was 3 kg / hr instead of 2 kg / hr, the same operation was performed as in Example 4 to obtain an acrylic polymer powder (A_28). Furthermore, two types of acrylic sols were prepared in the same manner as in Example 4 except that acrylic polymer powder (A-28) was used instead of acrylic polymer powder (A-4). Various physical properties were measured or evaluated in the same manner as in Example 1. Comparative Example 5 The spray pressure was replaced by 0 "MPa. 0 5 MPa, the hot air inlet temperature was replaced by 80 ° c at 1240742 14 ° C®, the hot air outlet temperature was replaced by 39t at 67 ° C, and the latex was added at 3 kg / Except that hr was replaced with 2 kg / hr, the same operation as in Example 5 was performed to obtain an acrylic polymer powder (A_2 9). Further, two types of acrylic sols were prepared in the same manner as in Example 5 except that each of the acrylic polymer powder (A_29) was used instead of the acrylic polymer powder (A_5). Various physical properties were measured or evaluated in the same manner as in Example 1. Comparative Example j The same procedure as in Example 6 was carried out except that the spray pressure was replaced by O.SMPa, O.MMPa, hot air outlet temperature was replaced by 82 ° C at 67 ° C, and latex addition was replaced by 3kg / hr at 2kg / hr. This operation produced an acrylic polymer powder (a_30). Further, two types of acrylic bath gels were prepared in the same manner as in Example 6 except that each of the acrylic polymer powders was used in place of the acrylic polymer powders (A-6). Various physical properties were measured or evaluated in the same manner as in the examples. Comparative Example 7 To the latex containing acrylic polymer particles 1) obtained in 100 parts by reference example 7 was mixed 里 parts by mass of ion-exchanged water. This latex solid content had a te degree of 0.20. This latex was used in place of the latex of Example 7, and the spray pressure was changed to 0.50 MPa instead of 0.30 MPa 'and the hot air inlet temperature was adjusted to 200. . Replace " ο c ′ to make the hot air outlet temperature to 74. . Take & 8. . . The same procedure as in Example 7 was performed except that the amount of latex added was 1.5 kg / hr instead of 2.5 kg / hr to obtain a propionic acid polymer powder (A_31). Further, two types of acrylic acid sols were prepared in the same manner as in Example 7 except that the propionic acid polymer powder (A-31) was used instead of the propionic acid polymer powder (A.). Various physical properties were measured or evaluated in the same manner as in Example i. — 7 6- 1240742 Comparative Example 8 Sealed with 100 bait, the latex containing acrylic polymer particles ⑴-1) obtained in Example 7 was mixed with 10. Mass parts of ion-exchanged water. The concentration of the latex solid content was 0.20. This latex was used in place of the latex of Example 8, and the spray pressure was replaced with 0.055 MPa instead of 0.30 MPa, and the inlet temperature of the hot air was made rigid. C replaced 150 I, the hot air outlet temperature was set at 13 Gt, and the price of K was made. The amount of latex added was replaced by 2.0 kg / hr instead of 2.5 kg / hr. The operation was carried out in the same manner as in the Example " to obtain acrylic polymerization.物 粉 (A_32). Furthermore, two types of acid sols were prepared in the same manner as in Example 8 except that the propionic acid polymer powder (A-32) was used instead of the propionic acid polymer powder (a-8). Various physical properties were measured or evaluated in the same manner as in the examples. Comparative Example 9 100 parts by mass of ion-exchanged water was mixed with 100 parts by mass of the acrylic polymer particle (π_1) -containing latex obtained in Reference Example 7. This latex had a solid content concentration of 0.20. This latex was used in place of the latex of Example 9, and the spray pressure was replaced by 0.50 MPa at 0.20 MPa, and the hot air inlet temperature was replaced by i8〇 < t at 120 ° C. The hot air outlet temperature was replaced by 130 ° C at 7 2 ° C. Except that, it carried out similarly to Example 9, and obtained the acrylic polymer powder (A_33). Further, two types of acrylic sols were prepared in the same manner as in Example 1 except that the acrylic polymer powder (A-3 3) was used instead of the acrylic polymer powder (A-9). Various physical properties were measured or evaluated in the same manner as in Example 1. Comparative Example 10 100 parts by mass of ion-exchanged water was mixed with 100 parts by mass of the acrylic polymer particle (II-5) -containing latex obtained in Reference Example 11. The latex was solidified to a concentration of -77-1240742 with a concentration of 0.2 (). This latex was used instead of the latex of Example i2, and the spray pressure was set to 0.5 GMPa and K G. 25 MPa, and the hot air temperature was set to 2 ° C. c replaces 140 C 'to bring the hot air outlet temperature to 74. . Take R 85. . The amount of latex added was 1.5 kg / hr instead of 2.0 kg / hr, and the operation was performed in the same manner as in the simulation " 2, to obtain an acrylic polymer powder (A_34). Furthermore, two types of acrylic sols were prepared in the same manner as in the examples except that the acrylic polymer powder (A-34) was used instead of the acrylic polymer powder (A-34). Various physical properties were measured or evaluated in the same manner as in the Examples. Comparative Example 1 100 parts by mass of the latex containing acrylic polymer particles (II 6) obtained in Reference Example 12 was sealed. I⑽ mass parts of ion-exchanged water were mixed. The concentration of the latex solid component was G.20. This latex was used instead of the latex of Example 13, and the spray pressure was changed to (K5GMPa instead of G.25MPa 'to increase the hot air temperature per day to 2 ° C. 140C' to replace the hot air temperature with 7th generation and the latex addition amount to 1.5 An acrylic polymer powder (A_35) was obtained in the same manner as in Example 13 except that kg / hr was replaced by 2.0 kg / hr. In addition, an acrylic polymer powder (A-35) was used in place of the acrylic polymer powder. Except (a_i3), two types of acryl sol were prepared in the same manner as in Example 13. Various physical properties were measured or evaluated in the same manner as in Example 1. / 100 parts by mass of the acrylic polymer containing the dream test example 5 Particles (1_5) are mixed with Θ; [0 0 0 parts by mass of ion-exchanged water. The concentration of the solid content of the latex is 0.20. This latex was used instead of the latex of Example 14, and the spray pressure was replaced by 0.1OMPa. 〇15MPa, the hot air inlet temperature was replaced by 18 generations-78- 1240742 lkg / h] except 2kg / hr 'was carried out in the same manner as in Example 〖4 to obtain acrylic / alloy powder (A-3 6 ). Each acrylic polymer powder (A-36) was used instead of acrylic Acid polymer powder ... ", two types of acrylic sol were prepared in the same manner as in Example i ". Various physical properties were measured or evaluated in the same manner as in Example ". Comparative Example 1 3 Sealed 100 Quality Direct Reference Example 13 The obtained latex containing acrylic polymer particles (7) was mixed with 100 parts by mass of ion-exchanged water. The concentration of the solid content of the latex was 0.20. This latex was used instead of the latex of Example 20, and the spray E was adjusted to 0.50. MPa replaced 0.30 MPa, so that the hot air inlet overflow was 2000. (^ replaced 14 ° C, hot air outlet temperature was replaced by 74 t 8 () t, latex addition amount was replaced by 1.5 kg / hr 2.5 Except for kg / hr, an acrylic polymer powder (A-37) was produced in the same manner as in Example 20. In addition, an acrylic polymer powder (A-37) was used instead of the acrylic polymer powder (A- 2) Except that, two kinds of acrylic sols were prepared in the same manner as in Example 20. The various physical properties were measured or evaluated in the same manner as in Example 1. Regarding the composition and use of the monomer mixture of the acrylic polymer particles produced in each reference example. Amount, and the acrylic polymer The average particle diameters of the particles are shown in Table 1. In addition, the types and types of acrylic polymer particles, surface tension modifiers, and water-soluble polymers used in the production of the acrylic polymer powders of Examples and Comparative Examples were as follows: The amount used and the types of reactive surfactants are shown in Table 2. In addition, the surface tension of the latex used in the production of the acrylic polymer powder of each of the Examples and Comparative Examples, -79-1240742 latex The conditions and spraying conditions, and the acrylic polymer powder, the pore diameter, the micropore diameter, and the ratio (A / B) of the macropore pore volume A to the micropore pore volume B are shown in Table 3. In addition, the average particle diameter of the acrylic polymer powder produced in each Example or Comparative Example, the integrated void volume with a pore diameter of 1 μη or more, the void ratio, and the particle diameter ratio of the major axis a to the minor axis b (a / b) ), And the types of acrylic polymer powders and the types and amounts of plasticizers used in the production of the acrylic sols of the respective examples or comparative examples are shown in Table 4. In addition, the acrylic sol used in each of the examples or comparative examples has resistance to particle destruction, fluidity, and storage stability, and exudation resistance, hardness, tensile strength, tensile strength, and hair development of a sheet formed from the acrylic sol. The foaming properties are shown in Table 5. -8 0-1240742 s 1 轰 s__ ill Paper ΜΜΑ / ΪΒΜΑ / ΜΑΑ / 2ΗΕΜΑ / ΚΗ05 720 (64/30/2. 5/2, 5/1) ΙΩ 〇 £ s > \ g LO sc CO io r W \ 二 h > > 2 tD So rs > < b \\ M on § s 8 > \ Γ | sS Igl uiy nr, x— / cn jB »(^« RM1S MMA / iBMA / MAA / KH05 360 (58.5 / 40/0. 5/1) 1C II 2 K 1 Ks II 2 ΙΛ Is i! \? A〇〇 \ iS li 2 X _ | c〇s K \ io X ^ IO 2 Ru Zhao 1SS 黠 gang mf tear * M1g MMA / iBMA / MAA / KH05 630 (39/60/0. 5/0. 5) in money S > < 1 s in S © \ S is SX If 2 1, 11 ° 1 \ | ro is | e \ o S! SO | io \ 〇is is 2 u5 2d i | os $ Μ «Λ P o _s | 3 \ P 钤 ^ ΙΛ 1 P is CQ LO C3 | is g_ * l 5 «G age-g city * N1g Is ¥ ¥ Ito 1 〇 > 1¾ < 3 Ik σ > < S ¥ is < < Ci ·» σ > VS φ p xito ^ CO Οι, \ s \ CO s 斉 op Sin SS h% s- CU 〇0 \ GS Si 〇 >. op < S money s§ i 0 >. a. as Ii 0- 05 il 2S _ fum) 0. 80 0. 81 卜 〇 卜卜 da 卜 d 卜 d 卜 『〇6 0. 42! sd 5 6 00 CD 6 CD d 0. 70 ί 2 (I -1) (1 —2) (I One 3) (1-4) (1-5) (I —6) T WH HH VX (II One 2) (I 1-3) T ►—1 (I 1-5) (I 1-6) (I 1-7) Reference example 1 Reference example 2 Reference example 3 Reference example 4 Reference example 5 Reference example 6 Reference example 7 Reference example 8 Reference example 9 Reference example 10 Reference example 11 Reference example 12 Reference example 13

-81 - 1240742 表2 乳膠中丙烯酸系 聚合物粒子 100質量份 表面張力1 (有效成另 (質量1 i周整劑 、換算) 分) 水溶性高分子 (質量份) 反應性界面活性劑 實施例1 (M) Na-DBS 2 Na-PacA 0.2 KH05 實施例2 (1-1) - - Na-PStS 0.2 KH05 實施例3 (1-1) Na-AS 1 - - KH05 實施例4 (1-2) CS141E 3 Na-PStS 0.2 KH05 實施例5 (1-3) K-POEAEP 1 Na-PAcA 0.5 實施例6 (1-4) Na-DBS 2 Na-PStS 1 KH05 實施例7 (IM) CS141E 2 Na-PAcA 0.2 HS10 實施例8 (IM) - - Na-PAcA 0.2 HS10 實施例9 (Π-1) CS141E 2 - - HS10 實施例10 (11-1)/(11-2)/(11-3) =6/2/2 CS141E 2 Na-PAcA 0.2 全部HS10 實施例11 (1-1)/(11-4) =7/3 K-POEAEP 2 Na-PStS 0.2 KH05/HS10 實施例12 (ΙΙ·5) Na-AS 2 Na-PStS 0.2 HS10 實施例13 (ΙΙ·6) CS141E 2 Na-PAcA 0.2 - 爱施例14 (1-5) - - - - - 實施例15 (1-5) Na-DBS 2 - - - 實施例16 (1-5) - - Na-PAcA 0.2 - 實施例17 (1-3) - - - - - 實施例18 (1-2) - - - - KH05 實施例19 (1-6) - - - - KH05 實施例20 (ΙΙ-7) - - - - • 實施例21 (ΙΙ-7) CS141E 2 - - - 實施例22 (ΙΙ-7) - - Na-PStS 0.2 - 實施例23 (ΙΙ-6) - - - - - 實施例24 (ΙΙ-5) - - - - KS10 比較例1 (ι-ι) Na-DBS 2 Na-PAcA 0.2 KH05 比較例2 (1-1) - - Na-PStS 0.2 KH05 比較例3 (1-1) Na-AS 1 - - KH05 比較例4 (1-2) CS141E 3 Na-PStS 0.2 KH05 比較例5 (1-3) K-POEAEP 1 Na-PAcA 0.5 - 比較例6 (1-4) Na-DBS 2 Na-PStS 1 KH05 比較例7 (ΙΙ-1) CS141E 2 Na-PAcA 0.2 HS10 比較例8 (ΙΙ-1) - - Na-PAcA 0.2 HS10 比較例9 (ΙΙ-1) CS141E 2 - - HS10 比較例10 (ΙΙ-5) Na-AS 2 Na-PStS 0.2 HS10 比較例11 (ΙΙ-6) CS141E 2 Na-PAcA 0.2 - 比較例12 (1-5) - - - - - 比較例13 (ΙΙ-7) - - - - - [簡稱]-81-1240742 Table 2 100 mass parts of surface tension 1 of acrylic polymer particles in latex (Effective addition (mass 1 i week modifier, conversion) points) Water-soluble polymer (mass parts) Examples of reactive surfactants 1 (M) Na-DBS 2 Na-PacA 0.2 KH05 Example 2 (1-1)--Na-PStS 0.2 KH05 Example 3 (1-1) Na-AS 1--KH05 Example 4 (1-2 CS141E 3 Na-PStS 0.2 KH05 Example 5 (1-3) K-POEAEP 1 Na-PAcA 0.5 Example 6 (1-4) Na-DBS 2 Na-PStS 1 KH05 Example 7 (IM) CS141E 2 Na -PAcA 0.2 HS10 Example 8 (IM)--Na-PAcA 0.2 HS10 Example 9 (Π-1) CS141E 2--HS10 Example 10 (11-1) / (11-2) / (11-3) = 6/2/2 CS141E 2 Na-PAcA 0.2 All HS10 Example 11 (1-1) / (11-4) = 7/3 K-POEAEP 2 Na-PStS 0.2 KH05 / HS10 Example 12 (ΙΙ · 5 ) Na-AS 2 Na-PStS 0.2 HS10 Example 13 (11 · 6) CS141E 2 Na-PAcA 0.2-Example 14 (1-5)-----Example 15 (1-5) Na-DBS 2---Example 16 (1-5)--Na-PAcA 0.2-Example 17 (1-3)-----Example 18 (1-2)----KH05 Example 19 (1 -6)----KH05 Example 20 (III -7)----• Example 21 (III-7) CS141E 2---Example 22 (III-7)--Na-PStS 0.2-Example 23 (III-6)-----Implementation Example 24 (ΙΙ-5)----KS10 Comparative Example 1 (ι-ι) Na-DBS 2 Na-PAcA 0.2 KH05 Comparative Example 2 (1-1)--Na-PStS 0.2 KH05 Comparative Example 3 (1- 1) Na-AS 1--KH05 Comparative Example 4 (1-2) CS141E 3 Na-PStS 0.2 KH05 Comparative Example 5 (1-3) K-POEAEP 1 Na-PAcA 0.5-Comparative Example 6 (1-4) Na -DBS 2 Na-PStS 1 KH05 Comparative Example 7 (III-1) CS141E 2 Na-PAcA 0.2 HS10 Comparative Example 8 (III-1)--Na-PAcA 0.2 HS10 Comparative Example 9 (III-1) CS141E 2-- HS10 Comparative Example 10 (II-5) Na-AS 2 Na-PStS 0.2 HS10 Comparative Example 11 (III-6) CS141E 2 Na-PAcA 0.2-Comparative Example 12 (1-5)-----Comparative Example 13 ( ΙΙ-7)-----[abbreviation]

Na-DBS:十二烷基苯磺酸鈉 Na-AS:烷基磺酸鈉(拉迪姆魯PS) CS141E:芳香族磷酸酯(亞迪卡克魯CS141E) K-POEAEP :聚環氧乙烷醚.磷酸鉀鹽(耶雷克頓羅斯頓里伯F) Na-P AcA :聚丙嫌酸鈉 Na-PStS :聚苯乙烯磺酸鈉 KH 05 :聚環氧乙烷-1-(烯丙氧基)甲基烷醚硫酸銨鹽 HS10:壬基丙烯基苯酚環氧乙烷10莫耳加成物硫酸銨鹽 -82- 1240742 表3 乳1 僇 丙烯酸系聚合物粉末 表面張力 乳膠條件 噴霧乾燥 粗孔 微孔 μΝ/cm C 條件 Cx D 直徑 細孔體積A 直徑 細孔體積B A/B D (μη” (mL/g) (m) (mL/g) 實施例1 376 0.11 1.8 0.19 3.1 0.12 0.30 0.13 0.92 實施例2 553 0.11 1.6 0.16 3.5 0.13 0.28 0.15 0.86 實施例3 385 0.11 2.0 0.21 3.4 0.13 0.25 0.14 0.88 實施例4 355 0.11 2,1 0.23 4.6 0.14 0.15 0.16 0.88 實施例5 405 0.12 1.5 0.18 4.2 0.12 0.25 0.14 0.86 實施例6 367 0.11 2.2 0.25 4.8 0.12 0.27 0.15 0.80 實施例7 370 0.11 3.0 0.40 3.8 0.12 0.21 0.16 0.75 實施例8 543 0.11 4.3 0.48 3.6 0.11 0.29 0.16 0.88 實施例9 370 0.11 2.7 0.30 3.7 0.14 0.21 0.14 1.0 實施例10 363 0.14 2.3 0.31 3.9 0.13 0.19 0.092 1.4 實施例11 389 0.17 2.0 0.35 3.9 0.13 0.19 0.10 1.3 實施例12 373 0.11 2.4 0.25 3.6 0.11 0.28 0.16 0.69 實施例13 357 0.12 2.6 0.30 3.8 0.11 0.30 0.16 0.69 實施例14 562 0.12 2.2 0.26 4.7 0.15 0.18 0.17 0.88 實施例15 371 0.12 1.9 0.23 4.2 0.13 0.17 0.18 0.72 實施例16 557 0.12 2.0 0.24 4.5 0.13 0.20 0.26 0.81 實施例17 566 0.12 1.7 0.20 4.0 0.16 0.22 0.19 0.84 實施例18 560 0.11 2.3 0.25 4.1 0.17 0.18 0.17 1.0 實施例19 558 0.10 2.4 0.26 4.6 0.15 0.21 0.18 0.83 實施例20 559 0.11 4.0 0.44 4.2 0.14 0.25 0.20 0.70 實施例21 366 0.11 3,3 0.37 4.0 0.15 0.21 0.19 0.79 實施例22 555 0.11 3,0 0.33 4.1 0.16 0.20 0.17 0.94 實施例23 575 0.12 2.6 0.31 3.8 0.13 0.29 0.19 0.68 實施例24 555 0.11 3.5 0.38 3.9 0.15 0.30 0.15 1.00 比較例1 376 0.053 8,1 0.43 5.3 0.18 0.56 0.21 0.86 比較例2 553 0.053 7.0 0.37 4.7 0.16 0.59 0.22 0.73 比較例3 385 0.053 9.8 0.65 5.6 0.16 0.60 0.20 0.80 比較例4 355 0.11 12.2 1.33 8.9 0.14 0.23 0.19 0.74 比較例5 405 0.12 14.6 1.81 9.2 0.13 0.31 0.18 0.72 比較例6 367 0.11 10.7 1.20 9.0 0.18 0.27 0.20 0.90 比較例7 370 0.57 15.8 0.89 10.8 0.13 0.57 0.25 0.52 比較例8 543 0.57 1.6 0.088 4.5 0.17 0.55 0.41 0.36 比較例9 370 0.57 1.7 0.094 3.1 0.18 0.54 0.43 0.35 比較例10 373 0.57 21.0 1.19 12.2 0.19 0.049 0.31 0.61 比較例11 357 0.57 14.0 0.79 10.0 0.17 0.048 0.21 0.81 比較例12 562 0.58 9.8 0.57 7.2 0.20 0.61 0.28 0.71 比較例13 559 0.57 21.0 1.20 12.1 0.18 0.59 0.32 0.56 -83- 1240742 表4 乳膠中丙烯酸系 聚合物粒子 丙烯酸系聚合物粉: 末 可塑劑 平均 粒徑 (m) 孔直徑Ιμηι以 上積分空隙體積 (niL/g) 空隙率 (%) 粒徑比a/b (質量份) DINP RDP 實施例1 (M) (A-1) 30 0.75 58 1.2 〇 100 實施例2 (1-0 (A-2) 34 0.78 60 2.1 X 100 實施例3 (1-1) (A-3) n 0.77 59 1.2 〇 100 實施例4 (1-2) (A-4) 24 0.73 58 1.1 〇 100 實施例5 (1-3) (A-5) 28 0.79 57 1.5 Δ 100 實施例6 (1-4) (A-6) 26 0.77 62 1.2 〇 100 實施例7 (Π-1) (Α·7) 20 0.72 63 1.2 〇 120 實施例8 (Π-1) (Α-8) 15 0.74 65 2.0 X 120 實施例9 (π-1) (Α-9) 18 0.71 60 1.2 〇 120 實施例10 (11-1)/(11-2)/(11-3) =6/2/2 (A-10) 21 0.70 55 1.1 〇 120 實施例11 (1-1)/(11-4)=7/3 (A-ll) 32 0.71 56 1.1 〇 100 實施例12 (Π-5) (A-12) 23 0.73 64 2.2 X 120 實施例13 (Π-6) (A-13) 21 0.75 62 1.3 Δ 120 實施例14 (1-5) (A-14) 23 0.80 64 2.2 X 100 實施例15 (1-5) (A-15) 27 0.76 62 1.2 〇 100 實施例16 (1-5) (A-16) 25 0.77 61 2.2 X 100 實施例Π (1-3) (A-17) 24 0.81 59 2.1 X 100 實施例18 (1-2) (A-18) 22 0.78 61 2.2 X 100 實施例19 (1-6) (A-19) 21 0.82 63 2.1 X 100 實施例20 (Π-7) (A-20) 15 0.75 65 2.0 X 120 實施例21 (Π-7) (A-21) 18 0.72 64 1.2 〇 120 實施例22 (Π-7) (A-22) 20 0.74 62 2.0 X 120 實施例23 (Π-6) (A-23) 19 0.79 67 2.1 X 120 實施例24 (Π-5) (A-24) 17 0.80 65 2.0 X 120 比較例1 (I-D (A-25) 12 1.0 72 2.3 X 100 比較例2 (M) (A-26) 14 0.95 73 3.2 X 100 比較例3 (1-1) (A-27) 10 0.97 75 2.3 X 100 比較例4 (1-2) (A-28) 6 0.92 78 2.1 X 100 比較例5 (1-3) (A-29) 6 0.93 79 2.9 X 100 比較例6 (1-4) (A-30) 7 0.98 79 2.4 X 100 比較例7 (IM) (A-31) 8 1.1 68 2.5 X 120 比較例8 (Π-1) (A-32) 32 0.91 67 3.1 X 120 比較例9 (Π-1) (A-33) 30 0.92 72 2.4 X 120 比較例10 (Π-5) (A-34) 6 1.3 78 2.4 X 120 比較例11 (Π-6) (A-35) 9 1.2 81 2.2 X 120 比較例12 (1-5) (A-36) 10 1.1 Ί9 3.5 X 100 比較例13 (Π-7) (A-37) 6 1.3 75 3.3 X 120 丙烯酸溶膠組成物 一 84 - 1240742 ς螩Na-DBS: Sodium Dodecylbenzene Sulfonate Na-AS: Sodium Alkyl Sulfonate (La Dimru PS) CS141E: Aromatic Phosphate (Yadikaru CS141E) K-POEAEP: Polyethylene Oxide Alkyl ether. Potassium phosphate (Yerekton Roston Ribe F) Na-P AcA: Polyacrylic acid sodium Na-PStS: Sodium polystyrene sulfonate KH 05: Polyethylene oxide-1- (allyl Oxy) methyl alkyl ether ammonium sulfate HS10: Nonylpropenylphenol ethylene oxide 10 mol adduct ammonium sulfate -82-1240742 Table 3 Milk 1 Acrylic polymer powder Surface tension Latex conditions Spray drying Coarse micropores μN / cm C conditions Cx D diameter pore volume A diameter pore volume BA / BD (μη ”(mL / g) (m) (mL / g) Example 1 376 0.11 1.8 0.19 3.1 0.12 0.30 0.13 0.92 Example 2 553 0.11 1.6 0.16 3.5 0.13 0.28 0.15 0.86 Example 3 385 0.11 2.0 0.21 3.4 0.13 0.25 0.14 0.88 Example 4 355 0.11 2,1 0.23 4.6 0.14 0.15 0.16 0.88 Example 5 405 0.12 1.5 0.18 4.2 0.12 0.25 0.14 0.86 Example 6 367 0.11 2.2 0.25 4.8 0.12 0.27 0.15 0.80 Example 7 370 0.11 3.0 0.40 3.8 0.12 0.21 0.16 0.75 Example 8 543 0.11 4.3 0.48 3.6 0.11 0.29 0.16 0.88 Example 9 370 0.11 2.7 0.30 3.7 0.14 0.21 0.14 1.0 Example 10 363 0.14 2.3 0.31 3.9 0.13 0.19 0.092 1.4 Example 11 389 0.17 2.0 0.35 3.9 0.13 0.19 0.10 1.3 Example 12 12 373 0.11 2.4 0.25 3.6 0.11 0.28 0.16 0.69 Example 13 357 0.12 2.6 0.30 3.8 0.11 0.30 0.16 0.69 Example 14 562 0.12 2.2 0.26 4.7 0.15 0.18 0.17 0.88 Example 15 371 0.12 1.9 0.23 4.2 0.13 0.17 0.18 0.72 Example 16 557 0.12 2.0 0.24 4.5 0.13 0.20 0.26 0.81 Example 17 566 0.12 1.7 0.20 4.0 0.16 0.22 0.19 0.84 Example 18 560 0.11 2.3 0.25 4.1 0.17 0.18 0.17 1.0 Example 19 558 0.10 2.4 0.26 4.6 0.15 0.21 0.18 0.83 Example 20 559 0.11 4.0 0.44 4.2 0.14 0.25 0.20 0.70 Example 21 366 0.11 3,3 0.37 4.0 0.15 0.21 0.19 0.79 Example 22 555 0.11 3,0 0.33 4.1 0.16 0.20 0.17 0.94 Example 23 575 0.12 2.6 0.31 3.8 0.13 0.29 0.19 0.68 Example 24 555 0.11 3.5 0.38 3.9 0.15 0.30 0.15 1.00 Comparative Example 1 376 0.053 8,1 0.43 5.3 0.18 0.56 0.21 0.86 Comparative Example 2 553 0.053 7.0 0.37 4.7 0.16 0.59 0.22 0.73 Comparative Example 3 385 0.053 9.8 0.65 5.6 0.16 0.60 0.20 0.80 Comparative Example 4 355 0.11 12.2 1.33 8.9 0.14 0.23 0.19 0.74 Comparative Example 5 405 0.12 14.6 1.81 9.2 0.13 0.31 0.18 0.72 Comparative Example 6 367 0.11 10.7 1.20 9.0 0.18 0.27 0.20 0.90 Comparative Example 7 370 0.57 15.8 0.89 10.8 0.13 0.57 0.25 0.52 Comparative Example 8 543 0.57 1.6 0.088 4.5 0.17 0.55 0.41 0.36 Comparative Example 9 370 0.57 1.7 0.094 3.1 0.18 0.54 0.43 0.35 Comparative Example 10 373 0.57 21.0 1.19 12.2 0.19 0.049 0.31 0.61 Comparative Example 11 357 0.57 14.0 0.79 10.0 0.17 0.048 0.21 0.81 Comparative Example 12 562 0.58 9.8 0.57 7.2 0.20 0.61 0.28 0.71 Comparative Example 13 559 0.57 21.0 1.20 12.1 0.18 0.59 0.32 0.56 -83- 1240742 Table 4 Acrylic polymer particles in latex Acrylic polymer powder: average plasticizer particle diameter (m) pore diameter 1 μm or more integral void volume (niL / g) void ratio (%) particle size ratio a / b (mass parts) DINP RDP Example 1 (M) (A-1) 30 0.75 58 1.2 〇100 Example 2 (1-0 (A-2) 34 0.78 60 2.1 X 100 Example 3 (1-1) (A-3) n 0.77 59 1.2 〇 1 00 Example 4 (1-2) (A-4) 24 0.73 58 1.1 〇 100 Example 5 (1-3) (A-5) 28 0.79 57 1.5 Δ 100 Example 6 (1-4) (A- 6) 26 0.77 62 1.2 〇100 Example 7 (Π-1) (Α · 7) 20 0.72 63 1.2 〇120 Example 8 (Π-1) (Α-8) 15 0.74 65 2.0 X 120 Example 9 ( π-1) (Α-9) 18 0.71 60 1.2 〇120 Example 10 (11-1) / (11-2) / (11-3) = 6/2/2 (A-10) 21 0.70 55 1.1 〇120 Example 11 (1-1) / (11-4) = 7/3 (A-ll) 32 0.71 56 1.1 〇100 Example 12 (Π-5) (A-12) 23 0.73 64 2.2 X 120 Example 13 (Π-6) (A-13) 21 0.75 62 1.3 Δ 120 Example 14 (1-5) (A-14) 23 0.80 64 2.2 X 100 Example 15 (1-5) (A-15 ) 27 0.76 62 1.2 〇100 Example 16 (1-5) (A-16) 25 0.77 61 2.2 X 100 Example Π (1-3) (A-17) 24 0.81 59 2.1 X 100 Example 18 (1 -2) (A-18) 22 0.78 61 2.2 X 100 Example 19 (1-6) (A-19) 21 0.82 63 2.1 X 100 Example 20 (Π-7) (A-20) 15 0.75 65 2.0 X 120 Example 21 (Π-7) (A-21) 18 0.72 64 1.2 〇120 Example 22 (Π-7) (A-22) 20 0.74 62 2.0 X 120 Example 23 (Π-6) (A -23) 19 0.7 9 67 2.1 X 120 Example 24 (Π-5) (A-24) 17 0.80 65 2.0 X 120 Comparative Example 1 (ID (A-25) 12 1.0 72 2.3 X 100 Comparative Example 2 (M) (A-26 ) 14 0.95 73 3.2 X 100 Comparative Example 3 (1-1) (A-27) 10 0.97 75 2.3 X 100 Comparative Example 4 (1-2) (A-28) 6 0.92 78 2.1 X 100 Comparative Example 5 (1 -3) (A-29) 6 0.93 79 2.9 X 100 Comparative Example 6 (1-4) (A-30) 7 0.98 79 2.4 X 100 Comparative Example 7 (IM) (A-31) 8 1.1 68 2.5 X 120 Comparative Example 8 (Π-1) (A-32) 32 0.91 67 3.1 X 120 Comparative Example 9 (Π-1) (A-33) 30 0.92 72 2.4 X 120 Comparative Example 10 (Π-5) (A-34 ) 6 1.3 78 2.4 X 120 Comparative Example 11 (Π-6) (A-35) 9 1.2 81 2.2 X 120 Comparative Example 12 (1-5) (A-36) 10 1.1 Ί9 3.5 X 100 Comparative Example 13 (Π -7) (A-37) 6 1.3 75 3.3 X 120 Acrylic Sol Composition One 84-1240742

丨 ςοο 1240742 於上述實施例及比較例中,實施例1〜9與比較例1〜 9之各對應,及實施例1 2〜1 4與比較例1 0〜1 2之各對應, 以及實施例2 0與比較例1 3之對應。各比較例無法滿足所 對應的實施例所滿足之形態1 (空隙率)的必要條件(有關丙 烯酸系聚合物粉末之孔直徑1 μπι以上的積分空隙體積爲 0.9m g/L以下之條件),且大多此等比較例無法滿足形態1 之其他必要條件(空隙率爲%之條件)(表4)。結果,此等 實施例所得的丙烯酸溶膠之流動性及儲藏安定性,與比較 例相比極爲優異(表5 )。 而且,實施例1 4〜1 6中實施例1 4僅滿足形態1 (空隙 率)之條件,實施例1 5僅滿足形態1及形態2(粒徑比)之條 件,實施例1 6僅滿足形態1及形態3(水溶性高分子)之條 件的相互關係。實施例1 5與實施例1 4相比時所得丙烯酸 溶膠之流動性提高,實施例1 6與實施例1 4相比時所得丙 烯酸溶膠之耐粒子破壞性提高(表5)。有關實施例20〜22 亦有相同的傾向。換言之,實施例20〜22中實施例2〇僅 滿足形態1 (空隙率)之條件,實施例2 1僅滿足形態1及形 態2 (粒徑比)之條件,實施例22僅滿足形態1及形態3(水 溶性高分子)之條件的相互關係。實施例2 1與實施例20相 比時所得丙烯酸溶膠之流動性提高,實施例22與實施例2〇 相比時所得丙烯酸溶膠之耐粒子破壞性提高(表5) °此外’ 與沒有使用反應性界面活性劑(形態4)之實施例5 ' 13-17 ' 20-23相比時,有使用的實施例1-4、6-12、18、19及24 所得片板之發泡性優異(表5)。 -86 -丨 ςο 1240742 In the above examples and comparative examples, each of Examples 1 to 9 corresponds to Comparative Examples 1 to 9, and each of Example 1 2 to 14 corresponds to Comparative Examples 1 to 12 and Examples 2 0 corresponds to Comparative Example 13. Each comparative example failed to satisfy the necessary condition of the aspect 1 (void ratio) satisfied by the corresponding example (a condition that the integrated void volume of an acrylic polymer powder having a pore diameter of 1 μm or more was 0.9 mg / L or less), and In many of these comparative examples, the other necessary conditions (conditions of% porosity) of Form 1 were not satisfied (Table 4). As a result, the acrylic sols obtained in these examples were extremely excellent in fluidity and storage stability compared with the comparative examples (Table 5). In addition, Examples 1 to 4 of Examples 1 to 16 satisfy only the conditions of Form 1 (void ratio), Examples 1 to 5 satisfy only the conditions of Form 1 and Form 2 (particle size ratio), and Examples 16 only satisfy Relationship between the conditions of Form 1 and Form 3 (water-soluble polymer). The fluidity of the acrylic sol obtained in Example 15 compared with Example 14 was improved, and the particle rupture resistance of the acrylic sol obtained in Example 16 was increased compared to Example 14 (Table 5). Examples 20 to 22 have the same tendency. In other words, in Examples 20 to 22, Example 20 only satisfies the conditions of Form 1 (void ratio), Example 21 only satisfies the conditions of Form 1 and Form 2 (particle size ratio), and Example 22 only satisfies Forms 1 and 2. Correlation of the conditions of Form 3 (water-soluble polymer). Example 21 The flowability of the acrylic sol obtained when compared with Example 20 was improved, and the particle destruction resistance of the acrylic sol obtained when Example 22 was compared with Example 20 was improved (Table 5) In comparison with Example 5 ′ 13-17 ′ 20-23 of the surfactant (Form 4), the sheet obtained from Examples 1-4, 6-12, 18, 19, and 24 having excellent foaming properties when used (table 5). -86-

Claims (1)

1240742 拾、申請專利範圍: 弟93101455號「丙細酸系聚合物粉末、丙烯酸系溶膠及宜成 形物」專利案 ^ (94年3月24日修正) 1 . 一種丙烯酸系聚合物粉末,其係將含有丙烯酸系聚合物 粒子之乳膠凝固乾燥所得之丙烯酸系聚合物粉末,該粉 末之平均粒徑爲5〜1 〇〇 μιη、空隙率爲70 %以下、且孔直 徑Ιμηι以上之積分空隙體積爲〇.9mL/g以下,其中該丙 烯酸系聚合物粒子係選自於下列: (1 ) 一在含有前階段聚合物(I - a)之乳膠中,使形成後階 段聚合物(I-b)所得之多階段聚合物粒子, 前階段聚合物(I-a)係爲含有5〜50質量%之甲基丙烯酸 甲酯單位’且藉由1階段或單體組成互相不同的連續2 階段以上之聚合反應所形成,重量平均分子量爲 50,000〜3,0〇〇,〇〇〇 的共聚物, 後階段聚合物(I-b)係爲含有50質量%以上之甲基丙烯 酸甲酯’且藉由1階段或單體組成互相不同的連續2階 段以上之聚合反應所形成,重量平均分子量爲 50,000〜3,0〇〇,〇〇〇 的聚合物, 前階段聚合物(L· a)/後階段聚合物(I-b)之質量比爲5/9 5 〜95/5之丙烯酸系聚合物粒子(1),及 (2)—在含有前階段聚合物(II_a)之乳膠中,形成後階段 聚合物(ΙΙ-b)所得之多階段聚合物粒子, 前階段聚合物(II- a)係由5 0〜9 9 · 9 9質量%丙嫌酸院酯 單位、49.99質量%以下可與丙烯酸烷酯共聚合的其他單 1240742 官能性單體單位及0 · 0 1〜1 0質量%多官能性單體單位所、 成’藉由1階段或單體組成互相不同的連續2階段以上 之聚合反應所形成,重量平均分子量爲50,000〜3,000,000 的共聚物, 後階段聚合物(11 - b )含有5 0質量%以上甲基丙烯酸甲酯 單位,藉由1階段或單體組成互相不同的連續2階段以 上聚合反應所形成,重量平均分子量爲50, 〇〇〇〜3,000,000 的聚合物, 前階段聚合物(II-a)/後階段聚合物(ll-b)之質量比爲 φ 5/95〜95/5之丙烯酸系聚合物粒子(11)。 2 ·如申g靑專利範圍第1項之丙嫌酸系聚合物粉末,其中丙 燃酸系聚合物粉末之粗孔直徑爲7 μ m以下,且微孔直徑 爲0 · 5 μιη以下。 3 .如申請專利範圍第1項之丙烯酸系聚合物粉末,其中每 1克丙烯酸系聚合物粉末之粗孔細孔體積Α與微孔細孔 體積B之比例(A/B)爲0.5〜5。 4 .如申請專利範圍第2項之丙烯酸系聚合物粉末,其中每Φ 1克丙嫌酸系聚合物粉末之粗孔細孔體積A與微孔細孔 體積B之比例(α/B)爲0_5〜5。 5 ·如申請專利範圍第1項之丙烯酸系聚合物粉末,其中凝 固乾燥爲噴霧乾燥。 6·如申請專利範圍第丨〜5項中任一項之丙烯酸系聚合物粉 末,其中以電子顯微鏡觀察的丙烯酸系聚合物粉末之長 徑a與短徑b之粒徑比a/b爲1.0〜2。 1240742 7 .如申請專利範圍第 6項之丙烯酸系聚合物粉末,其中含· 有丙嫌酸系聚合物粒子之乳膠的表面張力爲5〇〇jiN/cm以 下。 8 .如申請專利範圍第〗〜5項中任一項之丙烯酸系聚合物粉 末’該乳膠爲含有丙烯酸系聚合物粒子及重量平均分子 量爲1 0,0 0 0以上之水溶性高分子之乳膠,其中使水溶性 局分子之使用量對1〇〇質量份丙嫌酸系聚合物粒子而言 爲0.001〜10質量份之乳膠乾燥噴霧所得。 9 ·如申請專利範圍第1〜5項中任一項之丙烯酸系聚合物粉Φ 末,其中丙烯酸系聚合物粒子爲丙烯酸系聚合物粒子(1), 該丙烯酸系聚合物粒子(I)係在含有前階段聚合物(I_a)之 乳膠中,使後階段(I - b )形成所得之多階段聚合物粒子, 且至少具有一層以反應性界面活性劑作爲構成成分之共 聚物所成之層。 1 〇 ·如申請專利範圍第 9項之丙烯酸系聚合物粉末,其中 具有以反應性界面活性劑爲構成成分之共聚物所成之 φ 層,係至少作爲最外層。 1 1·一種丙烯酸系聚合物粉末,其係在含有50〜99.99質量 %丙烯酸烷酯單位、4 9 · 9 9質量%以下可與丙烯酸烷酯共 聚合的其他單官能性單體單位及0 · 0 1〜1 〇質量%多官能 性單體單位所成’藉由1階段或單體組成互相不同的連 續2階段以上之聚合反應所形成共聚物(II-a)的粒子(以下 稱該粒子爲丙烯酸系聚合物粒子(ΙΙ-a))之乳膠,與在含前 1240742 階段聚合物(I-1-a)之乳膠中,形成後階段聚合物(I-b)所、 得的多階段聚合物粒子, 其中 前階段聚合物(I-1-a)至少在最外層中含有20〜50質量 %之甲基丙烯酸甲酯單位,且藉由1階段或單體組成互相 不同的連續2階段以上之聚合反應所形成的共聚物, 後階段聚合物(I-b)係爲含有50質量%以上之甲基丙烯1240742 Patent application scope: Patent No. 93101455 "acrylic acid polymer powder, acrylic sol and suitable shaped product" ^ (Amended on March 24, 1994) 1. An acrylic polymer powder The acrylic polymer powder obtained by solidifying and drying the latex containing acrylic polymer particles has an average particle size of 5 to 100 μm, a porosity of 70% or less, and an integrated void volume of pore diameter of 1 μm or more is 0.9mL / g or less, wherein the acrylic polymer particles are selected from the following: (1)-In a latex containing the pre-stage polymer (I-a), the polymer obtained from the post-stage polymer (Ib) is formed. Multi-stage polymer particles. The pre-stage polymer (Ia) is formed by 5 to 50% by mass of methyl methacrylate units, and is formed by two or more consecutive stages of polymerization reactions with different stages or monomer compositions. A copolymer having a weight-average molecular weight of 50,000 to 3,000,000,000, and the polymer (Ib) in the later stage is a methyl methacrylate containing 50% by mass or more, and through one stage or a monomer It is a polymer formed by two or more consecutive polymerization reactions with different compositions. The polymer has a weight average molecular weight of 50,000 to 3,000,000.00, a pre-stage polymer (L · a) / a post-stage polymer (Ib). Acrylic polymer particles (1) and (2) with a mass ratio of 5/9 5 to 95/5-in a latex containing a pre-stage polymer (II_a), a post-stage polymer (III-b) is formed For the obtained multi-stage polymer particles, the pre-stage polymer (II-a) is composed of 50 to 99.99% by mass of propionate units, and 49.99% by mass or less of other monomers copolymerizable with alkyl acrylate. 1240742 Functional monomer units and 0 · 0 1 ~ 10 0% by mass of multifunctional monomer units are formed by a single stage or two or more consecutive polymerization reactions with different monomer compositions, weight average molecular weight A copolymer of 50,000 to 3,000,000. The post-stage polymer (11-b) contains 50% by mass or more of methyl methacrylate units, and is formed by two or more consecutive stages of polymerization reactions with different stages or monomer compositions. Weight average molecular weight is 50,000-3,000 A polymer of 0,000, an acrylic polymer particle (11) having a mass ratio of a pre-stage polymer (II-a) / a post-stage polymer (ll-b) of φ 5/95 to 95/5. 2. The propionic acid polymer powder as described in item 1 of the patent application, wherein the diameter of the coarse pores of the propionic acid polymer powder is 7 μm or less, and the diameter of the micropores is 0 • 5 μm. 3. The acrylic polymer powder according to item 1 of the scope of patent application, wherein the ratio (A / B) of the coarse pore volume A to the micro pore volume B per gram of the acrylic polymer powder is 0.5 to 5 . 4. The acrylic polymer powder according to item 2 of the scope of patent application, wherein the ratio (α / B) of the coarse pore volume A to the micro pore volume B per gram of propylene acid polymer powder is 0_5 ~ 5. 5. The acrylic polymer powder according to item 1 of the patent application scope, wherein the solid drying is spray drying. 6. The acrylic polymer powder according to any one of claims 1-5, wherein the particle diameter ratio a / b of the major axis a and the minor axis b of the acrylic polymer powder observed with an electron microscope is 1.0. ~2. 1240742 7. The acrylic polymer powder according to item 6 of the scope of patent application, wherein the surface tension of the latex containing propionic acid polymer particles is less than 500 jiN / cm. 8. If the acrylic polymer powder according to any one of the scope of the application patent No. 5 to 5, the latex is a latex containing acrylic polymer particles and a water-soluble polymer having a weight average molecular weight of 10,000 or more In which, the use amount of the water-soluble local molecule is obtained by drying and spraying 0.001 to 10 parts by mass of 100 parts by mass of the propionic acid polymer particles. 9 · The acrylic polymer powder Φ according to any one of claims 1 to 5, wherein the acrylic polymer particles are acrylic polymer particles (1), and the acrylic polymer particles (I) are In the latex containing the pre-stage polymer (I_a), the post-stage (I-b) is formed into the obtained multi-stage polymer particles and has at least one layer formed of a copolymer containing a reactive surfactant as a constituent component . 10. The acrylic polymer powder according to item 9 of the scope of the patent application, which has a φ layer made of a copolymer containing a reactive surfactant as a constituent, and is at least the outermost layer. 1 1 · An acrylic polymer powder containing 50 to 99.99% by mass of an alkyl acrylate unit, 4 9 · 9 9% by mass or less of other monofunctional monomer units copolymerizable with an alkyl acrylate, and 0 · 0 1 to 1 0% by mass of a multifunctional monomer unit. Particles of a copolymer (II-a) formed by a single stage or two or more consecutive polymerization reactions with different monomer compositions (hereinafter referred to as the particles) A latex that is acrylic polymer particles (III-a)) and a multistage polymer obtained by forming a late polymer (Ib) in a latex containing the first 1240742 polymer (I-1-a) Particles in which the pre-stage polymer (I-1-a) contains at least 20 to 50% by mass of methyl methacrylate units in the outermost layer, and is composed of 1 stage or 2 consecutive stages of monomers that are different from each other. In the copolymer formed by the polymerization reaction, the polymer (Ib) in the latter stage contains 50% by mass or more of methacrylic acid. 酸甲酯’且藉由1階段或單體組成互相不同的連續2階 段以上之聚合反應所形成的聚合物,且 含有 前階段聚合物(1-1-a)/後階段聚合物(I_b)之質量比爲 5/9 5〜95/5之丙烯酸系聚合物粒子(1-1)的乳膠,係將 丙嫌酸系聚合物粒子(II-a)/丙烯酸系聚合物粒子(Ι_υ質 量比以5/95〜40/60混合所得之乳膠凝固乾燥所得之丙烯 酸系聚合物粉末,該粉末的平均粒子徑爲5〜1〇〇μηι,空 隙率爲70%以下,且孔直徑1μιη以上之積分空隙體積爲 0.9mL/g 以下。 1 2 · —種丙嫌酸溶膠,其係含有如申請專利範圍第1至^ 項中任一項之丙烯酸系聚合物粉末,及一可塑劑,該可 塑劑係選自於二甲氧基乙基酞酸酯、二丁基酞酸酯、二 辛基酞酸酯、二異壬基酞酸酯、二異癸基酞酸酯、二-十一院基駄酸酯、丁基苯甲基酞酸酯、雙(甲氧基乙基) 駄酸顚、雙(乙氧基乙基)酞酸酯、雙(丁氧基乙基)酞酸 酯等之酞酸酯系可塑劑、二苯基辛基磷酸酯、三丁基磷 酸醋、三甲基憐酸酯、三甲酚基磷酸酯、三苯基磷酸酯、 二二甲苯基磷酸酯、參(2-乙基己基)磷酸酯、2_乙基己 一4一 1240742 基一本基磷酸酯、梦(異丙基苯基)磷酸酯、間苯二酚雙(二 本基fe酸酯)、雙酚A雙(二苯基磷酸酯)、雙酚A雙(二 甲酚磷酸酯)等之磷酸酯系可塑劑、雙乙基己基)己二 酸酯等之己二酸酯系可塑劑、雙(2_乙基己基)癸二酸酯 等之癸一酸酯系可塑劑、雙(2、乙基己基)壬二酸酯等之 壬一酸酯系可塑劑、參(2_乙基己基)偏苯三酸酯等之偏 苯三酸酯系可塑劑、富馬酸二丁酯等之富馬酸系可塑 劑、乙醯基檸檬酸三丁酯等之檸檬酸酯系可塑劑、油酸 丁醋等之油酸酯系可塑劑、聚酯系可塑劑、4 _環己烯—丨,2 _ 一殘酸二異壬酯等之環己儲二竣酸系可塑劑,其中每1〇〇 重量份之丙烯酸系聚合物粉末係配合50至500質量份 可塑劑之比例。 1 3 · —種成形物,其係由將如申請專利範圍第1 2項之丙烯 酸溶膠成形所得。Acid methyl ester 'and a polymer formed by continuous polymerization of more than two stages with one stage or different monomer composition, and contains a pre-stage polymer (1-1-a) / post-stage polymer (I_b) The latex of acrylic polymer particles (1-1) with a mass ratio of 5/9 5 to 95/5 is a mass ratio of acrylic polymer particles (II-a) / acrylic polymer particles (I_υ mass ratio The acrylic polymer powder obtained by solidifying and drying the latex obtained by mixing 5/95 ~ 40/60. The average particle diameter of the powder is 5 ~ 100μηι, the porosity is 70% or less, and the pore diameter is more than 1μιη. The void volume is 0.9 mL / g or less. 1 2-A propionic acid sol, which contains an acrylic polymer powder according to any one of claims 1 to ^, and a plasticizer, which is a plasticizer. Is selected from the group consisting of dimethoxyethylphthalate, dibutylphthalate, dioctylphthalate, diisononylphthalate, diisodecylphthalate, di-undecyl Phosphonate, butyl benzyl phthalate, bis (methoxyethyl) fluorenate, bis (ethoxyethyl) phthalate, bis ( Phthalate-based plasticizers such as oxyethyl) phthalate, diphenyloctyl phosphate, tributyl phosphate, trimethyl phosphonate, tricresol phosphate, triphenyl phosphate, Xylyl phosphate, ginseng (2-ethylhexyl) phosphate, 2-ethylhexyl-4-1240742-based monophosphate, dream (isopropylphenyl) phosphate, resorcinol bis (Dibenzyl fe acid ester), bisphenol A bis (diphenyl phosphate), bisphenol A bis (xylenol phosphate), phosphate ester plasticizers, diethylhexyl) adipate, etc. Adipate-based plasticizers, adipate-based plasticizers, bis (2-ethylhexyl) sebacate, etc. Nonadipate-based plasticizers, bis (2, ethylhexyl) azelate, etc. Plasticizers, trimellitate-based plasticizers such as ginseng (2-ethylhexyl) trimellitic acid esters, fumaric acid-based plasticizers such as dibutyl fumarate, tributyl ethyl citrate Citrate-based plasticizers, oleate-based plasticizers, oleate-based plasticizers, polyester-based plasticizers, 4 _cyclohexene — 丨, 2 _ diisononyl monoresidue, etc. Dicarboxylic acid Agents, wherein each of 1〇〇 parts by weight acrylic polymer powder based mixing ratio of from 50 to 500 parts by mass of a plasticizer. 1 3 · A molded article obtained by molding an acrylic sol such as the item 12 in the patent application scope.
TW93101455A 2002-09-17 2004-01-20 Acrylic polymer powder, acrylic sol and molding TWI240742B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002270370A JP3953924B2 (en) 2002-09-17 2002-09-17 Acrylic polymer coagulation composition and acrylic sol using the same
JP2003009577A JP4080899B2 (en) 2003-01-17 2003-01-17 Acrylic polymer powder, acrylic sol and molded product
JP2003011755A JP4499364B2 (en) 2003-01-21 2003-01-21 Acrylic polymer powder, acrylic sol and molded product
JP2003026965A JP4083029B2 (en) 2003-02-04 2003-02-04 Acrylic polymer powder, acrylic sol and molded product
JP2003127676A JP4629315B2 (en) 2003-05-06 2003-05-06 Acrylic polymer powder, acrylic sol and molded product

Publications (2)

Publication Number Publication Date
TW200417573A TW200417573A (en) 2004-09-16
TWI240742B true TWI240742B (en) 2005-10-01

Family

ID=37012916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93101455A TWI240742B (en) 2002-09-17 2004-01-20 Acrylic polymer powder, acrylic sol and molding

Country Status (1)

Country Link
TW (1) TWI240742B (en)

Also Published As

Publication number Publication date
TW200417573A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
TWI424015B (en) Core-shell nanoparticles
EP1964903B1 (en) Heat-expandable microspheres, process for production of the same and uses thereof
WO2007058379A1 (en) Heat-expandable microsphere, process for producing the same, and use
CN100427543C (en) Acrylic acid polymer powder, acrylic acid sol and forming article
TW201540730A (en) Composite particle, method for fabricating the same, external agent, coating agent, optical film, resin composition and formed body
JP5400808B2 (en) Emulsifier-free polymerization method of acrylic ester emulsion
JPH01213371A (en) Aqueous coating composition having sweeping mechanism of anionic seed
JP2017119843A (en) Hollow polymer particle, manufacturing method of polymer particle dispersion and manufacturing method of hollow polymer particle
JP2008231241A (en) Hollow resin particle
JP4651883B2 (en) Skin cosmetics containing spherical porous crosslinked polymer particles
TWI240742B (en) Acrylic polymer powder, acrylic sol and molding
JP2004530033A (en) Non-crosslinked foam made from emulsion
JP4080899B2 (en) Acrylic polymer powder, acrylic sol and molded product
JP2012193244A (en) Resin particle for light diffusing agent, method for production thereof, and light diffusing film including the resin particle
JP6924020B2 (en) Bowl-shaped hollow polymer particles and their manufacturing method
JP4629315B2 (en) Acrylic polymer powder, acrylic sol and molded product
CN100500703C (en) Spherical resin fine particles, process for producing spherical resin fine particles, and spacer for liquid crystal display element
JP5953182B2 (en) Alkali-soluble resin and viscosity modifier using the same
JP2021514408A (en) Expandable polymer particles
JP7259140B1 (en) THERMALLY EXPANDABLE MICROSPHERES, COMPOSITION, AND MOLDED PRODUCT
JP2004224846A (en) Acrylic polymer powder, acrylic sol and molded article
KR101426532B1 (en) A method for preparing polymer particle with porous structure
JP2006335793A (en) Method for producing acrylic polymer powder and plastisol composition
JP2010155932A (en) Heat storage elastomer molded body
JP6794177B2 (en) Sustained release particles and their manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees