TWI239207B - Method and device for coding digital images using intra-mode block prediction - Google Patents

Method and device for coding digital images using intra-mode block prediction Download PDF

Info

Publication number
TWI239207B
TWI239207B TW092115778A TW92115778A TWI239207B TW I239207 B TWI239207 B TW I239207B TW 092115778 A TW092115778 A TW 092115778A TW 92115778 A TW92115778 A TW 92115778A TW I239207 B TWI239207 B TW I239207B
Authority
TW
Taiwan
Prior art keywords
predictive
mode
data block
group
predictive mode
Prior art date
Application number
TW092115778A
Other languages
Chinese (zh)
Other versions
TW200407031A (en
Inventor
Marta Karczewicz
Original Assignee
Nokia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29741013&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI239207(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US10/171,467 external-priority patent/US20030231795A1/en
Application filed by Nokia Corp filed Critical Nokia Corp
Publication of TW200407031A publication Critical patent/TW200407031A/en
Application granted granted Critical
Publication of TWI239207B publication Critical patent/TWI239207B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/41Bandwidth or redundancy reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • H04N19/197Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including determination of the initial value of an encoding parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

A method and device for coding digital images using intra-mode block prediction, wherein a list of prediction modes for each combination of prediction modes of the neighboring blocks is obtained. The modes assigned to each combination of prediction modes may be divided into two groups. The first group includes n (where n is smaller than the overall number of available modes) most probable prediction modes and the second group includes the remaining modes. The modes in the first group are ordered according to their probability. This order may be specified as a list of modes ordered from most probable to the least probable mode. The modes belonging to the second group may be ordered in some predetermined manner, which may be specified depending on the information already available to the decoder.

Description

玖、發明說明: 【發明所屬之技術領域】 本發明係關於影像之編碼,更詳細而言係關於視頻 訊框之資料區塊群之編碼。 【先前技術】 豬如視頻影像,TV影像 πI彩诼双由録影機或% 月自所產生之影像專數位影像,係由以水平線及垂直線排 列之像素所構成。單一影像中之像素數目一般係千份之 十。各個像素中一般係包含有亮度及色度資訊。未經壓 縮之情況下,從-影像編碼器傳送至另—影像編碼器之 資訊數量太祕大以致即時影像傳送無法進行。為了減 少傳送資訊之數量’已開發有包括JPEG,隨及Η 263 標準等數種不同之壓縮方法。在典型之視頻編碼器中, :始視頻順序之頁框係被分隔成長方形區域或資料區塊 :料式(1,式)或中間模式(ρ-模式)予以編碼。 某種變換…DCT編碼之方式予以 巴塊中之:、、、而’純貝科區塊之編碼僅可減低特定資料 ==間像素相互關係,不會考量像素之中間資料 &鬼相互關係’仍然產生高位元速率之 位影像編碼標準亦揭示減低之 ^ 互關係之特定方法。 κ間之像素值之相 傳送訊^^中==式編碼之資料區塊可從先前編碼及 产(2D)n 。資料區塊之預示資訊俜由1 )運動向量予…。“棋式下編碼二: 中’預示資料區塊係利用在相同訊框中已經編碼之赴鄰 資料區塊中之空間預示所形成。預示誤差,即經過編碼 之資料區塊與預示資料區塊之間之差異,係由分立變換 之一組比重性功能所代表。該變換一般係以8x 8或4x 4 資料區塊基準進行。比重—變換係數將於繼後被量化。量 化作業將引進資訊損失,於是經過量化之係數具有比原 始者較低之準確度。 經過量化之變換係數連同運動向量與部份控制資訊 將形成完整之編碼順序代表,以語法元素代表。從編碼 器傳送至解碼器之前,所有語法元素係被熵編碼以進一 步減低代表所需之位元數目。 在解碼器中,在目前訊框中之資料區塊係取自血編 碼器相同方式之第一預示,並將壓縮預示誤差加入預示 中。利用里化係數取得變換式功能之比重而尋獲壓縮預 不&差。重建訊框與原始訊框之間之差異係被稱為重建 誤差。 壓縮比率,即用以代表原始及壓縮順序之位元數目 變換係數及卜資料區塊者,係藉調整用以量化 所採用之二數之值予以控制。壓縮比率亦取決於 所抓用之熵編碼方法。 jvt編碼器> 了 a # + i 作草案數目2(WD2)中所用之空間預 提供4 X 4資料區塊之9上了進仃空間預示’ J VΤ編碼器 〇)A 8 ^之9種預示模式,包括DC預示(模式 式’如^圖所示以標示。預说明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to the encoding of images, and more specifically to the encoding of data block groups of video frames. [Previous technology] Pigs such as video images, TV images, πI color images are composed of video and digital images produced by video cameras or% monthly, and are composed of pixels arranged in horizontal and vertical lines. The number of pixels in a single image is usually ten thousandths. Each pixel generally contains luminance and chrominance information. Without compression, the amount of information transmitted from the-image encoder to another-the image encoder is so secretive that real-time image transmission cannot be performed. In order to reduce the amount of information transmitted, several different compression methods have been developed, including JPEG and the Η 263 standard. In a typical video encoder, the frame of the starting video sequence is divided into rectangular areas or data blocks: material type (1, type) or intermediate mode (ρ-mode) for encoding. Some kind of transformation ... The DCT encoding method will be used in the block: ,,, and the encoding of pure pure Beco blocks can only reduce specific data == inter-pixel correlation, and will not consider the intermediate data of pixels & ghost correlation 'Bit image coding standards that still produce high bit rates also reveal specific ways to reduce the correlation. Phases of pixel values between κ and ^^ Middle == coded data blocks can be encoded from the previous and produced (2D) n. The predictive information of the data block is given by 1) the motion vector ... "Code 2 under chess: Chinese 'indicates that the data block is formed by using the spatial prediction in the neighboring data block that has been coded in the same frame. The prediction error is the coded data block and the predicted data block. The difference between them is represented by a set of specificity functions of discrete transformations. The transformations are generally performed on 8x 8 or 4x 4 data block benchmarks. Gravity—transformation coefficients will be quantified later. Quantification will introduce information Loss, so the quantized coefficients have lower accuracy than the original ones. The quantized transform coefficients together with the motion vector and some control information will form a complete coding sequence representation, represented by syntax elements. It is transmitted from the encoder to the decoder. Previously, all syntax elements were entropy-coded to further reduce the number of bits required for representation. In the decoder, the data blocks in the current frame are taken from the first prediction of the same way as the blood encoder, and will be compressed The prediction error is added to the prediction. The compression coefficient is used to obtain the proportion of the transform function and the compression prediction & difference is found. The difference between the reconstructed frame and the original frame The difference between them is called reconstruction error. The compression ratio, which is the number of bits used to represent the original and compression order, and the coefficients and data blocks, is controlled by adjusting the value of the two used to quantify. The compression ratio also depends on the entropy encoding method used. Jvt encoder> a # + i Draft number 2 (WD2) The space used in advance provides 4 X 4 data blocks. 'J VVT encoder 0) A 8 ^ 9 kinds of predictive modes, including DC predictive (mode type) as shown in the figure

p之像素將 Q像素將被The pixels of p will be Q pixels.

示程序如第2圖所示。參照第2圖,從a至p 被編碼,而已被編碼之毗鄰資料區塊之A至Q 用作預示。舉例而言,選擇模式1時,像素a,e,i及 係被設定為等於像素A而予以預示,像素b,f,]·及 係被設定為等於像素B而予以預示等。同理,如果選^ 模式2時,像素a,b,c及d係被設定為等於像素!而 予以預示,像素e,f,g及h係被設定為等於像素j而 予以預示等。因此模式i係垂直方向之預示器;而模式2 係水平方向之預示器。該模式係見述於2〇〇1年九月由,, 視頻編碼專家集團(VCEG)1,之ITU-11電訊標準化部門,,所 出版之VCEG-N54文件中,並見述於2002年三月由 ISO/IEC MPEG及ITU - T VCEG之聯合視頻組所出版之 JVT_B118r2 文件中。 模式0:DC預录 一般上所有樣本係利用(a+b+c+d+i + j+k+l+4)>>3 予以預示。如果樣本中有四個超出圖像,其餘四個之平 均係被用於預示。如果所有八個樣本均超出圖像以外, 在資料區塊中所有樣本之預示為128。因此可利用此模式 預不資料區塊。 模式L:垂亩?§示 如果A,B,C,D係在圖像範圍内,則 - a,e,i,m係由A所預示, -b,f,j,n係由β所預示, - c,g,k,〇係由c所預示, -d,h,1,p係由D所預示。 模式2 :水平預示 如果E,F,G,Η係在圖像範圍内,貝J -a,b,c,d係由Ε所預示, -e,f,g,h係由F所預示, - i,j,k,1係由G所預示, -m,η,ο,p係由Η所預示。 模式3:對岗向下/右預示 此模式僅用於當A,Β,C,D,I,J,Κ,L,Q係在 圖像範圍内,此係π對角π預示。 -m 係由(J + 2K+L+2)>>2 所預示, - i,η係由(I + 2J+K + 2)>>2 所預不, -e,j,〇 係由(Q+2I + J + 2)>>2 所預示, -a,f,k,p 係由(A+2Q+I + 2)>>2 所預示, - b,g,1 係由(Q+2A+B+2)>>2 所預示, -c,h係由(A+2B+C + 2)>>2 所預不, - d 係由(B+2C + D + 2)>>2 所預示。 模式4 :對禹向下/左預示 此模式僅用於當所有A,B,C,D,I,J,K,L,Q 係在圖像範圍内,此係’’對角π預示。 - a 係由(A + 2B+C+I+2J+K+4)>>3 所預不’ - b,e係由(B+2C+D+J + 2K+L+4)>>3 所預不’ - c,f,i 係由(C + 2D+E+K + 2L+M+4)>>3 所預示, -d,g,j,m 係由(D+2E+F+L+2M十N + 4)>>3 所預示,The procedure is shown in Figure 2. Referring to Fig. 2, from a to p are coded, and A to Q of adjacent data blocks that have been coded are used as foresights. For example, when the mode 1 is selected, the pixels a, e, i, and are set to be equal to the pixel A to be predicted, and the pixels b, f,], and are set to be equal to the pixel B to be predicted. Similarly, if mode 2 is selected, pixels a, b, c, and d are set equal to pixels! It is predicted that the pixels e, f, g, and h are set to be equal to the pixel j and predicted. Therefore mode i is a predictor in the vertical direction; mode 2 is a predictor in the horizontal direction. This model is described in the VCEG-N54 document published by the Video Coding Experts Group (VCEG) 1, the ITU-11 Telecommunication Standardization Sector, published in September 2001, and described in March 2002. In the JVT_B118r2 file published by the joint video group of ISO / IEC MPEG and ITU-T VCEG. Mode 0: DC pre-recording Generally, all samples are predicted using (a + b + c + d + i + j + k + l + 4) > > 3. If four of the samples exceed the image, the average of the remaining four is used for prediction. If all eight samples exceed the image, the prediction for all samples in the data block is 128. Therefore, this mode can be used to prevent data blocks. Model L: Hanging Mu? § shows that if A, B, C, and D are within the image range, then-a, e, i, m are foretold by A, -b, f, j, and n are foreshadowed by β,-c, g , K, 0 is foretold by c, -d, h, 1, p is foretold by D. Mode 2: Horizontal indicates that if E, F, G, and Η are within the image range, J -a, b, c, and d are indicated by E, and -e, f, g, and h are indicated by F, -i, j, k, 1 are predicted by G, -m, η, ο, p are predicted by Η. Mode 3: Opposite Down / Right Prediction This mode is only used when A, B, C, D, I, J, K, L, and Q are in the image range. This is a π diagonal π prediction. -m is predicted by (J + 2K + L + 2) > &2; -i, η is predicted by (I + 2J + K + 2) > &2; -e, j, 〇 is predicted by (Q + 2I + J + 2) > 2, -a, f, k, p is predicted by (A + 2Q + I + 2) > 2, -b, g, 1 is predicted by (Q + 2A + B + 2) > &2; -c, h is predicted by (A + 2B + C + 2) > &2; -d is caused by (B + 2C + D + 2) > > Mode 4: Downward / Left Prediction for Yu This mode is only used when all A, B, C, D, I, J, K, L, and Q are within the image range. -a is determined by (A + 2B + C + I + 2J + K + 4) > > 3 '-b, e is determined by (B + 2C + D + J + 2K + L + 4) > > 3 does not predict '-c, f, i are given by (C + 2D + E + K + 2L + M + 4) > > 3, -d, g, j, m are given by ( D + 2E + F + L + 2M ten N + 4) > > 3

-h,k,η 係由(E + 2F + G + M+2N + 0 + 4)>>3 所預不, -1,o係由(F + 2G+H+N + 20+P + 4)>>3 所預示, -p 係由(G+H+0+P+2)>>3 所預示。 模式5:垂直-左預示 此模式僅用於當所有A,B,C,D,I,J,K,L,Q 係在圖像範圍内,此係π對角π預示。 - a,j係由(Q+A+1)>>1所預示, - b,k係由(A+B+1)>>1所預示, -c,1係由(B+C+1)>>1所預示, -d係由(C+D+1)>>1所預示, - e,η 係由(I + 2Q+A+2)>>2 所預示, -f,〇 係由(Q+2A+B+2)>>2 所預示, -g,p 係由(A+2B+C+2)>>2 所預示, - h 係由(B+2C+D+2)>>2 所預示, -i 係由(Q+2I + J + 2)>>2 所預示, - m 係由(I+2J+K + 2)>>2 所預示。 模式6:垂直-右預示 此模式僅用於當所有A,B,C,D,I,J,K,L,Q 係在圖像範圍内,此係π對角”預示。 - a 係由(2A+2B+J + 2K + L + 4)〉〉3 所預示, - b,i係由(B+C + 1)>>1所預示, - c,j係由(C+D+1)>>1所預示, - d,k係由(D+E + 1)>>1所預示, - 1係由(E+F + 1)>>1所預示, 9 -e 係由(A+2B+C + K + 2L+M+4)>>3 所預示, -f,in 係由(B+2C + D+2)>>2 所預不, -g,η 係由(C + 2D + E + 2)>>2 所預示, -h,〇 係由(D+2E + F + 2)>>2 所預示, -p 係由(E + 2F+G + 2)>>2 所預示。 模式7:水平-上預示 此模式僅用於當所有A,B,C,D,I,J,K,L,Q 係在圖像範圍内,此係π對角”預示。 -a 係由(A+2C+D+2I + 2J + 4)>>3 所預示, - b 係由(C+2D+E+I + 2J+K+4)>>3 所預示, - c’ e 係由(D+2E+F + 2J+K+4)>>3 所預不, -d,f 係由(E+2F+G+J + 2K+L+4)>>3 所預示, -g,i 係由(F + 2G+H+2K+2L+4)>>3 所預示, - h,j 係由(G+3H+K + 3L+4)>>3 所預示, -1,η係由(L+2M+N + 2)>>3 所預示, -k,m 係由(G+H+L+M+2)>〉2 所預示, -〇係由(M+N+1)>>1所預示, - p 係由(M+2N+0+2)>>2 所預示。 模式8:水平-下預示 此模式僅用於當所有A,B,C,D,I,J,K,L,Q 係在圖像範圍内,此係’’對角π預示。 - a,g係由(Q+I + 1 )>>1所預示, - b,h 係由(I + 2Q+A+2)>>2 所預示, - c 係由(Q+2A+B+2)>>2 所預示, 10-h, k, η is predicted by (E + 2F + G + M + 2N + 0 + 4) > > 3, -1, o is determined by (F + 2G + H + N + 20 + P + 4) > > 3, and -p is predicted by (G + H + 0 + P + 2) > > 3. Mode 5: Vertical-Left Prediction This mode is only used when all A, B, C, D, I, J, K, L, Q are in the image range. This is the π diagonal π prediction. -a, j is foretold by (Q + A + 1) > &1;-b, k is foretold by (A + B + 1) > > 1, -c, 1 is from (B + C + 1) > > 1 indicates that -d is indicated by (C + D + 1) > > 1, -e and η are indicated by (I + 2Q + A + 2) > > 2 indicates that -f, 〇 is indicated by (Q + 2A + B + 2) > > 2, -g, p is indicated by (A + 2B + C + 2) > > 2 , -H is predicted by (B + 2C + D + 2) > > 2, -i is predicted by (Q + 2I + J + 2) > > 2, -m is predicted by (I + 2J + K + 2) > > 2 predicted. Mode 6: Vertical-right indicates that this mode is only used when all A, B, C, D, I, J, K, L, and Q are in the image range. This is π diagonal. ”-A (2A + 2B + J + 2K + L + 4)> 3 indicates that-b, i is indicated by (B + C + 1) > &1; -c, j is indicated by (C + D +1) > > 1,-d, k is foreshadowed by (D + E + 1) > > 1, -1 is foreshadowed by (E + F + 1) > > 1 , 9 -e is indicated by (A + 2B + C + K + 2L + M + 4) > > 3, -f, in is indicated by (B + 2C + D + 2) > > 2 No, -g, η is predicted by (C + 2D + E + 2) > > 2, -h, 〇 is predicted by (D + 2E + F + 2) > > 2,- p is foreshadowed by (E + 2F + G + 2) > > 2. Mode 7: Level-up indicates that this mode is only used when all A, B, C, D, I, J, K, L, Q is in the range of the image, and this system is π diagonal. -a is foretold by (A + 2C + D + 2I + 2J + 4) > > 3, -b is for (C + 2D + E + I + 2J + K + 4) > > 3 Foreshadow, -c 'e is predicted by (D + 2E + F + 2J + K + 4) > > 3, -d, f is predicted by (E + 2F + G + J + 2K + L + 4 ) > > 3 indicates that -g, i is indicated by (F + 2G + H + 2K + 2L + 4) > > 3 indicates that -h, j is indicated by (G + 3H + K + 3L +4) > > 3 indicates that -1, η is indicated by (L + 2M + N + 2) > > 3 indicates that -k, m is indicated by (G + H + L + M + 2 ) >> 2, -0 is predicted by (M + N + 1) > > 1, -p is predicted by (M + 2N + 0 + 2) > > 2. Mode 8: Horizontal-Down Prediction This mode is only used when all A, B, C, D, I, J, K, L, and Q are within the image range. -a, g is predicted by (Q + I + 1) > > 1, -b, h is predicted by (I + 2Q + A + 2) > > 2, -c is expressed by (Q + 2A + B + 2) > > 2 indicates that 10

&lj - d 係由(A+2B+C + 2)>>2 所預不’ - e,k係由(I + J + 1)>>1所預示, - f,1 係由(Q+2I + J + 2)>>2 所預示, -i,〇係由(J + K + 1)>>1所預示, - j,P 係由(1 + 2 J+K+2)>>2 所預示, -m係由(K+L+1)>>1所預示, - η 係由(J + 2K+L+2)>>2 所預示。 由於各個資料區塊必須有指定及傳送於解碼器之預 示模式,因此若要直接編碼則需要相當數目之位元。為 了減少欲傳送之資訊,可使用毗鄰資料區塊之預示模式 之相互關係。例如Vahteri等人(W〇〇1/54416A1,"編碼 影像之方法及影像編碼器’,,以下以Vahteri代表之)揭 示一種以資料區塊為基準之編碼方法,其中在資料區塊 内之影像之方向性資訊將被用以分類多種空間預示模 式。身料區塊之空間預示模式係取決於至少一個毗鄰資 料區塊之方向性資訊。 、 在JVT編碼器中,當毗鄰之預示模式已知係已編碼 資料區塊U及L,將提供資料區塊c之最高機率預示模式 之順序,下一個最高機率預示模式等(第3圖)。預示模 式U及L之各種組合之模式順序係被指定。此項順序 被指$為資料區塊C之預示模式之清單,由最高機率排 序至最低機率者。如vceg—N54中所揭示,jvt編螞 WD2中所用之順序清單如下: β之& lj-d is predicted by (A + 2B + C + 2) > > 2 '-e, k is predicted by (I + J + 1) > > 1, -f, 1 Is indicated by (Q + 2I + J + 2) > > 2, -i, 〇 is indicated by (J + K + 1) > > 1, -j, P is indicated by (1 + 2 J + K + 2) > > 2 indicates that -m is indicated by (K + L + 1) > > 1,-η is indicated by (J + 2K + L + 2) > > 2 foreshadowed. Since each data block must have a predictive mode specified and transmitted to the decoder, a significant number of bits are required for direct encoding. In order to reduce the information to be transmitted, the interrelationship of the predictive mode of adjacent data blocks can be used. For example, Vahteri et al. (WO001 / 54416A1, "Methods for Encoding Images and Image Encoders", hereinafter represented by Vahteri) disclose a coding method based on data blocks, in which the The directional information of the image will be used to classify multiple spatial predictive modes. The spatial prediction pattern of the body block depends on the directional information of at least one adjacent data block. In the JVT encoder, when the adjacent predictive mode is known to be the encoded data blocks U and L, the order of the highest probability predictive mode of data block c, the next highest probability predictive mode, etc. (Figure 3) . The order of the modes that indicate the various combinations of modes U and L is specified. This order is referred to as the list of predictive patterns of data block C, which are ranked from the highest probability to the lowest probability. As revealed in vceg-N54, the sequence list used in jvt editing WD2 is as follows:

表I :在位元流中以排序信號為函數之預示模式 L/U outside 0 1 2 3 outside -------- 0-------- 01------- 10------- 0 02------- 021648573 125630487 021876543 021358647 1 102654387 162530487 120657483 102536487 2 20------- 280174365 217683504 287106435 281035764 3 201385476 125368470 208137546 325814670 4 201467835 162045873 204178635 420615837 5 015263847 152638407 201584673 531286407 6 016247583 160245738 206147853 160245837 7 270148635 217608543 278105463 270154863 8 280173456 127834560 287104365 283510764 L/U 4 5 6 7 8 outside -------- 0 206147583 512368047 162054378 204761853 208134657 1 162045378 156320487 165423078 612047583 120685734 2 287640153 215368740 216748530 278016435 287103654 3 421068357 531268470 216584307 240831765 832510476 4 426015783 162458037 641205783 427061853 204851763 5 125063478 513620847 165230487 210856743 210853647 6 640127538 165204378 614027538 264170583 216084573 7 274601853 271650834 274615083 274086153 278406153 8 287461350 251368407 216847350 287410365 283074165 如JVT編碼器之WD2中所指明,當U及L之預示模 式為2時,將提供資料區塊C之預示模式之實施例。數 字(2,8,7 小 0,6, 塊C之最高機率之模式 ,3,5)代表模式2亦為資料區 模式8為次南機率之模式等’ 以此類推。對解碼器而言,將被傳送之資訊代表資料區 塊C將使用之第η個最高機率之模式。資料區塊C之模 式之排序亦可以各種模式之排位予以列明,排位愈高, 預示方法之機率愈低。在上述實施例中,排位將是(5, 4, 12Table I: Predictive mode using a sorted signal as a function in the bit stream L / U outside 0 1 2 3 outside -------- 0 -------- 01 ------- 10 ------- 0 02 ------- 021648573 125630487 021876543 021358647 1 102654387 162530487 120657483 102536487 2 20 ------- 280174365 217683504 287106435 281035764 3 201385476 125368470 208137546 325814670 4 201467835 162045873 204178635 420615837 5 015263847 152638407 201584673 531286407 6 016247583 160245738 206147853 160245837 7 270148635 217608543 278105463 270154863 8 280173456 127834560 287104365 283510764 L / U 4 5 6 7 8 outside -------- 0 206147583 512368047 162054378 204761853 120 208 685 685 1685 215368740 216748530 278016435 287103654 3 421068357 531268470 216584307 240831765 832510476 4 426015783 162458037 641205783 427061853 204851763 5 125063478 513620847 165230487 210856743 210853647 6 640127538 165204378 614027538 264170583 615 853 083 083 685 6153 8 287461350 251368407 216847350 287410365 283074165 As specified in WD2 of the JVT encoder, when the predictive mode of U and L is 2, an example of the predictive mode of data block C will be provided. The number (2, 8, 7 small 0, 6, block C, the highest probability mode, 3, 5) represents that mode 2 is also the data area, and mode 8 is the mode with the second lowest probability, and so on 'and so on. For the decoder, the information to be transmitted represents the n-th highest probability mode that data block C will use. The ordering of the mode of data block C can also be specified by the ranking of various modes. The higher the ranking, the lower the probability of the predictive method. In the above embodiment, the ranking would be (5, 4, 12

2)時 …,,y,b,3,2)〇 當模式 7’8)相關於排位清單(5,4,卜8,7,9,6,‘ 可知模式〇排位為5,模式^之排位為4等等— 為取仔更有效之編碼,二個4χ 4資料區塊之内預 示申之資訊可被編碼成一個代碼字元。 上述方法有一較大缺點,維持資料區塊。之預示模 式排序以提供資料區塊之預示模式所需之記憶量 很大。在m編碼器之WD2中,由於使用9種模式進行 預示’資料區塊之模式之可能組合有9χ9種。各 種組合中須指定9種可能性模式之排序。換言之,需要 9χ 9x_ 9個位元(在此假設—個數目需要—個位元)以指 定預不模式之排序。此外,需要更多記憶體以指定特殊 情況,例如當其中—個或二個資料區塊M l不存在時。 因此,最好可提供一種編碼數位影像之方法及裝 置其中。己憶體需求置係減低而編碼效率之損失係最低 者。 ' 【發明内容】 本發明提供一種使用内模式預示資料區塊編碼數 位影像之方法及裝置。可取得毗鄰資料區塊之預示模式 之各種組合之清單。指定予預示模式之各種組合之模式 可分為兩組。第一組包括m個最高機率性之預示模式(其 中m係小於現存模式之總數η),而第二組包括其餘之模 132) Hour ... ,, y, b, 3, 2) 〇 When the pattern 7'8) is related to the ranking list (5,4, Bu 8,7,9,6, 'It can be seen that the pattern 0 ranks 5, pattern The ranking of ^ is 4 and so on. — For more efficient coding, the information in two 4 × 4 data blocks can be encoded into a code character. The above method has a major disadvantage, maintaining the data block. The ordering of the predictive mode to provide the predictive mode of the data block requires a large amount of memory. In the WD2 of the m encoder, there are 9 × 9 possible combinations of modes that predict the 'data block' by using 9 modes. Various The combination must specify the ordering of 9 possible modes. In other words, 9 × 9x_ 9 bits are required (assuming here—the number needs—the number of bits) to specify the ordering of the pre-patterns. In addition, more memory is needed to specify Special cases, such as when one or two data blocks M l do not exist. Therefore, it is better to provide a method and device for encoding digital images. The memory requirement is reduced and the loss of encoding efficiency is the lowest. "[Summary of the invention] The present invention provides a use Method and device for pattern predictive data block encoding digital image. A list of various combinations of predictive patterns adjacent to the data block can be obtained. The patterns of various combinations assigned to the predictive patterns can be divided into two groups. The first group includes m highest Probabilistic predictive patterns (where m is less than the total number of existing patterns η), and the second group includes the remaining modulo 13

弋第—組之模式係根據其機率予以排序。此項順序可 扣疋為最鬲機率至最低機率模式之排序清單。屬於第 、且之杈式可以某種預設方式予以排序,可根據現存於 解馬杰之I訊予以指定。關於特定資料區塊所選擇之模 式係屬於第-組或第二組者之資訊將被傳送至解碼器。 ^果係屬於第-組,該資訊將被傳送指示第i個最高機 =模式應用於資料區塊α供資料區塊UA L之模式 組合。如果該模式係屬於第二組,該資訊將被傳送指示 應使用此組之第j個模式。 本發明將參照第4a至第8圖之詳細說明而愈 晰。 。 【實施方式】 、本發明之一實施例係利用毗鄰資料區塊之預示模 ^ ^組合作為另一組合之預示模式之函數以取得排序 Γ ^之特〖生。作為說明用途,如第3圖所示之二田比鄰資 料區塊ϋ及L之預示模式係被用作推論現有資料區塊c 之預不。第4a圖之預示模式之組合可由第扑圖中之預 不模式組合作對角翻轉而成。因此當採用第4a圖中之榲 式組合時,資料區塊c之第n個最高機率之預示靡 與第4b圖中之模式組合之第n個最高機率預示模式之: 角翻轉者相同。於是如果毗鄰資料區塊ϋ及L具有,,吉 ’’及"垂直”模式,現有資料區塊c之預示模式最 蜜罝C第4b圖)。結果當該資料區塊被翻轉或作對角铲弋 Group—The patterns are sorted according to their probability. This order can be deducted as a sorted list of the most probable to the least probable mode. Belonging to and can be sorted in a certain preset way, and can be specified according to the I news that exists in Xie Majie. Information about the mode selected for a particular data block belongs to the first or second group will be transmitted to the decoder. ^ The fruit belongs to the-group, and the information will be transmitted to indicate the i-th highest machine = mode applied to the data block α for the mode combination of the data block UAL. If the mode belongs to the second group, the information will be transmitted indicating that the jth mode of this group should be used. The invention will become clearer with reference to the detailed description of Figs. 4a to 8. . [Embodiment] An embodiment of the present invention uses the predictive mode ^ ^ combination of adjacent data blocks as a function of the predictive mode of another combination to obtain the special order of Γ ^. For illustrative purposes, the predictive patterns of the Nitian neighbor data blocks ϋ and L shown in Figure 3 are used to infer the prediction of the existing data block c. The combination of the predictive patterns in Figure 4a can be made by diagonally flipping the cooperation of the predictive patterns in the flap. Therefore, when the 榲 combination in Fig. 4a is used, the n-th highest probability of data block c indicates the same as the n-th highest probability of the pattern combination in Fig. 4b: The angle flipper is the same. Therefore, if the adjacent data block ϋ and L have, "G" and "vertical" mode, the current predictive mode of the existing data block c is the most honey (C 4b). As a result, when the data block is flipped or diagonal shovel

射("向下/右方”),可外,η,, 了從水千及水平”取得現有資料區 塊之”水平”(第4a sm m . 私圖)。同理,如果毗鄰資料區塊ϋ及L· 係第5 a圖所示之握4 9 供八Z及3,則翻轉資料區塊u及L將 如第5b圖所示之模式3及i。 ^ ^ ^詋明此實施例,將預示方向i映射成j之 :.f j Η1),疋義如下:各個預示模式i係取一預示模 J $預τ板式j係由沿著對角線從資料區塊之左上 角鏡射至資料區堍之士 兒之右下角而取得。第1圖之預示模式 之最終取向綜合如下列表Η。Shoot (" downward / rightward "), but you can get the" level "of the existing data block" from the water level and level "(Section 4a sm m. Private picture). Similarly, if the adjacent data blocks ϋ and L · are the grips 4 9 and 8 Z and 3 as shown in Fig. 5a, the data blocks u and L will be turned as patterns 3 and i shown in Fig. 5b. ^ ^ ^ 詋 In this embodiment, the predictive direction i is mapped to j: .fj Η1), the meaning is as follows: each predictive mode i takes a predictive mode J $ 预 τ 板式 j is composed along the diagonal The upper left corner of the data block is mirrored to the lower right corner of the person in the data area. The final orientation of the prophetic model in Figure 1 is summarized below.

表Π 、述方式疋義函數時,模式(k,1)之預示模式組 根據級合(…·)中卜鄭卿 ’即如果組合(i,D之第η個最高機率 施例,考慮資料個模式等於f(p)e作為實Table Π, when describing the function of the mode, the predictive mode group of the pattern (k, 1) is based on Zheng Zheng 'in the cascade (... ·), that is, if the (n, nth highest probability embodiment of the combination (i, D) is considered, the data model Is equal to f (p) e as real

L之模式之排序清單之模式(丨,D 15 利用二,::(22 : 75:::°,4’8,7)。可從此排序清單 纽合(2, 2)之預示模式之8 ’二,::4, 6, 5)映射而取得 7而V\f(2’ 3) = (3,丨)之排序清單係…,。,8, i,6;, 映射^ 排序清單係大致對⑽(i,j)者。因此, 射㈣f可被解釋為-種鏡射函數。 式,明之主要目的係減低作為已經編媽之預示模 大,丨“貝枓區塊(例如表〇之函數之表列預示模式之 此表可在實習過程中取得。為取得晚鄰資料區塊 :、:組合之資料區塊C之部份較大數目之模式(i,D ^之預7F模式之排序清單,各個預示模式之數 據已知選定情況而予以選擇(例如最小預示誤差)計算。、 目決定預示模式在指定予組合〇,])之預示模式 β早中之預不模式之排位,模式之選擇愈頻密 模式清單中之排位愈高。 預不 在上述實習過程中使用預示模式之映射時,所產生 之預不模式列表將會較小。如果組合(k,1)之排序清單 可從組合(i,j)之排序清單中取得,僅有組合(i,」·)之 排序清單需予儲存。在實習過程中,映射作業可如下進 行。組合(k,n及(i,J·)中i = f(〇及j = f(k)之各個預示 16 模式之出現頻率係聯合計算,即如果選擇預示模式P作 為組合(k,1)者,當作預示模式f(p)係供組合(i,j)選 用。當預示模式s被選用於組合(i,j)時,當作預示模 式f(s)係選用於組合(k,1)。 本發明之減少預示表如下: 表ΠΙ : 〕 Λ 減低預示表 1 2 η *ι 1 π 3 024167835 150642387 027486135 013245867 150643278 021468735 105436287 124086573 283407156 385240167 L/U outside outside ------- 0 02 1 — 2 20 3 -- 4 —— 5 -- 6 -- 7 — 8 —— L/U 4 5 6 7 8 outside 0 012465738 150346287 160452387 024716835 028413765 1 104562378 156403287 165403278 014652733 014256837 2 240781635 214835076 241086735 207483165 280473156 3 413205876 531480267 146530287 247308516 832045176 4 420671835 145602387 461027538 407261835 248073165 5 513406287 165402387 240158376 082354167 β 614503287 614057328 042617385 024681357 7 427016385 426701835 284703615 8 328514067 248361075 248703651 在表HI中,有些組合(U,L)之預示模式之排序清單 未予提供。該組合之排序清單可藉映射保留在預示表中 17 頁The pattern of the list of the pattern of L (丨, D 15 uses two, ::: (22: 75 ::: °, 4'8, 7). The list can be sorted from 8 of the predictive pattern of (2, 2) 'Second, :: 4, 6, 5) maps to get 7 and the sorted list of V \ f (2' 3) = (3, 丨) ...,. , 8, i, 6 ;, The mapping ^ sorted list is roughly for ⑽ (i, j). Therefore, the shot f can be interpreted as a kind of mirror function. The main purpose of Ming is to reduce the size of the predictive model that has been edited. The "Beijing block (for example, the list of the predictive model of the function of Table 0) can be obtained during the internship process. To obtain the block of late neighbor data :,: A part of the combined data block C with a larger number of patterns (i, D ^ pre-7F mode sorted list, the data of each predictive mode is known and selected and selected (such as the minimum predictive error) for calculation. It is determined that the predictive mode is assigned to the combination 0,]). The predictive mode β is the ranking of the predictive mode in the early days. The more frequently the mode is selected, the higher the ranking in the list of modes. The predictive mode will not be used during the above internship. When mapping, the generated list of pre-patterns will be smaller. If the sorted list of combination (k, 1) can be obtained from the sorted list of combination (i, j), only the combination (i, "·) The sorting list needs to be stored. During the internship, the mapping operation can be performed as follows. Each of the combinations (k, n and (i, J ·) i = f (0 and j = f (k) indicates the frequency of 16 patterns. Is a joint calculation, that is, if the predictive mode P is selected For combination (k, 1), it is used as the predictive mode f (p) for combination (i, j). When the predictive mode s is selected for combination (i, j), it is regarded as the predictive mode f (s). It is selected for combination (k, 1). The reduction foresight of the present invention is shown in the following table: Table II:] Λ Reduction foresight Table 1 2 η * ι 1 π 3 024167835 150642387 027486135 013245867 150643278 021468735 105436287 124086573 283407156 385240167 L / U outside outside- ------ 0 02 1 — 2 20 3-4 —— 5-6-7 — 8 —— L / U 4 5 6 7 8 outside 0 012465738 150346287 160452387 024716835 028413765 1 104562378 156403287 165403278 014652733 014256837 2 240781635 214835076 241086735 207483165 280473156 3 413205876 531480267 146530287 247308516 832045176 4 420671835 145602387 461027538 407261835 248073165 5 513406287 165402387 240158376 082354 703U 682 A sorted list of models is not provided. The sorted list of the combination can be retained in the preview table by mapping on page 17

El 應it素而予以”重整其中該”重整、素係供現 貝料Q塊之預示所需。因此一般而言,只要可取得在 =表中之元素或利用映射從預示表中之另-元素經過 ::取得:前者可予消除。換言之,在具有第一組元 咏 K素之預不表中,各該第二組元素可從利用 丰射功能在第一組中之相對應元素中予重整,第二組元 素可予消除。 第6圖係利用預示表中之對稱性時解碼階段之流 程圖。如圖所示’方法1⑽之步驟包括在步驟110中接 收複數個影像資料區塊。#現有資料區塊被處理時,將 ,步驟120決定現有資料區塊之預示模式是否可在不進 订映射之情形下從峨鄰資料區塊之預示模式中取得。若 可,則現有資料區塊之空間預示模式可在步驟132中取 決於毗鄰資料區塊之預示模式。否則將在步驟][30中提 :現有資料區塊之互補性預示模式,而在步驟14〇中根 據田比鄰貢料區塊之互補性預示模式決定現有資料區塊之 互補性預示模式。在步驟15〇中,現有資料區塊之互補 性預示模式係被映射於現有資料區塊之預示模式中。 。另一方面,亦可在使用資料區塊ϋ及L以界定資料 區塊c之預示模式之前將相同標示指示予資料區塊μ L之=同預示模式(將其分組在一起)。舉例而言,在JVT 編碼器之場合,模式1>5及6可被分為一組並標示為卜 而核式2,7及8可被分成-組並標示為2。如第i圖所 不’模式7及8之方向係靠近模式2之方向,而模式5 18 ! Μ Βί 及6之方向係靠近模式1者。經過此分組後,各個資料 區塊U及L具有標示為0,1,2, 3及4之5個模式之其 中一個。因此從原來之U及L之預示模式之9χ 9種可能 性組合變成僅有5χ 5種組合。於是在已知資料區塊U之 預示模式下,用以指定資料區塊C之預示模式之排序所 需之記憶量將從原來之9 X 9 X 9個位元變成5 X 5 X 9個 位元(假設保持1個數目需要一個位元之記憶量)。此 外,如果映射函數f之用以’’翻轉π排序清單,預示表將 可被進一步簡化。 當該二種方法係被聯合採用時,指定預示模式作為 位元流中之排序編號之函數之表之一實施例係示如表 IV。El should always "reform" the "reform", which is required for the prediction of the current Q-block. So in general, as long as the elements in the = table can be obtained or the other elements in the predictive table are passed through the :: mapping using the mapping: the former can be eliminated. In other words, in the prediction table with the first group of elements, each of the second group of elements can be reformed from the corresponding element in the first group by using the beam shooting function, and the second group of elements can be eliminated . Figure 6 is a flowchart of the decoding phase when the symmetry in the predictive table is used. As shown in the figure, the step of method 1) includes receiving a plurality of image data blocks in step 110. #When the existing data block is processed, step 120 determines whether the predictive mode of the existing data block can be obtained from the predictive mode of the E-lin data block without custom mapping. If possible, the spatial prediction mode of the existing data block may depend on the prediction mode of the adjacent data block in step 132. Otherwise, it will be mentioned in step] [30: the complementary predictive mode of the existing data block, and the complementary predictive mode of the existing data block will be determined in step 14 according to the complementary predictive mode of the Tianbi neighbor tributary block. In step 150, the complementary predictive mode of the existing data block is mapped into the predictive mode of the existing data block. . On the other hand, before using data blocks ϋ and L to define the predictive mode of data block c, the same indication can be indicated to the data block μ L = the same predictive mode (grouping them together). For example, in the case of a JVT encoder, modes 1 > 5 and 6 can be divided into a group and labeled as Bu while nuclear formulas 2, 7 and 8 can be divided into a group and labeled as 2. As shown in Figure i, the directions of Modes 7 and 8 are close to Mode 2, and the directions of Modes 5 18! Μ Βί and 6 are close to Mode 1. After this grouping, each data block U and L has one of five patterns labeled 0, 1, 2, 3, and 4. Therefore, from the original 9 × 9 possible combinations of the U and L predictive patterns to only 5 × 5 combinations. Therefore, under the predictive mode of the known data block U, the memory required to sort the predictive mode of the data block C will be changed from the original 9 X 9 X 9 bits to 5 X 5 X 9 bits Yuan (assuming that one bit requires a bit of memory). In addition, if the mapping function f is used to '' flip the π sorted list, the predictive list can be further simplified. When the two methods are jointly adopted, one embodiment of the table specifying the predictive mode as a function of the ordering number in the bit stream is shown in Table IV.

表IV L/U outsideTable IV L / U outside

Outside ------- 0 02------- 1 --------- 2 20------- 3 --------- 4 --------- 0 1 2 3 4 0-------- 01------- 10------- 024167835 150642387 024781635 013245867 012465738 156043278 021468375 153046827 140652378 214806357 283407156 247081635 385240167 413205876 420671835 再者,亦可在已知資料區塊U及L之預示模式下限 制資料區塊C之預示模式之數目。在JVT編碼器之場合, 仍然存有9x 9種U及L之預示模式之可能性組合。但各 種組合僅可指定m個模式,其中m係小於9。於是可能 性預示模式之數目減低為(9x 9x m)<(9x 9x 9)。同理, 如果映射函數f係用以π翻轉π排序清單,預示表可進一 19 f$3B2$7k 9¾ ία ilj ϊ Ε:Π 步被簡化。 此等方法可聯合或個別予以採用。 ^ ^ ^ ……如第7圖所示。假設使用某種内模 式七式將贿編替内格切,贿之編碼程序如下。 進订編碼之訊框之資料區塊係逐—傳至第7圖所示之視 =轉換系統之編碼器5G中。訊框之資料區塊係自影像轉 、系統之輸入端27接收來自諸如照像機或錄像機(未予 圖示)等數位影像來源。在已知方式下,從數位影像來源 接收之資料區塊包括影像像素值1框可被暫時儲存於 Λ框β己憶體(未予圖示)或由編碼器直接逐一接收資料區 塊輸入資料。 、 貧料區塊係逐一傳送至預示方法選擇資料區塊 35,以決定進行編碼之現有資料區塊之像素值是否可根 據在相同訊框或資料段中之前項内編碼資料區塊予以預 不。為此,預示方法選定資料區塊35接收來自編碼器 3 3之框緩衝器之輸入,包括前項編碼及繼後編碼及重 整内資料區塊之記錄。在此方式下,預示方法選定資料 區塊可取決現有資料區塊之預示是否可根據前項解碼及 重整資料區塊為基準予以進行。此外,如果存在適當之 解碼資料區塊,有超過一種該方法可選擇時,預示方法 選定資料區塊35可選擇最適當之方法以預示現有資料 區塊之像素值。在特定情況下,現有資料區塊之預示將 無法進行,因預示所用之適當資料區塊不存在於訊框緩 20 厂i Ell 衝β 33中。當有超過一種預示方法時,關於所選擇預示 方法之資訊將被提供於多路轉換器13以供進一步傳輸 至解碼器。在某些預示方法中,進行預示所需之特定參 數係被傳輸至解碼器。當然係取決於確實之實施方法, 不擬用以限制本發明之内模式編碼之應用。 現有資料區塊之像素值係預示於内預示資料區塊 34中。内預示資料區塊34係從預示方法選定資料區塊 3 5中接收關於所選定預示方法之輸入,及從訊框緩衝器 33中取得關於可應用於預示之存在資料區塊之資訊。内 預示資料區塊34可根據此資訊做成現有資料區塊之預 示。現有資料區塊之預示像素值係被傳送至微分加法器 28,從預示現有資料區塊之像素值與接收自輸入27之現 有資料區塊之實際像素值之間之差異產生預示誤差資料 區塊。繼之,預示資料區塊之誤差資訊將以有效傳輸形 式被編碼入預示誤差編碼資料區塊中,例如使用離散餘 弦變換(DCT)。編碼預示誤差資料區塊係被傳送至多路轉 換器13以供進一步傳輸至解碼器。數位影像傳輸系統之 編碼器亦包括解碼功能。現有資料區塊之編碼預示誤差 係在預示誤差解碼資料區塊30中予以解碼,然後在加法 器31中與現有資料區塊之預示像素值一起累加。以此方 法可取得現有資料區塊之解碼版本。經過解碼之現有資 料區塊係被傳至訊框緩衝3 3。 在此亦假設接收器接收之資料區塊係從傳輪頻道 逐一形成數位影像訊框。 21 i3®20m 頁 (\w '. c n μ. αλ 3十〜 /] 在接收器6 0中,有一多路分配器接收從編碼器5 〇 傳輸之多路分配編碼預不誤差資料區塊及預示資訊。根 據預示方法則預示資訊可包括在預示程序中使用之參 數。如果僅使用一内預示方法之場合,則不需要有關預 示方法之負訊以供編碼資料區塊。在第7圖中,虛線係 用以代表選擇性傳輸及接收預示方法資訊及/或預示參 數。假設有超過一種内預示方法可被使用,關於進行解 碼之現有資料區塊之預示方法之選擇之資訊將被提供於 内預不資料區塊41。内預示資料區塊41將檢驗訊框緩 衝器39之内容以測定是否存在前所解碼之資料區塊以 供用於預示現有資料區塊之像素值。如果存在該影像資 料區塊,内預示資料區塊41將利用所接收之預示方法資 訊及從編碼器接收之可能性預示相Μ參數所顯示之預示 方法以預示現有資料區塊之内容。與現有資料區塊相關 之預示誤差資訊係由預示誤差解碼資料區塊36所接收 並利用適當方法進行預示誤差資料區塊之解碼。舉例 而言,如果係採用離散餘弦變換方法編碼預示誤差資 =,預示誤差解碼資料區塊將進行逆向Da以搜尋誤差 然後?示誤差資訊係與現有影像資料區塊之預示 器1 it器37中,加法器之輸出係被供應至訊框緩衝 各個資料區塊被解碼時,將被引導至解 面僅 破解馬及累積於訊框緩衝器39時,影 豕Λ框方可予以顯示。 22Outside ------- 0 02 ------- 1 --------- 2 20 ------- 3 --------- 4 --- ------ 0 1 2 3 4 0 -------- 01 ------- 10 ------- 024167835 150642387 024781635 013245867 012465738 156043278 021468375 153046827 140652378 214806357 283407156 247081635 385240167 413205876 420671835 Furthermore, the number of predictive modes of data block C can also be limited under known predictive modes of data blocks U and L. In the case of JVT encoders, there are still 9x 9 possible combinations of U and L predictive modes. However, each combination can only specify m modes, where m is less than 9. The number of possible predictive modes is then reduced to (9x 9x m) < (9x 9x 9). In the same way, if the mapping function f is used to flip the π sorted list, the predictive table can be further increased to 19 f $ 3B2 $ 7k 9¾ ία ilj ϊ Ε: Π steps are simplified. These methods can be used jointly or individually. ^ ^ ^ ...... as shown in Figure 7. Assume that the bribe is replaced by Negri using a certain internal pattern. The coding procedure of the bribe is as follows. The data blocks of the ordered coding frame are transmitted one by one to the encoder 5G of the view = conversion system shown in FIG. 7. The data block of the frame is converted from the image, and the input terminal 27 of the system receives digital image sources such as a camera or video recorder (not shown). In a known manner, the data block received from the digital image source includes the image pixel value. The 1 frame can be temporarily stored in the Λ frame β memory (not shown) or the encoder directly receives the data block input data one by one. . The lean blocks are transmitted one by one to the predictive method selection data block 35 to determine whether the pixel values of the existing data blocks to be coded can be predicted based on the coded data blocks in the previous item in the same frame or data segment. . To this end, the predictive method selects the data block 35 to receive input from the frame buffer of the encoder 33, including the previous item encoding and subsequent encoding and restructuring the records of the internal data blocks. In this way, the selection of data blocks by the foresight method can depend on whether the prediction of the existing data blocks can be performed based on the previous item of decoding and reorganizing the data blocks. In addition, if there is an appropriate decoded data block, when there is more than one method to choose from, the predictive method 35 may select the most appropriate method to predict the pixel values of the existing data block. Under certain circumstances, the prediction of the existing data blocks will not be carried out, because the appropriate data blocks used for the predictions do not exist in the frame buffer 20 factory i Ell punch β 33. When there is more than one prediction method, information about the selected prediction method will be provided to the multiplexer 13 for further transmission to the decoder. In some prediction methods, specific parameters required for prediction are transmitted to the decoder. Of course, it depends on the actual implementation method, and is not intended to limit the application of the mode coding in the present invention. The pixel values of the existing data blocks are foreshadowed in the internal predictive data blocks 34. The internal predictive data block 34 receives input about the selected predictive method from the predictive method selected data block 35, and obtains information from the frame buffer 33 about the existence data block applicable to the predictive. The predictive data block 34 can be used to make a prediction of an existing data block based on this information. The predicted pixel value of the existing data block is transmitted to the differential adder 28, and the predicted error data block is generated from the difference between the predicted pixel value of the existing data block and the actual pixel value of the existing data block received from the input 27. . Next, the error information of the predictive data block will be encoded into the predictive error coded data block in an efficient transmission form, such as using a discrete cosine transform (DCT). The encoding indicates that the error data block is transmitted to the multiplexer 13 for further transmission to the decoder. The encoder of the digital image transmission system also includes a decoding function. The encoding predictive error of the existing data block is decoded in the predictive error decoding data block 30 and then accumulated in the adder 31 together with the predictive pixel value of the existing data block. In this way, decoded versions of existing data blocks can be obtained. The decoded existing data blocks are transmitted to the frame buffer 33. It is also assumed here that the data blocks received by the receiver are formed into digital image frames one by one from the wheel channel. 21 i3®20m pages (\ w '. Cn μ. Αλ 30 ten ~ /] In the receiver 60, there is a multiplexer that receives the multiplexed encoding pre-error data block transmitted from the encoder 50. And predictive information. According to the predictive method, the predictive information may include the parameters used in the predictive procedure. If only one internal predictive method is used, no negative information about the predictive method is required for encoding the data block. In Figure 7 In the figure, the dashed lines are used to represent the selective transmission and reception of predictive method information and / or predictive parameters. Assuming that more than one internal predictive method can be used, information on the choice of the predictive method of the existing data block for decoding will be provided. The data block 41 is predicted in the data block 41. The data block 41 in the predictive data block will check the content of the frame buffer 39 to determine whether there is a previously decoded data block for predicting the pixel value of the existing data block. The image data block, which contains the predictive data block 41, will use the received predictive method information and the possibility of receiving from the encoder to indicate the predictive method shown by the M parameter to predict the existing data area. The content of the block. The predictive error information related to the existing data block is received by the predictive error decoding data block 36 and the appropriate method is used to decode the predictive error data block. For example, if it is encoded using the discrete cosine transform method The predictive error data =, the predictive error decoded data block will be reversed Da to search for the error, and then the error information is displayed in the predictor 1 and 37 of the existing image data block, and the output of the adder is supplied to the frame buffer When each data block is decoded, it will be guided to the solution surface only to crack the horse and accumulated in the frame buffer 39, and the shadow frame will be displayed.

内預示資料區塊34係根據由訊框緩衝器33所提供 之前所編碼及繼後解碼及重整之内資料區塊而構成現有 資料區塊之預示。更詳細而言,現有資料區塊之預示係 取決於使用表瓜或表IV(未示於第7圖)之預示表之前所 重整資料區塊之空間預示模式。然而,當前所重整之内 貧料區塊之預示模式(i,〕·)之排序清單係從預示表中略 去時,可利用映射資料區塊32將前所重整資料區塊之空 間預示模式映射於互補或鏡射空間預示模式(k,υ中, 於此,内預示資料區塊34可決定現有資料區塊之互補或 鏡射預不模式f(p)。映射資料區塊32再度被用以映射 互補預不模式f(p)以取得現有資料區塊之預示模式p。 同理,當需要時可使用映射資料區塊38以進行映射。 用以進行(i,D至(k,υ之映射及至p之映 射作業之映射演异可用軟體程式69予以編碼,該程式包 。用本毛明之方法進行之機器執行步驟或虛擬碼。軟體 程式宜被儲存於一儲存媒介中。舉例而言, ,於™之記憶單元或如第8圖所示之個= 早疋68中。帛8圖顯示用以作為攜帶型視頻通訊裝置之 子90之簡化示意圖,其中已加入本發明之預示模 顯-I:法。活動端子9°具備至少-顯示模組76以供 整= 影像抓取裝置7 2 ’及-聲頻模組7 4以從 中,取聲頻資訊及在一聲頻生產裝置 鍵般7« &聲頻#訊。該活動端子90宜另外包括一 盤78以供輸入數據及指♦,-射頻組件64以進行與 23 之通訊’及一信號/數據處理器70以控制 60)孫\ -之术作。最好數位影像資料區塊轉換系統(50, bU)係被貫施於處理器中。 根據本發明之另—實施例,可限制記憶體需求而同 野違至編碼效率。 經觀察發現資料區塊之模式之各種組合中, 之僅有數種組合具有高發生機率。其餘模式 車父低。此外’其餘模式之發生機率將會類似,因 Μ式之排序集合之順序對編碼效率之影響不大。 ϋ及L之預.示模式之各種組合所指定之模式可被分 成兩組。第一組包括m(其中m係比現存模式之整體數目 η較小)個最具可能性之預示模式’而第:組包括其餘模 式。第-組之模式係根據其機料以排序。如前所述,、 此項排序係從最高可能性排至最低可能性之模式之清 單。屬於第二組之模式可以某種職方式予以排序月可 根據現存於解碼^之資訊予mu如·小數字严 示之預^模式可排在以較大數字標示之預示模式之前J 換言之,預示模式係被安排成順序集合s。指定於 U及L之預示模式組合之模以之排序集合係由模式、 T={tl ’ t2,…’ tk}及 V={v卜 v2,…,vl}The internal prediction data block 34 is a prediction of the existing data block based on the previous data block provided by the frame buffer 33 and previously decoded and subsequently decoded and reformed. In more detail, the prediction of the existing data block depends on the spatial prediction mode of the data block that was reformed before the use of the table in Table Gua or Table IV (not shown in Figure 7). However, when the sorting list of the predictive mode (i,] ·) of the lean material block currently being reorganized is omitted from the predictive table, the mapped data block 32 can be used to predict the space of the previously reorganized data block. The pattern is mapped to the complementary or mirrored space predictive mode (k, υ, where the internal predictive data block 34 can determine the complementary or mirrored predictive mode f (p) of the existing data block. The mapped data block 32 is again It is used to map the complementary prediction mode f (p) to obtain the predictive mode p of the existing data block. Similarly, the mapping data block 38 can be used for mapping when needed. It is used to perform (i, D to (k The mapping difference between the mapping of υ and the mapping operation to p can be coded by software program 69, the package. The machine executes the steps or virtual code by the method of this Maoming. The software program should be stored in a storage medium. For example For example, in the memory unit of TM or the one shown in Figure 8 = early 疋 68. Figure 8 shows a simplified schematic diagram of the child 90 used as a portable video communication device, in which the predictive mode of the present invention has been added. Display -I: Method. Active terminal 9 Equipped with at least-display module 76 for the whole = image capture device 7 2 'and-audio module 74 to obtain audio information from it and a key 7 «& audio frequency # signal of an audio production device. The movable terminal 90 should also include a disk 78 for inputting data and instructions,-RF component 64 for communication with 23 'and a signal / data processor 70 for controlling 60) Sun \' s operation. Best digital image data The block conversion system (50, bU) is implemented in the processor. According to another embodiment of the present invention, memory requirements can be limited and the field can violate coding efficiency. Various types of data block modes have been found through observation. Among the combinations, only a few of them have a high probability of occurrence. The other models have a low probability. In addition, the incidence of the remaining models will be similar, because the order of the M-type sorting set has little effect on the coding efficiency. The patterns specified by various combinations of predictive patterns can be divided into two groups. The first group includes m (where m is smaller than the overall number of existing patterns η) the most likely predictive patterns' and the first: group includes The rest of the patterns. The pattern of group- Sort according to their machine. As mentioned before, this sort is a list of models that are ranked from the highest probability to the lowest possibility. The models belonging to the second group can be sorted in a certain way. The month can be decoded according to the existing ones. The information of ^ is as follows: The small ^ predictive mode can be arranged before the large digitized prediction mode. In other words, the prediction mode is arranged into a sequential set s. The combination of the prediction mode specified in U and L The set in which the module is ordered is determined by the mode, T = {tl 't2, ...' tk} and V = {v 卜 v2, ..., vl}

組合而成; vUmU R {tl,t〕,…,tk,V】,V2,…,V! }_ 第-排序集合T之模式係根據其贼鄰資料區塊口及 L之模式組合之預期出現機率24予以排序。模式之預期出 現頻率愈高’則需愈少位元以提供信號。模式 排序集合係由去除集合5_第一弟— 1你-主 果口i之兀素及保留 /一、·、兀”之順序後取得。例如在排序集合s中,如 示i在預示模式j之前,隼人V中 式』之前。 之預不^應在預示模 舉例而言’考慮存在於爪編碼器中之模式及假設 貝枓區塊U及L之各個模式組合中僅有最高機率 ^指定於第—組°其餘8個模式係根據其數目之漸進^ ::以列示。為進一步說明本項實施例,考 f式π,υ之組合為最高機率之模式。模式i構斤 排序集合T。第二排序集合v係去除排序集合s 之模式1而構成,即v={0,2,3,4,5,6,7 ’ 8}°。在 此排序集合S係由數目之漸進順序中之九種預示模式之 列不所形成,即 S={0,1,2,3,4,5,6,7,8}。 關於選定於特定資料區塊之模式是否屬於第一°組 或第二組之資訊係被傳送至解碼器。若屬於第一袓,傳 送之資訊顯示在已知資料區塊…之模式組合下,第 丄個最高機率模式應被用於f料區塊c。在本實施例中, 如果解碼器接收之資訊顯示選定第一組,由於僅有—模 ^屬於此組’因此不需進一步之資訊。如果模式係屬於 第二組,傳送資訊顯示應用此組之第〗個模式。在本實 =中’如果接收之資訊_應敎第—模式,則 擇模式0。 實施例·_ 25 同。L根據模式在集合S中之排序之規則可能有所不 2·第一集合τ之元素係根據毗鄰資料區塊u及 預不模式而> $ , ^ 扣疋。此集合之元素可根據例如在編碼器及 il R 者之記憶體中儲存之列表予以指定,或由模式 u及L本身予以推論。 杈式 如.擇模式之解碼器之信號可由數種方式完成,例 -關於在排序集合以之預示模式之排位之 可予以傳送。· -關於選擇集合了或¥之資訊係根據選定集合之模 式之排位。 ,在JVT編碼器中指定之預示模式之較可取實施例 係說明如下。 在用以指定資料區塊C之預示模式前,相同代號可 應用於資料區塊U及L之不同預示模式。對角模式3,5, 及8係分成-組並被標示為3’而對角模式[6,及7 係分成-組並被標示為4。分組後各個資料區塊ML 可具有標示為0’ 1,2, 3,及4之5種模式之豆中一種。 因此從原有之9x9種預示模式M L之可能組合變成僅 有5x 5種組合。 將九種預示模式根據其數目以漸進方式排列,即 s=(0小2,3,4,5,6,7,8},即可產生排序集合卜 U及L之預示模式之各種組合中,僅有—個最高機率之 26 模式被指定,即各種組合之排序集合τ僅有一元素。指 定方式列示於表V。 Θ 表ν L/U outside 0 1 2 3 4 outside 0 0 1 0 0 0 1 一0 〇 〇 1 0 1 0 l \J 1 2 2 2 J 2 2 2 3 0 1 _2_ A 4 0 1 J >4 4 第一資訊被傳送至解碼器以決定是否使用最高機 率之模式。此項 > 訊係聯合編碼予4Χ 4資料區塊,如下 表所示。VUmU R {tl, t], ..., tk, V], V2, ..., V!} _ The pattern of the -sorted set T is based on the expected combination of the pattern of the neighborhood data block and L Occurrence probability 24 is sorted. The higher the expected frequency of the pattern ', the fewer bits are required to provide a signal. The pattern sorting set is obtained by removing the order 5_first brother — 1 you-master fruit i and the order of retention / a, ·, and Wu. For example, in the sorting set s, as shown in i is in predictive mode Before j, 隼 人 V in the Chinese formula "before. The prediction should be in the predictive model, for example, 'considering the mode existing in the claw encoder and assuming that there is only the highest probability in each mode combination of the block U and L ^ In the first group, the remaining 8 patterns are listed according to the gradation of the number of them. ^: Is listed. To further illustrate this embodiment, consider the combination of f-form π and υ as the pattern with the highest probability. Pattern i constitutes a sorted set. T. The second sorting set v is formed by removing the pattern 1 of the sorting set s, that is, v = {0, 2, 3, 4, 5, 6, 7 '8} °. Here, the sorting set S is progressive by the number. The sequence of the nine predictive modes in the sequence is not formed, that is, S = {0,1,2,3,4,5,6,7,8}. Regarding whether the mode selected in a specific data block belongs to the first ° The information of the group or the second group is transmitted to the decoder. If it belongs to the first group, the transmitted information is displayed in the pattern group of the known data block ... Next, the 最高 th highest probability mode should be used for block c. In this embodiment, if the information received by the decoder shows that the first group is selected, since only the module belongs to this group, no further steps are needed. If the mode belongs to the second group, the transmission information shows the first mode in this group. In this case, 'if the received information _ should be the first mode, select mode 0. Example · 25 Same. The rules of ordering L in the set S may be different. 2. The elements of the first set τ are based on the adjacent data block u and the pre-pattern > $, ^. The elements of this set may be It is specified based on, for example, lists stored in the memory of the encoder and il R, or inferred by the modes u and L itself. The signal of a decoder such as .selection mode can be completed in several ways, for example-about the The rank of the predictive mode in which the sorting set is transmitted can be transmitted.--The information about the selected set or ¥ is based on the ranking of the selected set's mode. The preferred embodiment of the predictive mode specified in the JVT encoder is The description is as follows. Before specifying the predictive mode of data block C, the same code can be applied to different predictive modes of data blocks U and L. The diagonal modes 3, 5, and 8 are divided into groups and marked as 3 'and the diagonal mode [ 6, and 7 are divided into groups and marked as 4. After the grouping, each data block ML may have one of 5 types of beans labeled 0 '1, 2, 3, and 4. Therefore, from the original 9x9 The possible combinations of these predictive modes ML become only 5x 5 combinations. Nine predictive modes are arranged in a progressive manner according to their number, that is, s = (0 small 2, 3, 4, 5, 6, 7, 8), that is, Among the various combinations that can generate the ordered sets of predictive patterns U and L, only the 26 patterns with the highest probability are specified, that is, the ordered set τ of each combination has only one element. The designation methods are listed in Table V. Θ Table ν L / U outside 0 1 2 3 4 outside 0 0 1 0 0 0 1-0 〇〇1 0 1 0 l \ J 1 2 2 2 J 2 2 2 3 0 1 _2_ A 4 0 1 J > 4 4 The first information is sent to the decoder to decide whether to use the highest probability mode. This item is jointly coded to 4 × 4 data blocks, as shown in the table below.

表VITable VI

Codeword Block 1 Block 2 0 X X 10 110 X 111 X X代表應使用最高機率之模式。在不使用最高機率 模式m之資料區塊,從〇至7之代碼編號係被傳送顯示 何者剩餘模式應被使用。由於剩餘模式係根據其數目排 序’具有較小數目之模式將排在具有較大數目之模式之 則’當接收到代碼編號q時,使用預示模式係等於· Q ,若 q<m 27 nmm ,, 93. 10,- 年/:! q + 1 ’否則 代碼編號q係以3 —位元代碼方式予以傳送, 相對應代碼編號之二位元代號。 ”、、 及L:模據大本:二之方法所節省之記憶體源自資料區塊ϋ 之以之各種組合之解碼器必賴存最 ⑴,同時對資料區塊U及L之所有模式組合而:,; 係相同者。 7。 b 、、…。而a,本發明提供編碼成位元流 像資訊中進行解碼之方法,裝置及 二^凡桃衫 有夕個制多種内模式資料區塊預示之空 禮 式之影像資料區塊。規右杳祖、 t 塊(C)之空間預示模式可 二據夕個由現有資料區塊⑹之毗鄰資 間預=式所衍生之預示模式予以決定。多個上 不吴式係被分組’第一組之“固第一預示模式 Γ預而第;ΓΓ第二預示模式。第一預示模式具有比 第一預不杈式者更高之出現機率。而第— 據其出現機率予以排序,第二預 、工’、乂 之诏—+1 預不杈式係以解碼器已知 ^方式予以排序。因此將提供解碼器—排序集人以 t解碼器根據所提供之排序集合決定第二預示模^ L序二集合係與現有資料區塊(c)之晚鄰資料區塊(u, 可勺:模式之一或多組相關連。此外,該位元流 了匕括顯示當具有最高出現機率之衍生 y現:資料區塊⑹之編碼用時’何者第二預二式2 有取向出現機率之編碼資訊。本發明亦提供具有將多個 28 衍生預示模式分組成第一及第二組之虛擬碼之電腦程 式,並可根據第一預示模式之出現機率進行第一預示模 式之排序。 以上係根據本發明之較可取實施例予以說明,但精 於此藝者當可在不脫離本發明之精神而作成各種變更, 省略及衍生形態。 29 【圖式簡單說明】 第1 之示意圖 圖係作為空間預示模式使用之8種方向性楔弋 第2圖係顯示預示像素之現存4χ 4資料區塊 之像素之示意圖; 第3圖係顯示現存資料區塊之預示所用之二個毗 鄰資料區塊之示意圖; Φ 第4a圖係顯*現存f料區塊之預*所用之二 鄰資料區塊之空間預示模式之示意圖; 第4b圖係顯不具有第4a圖所示者之鏡照關係之二 毗鄰資料區塊之空間預示模式之示意圖; — 第5a圖係另一空間預示模式對之示意圖; 第5b圖係鏡照模式對之示意圖,· 第6圖係空間預示方法之流程圖; 第7圖係顯示實施本發明一實施例之方法之數位 影像資料區塊轉換系統之塊圖; 第㈣係顯示實施本發明一實施例之方法之攜帶 式視頻通訊裝置之塊圖。 【符號說明】 13 多工器 21 解多工器 27 輪入端 28 微分加法器 29 預示誤差編竭器 30 30 預示誤差解碼資料區塊 31、 37 加法器 32、 38 映射區塊 33、 39 訊框緩衝器 34 内預示資料區塊 35 預示方法選擇資料區塊 36 預示誤差解碼區塊 40 解碼器 41 内預示資料區塊 50 編碼器 60 接收器 64 射頻組件 68 記憶單元 69 軟體程式Codeword Block 1 Block 2 0 X X 10 110 X 111 X X represents the mode with the highest probability. In the data block that does not use the highest probability mode m, code numbers from 0 to 7 are transmitted to show which of the remaining modes should be used. Since the remaining patterns are ordered according to their number, 'the pattern with a smaller number will be ranked with the pattern with a larger number'. When the code number q is received, the predictive pattern is equal to · Q, if q < m 27 nmm, , 93. 10, -year / :! q + 1 'Otherwise, the code number q is transmitted as a 3-bit code, corresponding to the two-digit code number of the code number. ",, and L: Modular data: The memory saved by the two methods is derived from the data block, and the decoders of various combinations must rely on the most. At the same time, all modes of data blocks U and L Combinations:,; are the same. 7. b, ..., and a, the present invention provides a method, device, and device for encoding and decoding in bit stream image information. The image data block of the empty courtesy type indicated by the block. The spatial prediction pattern of the right block and the t block (C) can be based on the existing predictive pattern derived from the adjacent data block of the existing data block. Multiple decisions are grouped into the first group of "solid first predictive mode Γ and first; ΓΓ second predictive mode. The first prediction mode has a higher probability of appearing than the first prediction mode. The first-order is sorted according to its probability of occurrence, and the second pre-, first-, first-, and last- + 1 pre-order is sorted in a manner known to the decoder. Therefore, a decoder-sorting set will be provided. The t-decoder determines the second predictive mode ^ L order two set is the neighbor data block (u) of the existing data block (c). One or more groups of patterns are related. In addition, this bit is streamlined to show that when the derivative with the highest probability of occurrence is present: the encoding of the data block '' Which of the second pre-formula 2 has a targeted occurrence probability. Encoding information. The present invention also provides a computer program having a plurality of 28 derived predictive patterns grouped into virtual codes of the first and second groups, and the first predictive patterns can be sorted according to the occurrence probability of the first predictive patterns. The preferred embodiment of the present invention will be described, but those skilled in the art can make various changes, omissions and derivative forms without departing from the spirit of the present invention. 29 [Simplified description of the drawings] The first schematic diagram is as The 8 directional wedges used in the space prediction mode. Figure 2 is a schematic diagram showing the pixels of the existing 4 × 4 data block of the predicted pixel; Figure 3 is the two adjacent diagrams used for the prediction of the existing data block. Schematic diagram of the data block; Φ Figure 4a is a schematic diagram showing the spatial predictive mode of the two neighboring data blocks used by the * pre-existing f material block; Figure 4b is a mirror without the one shown in Figure 4a Schematic diagram of the space predictive mode of the adjacent data block according to the second relationship;-Figure 5a is a schematic diagram of another spatial predictive mode pair; Figure 5b is a schematic diagram of the mirrored mode pair, and Figure 6 is the flow of the spatial predictive method FIG. 7 is a block diagram of a digital image data block conversion system implementing a method of an embodiment of the present invention; FIG. 7 is a block diagram of a portable video communication device implementing a method of an embodiment of the present invention. Symbol description] 13 Multiplexer 21 Demultiplexer 27 Round-in terminal 28 Differential adder 29 Predict error compile device 30 30 Predict error decode data block 31, 37 Adder 32, 38 Map block 33, 39 Frame Buffer 34 indicates data block 35 indicates method selection data block 36 indicates error decoding block 40 decoder 41 indicates data block 50 encoder 60 receiver 64 radio frequency component 68 memory unit 69 software Program

70 CPU 72 影像抓取裝置 74 聲頻模組 76 顯示模組 78 鍵盤 80 聲頻產生裝置 82 輸入裝置 90 活動端子 100 方法 步驟 110 , 120 , 130 , 132 , 140 , 150 3170 CPU 72 Video capture device 74 Audio module 76 Display module 78 Keyboard 80 Audio generator 82 Input device 90 Active terminal 100 Method Step 110, 120, 130, 132, 140, 150 31

Claims (1)

拾、申請專利範圍: 【申請專利範圍】 1 · 一種使用内模式預示資料區塊之多個空間預示模 式編碼由多個影像資料區塊所構成之位元流影像資訊之 方法,其中現有資料區塊(c)之空間預示模式係取決於多 個衍生之預示模式,該預示模式係根據現有資料區塊(c) 之多個毗鄰資料區塊(U,L)之空間預示模式而衍生,該 方法係由下列步驟構成為特徵: 將該多個衍生之預示模式分成第一組及第二組,第 一組具備第一預示模式之第一數目,而第二組具備第二 預不模式之第二數目’其中第—數目係小於衍生預示模 式之數目,而第一預示模式具有比第二預示模式更高之 出現機率,及 預示模式係屬於第一組或第二組 編碼入位元流資訊以顯示現有資料區塊(C)之空間 另外包括下 2·如申請專利範圍第1項所述之方法, 列特徵: 根據第 式之排序 預示模式之出現機率而進行第一預示模 m2·如中請專利範圍第1項所述之方法,另外包括下 以解竭器習知之預定方式進行第:預示模式之排 32 1239207 序 管·正替i 史,93.1(Γ 4·如申請專利範圍第1項所述之方法,另外包括下 列特徵: 當選用具有最高出現機率之衍生預示模式以編碼 4nr(c)時,將顯示第一預示模式中何者具有最 门見機率之第—預示模式編碼入位元流資訊中。 列特HtT範圍第1項所述之方法,另外包括下 £ 預不杈式之排序集合為解碼器所習知,於是解 碼器可根據排序集合決U二預示模式之排序。 列特5嫩之方法’另外包括下 料區塊(U,L)之空:預/資料區塊(C)之多㈣鄰資 曰1預不杈式之一組以上有所關連。 列特範圍第1項所述之方法,另外包括下 第m 模式料多财㈣數Μ代表,而 _據解碼器所習知之整數予以排序。 8.如申請專利範圍第 預示模式心π ^ 万&具中該何生 於一衍生預示γ十°數予以代表,各個整數係對應 整數以、,斩谁太:’’而其中該整數係依提供排序集合之 ^方式予以排序’該方法另外包括下列特徵: 33Scope of patent application: [Scope of patent application] 1 · A method for encoding multiple bitstream image information composed of multiple image data blocks using multiple spatial predictive mode blocks using internal mode predictive data blocks, in which existing data areas The spatial predictive mode of block (c) depends on multiple derived predictive modes, which are derived from the spatial predictive modes of the adjacent data blocks (U, L) of the existing data block (c). The method is characterized by the following steps: Dividing the plurality of derived prediction modes into a first group and a second group, the first group having a first number of the first prediction mode, and the second group having a second prediction mode The second number, where the first number is less than the number of derived predictive modes, and the first predictive mode has a higher occurrence probability than the second predictive mode, and the predictive mode belongs to the first or second group of coded bitstreams Information to display the space of the existing data block (C) In addition, the following 2. The method described in item 1 of the scope of patent application, features: The probability of occurrence of the first predictive mode m2. The method described in item 1 of the patent scope, including the following predetermined method known to the detoxifier: the predictive mode of the row 32 1239207 sequence tube. History, 93.1 (Γ 4. · The method described in the first scope of the patent application, additionally including the following features: When the derivative predictive mode with the highest probability of occurrence is selected to encode 4nr (c), which of the first predictive modes will be displayed The most predictive mode of the most probable mode is coded into the bit stream information. The method described in Item 1 of the Litt HtT range additionally includes the following pre-sorted sorting sets that are known to the decoder, and then decode The device can determine the ordering of the two predictive modes according to the sorting set. The method of Leite 5nen additionally includes the blanking of the blanking block (U, L): the number of neighbors in the pre / data block (C) is 1 The above method is related to one or more groups. The method described in item 1 of the Litt range additionally includes the following number m model, which is represented by the number M, and is sorted according to the integers known to the decoder. 8. If the scope of patent application π ^ Man & What should be born in a derivative indicates the number of γ ten degrees, each integer is corresponding to the integer to, and who is too: "and the integer is sorted according to the method of providing a sorted set ^" The method additionally includes the following features: 33 仗提供改良排序集合之排序集合申去除對應於第 /預示模式之整數,藉以提供解碼器以根據改良排序集 合決定第二組之排序。 .如申Μ專利範圍第1項所述之方法,其中該多個 衍生預不拉式之其中一個係選用以編碼現有資料區塊 (C)’該方法另外包括下列特徵: 如果所選定之組合預示模式係在第二組中,提供解 石馬裝置在第二預示模式中之第i個模式之資訊。 1〇·如申請專利範圍第丨項所述之方法,另外包括 r列特徵: 進行她鄰資料區塊之空間預示模式之映射,藉以提 供此鄰資料區塊在需要時之互補性預示模式,其方式係 ㈣❹資料區塊之互補預示模式以決定現有資 料區塊(c)之互補預示模式,及 〜進行現有資料區塊⑹之互補預示模式之映射以取 得現有資料區塊(C)之空間預示模式。 之方法,另外包括 11·如申請專利範圍第10項所述 下列特徵: 資料區塊(C )之互補預示掇々 η #欠 預不模式之映射係藉鏡照功能 進订第一及第二資料區塊之鏡照而實施者。 34 1239207 ,94 ITT 模式二用内模式預示資料區塊之多個空間預示 其中該:二:影像資料區塊所組成之影像之編碼器, 衍生之預£塊(0之空間預示模式係取決於多個 資料區塊(U,L)之空間預示模式而衍= 、,届碼為具有下列特徵: =該多個^生之預示模式分成第—組及第二組 :第弟-組具備第一預示模式之第一數目,而第二組: 備第=預示模式之第二數目,其中第—數目係小於衍^ ::杈式之數目,而第一預示模式具有比第二預示模式 问之出現機率,而第二預示模式係根據解碼裝 知之預定方式予以排序,及 吓為 編碼入位元流資訊以顯示現有資料區塊((:)之介 預示模式係屬於第一組或第二組之裝置。 二曰Ί 13·如申請專利範圍第12項所述之編碼器,另 括下列特徵: ° 匕 根據第一預示模式之出現機率而進行第一預示模 式之排序以提供排序集合之裝置。 、 14.如申請專利範圍第12項所述之編碼器,另 括下列特徵: G 提供代表在排序集合中具有最高出現機率之預厂、 模式之解碼器資訊之裝置。 、 35The ordering set provided by the improved ordering set is applied to remove the integer corresponding to the / predictive mode, so as to provide a decoder to determine the ordering of the second group according to the ordering set. The method as described in item 1 of the patent application scope, wherein one of the plurality of derived pre-pulls is selected to encode an existing data block (C) '. The method further includes the following features: If the selected combination The predictive mode is in the second group and provides information about the ith mode of the calcite horse device in the second predictive mode. 10. The method as described in item 丨 of the scope of patent application, further including the features of column r: Mapping the spatial predictive mode of the neighboring data block to provide a complementary predictive mode of the neighboring data block when needed, The method is: ㈣❹ complementary predictive mode of data block to determine the complementary predictive mode of existing data block (c), and ~ mapping of the complementary predictive mode of existing data block ⑹ to obtain the space of existing data block (C) Prophetic mode. The method further includes the following features as described in item 10 of the scope of patent application: Complementary prediction of data block (C) 掇 々 η #The map of the under-preemption mode is ordered first and second by the mirror function Implemented by mirroring of data blocks. 34 1239207,94 ITT mode two uses the internal mode to predict the multiple spaces of the data block. Among them: two: the encoder of the image composed of the image data block, derived from the £ block (the space predictive mode of 0 depends on The spatial predictive pattern of multiple data blocks (U, L) is derived =, and the code has the following characteristics: = The multiple predictive patterns of the birth are divided into the first group and the second group: the first brother-the group has the first The first number of a predictive mode, and the second group: prepare the second number of the predictive mode, where the first number is less than the number of ^ :: twigs, and the first predictive mode has a greater problem than the second predictive mode. Probability of occurrence, and the second predictive mode is sorted according to a predetermined way of decoding equipment, and the median predictive mode that scarcely encodes bit stream information to display existing data blocks ((:) belongs to the first group or the second The device of the group is as follows: 13. The encoder according to item 12 of the scope of patent application, including the following features: ° The first predictive mode is sorted according to the occurrence probability of the first predictive mode to provide a sorted set. Device. 14. The encoder according to the application of patentable scope of item 12, further comprising the following features: G represents an offer, a decoder device information of the highest occurrence probability of pre-plant modes in the ordered set, 35. 15·如申請專利範圍第 括下列特徵: 12項所述之編碼器,另外包 根據田比部貝料區塊之空間預示模式以提供田比鄰資 料區塊需要時之互補預示模式之裝置,藉以使現有資料 區塊之互補預示模式可根據毗鄰資料區塊之互補 式予以取決,及 ν骂 對應於現有模式之互補預示模式以根據現有模式 之互補預示模式之映射而提供現有資料區塊(〇之^ 預示模式之裝置。 二曰 16. —種使用内模式預示資料區塊之多個空間預 示模式進行由多個影像資料區塊所構成之位元^影0像次 之解碼之方法,其中現有資料區塊⑹之空間預示模 於多個衍生之預示模式,該預示模式係根據財 貝料區塊(C)之多個毗鄰資料區塊(U,L)之空間預示模式 而衍生,該方法係由下列步驟構成為特徵: 吴" 將該多個衍生之預示模式分成第一組及第二組, -組具備第—預示模式之第__數目,而第二組具備第二 預不Μ式之第二數目’其中第—數目係小於衍生預示模 式之數目,而第一預示模式具有比第二預示模式更高之 出現機率,該方法之特徵在於 —從顯示現有資料區塊⑹之空間預示模式係屬於第 —組或第二組之位元流資訊進行解碼,藉以提供解碼器 根據解竭資訊取決現有資料區塊(C)之空間預示模式盗 36 <別牲 靶圍第16項所述之方法, 下列特徵:根據第— 套另外包括 禾模式之排序。 ’、果式之出現機率而進行第—預 18·如 下列特徵: 式之排序。 申請專利範圍第16項所述之方法, 乂驾知於解碣器之預定方式進行第 另外包括 一預示模 •如申請專利範圍第16項所述之方法, 下歹:特徵.當選用具有最高出現機率之衍生預示模式以 編碼現有資料區塊(C)時,將顯示第一預示模式中何者且 有取W現機率之第_預示模式編碼人位元流資訊中了 2 〇 ·如申明專利範圍第16項所述之方法,另外包括 下歹]特徵· &供預示模式之排序集合予解碼器以供解石馬 器可根據排序集合決定第二預示模式之排序。 21 · —種使用内模式預示資料區塊之多個空間預示 模式進行由多個影像資料區塊所構成之位元流影像資訊 之解碼之解碼器,其中現有資料區塊(c)之空間預示模式 係取決於多個衍生之預示模式,該預示模式係根據現有 資料區塊(C)之多個毗鄰資料區塊(U,L)之空間預示模式 而衍生,其特徵在於: 該多個衍生之預示模式分成第一組及第二組,第一 3715. The following features are included in the scope of the patent application: The encoder described in item 12 additionally includes a device that provides a complementary predictive mode when the field data block is required according to the space predictive mode of the field-based material block. Make the complementary predictive mode of the existing data block can be determined according to the complementarity of the adjacent data block, and provide the existing data block based on the mapping of the complementary predictive mode of the existing model (0 ^ Predictive mode device II. 16.—A method of decoding multiple bits of image data blocks composed of multiple image data blocks using multiple spatial predictive modes of the internal mode to predict data blocks, of which The space predictive model of the existing data block 于 is derived from multiple derived predictive models. The predictive model is derived from the spatial predictive models of the adjacent data blocks (U, L) of the Caibei material block (C). The method is characterized by the following steps: Wu " divides the multiple derived predictive patterns into a first group and a second group,-the group has the number of __ The second group has the second number of the second prediction mode, where the first number is less than the number of derived prediction modes, and the first prediction mode has a higher probability of appearance than the second prediction mode. This method is characterized by It lies in that—the space prediction mode from which the existing data block ⑹ is displayed is decoded by bit stream information belonging to the first or second group, so as to provide the decoder to determine the space prediction mode of the existing data block (C) according to the exhaustion information. Pirate 36 < The method described in item 16 of the Dodger Target, has the following characteristics: according to the order of the first set, including the pattern of grasses. ', Probability of the occurrence of the fruit, and the first-18, such as the following characteristics: Sequencing. The method described in item 16 of the scope of patent application, the method of knowing the predetermined way of the unlocking device includes a predictive model. • The method described in item 16 of the scope of patent application, below: Features. When selected When the derivative predictive mode with the highest occurrence probability is used to encode the existing data block (C), it will show which of the first predictive modes and the _predictive mode encoding person with the current probability The stream information includes 20. The method described in item 16 of the declared patent scope, further including the following features] & Ordering set for predictive mode to the decoder for the calcite horse to determine the second based on the ordering set Sorting of the predictive mode. 21 · —A decoder that decodes the bitstream image information composed of multiple image data blocks by using multiple spatial predictive modes of the internal mode predictive data block, in which the existing data block ( c) The space predictive mode depends on a plurality of derived predictive modes. The predictive mode is derived from the spatial predictive modes of the adjacent data blocks (U, L) of the existing data block (C), which is characterized by : The multiple predictive modes derived are divided into the first group and the second group, the first 37 L· 換頁 —a—j I 二預示模式之第一數目,而第二組具備第二預 夕數工目之第Γ數目,其中第一數目係小於衍生預示模式 :機座’:第一預示模式具有比第二預示模式更高之出 二’δ亥解碼器之特徵在於: 一“對應於解碼資訊以取決現有資料區塊(C)之空間預 丁极式係屬於第一組或第二組之裝置,及 根據上述決定以選擇空間預示模式之裝置。 二22·如申請專利範圍第21項所述之解碼器,其特徵 在於该第—預示模式係根據第一預示模式中之出現機率 而進行排序。 ^ 2 3 ·如申凊專利範圍第21項所述之解碼器,其特徵 在於第二預示模式係以預定方式進行排序,該解碼器另 外具有下列特徵: 用以儲存代表該預定方式之資訊之裝置。 24·如申請專利範圍第21項所述之解碼器,其中當 選用具有最高出現機率之衍生預示模式以編碼現有資料 區塊(C)時,該取決性裝置將可根據解碼資訊以取決第一 預示模式中何者具有最高出現機率。 25· —種使用内模式預示資料區塊之多個空間預示 模式進行由多個影像資料區塊所構成之影像之編碼及解 38 ,綱7 5 ; 碼之影像編碼系統,其中現有資料區塊(c)之空間預示模 式係取决於多個衍生之預示模式,該預示模式係根據現 有資料區塊(C)之多個毗鄰資料區塊(u,L)之空間預示模 式而衍生,該特徵在於·· 將該多個衍生之預示模式分成第一組及第二組之 裝置,第-組具備第一預示模式之第一數目,而第二組 具備第二預示模式之第二數目,其中第__數目係小於衍 生預示模式之數目,而第一預示模式具有比第二預示模 式更高之出現機率, 將代表現有資料區塊⑹之空間預示模式係屬於第 一組或第二組之位元流分組資訊進行編碼之裝置,及 從位元流分組資訊以進行解碼之裝置,以供解碼器 根據該解碼資訊以取決現有資料區塊之空間預示模 式。 、 26·如申請專利範圍第25項所述之影像編竭系 統,另外包括下列特徵·· 對應於第一組並根據第一預示模式之出現機率而 進行第一預示模式之排序之裝置。 27·如申請專利範圍第25項所述之影像編碼系 統,另外包括下列特徵: 對應於第二組並將第二預示模式排列成解碼裝 所習知之預定方式之裝置。 * ^ 39 rz 1239207 盆28· —種電腦程式產品,包括··電腦可讀媒體,在 其上儲存一群可執行之編碼,供用於影像編碼系統以 更使用内模式預示資料區塊之多個空間顯示模式進〜 :二:影像資料區塊構成之位元流影像資訊之編碼,‘ 一貝料區塊(C)之空間顯示模式係取決定多個衍生之 、厂、模式而該等預示模式係根據上述資料區塊(C)之 2鄰資料區塊(u,L)之空間預示模式射而得;該可 執行之編碼之特徵乃在含有·· 將該夕個衍生之預示模式分成第一組及第二組所 ;之虛擬瑪’第-組具備第-預示模式之第-數目,而 第:組具備第二預示模式之第二數目,其中第一數目係 + @ — 、弋數 苐一預示模式具有比第二 預不核式更咼之出現機率,及 = 康第-預示模式中之出現機率進行第一預示模 式之排序所用之虛擬碼。 α 29士如申請專利範圍第28項所述之電腦程式產 。口,其中該可執行之編碼進一步含有: 根據解碼器習知之預宕 Μ床嘛田+ 之預疋方式進行第二預示模式之 排序所用之虛擬碼。 40 ifffiSl复年d U L C 第3 回L · Form-feed—a—j I The first number of the two predictive modes, and the second group has the Γ number of the second predictive number of projects, where the first number is less than the derivative predictive mode: base ': the first predictive The mode has a higher output than the second predictive mode. The feature of the 'δH' decoder is: a "space corresponding to the decoding information to depend on the existing data block (C). The pre-polarized system belongs to the first group or the second The device of the group, and the device for selecting the spatial prediction mode according to the above-mentioned decision. 22. The decoder according to item 21 of the scope of patent application, characterized in that the first prediction mode is based on the occurrence probability in the first prediction mode. ^ 2 3 · The decoder as described in claim 21 of the patent scope is characterized in that the second predictive mode is sorted in a predetermined manner, and the decoder additionally has the following characteristics: used to store the predetermined representation 24. The decoder according to item 21 of the scope of patent application, wherein when the derivative predictive mode with the highest occurrence probability is selected to encode the existing data block (C), The decisive device will be based on the decoded information to determine which one of the first predictive modes has the highest probability of occurrence. 25 · —A plurality of spatial predictive modes using the internal mode predictive data blocks are performed by multiple image data blocks. Image coding and resolution 38, Outline 7 5; coded image coding system, in which the spatial prediction mode of the existing data block (c) depends on multiple derived prediction modes, which are based on the existing data block (C ) Is derived from the spatial predictive patterns of multiple adjacent data blocks (u, L), which is characterized by dividing the multiple derived predictive patterns into a first group and a second group of devices, the first group having the first group The first number of predictive modes, and the second group has the second number of second predictive modes, where the __number is less than the number of derived predictive modes, and the first predictive mode has a higher probability of appearance than the second predictive mode A device that encodes the bitstream information representing the existing data block ⑹ into bitstream grouping information belonging to the first or second group, and uses the bitstream grouping information to A device for decoding for the decoder to determine the spatial prediction mode of the existing data block based on the decoded information. 26. The image editing system described in item 25 of the scope of patent application, and additionally includes the following features: The first group is a device that sorts the first predictive mode according to the occurrence probability of the first predictive mode. 27. The image coding system described in item 25 of the scope of patent application, further including the following features: Corresponding to the second group and The second predictive mode is arranged into a device known as a predetermined method of decoding. * ^ 39 rz 1239207 Pot 28 · —a computer program product, including a computer-readable medium, on which a group of executable codes is stored for use. In the image coding system, multiple spatial display modes are used to predict the data block in a more internal mode ~: 2: encoding of bit stream image information composed of image data blocks, 'space display of one block (C) The model is to determine the multiple derived models, factories, and models, and these predictive models are based on the space of the two neighboring data blocks (u, L) according to the data block (C) above. The predictive mode is obtained by shooting; the characteristic of the executable coding is that it contains: · the derived predictive mode is divided into the first group and the second group; -Number, and the second group has the second number of the second predictive mode, where the first number is + @ —, the number of the first predictive mode has a higher probability of occurrence than the second predictive non-nuclear type, and = Kangdi -The occurrence probability in the predictive mode is a virtual code used to sort the first predictive mode. α 29 is a computer program as described in item 28 of the scope of patent application. Or, the executable encoding further includes: a virtual code used for sequencing of the second predictive mode according to the pre-downtime mode of the M Bed + that the decoder is familiar with. 40 ifffiSl Revival d U L C Part 3 翻轉線 第4圖Flip Line Picture 4 匚.1 s 6CO 6CNI匚. 1 s 6CO 6CNI 歷卜濉 CNJ ml βίο,Μ ul- 一 il历 卜 濉 CNJ ml βίο, Μ ul- 一 il CVJ9 000 69 89CVJ9 000 69 89 >>
TW092115778A 2002-06-11 2003-06-11 Method and device for coding digital images using intra-mode block prediction TWI239207B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US38806102P 2002-06-11 2002-06-11
US10/171,467 US20030231795A1 (en) 2002-06-12 2002-06-12 Spatial prediction based intra-coding
US39111202P 2002-06-21 2002-06-21
US39517802P 2002-07-09 2002-07-09

Publications (2)

Publication Number Publication Date
TW200407031A TW200407031A (en) 2004-05-01
TWI239207B true TWI239207B (en) 2005-09-01

Family

ID=29741013

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092115778A TWI239207B (en) 2002-06-11 2003-06-11 Method and device for coding digital images using intra-mode block prediction

Country Status (11)

Country Link
EP (1) EP1512115B1 (en)
JP (1) JP4490261B2 (en)
KR (1) KR101017094B1 (en)
CN (1) CN100380984C (en)
AU (1) AU2003240172B2 (en)
CA (1) CA2488266C (en)
DE (1) DE60345459C5 (en)
MX (1) MXPA04012133A (en)
MY (1) MY137061A (en)
TW (1) TWI239207B (en)
WO (1) WO2003105070A1 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7792188B2 (en) * 2004-06-27 2010-09-07 Apple Inc. Selecting encoding types and predictive modes for encoding video data
JP4501631B2 (en) * 2004-10-26 2010-07-14 日本電気株式会社 Image coding apparatus and method, computer program for image coding apparatus, and portable terminal
CN100348051C (en) * 2005-03-31 2007-11-07 华中科技大学 An enhanced in-frame predictive mode coding method
KR100716999B1 (en) 2005-06-03 2007-05-10 삼성전자주식회사 Method for intra prediction using the symmetry of video, method and apparatus for encoding and decoding video using the same
JP5089878B2 (en) * 2005-10-28 2012-12-05 パナソニック株式会社 Image encoding device
WO2008056923A1 (en) * 2006-11-07 2008-05-15 Samsung Electronics Co, . Ltd. Method and apparatus for encoding and decoding based on intra prediction
JP2010135864A (en) * 2007-03-29 2010-06-17 Toshiba Corp Image encoding method, device, image decoding method, and device
US8189676B2 (en) * 2007-04-05 2012-05-29 Hong Kong University Of Science & Technology Advance macro-block entropy coding for advanced video standards
JP5188875B2 (en) * 2007-06-04 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ Image predictive encoding device, image predictive decoding device, image predictive encoding method, image predictive decoding method, image predictive encoding program, and image predictive decoding program
CN107105257B (en) 2007-06-29 2020-08-28 威勒斯媒体国际有限公司 Image encoding device, image encoding method, image decoding device, and image decoding method
JP5004180B2 (en) * 2007-11-07 2012-08-22 Kddi株式会社 Video encoding apparatus and decoding apparatus
US20090245371A1 (en) * 2008-03-28 2009-10-01 Samsung Electronics Co., Ltd. Method and apparatus for encoding/decoding information about intra-prediction mode of video
JP2009272969A (en) * 2008-05-09 2009-11-19 Hitachi Ltd Image encoding apparatus and image encoding method, and image decoding apparatus and image decoding method
EP2329653B1 (en) 2008-08-20 2014-10-29 Thomson Licensing Refined depth map
WO2010021664A1 (en) * 2008-08-20 2010-02-25 Thomson Licensing Depth coding
JP4995789B2 (en) * 2008-08-27 2012-08-08 日本電信電話株式会社 Intra-screen predictive encoding method, intra-screen predictive decoding method, these devices, their programs, and recording media recording the programs
KR101567974B1 (en) * 2009-01-05 2015-11-10 에스케이 텔레콤주식회사 / / Block Mode Encoding/Decoding Method and Apparatus and Video Encoding/Decoding Method and Apparatus Using Same
CN102272778B (en) 2009-01-07 2015-05-20 汤姆森特许公司 Joint depth estimation
US9288494B2 (en) * 2009-02-06 2016-03-15 Thomson Licensing Methods and apparatus for implicit and semi-implicit intra mode signaling for video encoders and decoders
CN101505428B (en) 2009-03-24 2012-10-03 威盛电子股份有限公司 Intra-frame prediction method and apparatus thereof
TWI407797B (en) * 2009-03-27 2013-09-01 Via Tech Inc Intra-frame prediction method and prediction apparatus using the same
WO2011031332A1 (en) 2009-09-14 2011-03-17 Thomson Licensing Methods and apparatus for efficient video encoding and decoding of intra prediction mode
US10198792B2 (en) 2009-10-14 2019-02-05 Dolby Laboratories Licensing Corporation Method and devices for depth map processing
KR101441879B1 (en) * 2009-12-09 2014-09-23 에스케이텔레콤 주식회사 Video encoding apparatus and method, transform encoding apparatus and method, basis transform generating apparatus and method, and video decoding apparatus and method
WO2011078562A2 (en) * 2009-12-21 2011-06-30 한국전자통신연구원 Intra-predictive coding and decoding methods, and intra-predictive coding and decoding devices for performing the methods
US8902978B2 (en) 2010-05-30 2014-12-02 Lg Electronics Inc. Enhanced intra prediction mode signaling
JP6342116B2 (en) 2010-07-15 2018-06-13 シャープ株式会社 Intra prediction mode estimation device
KR101373814B1 (en) 2010-07-31 2014-03-18 엠앤케이홀딩스 주식회사 Apparatus of generating prediction block
US10136130B2 (en) 2010-08-17 2018-11-20 M&K Holdings Inc. Apparatus for decoding an image
US11284072B2 (en) 2010-08-17 2022-03-22 M&K Holdings Inc. Apparatus for decoding an image
HUE040604T2 (en) * 2010-08-17 2019-03-28 M&K Holdings Inc Apparatus for decoding an intra prediction mode
US9025661B2 (en) 2010-10-01 2015-05-05 Qualcomm Incorporated Indicating intra-prediction mode selection for video coding
US8913662B2 (en) * 2011-01-06 2014-12-16 Qualcomm Incorporated Indicating intra-prediction mode selection for video coding using CABAC
JP5781313B2 (en) 2011-01-12 2015-09-16 株式会社Nttドコモ Image prediction coding method, image prediction coding device, image prediction coding program, image prediction decoding method, image prediction decoding device, and image prediction decoding program
CN102611885B (en) * 2011-01-20 2014-04-30 华为技术有限公司 Encoding and decoding method and device
WO2012113197A1 (en) * 2011-02-24 2012-08-30 中兴通讯股份有限公司 Encoding or decoding method of prediction mode, and device thereof
US9654785B2 (en) 2011-06-09 2017-05-16 Qualcomm Incorporated Enhanced intra-prediction mode signaling for video coding using neighboring mode
US20130016769A1 (en) 2011-07-17 2013-01-17 Qualcomm Incorporated Signaling picture size in video coding
GB2494468B (en) 2011-09-12 2014-01-15 Canon Kk Method and device for encoding or decoding information representing prediction modes
KR101611409B1 (en) 2011-09-28 2016-04-14 한국전자통신연구원 Method for encoding/decoding an intra prediction mode and apparatus for the same
WO2013048033A1 (en) 2011-09-28 2013-04-04 한국전자통신연구원 Method and apparatus for encoding/decoding intra prediction mode
US9154796B2 (en) * 2011-11-04 2015-10-06 Qualcomm Incorporated Intra-mode video coding
CN109413429B (en) 2012-01-20 2022-05-17 杜比实验室特许公司 Decoding method, video decoding apparatus and encoding method
WO2013111977A1 (en) * 2012-01-26 2013-08-01 한국전자통신연구원 Deblocking method and deblocking apparatus for block on which intra prediction is performed
CN103369315B (en) * 2012-04-06 2016-08-24 华为技术有限公司 The coding of the intra prediction mode of chromatic component, coding/decoding method, equipment and system
WO2013155666A1 (en) * 2012-04-16 2013-10-24 Mediatek Singapore Pte. Ltd. Methods and apparatuses of intra mode coding for hevc
GB2509901A (en) 2013-01-04 2014-07-23 Canon Kk Image coding methods based on suitability of base layer (BL) prediction data, and most probable prediction modes (MPMs)
JP5775959B2 (en) * 2014-11-07 2015-09-09 株式会社Nttドコモ Image prediction coding method, image prediction coding device, image prediction coding program, image prediction decoding method, image prediction decoding device, and image prediction decoding program
US20180048915A1 (en) * 2015-02-27 2018-02-15 Lg Electronics Inc. Method and apparatus for encoding/decoding a video signal
JP6038243B2 (en) * 2015-07-15 2016-12-07 株式会社Nttドコモ Image predictive decoding method and image predictive decoding device
JP6310992B2 (en) * 2016-11-01 2018-04-11 株式会社Nttドコモ Image predictive decoding method and image predictive decoding device
CN116866553A (en) * 2017-01-16 2023-10-10 世宗大学校产学协力团 Video decoding/encoding method and method for transmitting bit stream
JP6486528B2 (en) * 2018-03-19 2019-03-20 株式会社Nttドコモ Image predictive decoding method and image predictive decoding device
EP3562158A1 (en) * 2018-04-27 2019-10-30 InterDigital VC Holdings, Inc. Method and apparatus for combined intra prediction modes
EP3850840A1 (en) 2018-09-13 2021-07-21 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Affine linear weighted intra predictions

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69418372T2 (en) * 1993-03-15 1999-11-25 Sony Corp., Tokio/Tokyo Transmission and decoding of picture signals
CN1134993C (en) * 1996-04-18 2004-01-14 诺基亚流动电话有限公司 Vedio data encoder and decoder
US5974184A (en) * 1997-03-07 1999-10-26 General Instrument Corporation Intra-macroblock DC and AC coefficient prediction for interlaced digital video
US6275533B1 (en) * 1997-06-20 2001-08-14 Matsushita Electric Industrial Co., Ltd. Image processing method, image processing apparatus, and data recording medium
FI116819B (en) * 2000-01-21 2006-02-28 Nokia Corp Procedure for transferring images and an image encoder
EP1347649A1 (en) * 2002-03-18 2003-09-24 Lg Electronics Inc. B picture mode determining method and apparatus in video coding system

Also Published As

Publication number Publication date
WO2003105070A1 (en) 2003-12-18
CA2488266A1 (en) 2003-12-18
EP1512115A1 (en) 2005-03-09
MY137061A (en) 2008-12-31
CN100380984C (en) 2008-04-09
CA2488266C (en) 2013-08-13
DE60345459C5 (en) 2022-11-17
AU2003240172B2 (en) 2009-09-10
AU2003240172A1 (en) 2003-12-22
TW200407031A (en) 2004-05-01
JP2005529527A (en) 2005-09-29
CN1659580A (en) 2005-08-24
EP1512115B1 (en) 2013-12-18
JP4490261B2 (en) 2010-06-23
KR101017094B1 (en) 2011-02-25
EP1512115A4 (en) 2009-06-03
MXPA04012133A (en) 2005-04-19
KR20050007607A (en) 2005-01-19

Similar Documents

Publication Publication Date Title
TWI239207B (en) Method and device for coding digital images using intra-mode block prediction
US7289674B2 (en) Spatial prediction based intra coding
JP7085021B2 (en) Video coding and decoding methods, equipment and computer programs
CN107295347B (en) Apparatus for decoding motion information in merge mode
KR101461209B1 (en) Method and apparatus for image compression storing encoding parameters in 2d matrices
CN101204094B (en) Method for scalably encoding and decoding video signal
US20060188165A1 (en) Spatial prediction based intra-coding
CN104885470A (en) Content Adaptive Partitioning for Prediction and Coding of Next Generation Video
RU2314656C2 (en) Internal encoding, based on spatial prediction
JP2009272727A (en) Transformation method based on directivity of prediction error, image-encoding method and image-decoding method
KR20110066109A (en) Coding method and apparatus by using tree structure
CN103650496A (en) Pixel-based intra prediction for coding in HEVC
CN104854866A (en) Content adaptive, feature compensated prediction for next generation video
CN104935929A (en) Image decoding apparatus
CN116016913A (en) Video encoding and decoding method, video encoder and decoder, and computer readable medium
CN1501717A (en) Inter-block interpolation prediction coder, decoder, coding method and decoding method
US20060013304A1 (en) Image encoding apparatus and decoding apparatus, image encoding method and decoding method, image encoding program and decoding program, and recording medium
CN102484699B (en) The method of Code And Decode, the corresponding intrument for Code And Decode are carried out to image
CN101385352A (en) Inter-layer prediction method for video signal
JP2022177219A (en) Methods and apparatus for multiple line intra-prediction in video compression, device, and computer program
TW201143443A (en) Method and system for 3D video decoding using a tier system framework
CN108810532B (en) Image decoding device
JP4795141B2 (en) Video coding / synthesizing apparatus, video coding / synthesizing method, and video transmission system
CN113348670A (en) Method and apparatus for coding and decoding an image into regions by block slicing
CN116636205A (en) Scan order of secondary transform coefficients

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent