TWI239146B - Phase lock loop circuit having rapid lock frequency - Google Patents
Phase lock loop circuit having rapid lock frequency Download PDFInfo
- Publication number
- TWI239146B TWI239146B TW92117548A TW92117548A TWI239146B TW I239146 B TWI239146 B TW I239146B TW 92117548 A TW92117548 A TW 92117548A TW 92117548 A TW92117548 A TW 92117548A TW I239146 B TWI239146 B TW I239146B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- phase
- frequency
- signal
- reset
- Prior art date
Links
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
Description
1239146 玖、發明說明: 【發明所屬之技術領域】 本發明所提供之具有快速鎖頻之鎖相迴路電路及其押 制方法’最主要是顧在產生數㈣統電 )或者是制於通訊領域,尤·稱改M鎖相迴路電路 可以在當電源電壓尚未達到穩定時,鎖相迴路電路藉由一 個啟動重置(Power-On-Reset)電路來產生一個預設信號給 鎖相迴路電路,使鎖相迴路電路預先自行自我產生出一個 中頻的固定輸出頻率,如此可大幅縮短整體數位電路系統 所需之等待時間,使鎖相迴路電路更快達到鎖頻之動作, 進而可使數位系統電路更快進入正常工作模式,本發明亦 可利用簡單的數位電路來判斷頻率相位檢測器(pj?D電路) 的相位差值,控制往上遞增(UP)和往下遞減(DN)信號,使 電荷泵浦(CP電路)對低通濾波器(lpf電路)的電容的充放 電時間能夠加長或減短。 【先前技術】 敬請參閱第一圖所示:係一般鎖相迴路電路架構圖。 一般鎖相迴路電路的架構可概分為六部分:頻率相位檢測 器(Phase Frequency Detector,簡稱為 PFD 電路)、電荷 泵浦(Charge Pump,簡稱為CP電路)、電壓控制振盪器(v oltage-Controlled Oscillator,簡稱為 VC0 電路)、低 通濾波器(Low-Pass Filter,簡稱為LPF電路)、除2(1/ 2)和除N(Divider-by-N)。 外部參考輸入信號(Reference Input)和Divide-by- 1239146 N信號經由頻率相位檢測器(PFD電路)作相位差比較後,並 將其兩者關係轉換成往上遞增(up)和往下遞減⑽)兩個信 就分別送給電荷泵浦(cp電路),電荷泵浦(CP電路)最主要 疋用來將辭她制H〇>FD電路)的數健雜換成電 壓控制振蘆器(VCO電路)可接受的類比信號之動作,電荷 泵浦(cp電路)在受到頻率相位檢測器(pFD電路)的往上遞 增(up)和往下遞減(DN)的控制信號而對低通濾波器(LpF電 路)的電阻電容作充放電之行為,電壓控制振盈器⑽電 路)利用電荷泵浦(cp電路)對低通濾波器(LPF電路)所產 生之類比信號而振盪出相對的高頻輸出頻率,然後再將此 高頻頻率送到除2電路作5 〇%的工作週期(duty cycle) 波形整型動作,最後運用除N(Divider-by-N)將高頻信號 降頻到接近外部參考輸入信號(Reference input)的低頻 信號來給頻率相位檢測器(PFD電路)作相位差的比較,如 此一直循環運作直到兩者的相位差極為接近相等時,此時 鎖相迴路電路即完成鎖頻之動作。 在上述一般鎖相迴路電路的動作情形,在一開始時是 藉由頻率相位檢測器(PFD電路)產生外部參考輸入信號⑺ eference Input)和除N(Divider-by-N)二者的相位頻率 差的t號在上遞增(UP)和往下遞減(⑽),利用這兩者的信 號來控制電荷泵浦(Charge Pump),使其產生一個固定電 流而對低通濾'波器(Low-Pass Filter)的電容開始充放電 ,使電壓控制振盪器(VC0電路)產生出相對應的一個高頻 頻率,因此我們可以寫出這以下兩個方程式來表示其整個 1239146 鎖相迴路電路的工作關係:1239146 发明 Description of the invention: [Technical field to which the invention belongs] The phase-locked loop circuit with fast frequency-locking provided by the present invention and the method for restraining the same are mainly used to generate digital power) or in the field of communication In particular, said that changing the M phase-locked loop circuit can generate a preset signal to the phase-locked loop circuit through a power-on-reset circuit when the power supply voltage has not reached stability. The phase-locked loop circuit can generate an intermediate frequency fixed output frequency by itself in advance, which can greatly reduce the waiting time required for the overall digital circuit system, make the phase-locked loop circuit reach the frequency-locked operation faster, and thus enable the digital system. The circuit enters the normal working mode faster. The present invention can also use a simple digital circuit to judge the phase difference value of the frequency phase detector (pj? D circuit), and control the upward (UP) and downward (DN) signals. The charge and discharge time of the charge pump (CP circuit) to the capacitance of the low-pass filter (lpf circuit) can be lengthened or shortened. [Prior art] Please refer to the first figure: it is a general phase-locked loop circuit architecture diagram. The architecture of a general phase-locked loop circuit can be roughly divided into six parts: Phase Frequency Detector (referred to as PFD circuit), Charge Pump (referred to as CP circuit), and voltage controlled oscillator (v oltage- Controlled Oscillator (abbreviated as VC0 circuit), Low-Pass Filter (abbreviated as LPF circuit), Divide by 2 (1/2) and Divider-by-N. After comparing the phase difference between the external reference input signal (Reference Input) and Divide-by-1239146 N signal through the frequency phase detector (PFD circuit), the relationship between the two is converted into up (up) and down ()) ) The two letters were sent to the charge pump (cp circuit). The charge pump (CP circuit) is mainly used to replace the digital signal of the control circuit (H0 > FD circuit) with a voltage-controlled vibrator. (VCO circuit) Acceptable analog signal operation, the charge pump (cp circuit) is subjected to the control signal of the frequency phase detector (pFD circuit) up (down) and down (DN) to the low-pass The resistance and capacitance of the filter (LpF circuit) are used for charging and discharging. The voltage control oscillator (circuit) uses charge pump (cp circuit) to oscillate relative signals generated by the low-pass filter (LPF circuit). High-frequency output frequency, and then send this high-frequency to the divide-by-2 circuit for 50% duty cycle waveform shaping operation, and finally use divide N (Divider-by-N) to down-frequency To a low frequency signal close to the external reference input signal Phase comparison frequency detector (PFD circuit) for the phase difference, as this has been the operating cycle until the phase difference of both very nearly equal, then PLL circuit locked to complete the operation. In the case of the above-mentioned general phase-locked loop circuit, at the beginning, the frequency phase detector (PFD circuit) generates an external reference input signal (eference Input) and a phase frequency divided by N (Divider-by-N). The difference t number is up (UP) and down (⑽), and the signals of the two are used to control the charge pump to generate a fixed current to the low-pass filter (Low -Pass Filter) capacitor starts to charge and discharge, so that the voltage-controlled oscillator (VC0 circuit) generates a corresponding high-frequency frequency, so we can write the following two equations to represent the work of the entire 1239146 phase-locked loop circuit relationship:
Vc(t)= Ιρ. φβ/2π [R+t/C]Vc (t) = Ιρ. Φβ / 2π [R + t / C]
Wout(t) = W〇+Kvco · Vc(t) 式中Wout (t) = W〇 + KvcoVc (t) where
Vc(t):為電壓控制振盪器(vc〇電路)的輸入電壓, ίρ :為電荷泵浦(Charge Pump)電路的輸出固定電流, R :為低通濾波器(LPF電路)的電阻, C :為低通濾波器(lpf電路)的電容, ΐ :為電荷泵浦(Charge Pump)受到頻率相位檢測器(pfd 電路)控制而對低通濾波器(LPF電路)作充電或者是 放電的時間,Vc (t): input voltage of voltage controlled oscillator (vc0 circuit), ίρ: fixed output current of charge pump circuit, R: resistance of low-pass filter (LPF circuit), C : Is the capacitance of the low-pass filter (lpf circuit), ΐ: is the time for charging or discharging the low-pass filter (LPF circuit) for charge pump controlled by the frequency phase detector (pfd circuit) ,
Wout :為電壓控制振盪器(VC〇電路)的輸出高頻頻率,Wout: is the output high frequency frequency of the voltage controlled oscillator (VC0 circuit),
Wo :為電壓控制振盪器(vco電路)在初始狀態時所產生的 高頻頻率,Wo: is the high frequency generated by the voltage controlled oscillator (vco circuit) in the initial state,
Kvco :為電壓控制振盪器(VC〇電路)的增益值。 因為鎖相迴路電路的運作是由遞迴式的理論模式而建 構的,因此,可依上述的兩個數學式子而更完整的表達出 鎖相迴路電路從一開始的運作情形,一直到鎖相迴路電路 完成鎖頻動作時之情況驗學表示式,首先,我們先寫出 頻率相位檢測器⑽)和電荷栗浦(CP)以及低通濾波器(LP F)三者的數學關係式:Kvco: is the gain value of the voltage controlled oscillator (VC0 circuit). Because the operation of the phase-locked loop circuit is constructed by a recursive theoretical model, the operation of the phase-locked loop circuit from the beginning to the lock can be more completely expressed according to the above two mathematical formulas. When the phase loop circuit completes the frequency-locking operation, the first step is to write the mathematical relationship between the frequency phase detector ⑽), the charge pump (CP), and the low-pass filter (LP F):
Vc(to) = Vc(〇)Vc (to) = Vc (〇)
Vc(ti)=lp. φ^χ2π (R+ti/C] +Vc(to) Vc(t2)=lp- φ^/2π [R+t2//C] +Vc(ti) 1239146Vc (ti) = lp. Φ ^ χ2π (R + ti / C) + Vc (to) Vc (t2) = lp- φ ^ / 2π [R + t2 // C] + Vc (ti) 1239146
Vc(t3)= I P · 0Θ3/2 7Γ [ R+ t 3/X ] + Vc(t2) : : : : : ······Vc (t3) = I P · 0Θ3 / 2 7Γ [R + t 3 / X] + Vc (t2) : : : : ······
Vc(tn)= I p · 0en/2 7Γ〔 R+ t n/C〕+ Vc(tn-l) 接下來我們可以寫出電壓控制振盪器(VC〇電路)的完 整數學式子: W〇ut(to) = W〇ut(0) + Kvc〇 [ Vc(to)-〇 ] Wout(tl)=Wout(t〇)+Kvco ( Vc(t〇-Vc(to)] Wout(t2)=Wout(tl)+Kvco [ Vc(t2)~ Vc(tl)) Wout(t3)=Wout(t2)+Kvco [ Vc(t3)-VC(t2)] • 春 · • » • · • · · ·Vc (tn) = I p · 0en / 2 7Γ 〔R + tn / C〕 + Vc (tn−l) Next we can write the complete mathematical formula of the voltage controlled oscillator (VC0 circuit): W〇ut ( to) = W〇ut (0) + Kvc〇 [Vc (to) -〇] Wout (tl) = Wout (t〇) + Kvco (Vc (t〇-Vc (to)) Wout (t2) = Wout ( tl) + Kvco [Vc (t2) ~ Vc (tl)) Wout (t3) = Wout (t2) + Kvco [Vc (t3) -VC (t2)] • Spring
Wout(tn)=Wout(tn-l)+Kvco ( Vc(tn) - Vc(tn-l)] 因此,一個鎖相迴路電路的鎖頻動作從一開始到最後 的鎖頻成功,需經過n次的遞迴運算才能夠完成鎖頻的動 作,以一個簡單的關係圖來陳述,如第二圖所示:係Vc 〇輸入電壓與鎖頻時間關係圖。在初始狀態時,低通濾波 器(LPF電路)中的電容電壓是沒有任何電壓以及電荷存在 ,所以會從0伏當作起始點,然後鎖相迴路電路隨著時間 的遞迴運作而使電荷泵浦(Charge Pump)的電流會慢慢地 向低通濾波器(LPF電路)的電容作充電動作而慢慢往上昇 ,而在第三圖所示:係電壓控制振盪器(VCO電路)的特 性圖。其中可看出當Vc(t)隨著遞迴次數的增加而使得電 壓控制振盪器(V C〇電路)所產生的高頻輸出頻率也隨之 1239146 增加,如此-直循《到鎖相魏電路達到鎖 由第二圖’可以發現到-個报重要的現象,因為在初 始狀態時,低通義||⑽魏)⑽餘財任何龍 ,所以VCO電路的輸人電MVc必需從◦伏開始慢慢往 上昇’然後才能狗控制電麼控制振逢器(vco電路)所能 夠振盪的頻率。 b 在-般鎖相迴路電路巾,_其_稱電路是夢由 遞迴觀念來絲綱之動作,在_無數:场她差啸Wout (tn) = Wout (tn-l) + Kvco (Vc (tn)-Vc (tn-l)] Therefore, the frequency-locking operation of a phase-locked loop circuit is successful from the beginning to the final frequency-locking. Only the recursive operation can complete the frequency-locking action. It is stated in a simple relationship diagram, as shown in the second diagram: the relationship between Vc 〇 input voltage and frequency-locking time. In the initial state, the low-pass filter The capacitor voltage in the (LPF circuit) does not have any voltage and electric charge, so it will start from 0 volts, and then the phase-locked loop circuit operates over time to make the charge pump current flow. Will slowly charge the capacitor of the low-pass filter (LPF circuit) and gradually rise, and as shown in the third figure: the characteristic diagram of the voltage controlled oscillator (VCO circuit). It can be seen that when As Vc (t) increases with the number of recursions, the high-frequency output frequency generated by the voltage-controlled oscillator (VC0 circuit) also increases with 1239146. Figure 'can find an important phenomenon, because in the initial state, low || ⑽ Wei Yi) I ⑽ Renhe Long Choi, the input power required VCO circuit MVc slowly begins to rise ◦ V 'before it dog control circuit controls every device vibrator (VCO circuit) the oscillation frequency can be. b In-phase-locked loop circuit towel, _ its _ said that the circuit is a dream by the idea of recursive silk movement, in _ countless: field she shouted
,調整電壓㈣振㈣⑽魏)所振如麵高頻頻率 ,-直到外部參考輸人信條ference Input)和除N(D mde-by-N) «是相同時,鎖她路電路才完成其動作 ,由此可知鎖相迴路電路要完成其顧動作極要花非常多 的時間’可是在-般鎖_路電路是作為數位系統電路的 時脈(ClQd〇來_,脚触纽電_魏相迴路電 路輸出正輕敎的職,如此數㈣綱路才能夠進入 正常的工作狀態,假若鎖相迴路電路的顧時間太長便會 «數位系統電路需耗費姆多杨要的等待咖,尤其 是在-開始時’數㈣、統電路所供給的電源電壓尚未達到 穩定狀態時,其數位系統電路所要等待的_更長,一般 為了要縮短鎖頻時間(lockingtime),通常有兩種作法 1239146 另外一種作法為採用附加額外電路來控制電荷泵浦([ harge Ρ_),使其每次的步階可以更大雖然此種方法 不需用到另外一組的電荷泵浦(Charge P_),可是需要 -個額外的數位電位翻斷,但此法有兩個缺點,就以一 個電路設計者而言,電荷泵浦(Charge Ρ_)電路本身是 -個類比電路,g)此在設計上它齡度和考量的問題會遠 比數位電路_許多,同時多-個類比電路也多-個易受 到雜訊干擾影響的問題,對於整個鎖相迴路電路而言,等 同多-個還要考量的問題,同時以硬體的觀點而言,多付 出一組電荷泵浦(Charge Pump)電路的硬體成本似乎過高 了些,因為這種方法是在不更動鎖相迴路電路的架構前提 下,以增加所附加的額外辅助電路,所以沒有固定架構, 而且額外的’電路的複雜度以及能夠加快多少鎖相迴路 電路的鎖頻動作皆視設計者的電路設計功力而定,為了要 加快一般鎖相迴路電路的鎖頻動作,所以在設計上必需額 外付出一些硬體成本才能夠得到效益,而以現在所能查到 的鎖相迴路電路架構,其所付出的硬體成本都太大,以致 於以過多的硬體成本來換取想到達到的效益就變得不符合 經濟成本效益。 【發明内容】 因此,本發明針對這些缺點作了改良,設計出一種既 能夠加快鎖相迴路電路鎖頻動作的額外附加數位電路,乃 疋利用一般數位系統電路中經常使用的一個啟動重置(p〇w er - On-Reset )#號來對鎖相迴路電路作預先設定之功用, 1239146 使鎖相迴路電路能夠在初始狀態時即預先在自我内部產生 一個具有中頻頻率之信號,而在開始工作後,電荷泵浦(c harge Pump)電路每次對低通濾波器(LPF電路)的電容作 充電的時間是由頻率相位檢測器(PFD電路)依據鎖相迴路 電路外部參考輸入信號(Reference Input)和除N(Divide r by-N) ^號兩者的相位差來作為充放電時間,在頻率相 位檢測器(PFD電路)中額外加人邏輯(i〇gicai)電路來控 制往上遞增(UP)和往下遞減(DN)的信號,則視同可以控制 住電荷泵浦(Charge Pump)電路對低通濾波器(LPF電路)的 電谷作充放電的時間,如此一來,電壓控制振盪器(vc〇電 路)的輸入電壓Vc就能夠任意的大幅上昇或者是下降,如 此可大幅加快鎖相迴路電路所需之鎖頻動作,同時它所要 付出的硬體成本又是目前最少的,本發明所提供的一種具 有快速鎖頻之鎖相迴路電路,僅需要非常低的額外硬體成 本,同時僅需要局部修改一般的鎖相迴路電路,又不會影 響鎖相迴路電路的運作特性,具有可以加速鎖頻動作。 在開始工作前,假若能夠在鎖相迴路電路預先讓低通 遽波器(LPF電路)的電容作一個充電動作,如此一來,鎖 相迴路電路的鎖頻動作的遞迴次數便可大幅度的減少,則 可大大的加快鎖相迴路電路的鎖頻。 在開始工作後,如果能控制頻率相位檢測器(pFD電 路)的往上遞增(UP)和往下遞減⑽信號 ,則視同可以控, Adjust the voltage (Zheng Zhenwei, Wei), such as the high-frequency frequency,-until the external reference input creed ference Input) and divide N (D mde-by-N) «is the same, the lock circuit does not complete its action It can be seen that it takes a very long time for the phase-locked loop circuit to complete its operation. However, the general-locked circuit is the clock of the digital system circuit (ClQd〇 来 _, foot contact button electricity_Wei Xiang The output of the loop circuit is very light, so that the digital circuit can enter the normal working state. If the phase-locked loop circuit takes too long, it will «digital system circuits need to wait for the coffee, especially At the beginning, when the power supply voltage supplied by the system circuit has not reached a stable state, the digital system circuit has to wait longer. Generally, in order to shorten the locking time, there are two methods. 1239146 In addition, One method is to use an additional circuit to control the charge pump ([harge Ρ_) so that each step can be larger. Although this method does not require another set of charge pumps (Charge P_), it needs to -An extra number The potential is turned off, but this method has two disadvantages. As far as a circuit designer is concerned, the charge pump (Charge P_) circuit itself is an analog circuit, g) the age and consideration of this design Will be much more than digital circuits_many, at the same time more-analog circuits are more-a problem vulnerable to noise interference, for the entire phase-locked loop circuit, it is equivalent to more-a problem to be considered, while using hardware From the viewpoint of hardware, it seems that the hardware cost of paying an additional set of Charge Pump circuit is too high, because this method is to increase the additional extra without changing the architecture of the phase-locked loop circuit. Auxiliary circuits, so there is no fixed architecture, and the additional 'circuit complexity and frequency-locking operation of the phase-locked loop circuit can be accelerated depending on the designer's circuit design skills. In order to speed up the frequency-locking of general phase-locked loop circuits Action, so you must pay some additional hardware costs in the design to get the benefits. With the phase-locked loop circuit architecture that can be found now, the hardware costs paid are too large. In order to cause excessive hardware costs in exchange expect to achieve the benefits become uneconomic cost-effective. [Summary of the Invention] Therefore, the present invention addresses these shortcomings by designing an additional digital circuit that can speed up the frequency-locking action of the phase-locked loop circuit. p〇w er-On-Reset) # to pre-set the function of the phase-locked loop circuit, 1239146 enables the phase-locked loop circuit to generate a signal with an intermediate frequency in the internal self in advance in the initial state, and After the start of the work, the charge pump (c harge pump) circuit charges the capacitor of the low-pass filter (LPF circuit) each time by the frequency phase detector (PFD circuit) according to the phase-locked loop circuit external reference input signal ( The phase difference between the Reference Input) and N (Divide r by-N) ^ sign is used as the charge and discharge time. In the frequency phase detector (PFD circuit), an additional logic (iogicai) circuit is added to control the upward Up (UP) and down (DN) signals are treated as if the charge pump circuit can charge and discharge the low-pass filter (LPF circuit) valley, such as As a result, the input voltage Vc of the voltage-controlled oscillator (vc0 circuit) can be arbitrarily increased or decreased, which can greatly speed up the frequency-locking action required by the phase-locked loop circuit, and at the same time, the hardware cost it has to pay It is currently the least. The present invention provides a phase-locked loop circuit with fast frequency-locking, which only requires very low additional hardware costs, and only needs to locally modify the general phase-locked loop circuit without affecting the phase-locked loop. The operating characteristics of the circuit are capable of accelerating the frequency-locking action. Before starting the work, if the capacitor of the low-pass choke (LPF circuit) can be charged in advance in the phase-locked loop circuit, the number of repetitions of the frequency-locked operation of the phase-locked loop circuit can be greatly increased. Reduction can greatly speed up the frequency locking of the phase locked loop circuit. After starting work, if the frequency phase detector (pFD circuit) can be controlled to increase (UP) and decrease (down) the chirp signal, it is considered as controllable.
制住電何聚浦(Charge pump)電路對低通濾波器(LpF 電路 )的電谷作充放電的時間,如此一來,電壓控纖盪器(v 1239146 CO)電路的輸入電壓Vc就能夠任意的大幅上昇或者是下 降,所以如此一來便則可以大大的加快鎖相迴路電路的鎖 頻,本發明就是以此理論為基礎來建構出設計的改良電路 〇 【實施方式】 為使專精熟悉此項技藝之人仕業者易於深入瞭解本發 明的設計内容以及所能達成的功能效益,茲列舉一具體實 施例,並配合圖式詳細介紹說明如下: 本發明係一種具有快速鎖頻之鎖相迴路路及其控制方 法,乃是利用一般數位系統電路中經常使用的一個啟動重 置(Power-On-Reset)信號來對鎖相迴路電路作預先設定之 功用,使鎖相迴路電路能夠在初始狀態時即預先在自我内 部產生出一個具有中頻頻率之信號,如此可大幅加快鎖相 迴路電路所需之鎖頻動作。 在一般數位系統電路中常常需要在數位電路一開始執 行前便先作重置(Reset)動作,以確保數位電路在初始狀 態值時是我們所預設值,如此當數位系統電路在正式開始 運作時方可使系統能夠進入正確的運算模式,而此種電路 稱之為啟動重置(Power-On-Reset)電路,乃是在提供數位 式系統電路的電源電壓尚未達到穩定前,輸出一個重置(R eset) #號給數位系統電路作重置(Reset)動作,等到數 位系統電路進入一個正常的工作模式下操作,如第四圖所 不·係一個啟動4置(P〇wer—〇n—Reset)電路的示意圖。而 第五圖所^魏動重置(PGwer_Gn_Reset^_#^ 1239146 線圖。第六圖所示:係啟動重置(Power—0n—Reset)電路的 電路圖。本發明利用數位系統電路中經常使用的啟動重置 (Power-On-Reset)電路來預先對鎖相迴路電路作重置(此 set)動作,趨使鎖相迴路電路的電壓控制振盪器(%〇電 路)在整個數位系統電路開始工作時已經有一個初始電壓 ,而不同於一般鎖相迴路電路是要從〇伏開始,其運用啟 動重置(Power-On-Reset)電路來改良鎖相迴路電路的鎖頻 動作的運作情形可以分成七個步驟來說明其工作情況·· 1·當提供給數位系統電路的電源電壓尚未達到穩定前, 因為啟動重置(Power-On-Reset)電路會送出一個重置 (Reset)信號來使數位系統電路作重置(Reset)動作, 此時,利用此一信號來對鎖相迴路電路之頻率相位檢 測器(Phase Frequency Detector,簡稱為 PFD 電路) 作控制,使往上遞增(UP)和往下遞減(DN)輸出信號同 時為高電位(HIGH)。 2 ·因為頻率相位檢測器(pfd電路)之往上遞增(up)和往 下遞減(DN)同時輸出為高電位(HIGH)的信號,所以此 時電荷泵浦(Charge Pump)電路的最後一級輸出元件 P型電晶體(PM0S)和N型電晶體(NM0S)會同時導通。 3 ·因為電荷泵浦(Charge Pump)電路的最後一級輸出元 件P型電晶體(PM0S)和N型電晶體(NM0S)均為導通狀 態,使得電荷泵浦(Charge Pump)電路會輸出一個固 定電流對低通濾波器(LPF電路)的電容作充電動作。 4 ·因為低通濾波器(LPF電路)中的電容元件受到電荷泵 13 1239146 浦(Charge Pump)電路的固定電流充電影響而使得 電容上電麵之上昇’進而使得電壓控舰盤器⑽ 電路)有一個慢慢上昇的輸入電壓,所以此時電壓控 繼蘯器⑽電路)會_振錄出—個漸漸增加的 頻率信號輸出。 5 .當數位系統電路的電源龍達到穩定狀態時,啟動重 置(Power-On-Reset)電路會輸出一個無重置(unRese t)信號,使數位系統電路進入正常工作模式。 6 ·因為啟動重置(Power-On-Reset)電路送出一個無重置 (un-Reset)#號,所以頻率相位檢測器(pFE)電路)會 文到此信號控制而進入一般鎖相迴路電路的正常運作 模式下工作,亦即頻率相位檢测器(pFD電路)的往上 遞增OJP)和往下遞減⑽)錢不在是—直維持在高電 位(HIGH)的信號準位。 7 ·因為文到啟動重置(power—〇n—peset)電路重置(设⑶的 )信號控制的緣故,使得低通濾波器(LpF電路)的電容 電壓在初始工作時已經有一個接近於1/2VDD的電壓 準位,而不是一般鎖相迴路電路是〇伏的初始電壓, 同時,此時電壓控制振盪器(vco電路)亦已經自我產 生個具有中頻頻率的信號,此時鎖相迴路電路開始 正常運作。 敬請參閱第七圖所示··係本發明鎖相迴路電路再加上 啟動重置(Power-On-Reset)電路的特性示意圖。由此圖, 可以很明顯地看出—般鎖她路電路因為在初始狀態時, 1239146 低通濾波器(LPF電路)中的電容並沒有任何的初始電壓, 所以必需從〇伏開始作電容電壓的上昇,而當運用一個啟 動重置(Power-On-Reset)電路的特性之後,在鎖相迴路電 路開始工作時,因為有預先對低通濾波器(LPF電路)的電 容作充電動作,所以在鎖相迴路電路開始工作時,低通遽 波器(LPF電路)的電容電壓會有接近1/2 VDD的初始值 ,同時,電壓控制振盪器(VC0電路)也會產生一個穩定的 中頻頻率輸出,所以將鎖相迴路電路進入正常工作模式之 後’假若鎖相迴路電路的外部參考輸入信號(Reference I nput)高於此時除N(Divide-by-N)的頻率信號時,則頻率 相位檢測器(PFD電路)會設定往上遞增(UP)信號為高電位 (HIGH) ’往下遞減⑽)信號為低電位(L〇w),此時,電荷 泵浦(Charge Pump)電路會對低通濾波器(lpf電路)作充 電動作而使得Vc電壓會從近似1/2 VDD往上昇,反之 而吕’若是外部參考輸入信號(Reference Input)信號低 於此時除N(Divide-by-N)的信號頻率,則頻率相位檢測 器(pro電路)會設定往上遞增(UP)信號為低電位(L〇w), 往下遞減(DN)信號為高電位(HIGH),電荷泵浦(Charge p ump)電路會促使低通濾波器(LPF電路)的電容朝電荷泵浦 (Charge Pump)電路作放電的動作,因此會讓Vc電壓從近 似1/2VDD電壓往下降,不論電壓控制振盪器(vc〇電路 )輸入電壓Vc會是往上昇還是往下降,鎖相迴路電路所需 要之鎖頻時間(locking time)均以大幅度的減少,使數位 系統電路可以更快進入正常工作模式,以減少不必要的等 15 1239146 待時間。 敬請參閱第,所示:係本翻改良式快速鎖頻之鎖 相迴路電路錢κ。錢财義㈣加了絲重置(p〇w eMMeset)魏·_細路魏畴為了要配合 啟動重置(P—Gn-Reset)電路的靖信號的動 乍必而要0改般鎖相迴路電路的頻率相位檢測器(卿 電路),如此才賴讓兩個·緊密的結合。 敬請參閱第九圖所示:係本發明為了配合啟動重置(pControl the charge pump and discharge time of the low-pass filter (LpF circuit) valley of the electricity pump circuit. In this way, the input voltage Vc of the voltage controlled oscillator (v 1239146 CO) circuit can be increased arbitrarily. Or it is down, so the frequency-locking of the phase-locked loop circuit can be greatly accelerated in this way. The present invention is based on this theory to construct an improved circuit designed. [Embodiment] In order to familiarize the expert with this technology Those skilled in the art can easily understand the design content of the present invention and the functional benefits that can be achieved. Here are a specific embodiment and the detailed description with the drawings as follows: The present invention is a phase locked loop circuit with fast frequency lock and The control method is to use a Power-On-Reset signal often used in general digital system circuits to pre-set the phase-locked loop circuit so that the phase-locked loop circuit can be in the initial state. A signal with an intermediate frequency is generated internally in advance, which can greatly speed up the frequency-locking action required by the phase-locked loop circuit. In general digital system circuits, it is often necessary to perform a Reset operation before the digital circuit starts to ensure that the digital circuit is in the initial state value as our default value, so when the digital system circuit is officially started to operate The time allows the system to enter the correct calculation mode. This type of circuit is called a power-on-reset circuit, and it outputs a reset signal before the power supply voltage of the digital system circuit has stabilized. Set (Reset) # to reset the digital system circuit, wait until the digital system circuit enters a normal working mode to operate, as shown in the fourth figure is a start 4 set (P〇wer—〇 n-Reset) circuit. The fifth figure shows the ^ Weir reset (PGwer_Gn_Reset ^ _ # ^ 1239146 line diagram. The sixth figure shows a circuit diagram of a power-on reset (Power-0n-Reset) circuit. The present invention uses digital system circuits often used Power-On-Reset circuit to reset the phase-locked loop circuit (this set) in advance, so that the voltage-controlled oscillator (% 〇 circuit) of the phase-locked loop circuit starts in the entire digital system circuit There is already an initial voltage when working. Unlike the general phase-locked loop circuit, which starts from 0 volts, its use of a power-on-reset circuit to improve the frequency-locked operation of the phase-locked loop circuit can It is divided into seven steps to explain its operation ... 1. Before the power supply voltage to the digital system circuit has reached stability, the Power-On-Reset circuit will send a Reset signal to enable The digital system circuit performs a Reset action. At this time, this signal is used to control the phase phase detector (Phase Frequency Detector, PFD circuit for short) of the phase-locked loop circuit, so as to increase upward (UP) Downward (DN) output signal is at the same time high (2) Because the frequency phase detector (pfd circuit) is upward (up) and down (DN) at the same time the output is high (HIGH) Signal, so the P-type transistor (PM0S) and N-type transistor (NM0S) at the last stage of the charge pump circuit will be turned on at the same time. 3 · Because of the end of the charge pump circuit The primary output element P-type transistor (PM0S) and N-type transistor (NM0S) are both on, so that the charge pump circuit will output a fixed current to charge the capacitor of the low-pass filter (LPF circuit). 4. Because the capacitive element in the low-pass filter (LPF circuit) is affected by the fixed current charging of the charge pump circuit 13 1239146 Charge (Charge Pump) circuit, the capacitor's power-up surface rises, which in turn makes the voltage-controlled shipboard device ⑽ The circuit) has a slowly rising input voltage, so the voltage-controlled relay (circuit) at this time will oscillate and record a gradually increasing frequency signal output. 5. When the power supply of the digital system circuit reaches a stable state, the power-on-reset circuit will output an unReset signal, so that the digital system circuit enters the normal working mode. 6 · Because the Power-On-Reset circuit sends out an un-Reset # number, the frequency phase detector (pFE) circuit will control this signal to enter the general phase-locked loop circuit It works under the normal operation mode, that is, the frequency phase detector (pFD circuit) is incremented upwards by OJP) and downwards. ⑽) Money is no longer-it is maintained at a high level (HIGH) signal level. 7 · Because of the signal control of the power-on-peset circuit reset (set by CD), the capacitor voltage of the low-pass filter (LpF circuit) is already close to that of the initial operation. The voltage level of 1 / 2VDD, instead of the ordinary phase-locked loop circuit, is an initial voltage of 0 volts. At the same time, the voltage-controlled oscillator (vco circuit) has also generated a signal with an intermediate frequency by itself. At this time, the phase-locked The loop circuit begins to function normally. Please refer to the seventh figure. It is a characteristic diagram of the phase-locked loop circuit of the present invention plus a power-on-reset circuit. From this figure, it can be clearly seen that the general lock circuit is because the capacitor in the 1239146 low-pass filter (LPF circuit) does not have any initial voltage in the initial state, so the capacitor voltage must be started from 0 volts. Rise, and after using the characteristics of a power-on-reset circuit, when the phase-locked loop circuit starts to work, because the capacitor of the low-pass filter (LPF circuit) is charged in advance, so When the phase-locked loop circuit starts to work, the capacitor voltage of the low-pass wave filter (LPF circuit) will have an initial value close to 1/2 VDD. At the same time, the voltage-controlled oscillator (VC0 circuit) will also generate a stable intermediate frequency. Frequency output, so after the phase-locked loop circuit enters the normal working mode, 'if the external reference input signal (Reference I nput) of the phase-locked loop circuit is higher than the frequency signal divided by N (Divide-by-N), the frequency The phase detector (PFD circuit) will set the UP (up) signal to HIGH (lower) ⑽) signal to low (L0w). At this time, the Charge Pump circuit will Low The filter (lpf circuit) performs a charging action so that the Vc voltage will rise from approximately 1/2 VDD, and on the contrary, if the external reference input signal (Reference Input) signal is lower than N (Divide-by-N) Signal frequency, the frequency and phase detector (pro circuit) will set the UP signal to a low potential (L0w), the DN signal to a high potential (HIGH), and a charge pump (Charge). The p ump) circuit will cause the capacitance of the low-pass filter (LPF circuit) to discharge toward the charge pump circuit, so the Vc voltage will drop from approximately 1/2 VDD voltage, regardless of the voltage-controlled oscillator ( vc〇 circuit) Whether the input voltage Vc will rise or fall, the locking time required by the phase-locked loop circuit is greatly reduced, so that the digital system circuit can enter the normal working mode faster to reduce Unnecessarily wait 15 1239146 for time. Please refer to the following, which shows: This is an improved fast frequency-locked phase-locked loop circuit. Qian Caiyi added a wire reset (p0w eMMeset) Wei _ Thin Road Wei Chou In order to cooperate with the Jing signal of the start reset (P-Gn-Reset) circuit, it is necessary to change the phase lock. The frequency and phase detector of the loop circuit (Qing circuit), so that the two are closely combined. Please refer to the ninth figure: the present invention is to cooperate with the start reset (p
On-Reset)電路轉局部修改的鮮相位檢測器⑽ 電路)。其中在修改頻率相位檢測器⑽電路)部份,我 們僅需在原本_率相位檢·(PFD電路)額外加入一個 2X1的多玉ϋ,如此即可制所要求的電路需求,因此 所需之額外硬體成本可以說是非常地小,_僅需要付出 -個低成本的2XI的多:qh,而不是—組電荷泵浦伽 rge Pump)電路或者是額外的控制電路,而且因為所必需 修改的電路以及所要使用的附加電路為數位電路,因此對 於整體的鎖相迴路電路的電路靈敏度所造成的影響可以說 是最少的,同時也沒有修改到鎖相迴路電路的特性。 敬請參閱第十圖所示:係本發明鎖相迴路電路再加上 啟動重置(Power-On-Reset)電路所模擬出來的結果。結果 證明出本發明在鎖相迴路電路中使用啟動重置 Reset)電路的特性之後,可以大幅度的減少鎖頻時間。 本發明係一種具有快速鎖頻之鎖相迴路電路及其控制 方法,乃是利用控制頻率相位檢測器(PFD電路)的往上遞 1239146 增(up)和往下遞減(DN)兩者的信號,使每次電壓控制振盪 器(VCO電路)的輸入電壓Vc可以大幅的上昇或者是下降 ,敬請參閱第十一圖所示:係本發明所設計的改良式鎖相 迴路電路的方塊圖。並沒有針對鎖相迴路電路中的類比電 路作改變或者是修改,而是從原本的數位電路著手作局部 的修改,因為數位電路的電路靈敏度遠比類比電路來得小 ,所以可以大大地減低電路設計的困難度,同時數位電路 的驗證與設計遠比類比電路來得快而且簡單,所以可以加 快設計電路所需耗用的時間,本發明採用的方式是針對數 位電路的頻率相位檢測器(PFD電路)作局部的修改,其餘 的均保持不變,如此可以減少需要修改電路的部份。 敬請參閱第十二®所示:為—個典型的頻率相位檢測 器(PFD電路)。此頻率相位檢測器(pFD電路)乃是參考國 外 1999 年 IEEE Solid-State Journal Paper 的鎖相迴路 電路架構,由此架構可以看出頻率相位檢測器(pFD電路) 的組成電路全部都是數位邏輯電路,因此,本發明對頻率 相位檢測H⑽電路)作局部電路修改是非常容易且不會 造成頻率相位檢測器(PFD電路)的影響。 敬μ參閱第十二圖所示:係本發明修改的頻率相位檢 測器(PFD電路)的方塊圖。與第十四圖所示:係本發明針 對加快鎖相迴路電路而作局部修改的頻率相位檢測器(pFD 電路)。本發明在頻率相位檢測器(pFD電路)中額外加入 一個簡單的邏輯(logical)電路和一個或⑽)閘,利用此 邏輯(logical)電路來判斷目前的鎖相迴路電路是否需要 17 1239146 來控制往上遞增(up)和往下遞減⑽)的信號,因此僅需要 額外增加-個邏輯(logical) t路和一個或(⑻問,所以 所要付出的硬體成本是非常的小,而且因為它是數位電路 ,所以可以很容易由標準元件(standard Cell) 來組合而 成,而且也不會影響到整體鎖相迴路電路的運作情形,以 及改變到整體鎖相迴路電路的錄度,此種改良電路比起 額外多用-組電荷果浦(Charge ρ_)電路而言在硬體 成本以及電路設計的難度考量上都是非常的簡單,容易來 實見π時其電路的抗雜訊容忍度上也遠比使用額外的電 荷栗浦(Charge Ρ_)電路來的好很多,本發明利用簡單 的數位電絲控制,綱鮮相位制H(PFD電路)的相 位差值,假若其頻率相位檢測器(PFD電路)的相位差值 過大的話,則控制往上遞增(UP)和往下遞減(DN)的信號, 使電荷栗浦(Charge Ρ_)電路對低通濾波器⑽電路) 的電容的充放電時間能夠加長或減短。 敬請參閱第十五圖所示··係本發明簡單數位邏輯判斷 電路的方塊圖。而不同於一般鎖相迴路電路,頻率相位檢 測器(PFD電路)只是單純的產生出外部參考輸入信號(Ref erence I叩ut)和除N(Divider-by-N)信號兩者的相位差 ,其運用簡單數位判斷電路來改良鎖相迴路電路的鎖頻動 作的運作情形可以分成二個遞迴循環步驟來說明其工作情 況: 1 ·假若一開始時外部參考輸入信號(Reference Input) 和除N(Divider-by-N)信號兩者的相位差大於臨界值 1239146 ,則簡單數位判斷電路開始運作,進而控制頻率相位 檢測器(PFD電路)的往上遞增(up)和往下遞減(Μ) 信號。 2 ·假若鎖相迴路電路工作到外部參考輸入信號(Ref eren ce Input)和除N(Divider-by-N)信號兩者的相位差 小於臨界值,表示鎖相迴路電路已經接近於鎖頻的動 作了,則簡單數位判斷電路停止運動,此時頻率相位 檢測器(PFD電路)進入一般正常的運作模式,也就 是說頻率相位檢測器(PFD電路)只是單純的比較外 部參考輸入信號(Reference I叩ut)和除N(Divider- by-N)信號兩者的相位差。 敬凊參閱第十六騎示:係本發明改良式鎖相迴路電 路和-般鎖相迴路電路的效益比簡。可崎的看出 改良式鎖相迴路電路的鎖頻時間比一般的鎖相迴路電路少 了復多。 敬請參閱第十七_示:係本發微良式鎖相迴路電 路和一般鎖相迴路電路的模擬比較圖。因此可以證明出本 發明的改良電路比-般鎖相迴路電路在鎖_作上快很多 ,而且附加電路對於整體鎖相迴路電路的硬體需求成本, 附加電路對_相迴路電路的錄度影_遠比目前加快 鎖相迴路電路鎖頻動作的鎖相迴路電路優。 、 本發明的優點: 1 ·利用數位系統電路所t之啟動重置(powe卜〇nRes⑷ 特點來促使鎖相迴路電路加快鎖頻之運作,僅需修改 19 1239146 之額外硬體成本非常小。 所需之鎖頻時間。 電路的部份,不會影響整體 小部份的電路,因此所需 2·可大幅縮短鎖相迴路電路 3·對於所需修改之鎖相迴路 的電路特性。 【圖式簡單說明】 第一 ® ••係一般鎖相迴路電路架構圖。 第二圖:係、電壓控制振盪器(vco電路)輪人電壓與鎖 頻時間關係圖。On-Reset) circuit to partially modified fresh phase detector (circuit). Among them, in the part of modifying the frequency phase detector (circuit), we only need to add an additional 2X1 poly jade to the original _rate phase detector (PFD circuit), so that the required circuit requirements can be made, so the required The extra hardware cost can be said to be very small, _ only needs to pay-a low-cost 2XI more: qh, instead of-a group of charge pump gamma pump circuit or additional control circuit, and because it must be modified The digital circuit and the additional circuit to be used are digital circuits, so the influence on the overall phase-locked loop circuit's circuit sensitivity can be said to be minimal, and the characteristics of the phase-locked loop circuit have not been modified. Please refer to the tenth figure: the simulation result of the phase-locked loop circuit of the present invention and the power-on-reset circuit. The result proves that after using the characteristics of the start-reset (Reset) circuit in the phase-locked loop circuit of the present invention, the frequency lock time can be greatly reduced. The present invention relates to a phase-locked loop circuit with fast frequency-locking and a control method thereof. It uses a signal of a control frequency phase detector (PFD circuit) to forward 1239146 both up (up) and down (DN). , So that the input voltage Vc of each voltage-controlled oscillator (VCO circuit) can be greatly increased or decreased. Please refer to FIG. 11 for a block diagram of an improved phase-locked loop circuit designed by the present invention. It does not change or modify the analog circuit in the phase-locked loop circuit. Instead, it starts from the original digital circuit to make partial modifications. Because the circuit sensitivity of the digital circuit is much smaller than that of the analog circuit, the circuit design can be greatly reduced. At the same time, the verification and design of digital circuits are much faster and simpler than analog circuits, so the time it takes to design a circuit can be accelerated. The method adopted by the present invention is a frequency phase detector (PFD circuit) for digital circuits. Make partial modifications and keep the rest unchanged, so you can reduce the number of parts that need to be modified. Please see the twelfth ®: a typical frequency phase detector (PFD circuit). This frequency phase detector (pFD circuit) refers to the phase-locked loop circuit architecture of the 1999 IEEE Solid-State Journal Paper. From this architecture, it can be seen that the constituent circuits of the frequency phase detector (pFD circuit) are all digital. Logic circuit, therefore, the present invention makes it easy to modify the local phase of the frequency phase detection circuit (H 且 circuit) without causing the effect of the frequency phase detector (PFD circuit). See Figure 12 for a block diagram of a modified frequency phase detector (PFD circuit) of the present invention. As shown in Fig. 14, the present invention is a frequency phase detector (pFD circuit) which is partially modified to speed up the phase locked loop circuit. The present invention additionally adds a simple logical circuit and an OR gate to the frequency phase detector (pFD circuit), and uses this logical circuit to determine whether the current phase-locked loop circuit needs 17 1239146 to control Up (up) and down (⑽) signals, so you only need to add an additional logical t and an OR (ask, so the hardware cost to pay is very small, and because it It is a digital circuit, so it can be easily combined by standard cells, and it will not affect the operation of the overall phase-locked loop circuit, and change the recording of the overall phase-locked loop circuit. This improvement The circuit is much simpler in terms of hardware cost and difficulty of circuit design than the additional multi-use charge ρ_ circuit. It is easy to see that the circuit's anti-noise tolerance when π is also Much better than using an additional charge pump circuit. The present invention utilizes simple digital wire control and phase difference of the phase-based H (PFD circuit). If the phase difference value of its frequency phase detector (PFD circuit) is too large, then the signals of upward (UP) and downward (DN) are controlled, so that the charge pump circuit (Charge P_) circuit to the low-pass filter ⑽ The charging and discharging time of the capacitor can be lengthened or shortened. Please refer to Figure 15 for a block diagram of the simple digital logic judgment circuit of the present invention. Unlike a normal phase-locked loop circuit, a frequency phase detector (PFD circuit) simply generates a phase difference between an external reference input signal (Reference I 叩 ut) and a divide-by-N (Divider-by-N) signal. It uses a simple digital judgment circuit to improve the operation of the frequency-locked operation of the phase-locked loop circuit. It can be divided into two recursive loop steps to explain its working situation: 1. If at the beginning, the external reference input signal (Reference Input) and division by N (Divider-by-N) The phase difference between the two signals is greater than the critical value of 1239146, the simple digital judgment circuit starts to operate, and then controls the frequency phase detector (PFD circuit) to increase (up) and decrease (M) signal. 2 · If the phase-locked loop circuit works until the phase difference between the external reference input signal (Referen ce Input) and the divide-by-N (Divider-by-N) signal is less than the critical value, it means that the phase-locked loop circuit is close to the frequency-locked When it is activated, the simple digital judgment circuit stops moving. At this time, the frequency and phase detector (PFD circuit) enters the normal operation mode, that is, the frequency and phase detector (PFD circuit) simply compares the external reference input signal (Reference I叩 ut) and Divider-by-N signals. Please refer to the sixteenth riding instruction: the efficiency ratio of the improved phase-locked loop circuit and the general phase-locked loop circuit of the present invention is simple. It can be seen that the frequency lock time of the improved phase-locked loop circuit is much shorter than that of the ordinary phase-locked loop circuit. Please refer to the seventeenth chapter: The comparison diagram of the analog phase-locked loop circuit and the phase-locked loop circuit. Therefore, it can be proved that the improved circuit of the present invention is much faster than the general phase-locked loop circuit in terms of lock operation, and that the additional circuit has a hardware requirement cost for the overall phase-locked loop circuit. _Much better than the current phase-locked loop circuit that speeds up the frequency-locked operation of the phase-locked loop circuit. The advantages of the present invention: 1. Utilize the start reset (powebuonRes) feature of the digital system circuit to promote the phase-locked loop circuit to speed up the frequency-locking operation. The additional hardware cost of only 19 1239146 is very small. The required frequency-locking time. The part of the circuit will not affect a small part of the overall circuit, so it is required. 2 · It can significantly shorten the phase-locked loop circuit. 3. · The circuit characteristics of the phase-locked loop that need to be modified. Simple explanation] The first ® •• is a general phase-locked loop circuit architecture diagram. The second graph: the relationship between the voltage of the system and the voltage-controlled oscillator (vco circuit) and the frequency lock time.
第三圖··係電壓控制振逢器(vc〇電路)的特性圖。 第四圖·係一個啟動重置(p〇wer_0n_Reset)電路的示意 圖。 第五圖·係啟動重置(Power—〇n-Reset)電路的特性曲線 圖。 第六圖·係啟動重置(Power-On-Reset)電路的電路圖。 第七圖··係本發明鎖相迴路電路再加上啟動重置(p〇wer -On-Reset)電路的特性示意圖。The third figure is a characteristic diagram of a voltage controlled oscillator (vc0 circuit). The fourth figure is a schematic diagram of a start reset (power_n_Reset) circuit. The fifth figure is a characteristic curve diagram of a power-on-reset circuit. The sixth figure is a circuit diagram of a power-on-reset circuit. The seventh diagram is a characteristic diagram of the phase-locked loop circuit of the present invention plus a poWer-On-Reset circuit.
第八圖:係本發明改良式快速鎖頻之鎖相迴路電路方塊 圖。 第九圖:係本發明為了配合啟動重置(Power-On-Reset) 電路而作局部修改的頻率相位檢測器(PFD電路 )0 第十圖:係本發明鎖相迴路電路再加上啟動重置(Power -On-Reset)電路所模擬出來的結果。 第十一圖:係本發明所設計的改良式鎖相迴路電路的方塊 20 1239146 圖。 第十二圖:為一個典型的頻率相位檢測器(PFD電路)。 第十三圖··係本發明修改的頻率相位檢測器(PFD電路)的 方塊圖。 第十四圖:係本發明針對加快鎖相迴路電路而作局部修改 的頻率相位檢測器(PFD電路)。 第十五圖:係本發明簡單數位邏輯判斷電路的方塊圖。 第十六圖:係本發明改良式鎖相迴路電路和一般鎖相迴路 電路的效益比較圖。 第十七圖:係本發明改良式鎖相迴路電路和一般鎖相迴路 電路的模擬比較圖。FIG. 8 is a block diagram of a phase locked loop circuit of the improved fast frequency lock of the present invention. Ninth figure: The frequency phase detector (PFD circuit) of the present invention is partially modified to match the Power-On-Reset circuit. 0 Tenth figure: The phase-locked loop circuit of the present invention plus the start-up reset Set (Power -On-Reset) circuit simulation results. Fig. 11 is a block diagram of the improved phase-locked loop circuit 20 1239146 designed by the present invention. Figure 12: A typical frequency phase detector (PFD circuit). The thirteenth figure is a block diagram of a modified frequency phase detector (PFD circuit) of the present invention. Fig. 14 is a frequency phase detector (PFD circuit) of the present invention which is partially modified to speed up the phase locked loop circuit. Fig. 15 is a block diagram of a simple digital logic judgment circuit according to the present invention. Fig. 16 is a comparison diagram of the benefits of the improved phase-locked loop circuit and the general phase-locked loop circuit of the present invention. Fig. 17 is a simulation comparison diagram of the improved phase locked loop circuit and the general phase locked loop circuit of the present invention.
21twenty one
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92117548A TWI239146B (en) | 2003-06-27 | 2003-06-27 | Phase lock loop circuit having rapid lock frequency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92117548A TWI239146B (en) | 2003-06-27 | 2003-06-27 | Phase lock loop circuit having rapid lock frequency |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200501588A TW200501588A (en) | 2005-01-01 |
TWI239146B true TWI239146B (en) | 2005-09-01 |
Family
ID=37001211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92117548A TWI239146B (en) | 2003-06-27 | 2003-06-27 | Phase lock loop circuit having rapid lock frequency |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI239146B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112380802B (en) * | 2019-07-29 | 2024-04-19 | 星宸科技股份有限公司 | Method and system for semi-automatic design of integrated circuit |
-
2003
- 2003-06-27 TW TW92117548A patent/TWI239146B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200501588A (en) | 2005-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5233314A (en) | Integrated charge-pump phase-locked loop circuit | |
TWI399039B (en) | Phase locked loops | |
US5831483A (en) | PLL frequency synthesizer having circuit for controlling gain of charge pump circuit | |
JP3587818B2 (en) | Phase control circuit | |
JP3511041B2 (en) | Voltage controlled oscillator operating with digitally controlled load in phase locked loop | |
JP3094977B2 (en) | PLL circuit | |
US7053666B2 (en) | Phase frequency detector | |
JP5290589B2 (en) | Semiconductor integrated circuit | |
US6683478B2 (en) | Apparatus for ensuring correct start-up and phase locking of delay locked loop | |
US5592113A (en) | Gradual frequency changing circuit | |
TW200830721A (en) | Frequency synthesizer, automatic frequency calibration circuit, and frequency calibration method | |
JPH11510664A (en) | Fast and accurate phase-locked loop | |
US20060226896A1 (en) | Switched capacitor filter and feedback system | |
Chen et al. | A clock generator with cascaded dynamic frequency counting loops for wide multiplication range applications | |
TWI302058B (en) | Power management for low-jitter phase-locked loop in portable application | |
JP2002290233A (en) | Mode switching method for pll circuit and mode control circuit for the pll circuit | |
JP3746640B2 (en) | Internal clock signal generation circuit and synchronous DRAM device | |
JP2008113434A (en) | Phase locked loop without charge pump and integrated circuit having the same | |
TWI239146B (en) | Phase lock loop circuit having rapid lock frequency | |
US8253499B2 (en) | Charge pump and phase detection apparatus, phase-locked loop and delay-locked loop using the same | |
JP5326578B2 (en) | Phase detection circuit | |
WO2001065681A2 (en) | Fractional-phase locked loop | |
TWI722831B (en) | Oscillation circuit and a self-start-up control circuit adaptable thereto | |
JP3258313B2 (en) | Integrated circuit phase locked loop charge pump. | |
JPH11355134A (en) | Phase locked loop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |