TWI238604B - Remote current sensing and communication over single pair of power feed wires - Google Patents

Remote current sensing and communication over single pair of power feed wires Download PDF

Info

Publication number
TWI238604B
TWI238604B TW093101206A TW93101206A TWI238604B TW I238604 B TWI238604 B TW I238604B TW 093101206 A TW093101206 A TW 093101206A TW 93101206 A TW93101206 A TW 93101206A TW I238604 B TWI238604 B TW I238604B
Authority
TW
Taiwan
Prior art keywords
signal
remote
host
voltage
current
Prior art date
Application number
TW093101206A
Other languages
Chinese (zh)
Other versions
TW200505176A (en
Inventor
Kevin G Chandler
Antonio Carlos Monte-Filho
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Publication of TW200505176A publication Critical patent/TW200505176A/en
Application granted granted Critical
Publication of TWI238604B publication Critical patent/TWI238604B/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Dc Digital Transmission (AREA)
  • Amplifiers (AREA)

Abstract

Disclosed is a novel technique for transferring power and signals between two electrical devices over a single wire pair. In particular, a remote sensor is connected to a host device. Power to the remote sensor is supplied through a voltage reference and control loop circuit that holds the voltage component of the power signal present on the wire pair constant during remote current sensing. The remote sensor itself can transmit measurements or information by driving a load on the sensor and thereby modulating the loop current. The current signal in the sensor-to-host loop can be a precision AC analog signal or a serial digital bit stream. Both types of signals can coexist using a multiplexing scheme.

Description

1238604 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於透過單對電力饋送線之遠端電流感測 與通訊技術。 發明背景 有許多電子系統包括供應電力至一或多個遠端電子裝 置之主機裝置。因為各種不同的理由,主機和遠端裝置間 的貫際連結時常被限制在單一電線對或電力饋送線。在這 10些類型的裝置中,通常必須在主機與遠端裝置之間單向戈 雙向傳遞#號。在此些裝置之間達成此一目的而不增加電 線數目的方法為將有需要之信號與電力饋送獻上之電力作 號調變。 第1圖為系統2之概略圖示,其展示從遠端裝置經由電 15力饋送線對傳遞信號至主機裝置之典型先前技藝方法。如 第1圖所不’主機裝置4經由電力饋送線對5a與5b供應電 力。逖端裝置3串接於正、負電力饋送對5a與5b之間以構成 電流回圈。電力饋送對5a與5b提供經過遠端裝置3電壓 Vsi °率連阻抗如連接於主機4之供應電壓VSUPPLY與正電力 20饋送線5a之間。負(或接地)電力餽送線北連接至主機電路地 線。在貫施例中,遠端裝置3藉由改變流入電力餽送線5a、 5b之電流傳輸所需之信號。為了復原所需之信號,主機聿 置4包括測畺串接阻抗尺6上電壓差8 ν〇υτ之差動放大器7 所需之信號因而轉換成電壓信號進而由濾波器電路9處理 1238604 第1圖展示之信號傳輸技術有幾個問題。首先,供應線 5a之串接阻抗R6會造成遠端供應電力裝置供應電壓之波 動。如同所有的電路,遠端電路3具有有限的電力供應回 饋。遠端裝置3之供應電壓波動造成所需信號(例如量測信 5 號)之衰減或是在某些情況下造成不穩定與震盪。 第二,串接阻抗R6之阻抗值必須較低以便將通過阻抗 R6之壓降。因此,電流-電壓增益調整會受到限制而且會降 低整體量測動態範圍。 最後,需要一個具有共模拒斥之較複雜差動放大器7 10 以及匹配元件以感測通過串接阻抗R6之電壓。此一差動放 大器為AC耦合放大器,會增加額外的成本與複雜度。 因此,需要較簡化、更強健的技術以透過單對電力線 感測遠端電流信號。 【發明内容】 15 發明概要 本發明為利用供應電力至遠端裝置單一線對之創新遠 端電流感測技術。本發明存在於主機-遠端感測器組配之特 定應用,其中主機透過單對線供應電力至遠端裝置以及主 機與遠端裝置間單向或雙向通道之類比以及/或數位信號。 20 依據本發明,主機經由單對電線連接至遠端裝置。主 機裝置從電線對取得電力信號以供應電力至遠端裝置。主 機裝置利用電壓參考以及控制迴路電路在主機裝置與遠端 裝置間單向或雙向電流調變通訊期間在電線對提供實質電 力信號之電壓成分。 1238604 舉例來說,在一實施例中,遠端裝置產生遙控信號。 為了將遙控信號傳送至主機裝置,遙控裝置將電線對之電 力信號電流成分與遙控信號調變。在電流調變期間,主機 之電壓參考電路以及放大器在電線對上維持電力信號之定 電壓成分(亦即具有小誤差範圍之預設電壓層級)。同時主機 裝置在放大器輸出處(νουτ)藉由轉換此信號為變動電壓復 原電流信號。 在另一實施例中,主機裝置產生主機信號。為了傳送 主機信號至遠端裝置,電壓參考電路在電線對上供應電力 10仏號之定電壓成分’主機裝置將電線對之電力信號電流成 分與主機信號調變。同時遠端裝置將電力信號電流成分解 調變以還原主機信號。 15 本發明存在於透過單對電線提供電力以及將主機信號 與料裝置進行多卫傳輸之單—電子電路特定應用。 根據本u車乂佳貫施例,本發明用以透過單對電線供應 電7並且接著在電子裝置間傳送類比測量㈣與數位通訊 、Γ山在此實&例中,主機裝置透過兩條電線電子地連接 疋而政i主機裝置透過此二電線供應電力至遠端裝 ^為此-目I遠端裝置產生所需之類比信號。當主機 供定額供應店壓制遠端裝置時,遠端裝置將此電線 ==號電流成分調變以傳輸所需之類比信號。主機 二=:取解調變電力信號電流成分以綱^ 此解調㈣贿料包含讀W為基礎之電 電㈣換从後___率之《濾^。所展示 20 1238604 之實施例允許迴路電流變動而不會嚴重干擾遠端裝置之供 應電壓。 通訊信號可以在主機與遠端裝置間相互交換。在主機 裝置傳送數位控制/資料信號至遠端裝置之單向通訊架構 5 中,主機裝置將電線對之電力信號電壓成分或電流成分與 所需之數位信號進行電壓或電流調變。遠端裝置將電線對 電壓或電流調變之電力信號解調變以還原所需之數位訊 號。在遠端裝置傳送數位控制/資料信號至主機裝置之另一 單向通訊架構中,主機裝置提供定額供應電壓至遠端裝 10 置,遠端裝置將所需之數位信號與電線對上電力信號電流 成分進行電流調變。主機裝置接著將電線對上電力信號以 調變電流成分解調變以還原所需數位信號。 在從主機傳輸至遠端裝置之雙向通訊架構中,主機裝 置可以將電線對之電壓信號進行電壓調變表示通訊是由主 15 機至遠端裝置。遠端裝置從電線對上電力信號電壓成分解 調變主機信號。對於通訊是由遠端裝置至主機裝置而言, 遠端裝置可以對電線對上電力信號電流成分進行電流調變 而主機裝置提供定額供應電壓至遠端裝置。 上述之電線電力、信號以及通訊傳輸技術可以使用於 20 諸如具有感測傳輸至主機裝置類比信號以轉換成所需單位 並進一步處理之測量探測器系統此些量測可以包括(但並 不侷限於此)電容、溫度、濕度、接近度等等。量測探針與 測試機器可以透過兩條電力線連接以傳輸類比量測信號以 及雙向通訊信號。展示之數位信號交換範例包括詢問探針 1238604 種類、報告狀態、上傳探針測定常數、啟動與停止量測聯 繫交換以及其他類似功能。 圖式簡單說明 為了對本發明有更完整的瞭解以及其中伴隨之許多優 5 點可以藉由參考與下列詳細說明相關之圖示更淺顯易懂, 其中類似的參考符號代表相同或類似之元件,這些圖示為: 第1圖為習知技藝遠端信號感測裝置之高階電路圖。 第2A圖為實現本發明遠端電流感測技術系統第一實施 例之高階電路圖。 10 第2B圖為實現本發明遠端電流感測技術系統第二實施 例之高階電路圖。 第3A圖為展示利用本發明之遠端電流感測技術方法第 一實施例之運作流程圖。 第3B圖為展示利用本發明之遠端電流感測技術方法第 15 二實施例之運作流程圖。 第4A圖為展示本發明第一範例應用之電路方塊圖。 第4B圖為展示本發明第二範例應用之電路方塊圖。 第5 A圖為展示第4 A圖中主機與遠端感測器裝置間通 訊信號流向之運作流程圖。 20 第5B圖為展示第4B圖中主機與遠端感測器裝置間通 訊信號流向之運作流程圖。 第6圖為應用本發明技術之較佳主機/感測器系統實施 例電路圖。 第7圖為展示第6圖中主機裝置與遠端感測器裝置間信 1238604 號傳輸之運作流程圖。 【實施方式】 較佳實施例之詳細說明 接下來將對創新之遠端電流感測技術及應用作詳細說 5明。儘官本發明是以特定之展示實施例加以說明,必須暸 解此處說明之實施例是作為範例用,而且本發明之範疇並 不侷限於此些實施例。 一般實施例 現在開始詳細說明圖示,第2八圖為實現本發明遠端電 10流感測技術系統10之高階電路圖。如圖所示,系統10包括 經由包含第一條電線12a與第二條電線12b之單對電線12連 接至主機裝置13之遠端裝置u。主機裝置13包括在第一條 電線12a產生實質定額第—電壓源19a以及在第二條電線 12b產生貫質定額苐二電壓源19b之電壓參考電路14。實質 15定額指的是通過電線對供應至遠端裝置之電壓電位實際上 固定至一小誤差範圍内。在較佳實施例中,電壓參考電路 14是由包括標準運算放大器15,在運算放大器15輸出丨8與 運算放大器15反相輸入端間連接迴授電阻rf π,以及將提 供參考電壓VR之電壓源16連接至運算放大器15之非反相輸 20 入端之運算放大器電路實現。如業界所熟知,標準運算放 大電路在其非反相與反相輸入端間維持零電壓或虛擬零。 為了在非反相與反相輸入端間維持虛擬零,運算放大器15 調整輸出電壓Vout使得經過迴授電阻RF 17之壓降致使運 算放大器15反相輸入端電壓反相對應運算放大器15非反相 10 1238604 輸入端電壓。 在展示之貫施例中,第一電壓源19a連接至運算放大器 15之反相輸入端,第二電壓源19b連接至主機電路接地端。 因此,因為不管迴路電流是否變化,控制運算放大器15將 5第2a圖之集結點19a·驅動至電壓Vr,通過遠端裝置11之供應 電壓να映射此參考電壓Vr(亦即Vs2=vR)旅且保持固定(假 設連接線12a之串列電阻是可忽略的以及所選擇2Vr值必 須使主機電路供應至運算放大器15之供應電壓VsuppLY大於 VR,並且VR必須夠大使其至少能驅動遠端裝置靜態電流、 10 最大調變電流以及容許誤差之和。) 供應實質定額供應電壓vs2至遠端裝置11之能力使其能 夠在遠端裝置11與主機裝置13間單向或雙向傳輸精確之AC 或數位信號。具體而言,因為遠端裝置丨丨之供應電壓VS2維 持固定值,在一裝置產生之精確AC或數位信號可以藉由調 15變傳送裝置之電力^號電流成分傳送出去以及在接收裝置 解调變此電力#號電流成分。舉例來說,在第2a圖中,遠 端裝置11可以產生必須由主機裝置13接收與處理之信號 21。為了達此目的,遠端裝置丨丨可以組配成電流調變器2〇 調變電線對12a、12b之迴路電流使其與遠端量測信號21成正 20比。如範例實施例所示,此電流調變器可以單一類比放大器 或數位緩衝器驅動連接至電源或接地端之電阻性負載加以 實現。通過此電阻性負载之電流變化將會精確地反映在由遠 端感測器汲取之總供應電流上。主機裝置13同樣地以電流解 調變19組配對電線對12a、12b之電力信號電流成分解調變以 1238604 產生還原之退端信號22。在展示之實施例中,主機裝置13 之電流解調變器監視運算放大器15輸出端18之迴路AC電 流。更具體而言,因為遠端裝置11之供應電壓VS2維持固定 值VR,AC電流調變將會展現在運算放大器15輸出端18之 5 ν〇υτ信號變動以及電線12a、12b上電力信號調變電流,進而 使得運算放大器15調整其輸出端18電壓V0UT以維持反相與 非反相輸入端間之虛擬零電位。在此範例中,因為主機放大 器是以反相模式組配,V0UT與迴路電流成反比。在任何情況 下,可以經由處理V〇uT之信號還原遠端信號。在濾波與處理 10 期間可使是需要加入額外之信號反相步驟。 第2B圖為實現本發明遠端電流感測技術系統3〇一替代 實施例之高階電路圖。在系統30中,遠端裝置31經由單對 電線32(包含第一條電線32a與第二條電線32b)連接至主機 裝置33。主機裝置33包括在第一條電線32a產生實質定額第 15 一電壓源39a以及在第二條電線32b產生實質定額第二電壓 源39b之電壓參考電路34。同樣地,電壓參考電路34是由包 括標準運算放大器35,在輸出端38與運算放大器35非反相 輸入端間連接迴授電阻RF 37,以及將提供參考電壓vr之電 壓源36連接至運算放大器35之反相輸入端之運算放大器電 20 路實現。運算放大器35之非反相與反相輸入端間之虛擬零 電位使得運算放大器35非反相輸入端電壓反映成參考電壓 VR。第一電壓源39a連接至運算放大器35非反相輪入端之節 點,第二電壓源39b連接至主機電路接地端。因此,通過原 端裝置31之供應電壓映射此參考電壓VR(亦即VS3==Vr)。在 12 1238604 第2B圖之實施例中,主機裝置33可以產生傳送至遠端裝置 31所需之主機信號41。為了達此目的,主機裝置33可以電 流調變器40組配,將電線對32a、32b電力信號電流成分與 主機信號41調變。遠端裝置31同樣地以電流解調變39組配 5 對電線對32a、32b之電力信號電流成分解調變以產生還原 之主機信號42。 第3A圖展示利用本發明技術之第一方法50。如圖所 示,方法50由步驟51開始,主機裝置在連接至遠端裝置電 線對之第一條電線產生並供應第一實質定額供應電壓以及 10 在連接至遠端裝置電線對之第二條電線產生並供應第二實 質定額供應電壓。在步驟52中,遠端裝置產生遠端信號, 在步驟53中,遠端裝置將單對電線之電力信號電流成分與 遠端信號做電流調變。最後,在步驟54中,主機裝置將單 對電線之電力信號電流成分解調變以還原遠端信號。 15 第3B圖展示利用本發明技術之第二方法60。如圖所 示,方法60由步驟61開始,其中主機裝置在連接至遠端裝 置電線對之第一條電線產生並供應第一實質定額供應電壓 以及在連接至遠端裝置電線對之第二條電線產生並供應第 二實質定額供應電壓。在步驟62中,主機裝置產生主機信 20 號,在步驟63中,主機裝置將單對電線之電力信號電流成 分與主機信號做電流調變。最後,在步驟64中,遠端裝置 將單對電線之電力信號電流成分解調變以還原主機信號。 第一通用應用 第4A圖展示本發明第一範例應用實施例。具體而言, 13 1238604 第4A圖為展示通過單對電線102(包括電線102a與102b)將 遠端感測器l〇3a連接至主機裝置10之系統100a電路圖。本 發明獨特地允許將電力從主機裝置l〇la傳送至遠端感測器 裝置103a、從遠端感測器裝置103a傳送量測信號至主機裝 5 置101a以及透過單對電線102在主機裝置101a與遠端感測 器裝置l〇3a間進行雙向通訊。 電力性能 主機裝置l〇la包括電力區塊110,其包含主機裝置與遠 端裝置間以調變電流進行單向或雙向通訊期間,在電線對 10 提供實質定額電力信號電壓成分之參考電壓與控制迴路電 路115。具體而言,參考電壓與控制迴路電路115在第一條 電線102a產生第一實質定額電壓源111以及在第二條電線 102b產生第二實質定額電壓源112。實質定額是指電壓層級 維持在固定層級(允許些微之誤差範圍)或者因為信號頻率 15 飄移而在長週期只有些微之變動。在較佳實施例中,參考 電壓電路115是以運算放大器電路實現,如第2A與2B圖所 示,其中第一實質定額電壓源111連接至參考電壓源VREF 114,第二實質定額電壓源112連接至主機電路接地端113。 遠端感測器裝置l〇3a也包括電力區塊140。電力區塊 20 140包含第一與第二電壓源節點141與142。第一與第二電壓 源節點141與142必須連接至外接電壓源(例如主機裝置 101a之第一與第二電壓源111)以使其作為感測器裝置103内 部之電壓源。 依據本發明,電線對102之第一條電線102a第一端電子 14 1238604 地連接至主機裝置101a内之第一電壓源111,第二端連接至 感測器裝置103内之第一電壓源節點141。第二條電線102b 第一端電子地連接至主機裝置l〇la内之第二電壓源112,第 二端連接至感測器裝置103内之第二電壓源節點142。如上 5 所述,在較佳實施例中,第一電壓源111為實質定額電壓 源,稱之為參考電壓源VREF,第二電壓源112連接至主機電 路接地端113。因此當以此方式連接時,通過電線對102之 電壓為Vref。此外’在說明之功能中’单對電線1 供應具 有電壓成分Vpwr 1〇5與電流成分Ipwr 之電力PWR 104 10 至遠端感測器裝置103a。 量測功能 遠端感測裝置l〇3a包括量測信號處理區塊150,騎包括 量測電路152以及電流調變器154。量測電路152感測或接收 以及處理量測151以產生表示量測151之量測信號153。示範 15 之量測包括(但並侷限於此)電容、溫度、濕度與接近度等 等。量測電路152傳送量測信號153至量測信號電流調變器 154。量測信號電流調變器154將表示此量測信號之因子加 至由電線102a與102b組成之電力迴路DC電流對量測信號 153做電流調變。 20 主機裝置101a包括量測信號處理區塊120,其包含量測 信號電流解調變器121以及量測處理電路123。量測信號電 流解調變器121接收電線對102上已調變之電力信號PWR 104電流成分Ipwr 106,將以調變之電流成分Ipwr 解調變 出量測信號成分,以及傳送此解調變信號122至量測處理電 15 1238604 路123做進一步處理與分析。在此說明之功能中,單對電線 102運作已從遠端感測器裝置103a傳送量測值151至主機裝 置101a。 通訊功能 5 在較佳實施例中,系統100a允許雙向通訊。雙向通訊 以下列方式達成: 遠端感測器裝置l〇3a包括通訊區塊160a,其包括遠端 控制電路165以及具有傳輸電路163a與接收電路163b之通 訊介面164。通訊區塊160更包括遠端通訊信號電流調變器 10 167以及主機通訊信號電壓解調變器161a。 遠端控制電路165可能包括處理器、記憶體、感測器以 及/或其他任何可以產生遠端通訊資料之元件或裝置。通訊 介面164包括標準電路,其可能包括編碼、格式化以及其他 準備由遠端控制電路165產生已傳送至主機裝置101a之遠 15 端通訊信號166之功能。傳輸電路163a輸出代表遠端通訊資 料之遠端通訊信號166。遠端通訊信號電流調變器167將電 線對102之電力信號PWR 104電流成分IPWR 106與遠端通訊 信號106做電流調變。 主機裝置101a包括通訊區塊130a,其包括主機控制電 20 路131以及具有傳輸電路133a與接收電路133b之通訊介面 132。通訊區塊130a更包括遠端通訊信號電流解調變器138 以及主機通訊信號電壓調變器135a。 第5A圖展示第4A圖中系統100a之示範運作方式。在實 施例中,遠端感測器裝置103a產生由步驟71a傳送至主機裝 16 1238604 置101a之遠端通訊資料。在步驟72a中,遠端感測器裝置 103a處理退端通訊 > 料以產生表示遠端通訊資料之遠端通 訊信號166。在步驟73a中,遠端通訊信號用以調變電線對 102上電力信號PWR 104電流成分卜· 1〇6,而電力信號 5 PWR 104之電壓成分VPWR 105維持固定。 在主機端,遠端通訊信號電流解調變器138在步驟76a 中從電力信號PWR 104之電流成分IpwR 106將遠端通訊信 號139解調變,而電力信號PWR 1〇4之電壓成分vPWR 105維 持固定。在步驟77a中,主機裝置i〇ia從已解調變之遠端通 10 訊信號139還原遠端通訊資料。 主機裝置l〇la在步驟78a中產生傳送至感測器裝置 103a之主機通訊資料。在步驟79a中,主機裝置101a處理此 主機通訊資料以產生表示主機通訊資料之主機通訊信號 134。在步驟80a中’主機裝置l〇la將電線對1〇2上電力信號 15 PWR 104之電壓成分VPwr 1〇5與主機通訊信號134做電壓調 變。在電壓調變通訊期間,迴路電流並不需保持固定。當 主機調變電壓VR以及改變供應至遠端裝置之電壓時迴路電 流可能會變動但不會對電路效能造成負面效應。在電壓調 變模式下’即使迴路電流亦同時變化,接收裝置感測電壓 20 變化量。 在遠端感測器裝置103a端,在步驟74a中,主機通訊信 號電壓解調變器161a從電線對102上電力信號PWR 1〇4之 電壓成分VPWR 105將主機通訊信號解調變。在步驟75a中, 遠端感測裝置1 〇3a從已解調變之主機通訊信號139還原 17 1238604 主機通訊資料。 第二通用應用 弟4B圖展不本發明弟一範例應用貫施例。具體而令 第4B圖為展示系統100b之電路圖,此系統除了從主機裝置 5 l〇lb傳送主機通訊信號至遠端感測器裝置⑺扑之電路不同 外,其與部分皆與第4A圖之系統l〇〇a相同。為達此一目的, 主機裝置101a之主機裝置通訊區塊130a中主機通訊信號電 壓調變器135a在主機装置101b之主機裝置通訊區塊13%中 以主機通訊信號電流調變器135b取代之。同樣地,在遠端 10 感測器裝置1 〇3a之遠端感測器裝置通訊區塊160a中之主機 通訊信號電壓解調變器161a在遠端感測器裝置103b之遠端 感測器裝置通訊區塊160b中以主機通訊信號電流解調變器 161b取代之。其餘的電路與第4A圖所示之實施例相同,其 相關之詳細說明可以在與第4A圖相關之說明中找到。 15 第5B圖展示第4B圖中系統l〇〇b之示範運作方式。在實 施例中,遠端感測器裝置103b產生由步驟71b傳送至主機裝 置101b之遠端通訊資料。在步驟72b中,遠端感測器裝置 103 b處理遠端通訊資料以產生表示遠端通訊資料之遠端通 訊信號166。在步驟73b中’遠端通訊信號用以調變電線對 20 1〇2上電力信號PWR 104電流成分iPWR 1〇6,而電力信號 PWR 104之電壓成分Vpwr 105維持固定。 在主機端,遠端通訊信號電流解調變器138在步驟76b 中從電力信號PWR 104之電流成分iPWR 1〇6將遠端通訊信 號139解調變,而電力信號PWR 1〇4之電壓成分VPWR 105維 18 1238604 持固定。在步驟77b中,主機裝置101從已解調變之遠端通 訊信號139還原遠端通訊資料。 主機裝置101在步驟78b中產生傳送至感測器裝置103 之主機通訊資料◦在步驟79b中,主機裝置101處理此主機 5 通訊資料以產生表示主機通訊資料之主機通訊信號134。在 步驟80b中,主機裝置101將電線對102上電力信號PWR 104 之電流成分Ipwr 1 與主機通訊信號134做電流調變。 在遠端感測器裝置103端,在步驟74b中,主機通訊信 號電壓解調變器161b從電線對102上電力信號PWR 104之 10 電流成分Ipwr 1 將主機通訊信號解調變。在步驟75b中, 遠端感測器裝置103從已解調變之主機通訊信號139還原主 機通訊資料。 示範實施例 第6圖考量一較佳實施例之主機/感測器系統200。系統 15 200包括透過單對電線202(包含第一條與第二條電線202a 與202b)連接至主機裝置201之遠端裝置203。 主機裝置201包括參考電壓電路240,其包含輸出端243 與反相輸入端242間耦合一迴授電阻RF 244以及將參考電 壓V,搞合至非反相輸入端241之標準運算放大器245。電 20 壓參考電路240運作以產生遠端裝置203用供應電壓 VRD SUPPLY 與GND。在感測器至主機通訊期間,電壓參考電 路240亦運作以供應實質定額供應電壓VRD_ SUPPLY 至遠端裝 置203。具體而言,在此實施例中,電線202a在主機裝置201 中運算放大器245反相輸入端242處連接至正供應電壓,因 19 1238604 而在遠端裝置203中以正供應電壓運作。同樣地,電線2〇2b 在主機裝置201中連接至負(或接地)供應電壓2似,因而在遠 端裝置203中以負(或接地)供應電壓運作。 在此展示之實施例中,主機裝置2〇1亦組配成傳送數位 5通訊信號至遠端感測器裝置203。為達此一目的,主機裝置 201包括產生數位主機資料281之處理器27〇。編碼器282接 收並將數位主機資料281編碼以產生串列數位位元串 HOST—DATA 283。編碼器282可能包括平行-串列轉換、錯 誤偵測/修正、封包、結構化以及準備串列傳輸用數位主機 10資料之電路。比較器286從第一輸入端284接收串列數位位 元串HOST—DATA 283以及接收在第二輸入端285由電壓源 28S產生之參考電壓^^」。參考電壓Vref i大致上設定成編 碼器282串列輸入接腳整個電壓範圍之一半(例如當編碼器 輸出變動範圍為〇至3.3V時參考電壓大約為1.6V)。比較器 15 286之增益較佳地為供應電壓之1/10(例如0.3)。因此假若進 來之串列數位位元串HOST_DATA 283值為邏輯低或0V 時’比較器286輸出端287之電壓VH0ST_DATA將為邏輯低(或 Vhost—data大約為0V),因此此電壓將低於參考電壓VREFj。 假若進來之串列數位位元串HOST_DATA 283值為邏輯高 20 或3.3V時,比較器286輸出端287之電壓VH0ST_DATA將為邏輯 高(或VH0STjmta大約為〇.3V,亦即3.3V乘以0.1),因此比較 器286第一輸入端284之電壓將高於第二輸入端之參考電壓 VrEFj。比較器286之輸出端287連接到加總裝置289之一輸 入端。持續供應參考電壓VREF之電壓源246連接至加總裝置 20 1238604 289之其他輪入端。當主機裝置201組配為傳送模式傳送數 位主機資料至遠端裝置203時,比較器286輸出端287之數位 主機資料將與電線對202上電力信號PWR 204之電壓成分 VPWR 205加總(接著調變)。加總裝置289之輸出為VREF + 5 VH0ST DATA,在展示實施例中其範圍為3.3V至3.6V之間)。因 此达端裝置203之供應電壓Vrd_supply足以啟動遠端裝置 203並且對邏輯高信號而言在最小可接受之電壓臨界值之 上變動。因此電壓供應之調變對遠端裝置203之數位電路 220並不會產生負面影響。 10 在展示之實施例中,遠端裝置203包括類比電路210以 及數位電路230。類比電路210實現一主動式放大器電路以 放大AC信號AC—IN 208以增加噪訊比(SNR)以及降低干擾 電容效應。範例中所示之AC—IN為電流信號;然而必須瞭 解到可以使用電壓源以及串接阻阻抗達成相同功能。放大 15器215輸出端節點217之放大電流信號會被傳送至主機裝置 201 〇 在此領域中技工可以輕易地使用許多替代電路達成此 放大效果。在展示實施例中,放大器215為標準運算放大 态,例如由位於達拉斯之德州工業製造iTL〇72、德州二極 20體211與212為標準石夕小信號二極體,以及二極體219為7 ^ 之曰納一極體。電阻2π與214為100K歐姆電阻以及電阻216 與218分別為1M歐姆與464歐姆電阻。這些元件的數值可以 變動以將噪訊比與特定量測應用之動態範圍最佳化。 在貫施例中,放大器215驅動付載R2 218。放大器215 21 1238604 具有連接至遠端裝置203正供應電壓VRD_SUPPLY或電線202a 之第一電力輸入PWR+。放大器215具有連接至遠端裝置203 負供應電壓(GND)或電線202b之第二電力輸入PWR·。AC信 號AC_IN 208由放大器215反相輸入端接收以及在電阻213 5 與 4連接點產生之偏壓參考信號VAMP REF由放大器215之 非反相輸入端接收。放大器215輸出端節點217之電壓 Vamp_out 反應AC輸入信號AC_IN 208與放大器參考信號 Vamp_ref 間之差值。因此放大器輸出電壓VAMP0UT隨著AC 輸入信號AC_IN 208變動而變動。放大器215驅動通過電阻 10 R2 218之電壓VAMP_0UT與AC輸入信號AC_IN 208成反比。 (反比關係是因為反相放大器拓樸之故)。當輸入信號AC_IN 208值為DC或不存在時,並不需要透過電力餽送回圈拉升 額外之電流。然而,當輸入信號AC_IN 208值造成放大器215 輸出VAMP 0UTS靜態參考電壓vAMP REF(通常為放大器供應 15電壓之一半)附近變動時,電力餽送線202a與202b必須拉升 經過電力迴路之額外電流。此額外迴路電流與流經負載電 阻218之放大彳§號電流成正比。因此,流經電力迴路電線 202a與202b之電流依據AC輸入信號ACjn 208變動。因為 在感測為-主機通訊期間主機裝置2〇 1供應實質定額供應電 20壓(Vrd-supply=Vpwr)至遠端裝置2〇3(亦即電線202a與202b 之間),變動之AC輸入信號AC—IN 208運作以調變電線對 202上電力信號PWR204之電流成分而不會影響遠端裝置 203之供應電壓VRD_SUPPLY。如此確保由主機Vrd_supply供電 之數位與類比電路皆不會受到負面影響。 22 1238604 現在參考主機裝置2〇1上之電壓參考電路240,當運算 放大器245試圖維持其反相與非反相輸入端241與242為虛 擬零電位時,運算放大器245輸出端243之電壓v0UT隨著電 線202a之電流變化(因為由遠端裝置2〇3對電線對2〇2上電 力k號PWR之電流成分jpwR調變)而變動。因此,ν〇υτ之變 化反映出遠端感測資料與電力信號PWR 205電流成分IPWR 206調變之結果,遠端感測器資料可以藉由將V0UT傳送通過 帶通濾波器(BFP)250(或者其他只會讓需要範圍頻率通過 之合適濾波器)還原。運算放大器245與BFP250共同運作以 1〇有效地從電線對202之電力信號將遠端類比感測器資料解 調變(或還原)。還原之類比感測器信號252接著由量測計算 電路260處理。 主機裝置201與遠端裝置203間之數位通訊亦是可行 的。為達此一目的,遠端裝置2〇3包括至少實現通訊介面之 15數位電路220。在展示實施例中,通訊介面220為串列介面, 其通常包括準備、決策、傳送、接收以及還原數位信號之 全部功能,如業界所熟知包括放大電路、取樣及保持電路、 訊框偵測電路以及串列-平行以及/或平行_串列轉換。通訊 介面220更可以包括依據通信協定之錯誤偵測/修正電路以 20及指令封包抽取電路。這些功能可以在第6圖加以實現;然 而假若沒有在第6圖明顯的標示,亦必須瞭解當主機與遠端 裝置間需要用以正確通訊時便會包括這些功能(反之亦然 接著說明遠端感測器裝置2〇3數位電路22〇之特定實 施,數位電路220包括含有比較器236與解碼器238之主機資 23 1238604 料還原電路。比較器236將其第一輸入端234(耦合至電線 202a)電壓與其第二輸入端235參考電壓Vref 3做比較。參考 電壓VREF」大致設定為(VR + VH0ST DATA)/2(例如大約(3.3V + 0.3V)/2或1.8V)。比較器236較佳地由單位增益特徵化。 5因此假若已調變供應電壓VrD_supply低於vREF_3時,比較器 286輸出端287電壓Vh〇st_data將為邏輯低(或大約0V)。假若 進來之HOST_DΑΤΑ 283串列數位位元為邏輯高或高於 VREF_3時,比較器286輸出端287電壓將為邏輯高(或大約 3·3V)。解碼器處理比較器286輸出端287之數位位元串並且 10將還原之主機資料239格式化成適合感測器處理器230處理 之格式。因此,主機資料(可能包括編碼過之指令)從主機裝 置201傳送至遠端感測器裝置2〇3。 达端感測器裝置203亦組配成傳送資料至主機裝置 201。就此而言,處理器230產生欲傳送至主機裝置2〇1之數 15位控制/資料#號(此後以“數位感測器資料”稱之)。處理器 240可以由下列一或數個元件實現:微處理器、微控制器、 ASIC、FPGA、數位狀態機器、以及/或其他數位電路。在 展示貫施例中,處理器230内部將數位感測器資料從並列格 式轉換為串列位元串並輸出至處理器串列輸出接腳233。電 2〇阻228耦合於串列輸出接腳233與正電力餽送線2〇2&之間。 -般而言,假使輸出接腳233可以降低並且供應足夠電流時 電阻228可以連接至正或負電力饋送節點。所展示之實施與 限制電流降低之開放集極輸出相容。因此,當驅動邏輯低 時,將電阻連接至正電力饋送端將使輸出端233提高供應電 24 1238604 流。處理益230之電力(Vcc)輸入接腳231連接至遠端裝置電 線202a之正供應電壓,接地(gnd)輸人接腳232連接至遠端 裝置電線202b之負(或接地)供應電壓。 在貫施例中’處理器230以位元串SENSOR—DATA格式 5輸出串列數位感測器資料至接腳233以驅動流經電阻228之 電流Ird。當輸出至接腳233之數位位元值為邏輯丨時,接腳 233輸出電壓值大約等於正電力饋送電壓,因此不需拉升經 過電力迴路之額外電流。然而,當當輸出至接腳⑶之數位 位7L值為邏輯〇時,接腳233輸出電壓值必須拉至接地電位 10因而k成電力供應迴路中額外電流流經電阻228。因為遠端 衣置七、應甩壓Vrd—supply與GND在感測器-主機通訊期間由 主機I置201之電壓參考電路24〇維持在固定值,處理器23〇 必須拉升經過電力迴路(由連接至主機裝置201之電線202a 與2 02 b構成)之額外電流使得流經電阻2 8 8之負載電流成為 I5邏輯電位切換。因此流經電阻US之電流1叩量會依據處理器 230疋驅動邏輯0或邏輯1而變化。目為電線對202上由主機 衣置2〇1供應之電力信號PWR 204電壓成分VPWR 205為固定 值’數位感測器資料位元串sens〇r—將有效地與電 線對202上電力信號之電流成分做調變。 2〇 主機&置201包括數位感測器資料還原電路。就此而 ° ’主機^置201包括比較器264與解碼器265。比較器264 將其第一輸入蠕261(耦合至運算放大器245輸出端243)電壓 V〇UI’其第二輪入端262參考電壓VREF_2做比較。參考電壓 vREF—2大致設定為(Vr + ν·—隨)/2(例如大約(33v + 25 1238604 0-3V)/2或1.8V)。比較器264較佳地由單位增益特徵化。因 此假若比較器264輸出端263電壓ν〇υτ低於Vref_2時,比較器 264輸出端263電壓將為邏輯低(或大約評)。假若比較器264 輸出端263電壓V0UT高於VREF_2時,比較器264輸出端263電 5壓將為邏輯高(或大約3·3ν)。解碼器265處理比較器264輸出 端263之數位位元串並且將還原之感測器資料266格式化成 適合感測器處理器230處理之袼式。因此,數位感測器資料 疋k逆知感測器褒置2〇3傳送至主機裝置2〇 1。 第7圖為展示第6圖中主機裝置201與遠端感測器裝置 10 203間^號傳輸之運作流程圖。如圖所示,在步驟搬中, 主機4置201要求遠端感測器裝置辨認自己本身。為達 此目的,主機裝置2〇1產生包含給感測器裝置處理器23〇 用扣7之數彳立主機資料H〇ST—DATA 283以及將電線2〇2a ” 202b之電力#就與數位主機資料h〇st_data 283作電 15 壓調變。 在步驟304中’主機裝置201提供實質定額電壓源至遠 端裝置203。 在步驟306中’遠端感測器裝置203以其辨認身份回應 主機衣置201。為達此_目的,處理器從記憶體(圖中未 20顯不)中摘取辨認資訊以及/或類別資料並且在串列輸出接 腳233轉換成串列數位位元串SENSOR—DATA,其輸出與電 力h號做電流調變。 主機破置201在步驟308中驗證此辨認資訊。 假叹此辨認資訊是有效的,主機裝置201在步驟310中 26 1238604 藉由產生包含給感測器裝置處理器230用指令之數位主機 資料HOST—DATA 283,並將之與電線202a與2〇2b之電力信 號做電壓調變以命令遠端感測器裝置203進行量測 主機裝置201接著在步驟312中將其傳送電路關閉以提 5供實質定額電壓源至遠端裝置203。遠端感測器裝置203接 著在步驟314中執行類比量測以及在步驟316裝將迴路電流 調變。主機裝置201從電線對202之電力信號將此經電流調 變之量測值解調變。 儘管本發明之較佳實施例是為展示目的而揭露,這些 10技藝在業界可以有各種不同的修改、增加或刪減而不背離 下列專利申請範圍所揭露之本發明範疇與精神。此處所揭 露本發明之其他益處或應用在經過若干時間後將更明顯。 【圖式簡單說明】 第1圖為習知技藝遠端信號感測裝置之高階電路圖。 15 第2A圖為實現本發明遠端電流感測技術系統第一實施 例之高階電路圖。 第2B圖為實現本發明遠端電流感測技術系統第二實施 例之高階電路圖。 第3A圖為展示利用本發明之遠端電流感測技術方法第 20 一實施例之運作流程圖。 第3B圖為展示利用本發明之遠端電流感測技術方法第 二實施例之運作流程圖。 第4A圖為展示本發明第一範例應用之電路方塊圖。 第4B圖為展示本發明第二範例應用之電路方塊圖。 27 1238604 第5 A圖為展示第4 A圖中主機與遠端感測器裝置間通 訊信號流向之運作流程圖。 第5B圖為展示第4B圖中主機與遠端感測器裝置間通 訊信號流向之運作流程圖。 5 第6圖為應用本發明技術之較佳主機/感測器系統實施 例電路圖。 第7圖為展示第6圖中主機裝置與遠端感測器裝置間信 號傳輸之運作流程圖。 【圖式之主要元件代表符號表】 3、11…遠端裝置 135a…主機通訊信號電壓調 4、13、201…主機裝置 變器 6、17···迴授電阻 138…遠端通訊信號電流解調 7、15···運算放大器 變器 9···濾、波器 152…量測電路 14、115…電壓參考電路 15 4…量測信號電流調變器 16…電壓源 161a…主機通訊信號電壓解 19…信號濾波器 調變器 20、40···電流調變器 165…控制電路 21…遠端信號 167…遠端通訊信號電流調變器 22…已還原信號 203…遠端感測器裝置 39…電流解調變器 230…處理器 121…量測信號電流調變器 238…解碼器 123···量測處理電路 260…量測計算 131···數位處理電路 265···解碼器 132、164···通訊介面 270…主機處理器 281238604 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to remote current sensing and communication technology through a single pair of power feed lines. BACKGROUND OF THE INVENTION There are many electronic systems including a host device that supplies power to one or more remote electronic devices. For various reasons, the continuous connection between the host and the remote device is often limited to a single wire pair or power feed line. In these 10 types of devices, it is usually necessary to pass the # sign in both directions between the host and the remote device. The way to achieve this between these devices without increasing the number of wires is to modulate the signals required and the power provided by the power feed. Figure 1 is a schematic diagram of System 2 showing a typical prior art method of transmitting a signal from a remote device to a host device via an electric power feed line pair. As shown in Fig. 1, the host device 4 supplies power to the pairs 5a and 5b via the power feed line. The terminal device 3 is connected in series between the positive and negative power feeding pairs 5a and 5b to form a current loop. The power feeding pair 5a and 5b provide the voltage Vsi through the remote device 3 to the impedance such as the supply voltage VSUPPLY connected to the host 4 and the positive power 20 feeding line 5a. The negative (or ground) power feed line north is connected to the host circuit ground. In the embodiment, the remote device 3 transmits a signal required by changing the current flowing into the power feeding lines 5a, 5b. In order to restore the required signal, the host device 4 includes a differential amplifier 7 that measures the voltage difference 8 νουτ connected to the impedance scale 6 in series. The signal required is thus converted into a voltage signal and processed by the filter circuit 9 The signal transmission technology shown in the figure has several problems. First, the series resistance R6 of the supply line 5a causes fluctuations in the supply voltage of the remote power supply device. As with all circuits, the remote circuit 3 has limited power supply feedback. Fluctuations in the supply voltage of the remote device 3 cause attenuation of the required signal (such as measurement signal No. 5) or in some cases cause instability and vibration. Secondly, the impedance value of the series impedance R6 must be lower in order to pass the voltage drop across the impedance R6. As a result, the current-voltage gain adjustment is limited and reduces the overall measurement dynamic range. Finally, a more complex differential amplifier 7 10 with common-mode rejection and a matching element are needed to sense the voltage through the series impedance R6. This differential amplifier is an AC-coupled amplifier, which adds additional cost and complexity. Therefore, simpler and more robust techniques are needed to sense remote current signals through a single pair of power lines. [Summary of the Invention] 15 Summary of the Invention The present invention is an innovative remote current sensing technology utilizing a single wire pair that supplies power to a remote device. The present invention exists in a specific application of a host-remote sensor combination, in which a host supplies power to a remote device through a single pair of wires and analog and / or digital signals in a unidirectional or bidirectional channel between the host and the remote device. 20 According to the invention, the host is connected to the remote device via a single pair of wires. The host device obtains a power signal from the wire pair to supply power to the remote device. The host device uses the voltage reference and the control loop circuit to provide the voltage component of the actual power signal on the wire pair during the unidirectional or bidirectional current modulation communication between the host device and the remote device. 1238604 For example, in one embodiment, the remote device generates a remote control signal. In order to transmit the remote control signal to the host device, the remote control device modifies the electric signal current component of the wire pair with the remote control signal. During current modulation, the voltage reference circuit of the host and the amplifier maintain the constant voltage component of the power signal on the wire pair (that is, a preset voltage level with a small error range). At the same time, the host device converts this signal to a variable voltage restoration current signal at the output of the amplifier (νουτ). In another embodiment, the host device generates a host signal. In order to transmit the signal from the host to the remote device, the voltage reference circuit supplies power to the pair of wires with a constant voltage component number 10 '. The host device modulates the current component of the signal from the pair with the signal from the host. At the same time, the remote device decomposes and modifies the power signal current to restore the host signal. 15 The present invention exists in single-electronic circuit specific applications that provide power through a single pair of wires and multi-channel transmission of host signals and feed devices. According to this embodiment of the U.S. vehicle, the present invention is used to supply electricity 7 through a single pair of wires and then transmit analog measurements between electronic devices and digital communication. In this example, the host device passes two The wires are electrically connected, and the host device supplies power to the remote device through these two wires. The analog signals required for this remote device are generated. When the host provides a fixed supply shop to suppress the remote device, the remote device modifies the current component of this wire == to transmit the required analog signal. Host two =: Take the demodulated power signal current component as the outline ^ This demodulation material contains the electric power based on reading W, and the "filter ^" of the subsequent rate. The shown embodiment of 1238604 allows the loop current to vary without severely interfering with the supply voltage of the remote device. Communication signals can be exchanged between the host and the remote device. In the unidirectional communication architecture 5 in which the host device transmits digital control / data signals to the remote device, the host device performs voltage or current modulation on the voltage component or current component of the power signal of the wire pair and the required digital signal. The remote device demodulates the power signal modulated by the wire to the voltage or current to restore the required digital signal. In another one-way communication architecture where the remote device sends digital control / data signals to the host device, the host device provides a fixed supply voltage to the remote device. The current component performs current modulation. The host device then demodulates the power signal on the wire to modulate the current component to restore the desired digital signal. In the two-way communication architecture transmitted from the host to the remote device, the host device can adjust the voltage signal of the wire to indicate that the communication is from the host 15 to the remote device. The remote device decomposes and modifies the host signal from the power signal voltage on the wire pair. For the communication from the remote device to the host device, the remote device can perform current modulation on the current component of the power signal on the wire pair, and the host device provides a fixed supply voltage to the remote device. The above-mentioned electrical power, signal, and communication transmission technologies can be used in 20 measurement detector systems that have analog signals that are transmitted to the host device to be converted into the required units and processed further. This) capacitance, temperature, humidity, proximity, etc. The measurement probe and the test machine can be connected through two power lines to transmit analog measurement signals and two-way communication signals. Examples of digital signal exchanges shown include query probe 1238604 type, report status, uploading probe measurement constants, start and stop measurement contact exchange, and other similar functions. In order to have a more complete understanding of the present invention and its accompanying advantages, 5 points can be more easily understood by referring to the diagrams related to the following detailed description, where similar reference signs represent the same or similar elements, these The diagram is: Figure 1 is a high-level circuit diagram of a remote signal sensing device of the conventional art. Fig. 2A is a high-order circuit diagram of a first embodiment of a remote current sensing technology system according to the present invention. Fig. 2B is a high-order circuit diagram of a second embodiment of the remote current sensing technology system of the present invention. FIG. 3A is a flowchart showing the operation of the first embodiment of the remote current sensing technology method of the present invention. FIG. 3B is a flowchart showing the operation of the 152nd embodiment of the remote current sensing technology method of the present invention. FIG. 4A is a circuit block diagram showing a first exemplary application of the present invention. FIG. 4B is a circuit block diagram showing a second exemplary application of the present invention. Figure 5A is a flowchart showing the flow of communication signals between the host and the remote sensor device in Figure 4A. 20 Figure 5B is a flow chart showing the flow of communication signals between the host and the remote sensor device in Figure 4B. FIG. 6 is a circuit diagram of an embodiment of a preferred host / sensor system to which the technology of the present invention is applied. Fig. 7 is a flow chart showing the operation of transmitting the signal No. 1238604 between the host device and the remote sensor device in Fig. 6. [Embodiment] Detailed description of the preferred embodiment Next, the innovative remote current sensing technology and application will be explained in detail. It is to be understood that the present invention has been described using specific exemplary embodiments, and it must be understood that the embodiments described herein are used as examples, and the scope of the present invention is not limited to these embodiments. General Embodiment Now, the illustration will be described in detail. Figures 28 and 8 are high-level circuit diagrams of a system for implementing the remote flu detection system 10 of the present invention. As shown, the system 10 includes a remote device u connected to the host device 13 via a single pair of wires 12 including a first wire 12a and a second wire 12b. The host device 13 includes a voltage reference circuit 14 that generates a substantially constant first-voltage source 19a on the first electric wire 12a and a second constant-voltage second voltage source 19b that generates a constant quorum on the second electric wire 12b. Substantial 15 refers to the fact that the voltage potential supplied to the remote device through the wire pair is actually fixed to a small error range. In a preferred embodiment, the voltage reference circuit 14 includes a standard operational amplifier 15, a feedback resistor rf π is connected between the output of the operational amplifier 15 and the inverting input of the operational amplifier 15, and a voltage that will provide a reference voltage VR The operational amplifier circuit of source 20 connected to the non-inverting input 20 of the operational amplifier 15 is implemented. As is well known in the industry, standard operational amplifier circuits maintain zero voltage or virtual zero between their non-inverting and inverting inputs. In order to maintain a virtual zero between the non-inverting and inverting input terminals, the operational amplifier 15 adjusts the output voltage Vout so that the voltage drop across the feedback resistor RF 17 causes the inverting input terminal voltage of the operational amplifier 15 to correspond to the non-inverting of the operational amplifier 15 10 1238604 Input voltage. In the embodiment shown, the first voltage source 19a is connected to the inverting input terminal of the operational amplifier 15, and the second voltage source 19b is connected to the ground terminal of the host circuit. Therefore, because the control amplifier 15 is controlled to drive the junction point 19a in FIG. 5a to the voltage Vr regardless of whether the loop current changes, the reference voltage Vr (that is, Vs2 = vR) is mapped by the supply voltage να of the remote device 11. And keep it fixed (assuming that the serial resistance of the connection line 12a is negligible and the selected value of 2Vr must make the supply voltage VsuppLY of the host circuit to the operational amplifier 15 greater than VR, and VR must be large enough to drive at least the remote device static Sum of current, 10 maximum modulation current, and allowable error.) The ability to supply a substantial fixed supply voltage vs2 to the remote device 11 enables it to unidirectionally or bidirectionally transmit accurate AC or digits between the remote device 11 and the host device 13 signal. Specifically, because the supply voltage VS2 of the remote device is maintained at a fixed value, the precise AC or digital signal generated by a device can be transmitted by modulating the power ^ current component of the transmitting device and demodulating it at the receiving device. Change this power #current component. For example, in Figure 2a, the remote device 11 can generate a signal 21 that must be received and processed by the host device 13. In order to achieve this, the remote device can be combined with a current modulator 20 to modulate the loop current of the wire pairs 12a, 12b so that it is proportional to the remote measurement signal 21. As shown in the exemplary embodiment, the current modulator can be implemented by a single analog amplifier or digital buffer driving a resistive load connected to a power source or a ground. The change in current through this resistive load will be accurately reflected in the total supply current drawn by the remote sensor. The host device 13 similarly demodulates the power signal current components of the 19 pairs of paired wire pairs 12a, 12b with current demodulation to generate 1238604 a restored back-end signal 22. In the illustrated embodiment, the current demodulator of the host device 13 monitors the loop AC current at the output 18 of the operational amplifier 15. More specifically, because the supply voltage VS2 of the remote device 11 maintains a fixed value VR, the AC current modulation will be exhibited by the 5 ν〇υτ signal change at the output 18 of the operational amplifier 15 and the power signal modulation current on the wires 12a, 12b , So that the operational amplifier 15 adjusts the voltage VOUT of its output terminal 18 to maintain the virtual zero potential between the inverting and non-inverting input terminals. In this example, because the host amplifier is assembled in inverting mode, V0UT is inversely proportional to the loop current. In any case, the far-end signal can be restored by processing the VouT signal. An additional signal inversion step may be required during filtering and processing. FIG. 2B is a high-order circuit diagram of the remote current sensing technology system 301 alternative embodiment of the present invention. In the system 30, the remote device 31 is connected to the host device 33 via a single pair of wires 32 (including a first wire 32a and a second wire 32b). The host device 33 includes a voltage reference circuit 34 which generates a substantially constant 15th voltage source 39a on the first electric wire 32a and a substantially constant second voltage source 39b on the second electric wire 32b. Similarly, the voltage reference circuit 34 includes a standard operational amplifier 35, a feedback resistor RF 37 is connected between the output terminal 38 and the non-inverting input terminal of the operational amplifier 35, and a voltage source 36 providing a reference voltage vr is connected to the operational amplifier. The operational amplifier circuit of the inverting input terminal of 35 is implemented by 20 circuits. The virtual zero potential between the non-inverting and inverting input terminals of the operational amplifier 35 causes the non-inverting input terminal voltage of the operational amplifier 35 to reflect the reference voltage VR. The first voltage source 39a is connected to the node of the non-inverting wheel-in terminal of the operational amplifier 35, and the second voltage source 39b is connected to the ground terminal of the host circuit. Therefore, this reference voltage VR is mapped by the supply voltage of the primary device 31 (i.e., VS3 == Vr). In the embodiment shown in FIG. 1212604 2B, the host device 33 can generate the host signal 41 required for transmission to the remote device 31. To achieve this, the host device 33 can be assembled with a current modulator 40 to modulate the current component of the power signal of the wire pair 32a, 32b and the host signal 41. The remote device 31 similarly demodulates the current component of the power signal of five pairs of electric wire pairs 32a, 32b with 39 sets of current demodulation to generate a restored host signal 42. Figure 3A shows a first method 50 using the technology of the present invention. As shown in the figure, the method 50 starts from step 51. The host device generates and supplies a first substantially fixed supply voltage on the first wire connected to the remote device wire pair and 10 on the second wire connected to the remote device wire pair. The wire generates and supplies a second substantially fixed supply voltage. In step 52, the remote device generates a remote signal. In step 53, the remote device performs current modulation on the power signal current component of the single pair of wires and the remote signal. Finally, in step 54, the host device demodulates the electric signal current component of a single pair of wires to restore the far-end signal. 15 Figure 3B shows a second method 60 using the technology of the present invention. As shown, the method 60 begins at step 61, where the host device generates and supplies a first substantially fixed supply voltage on a first wire connected to a remote device wire pair and a second device on a second wire connected to the remote device wire pair. The wire generates and supplies a second substantially fixed supply voltage. In step 62, the host device generates a host signal 20. In step 63, the host device performs current modulation of the power signal current component of a single pair of wires with the host signal. Finally, in step 64, the remote device demodulates the power signal current component of a single pair of wires to restore the host signal. First Universal Application FIG. 4A shows a first exemplary application embodiment of the present invention. Specifically, FIG. 12A13 13A is a circuit diagram showing a system 100a for connecting a remote sensor 103a to the host device 10 through a single pair of wires 102 (including wires 102a and 102b). The present invention uniquely allows power to be transmitted from the host device 101a to the remote sensor device 103a, the measurement signal from the remote sensor device 103a to the host device 101a, and the host device through a single pair of wires 102 101a performs two-way communication with the remote sensor device 103a. The electrical performance host device 101a includes a power block 110, which includes a reference voltage and control for providing a substantially constant power signal voltage component on the wire pair 10 during unidirectional or bidirectional communication with a modulated current between the host device and the remote device.环 电路 115。 Circuit 115. Specifically, the reference voltage and control loop circuit 115 generates a first substantially constant voltage source 111 on the first wire 102a and a second substantially constant voltage source 112 on the second wire 102b. The actual quota means that the voltage level is maintained at a fixed level (allowing a slight error range) or only a slight change in a long period due to the signal frequency 15 drift. In a preferred embodiment, the reference voltage circuit 115 is implemented by an operational amplifier circuit, as shown in FIGS. 2A and 2B, where the first substantially constant voltage source 111 is connected to the reference voltage source VREF 114 and the second substantially constant voltage source 112 Connected to the host circuit ground 113. The remote sensor device 103a also includes a power block 140. The power block 20 140 includes first and second voltage source nodes 141 and 142. The first and second voltage source nodes 141 and 142 must be connected to an external voltage source (such as the first and second voltage sources 111 of the host device 101a) so that they can be used as voltage sources inside the sensor device 103. According to the present invention, the first end of the first wire 102a of the wire pair 102 is electrically connected to the first voltage source 111 in the host device 101a, and the second end is connected to the first voltage source node in the sensor device 103 141. The first end of the second wire 102b is electrically connected to the second voltage source 112 in the host device 101a, and the second end is connected to the second voltage source node 142 in the sensor device 103. As described in 5 above, in the preferred embodiment, the first voltage source 111 is a substantially constant voltage source, which is referred to as a reference voltage source VREF, and the second voltage source 112 is connected to the ground terminal 113 of the host circuit. Therefore, when connected in this manner, the voltage across the pair of wires 102 is Vref. In addition, 'in the illustrated function', a single pair of wires 1 supplies electric power PWR 104 10 having a voltage component Vpwr 105 and a current component Ipwr to the remote sensor device 103a. Measurement function The remote sensing device 103a includes a measurement signal processing block 150, and includes a measurement circuit 152 and a current modulator 154. The measurement circuit 152 senses or receives and processes the measurement 151 to generate a measurement signal 153 representing the measurement 151. The measurements of Model 15 include (but are not limited to) capacitance, temperature, humidity, and proximity. The measurement circuit 152 transmits a measurement signal 153 to the measurement signal current modulator 154. The measurement signal current modulator 154 adds a factor representing the measurement signal to the power circuit DC current composed of the wires 102a and 102b to perform current modulation on the measurement signal 153. 20 The host device 101a includes a measurement signal processing block 120, which includes a measurement signal current demodulator 121 and a measurement processing circuit 123. The measurement signal current demodulator 121 receives the modulated power signal PWR 104 current component Ipwr 106 on the wire pair 102, and will demodulate the measured signal component with the modulated current component Ipwr, and transmit the demodulation The signal 122 to the measurement processing circuit 15 1238604 and the circuit 123 are used for further processing and analysis. In the function described here, the operation of the single pair of wires 102 has transmitted the measured value 151 from the remote sensor device 103a to the host device 101a. Communication Function 5 In the preferred embodiment, the system 100a allows two-way communication. The two-way communication is achieved in the following manner: The remote sensor device 103a includes a communication block 160a, which includes a remote control circuit 165 and a communication interface 164 having a transmission circuit 163a and a reception circuit 163b. The communication block 160 further includes a remote communication signal current modulator 10 167 and a host communication signal voltage demodulator 161a. The remote control circuit 165 may include a processor, a memory, a sensor, and / or any other component or device that can generate remote communication data. The communication interface 164 includes standard circuits, which may include encoding, formatting, and other functions that are prepared by the remote control circuit 165 to generate the far-end 15 communication signals 166 that have been transmitted to the host device 101a. The transmission circuit 163a outputs a remote communication signal 166 representing the remote communication data. The remote communication signal current modulator 167 performs a current modulation of the current component IPWR 106 of the power signal PWR 104 of the wire pair 102 and the remote communication signal 106. The host device 101a includes a communication block 130a, which includes a host control circuit 131 and a communication interface 132 having a transmission circuit 133a and a reception circuit 133b. The communication block 130a further includes a remote communication signal current demodulator 138 and a host communication signal voltage modulator 135a. FIG. 5A shows an exemplary operation of the system 100a in FIG. 4A. In an embodiment, the remote sensor device 103a generates the remote communication data transmitted from step 71a to the host device 16 1238604 device 101a. In step 72a, the remote sensor device 103a processes the outbound communication > data to generate a remote communication signal 166 representing the remote communication data. In step 73a, the remote communication signal is used to modulate the current component P10 of the power signal PWR 104 on the wire pair 102, and the voltage component VPWR 105 of the power signal 5 PWR 104 remains fixed. On the host side, the remote communication signal current demodulator 138 demodulates the remote communication signal 139 from the current component IpwR 106 of the power signal PWR 104 in step 76a, and the voltage component vPWR 105 of the power signal PWR 104. Stay fixed. In step 77a, the host device i0ia restores the remote communication data from the demodulated remote communication signal 139. The host device 101a generates host communication data transmitted to the sensor device 103a in step 78a. In step 79a, the host device 101a processes the host communication data to generate a host communication signal 134 representing the host communication data. In step 80a, the host device 101a adjusts the voltage component VPwr 105 of the power signal 15 PWR 104 on the wire pair 102 to the host communication signal 134. During voltage modulation communication, the loop current does not need to remain fixed. When the host modifies the voltage VR and changes the voltage supplied to the remote device, the loop current may change but will not have a negative effect on the circuit performance. In the voltage modulation mode, even if the loop current changes at the same time, the receiving device senses the amount of change in the voltage 20. At the remote sensor device 103a side, in step 74a, the host communication signal voltage demodulator 161a demodulates the host communication signal from the voltage component VPWR 105 of the power signal PWR 104 on the wire pair 102. In step 75a, the remote sensing device 103a restores the 1212604604 host communication data from the demodulated host communication signal 139. The second universal application, the 4B illustration, is an example application of the present invention. Specifically, FIG. 4B is a circuit diagram showing the system 100b. This system is different from the circuit of FIG. 4A except that the host communication signal is transmitted from the host device 5 lOlb to the remote sensor device. System 100a is the same. To achieve this, the host communication signal voltage regulator 135a in the host device communication block 130a of the host device 101a is replaced by the host communication signal current modulator 135b in 13% of the host device communication block of the host device 101b. Similarly, the host communication signal voltage demodulator 161a in the remote sensor device communication block 160a at the remote sensor device 103a of the remote sensor device 103a is at the remote sensor device 103b of the remote sensor device 103b. The device communication block 160b is replaced by a host communication signal current demodulator 161b. The rest of the circuit is the same as the embodiment shown in Fig. 4A, and its detailed description can be found in the description related to Fig. 4A. 15 Figure 5B shows the exemplary operation of system 100b in Figure 4B. In an embodiment, the remote sensor device 103b generates the remote communication data transmitted to the host device 101b by step 71b. In step 72b, the remote sensor device 103b processes the remote communication data to generate a remote communication signal 166 representing the remote communication data. In step 73b, the remote communication signal is used to modulate the current component iPWR 106 of the power signal PWR 104 on the wire pair 20 102, and the voltage component Vpwr 105 of the power signal PWR 104 remains fixed. On the host side, the remote communication signal current demodulator 138 demodulates the remote communication signal 139 from the current component iPWR 106 of the power signal PWR 104 in step 76b, and the voltage component of the power signal PWR 104 VPWR 105 dimension 18 1238604 remains fixed. In step 77b, the host device 101 restores the remote communication data from the demodulated remote communication signal 139. The host device 101 generates host communication data transmitted to the sensor device 103 in step 78b. In step 79b, the host device 101 processes the host 5 communication data to generate a host communication signal 134 representing the host communication data. In step 80b, the host device 101 performs current modulation on the current component Ipwr 1 of the power signal PWR 104 on the wire pair 102 and the host communication signal 134. At the remote sensor device 103 side, in step 74b, the host communication signal voltage demodulator 161b demodulates the host communication signal from the current component Ipwr 1 of the power signal PWR 104 on the wire pair 102. In step 75b, the remote sensor device 103 restores the host communication data from the demodulated host communication signal 139. Exemplary Embodiment FIG. 6 considers a host / sensor system 200 of a preferred embodiment. The system 15 200 includes a remote device 203 connected to the host device 201 through a single pair of wires 202 (including the first and second wires 202a and 202b). The host device 201 includes a reference voltage circuit 240, which includes a feedback resistor RF 244 coupled between the output terminal 243 and the inverting input terminal 242, and a standard operational amplifier 245 that couples the reference voltage V to the non-inverting input terminal 241. The voltage reference circuit 240 operates to generate a supply voltage VRD SUPPLY and GND for the remote device 203. During the sensor-to-host communication, the voltage reference circuit 240 also operates to supply a substantially fixed supply voltage VRD_SUPPLY to the remote device 203. Specifically, in this embodiment, the wire 202a is connected to the positive supply voltage at the inverting input terminal 242 of the operational amplifier 245 in the host device 201, and operates at a positive supply voltage in the remote device 203 due to 19 1238604. Similarly, the electric wire 202b is connected to the negative (or ground) supply voltage 2 in the host device 201, and thus operates in the remote device 203 with the negative (or ground) supply voltage. In the embodiment shown here, the host device 201 is also configured to transmit digital 5 communication signals to the remote sensor device 203. To this end, the host device 201 includes a processor 27 which generates digital host data 281. The encoder 282 receives and encodes the digital host data 281 to generate a serial digital bit string HOST_DATA 283. Encoder 282 may include circuits for parallel-to-serial conversion, error detection / correction, packetization, structuring, and preparation of digital host 10 data for serial transmission. The comparator 286 receives the serial digit string HOST_DATA 283 from the first input terminal 284 and the reference voltage ^^ "generated by the voltage source 28S at the second input terminal 285. The reference voltage Vref i is roughly set to half of the entire voltage range of the encoder 282 serial input pins (for example, when the encoder output range is 0 to 3. The reference voltage at 3V is approximately 1. 6V). The gain of the comparator 15 286 is preferably 1/10 of the supply voltage (e.g. 0. 3). Therefore, if the incoming serial bit string HOST_DATA 283 is logic low or 0V, the voltage VH0ST_DATA of the output 287 of the comparator 286 will be logic low (or Vhost_data is about 0V), so this voltage will be lower than the reference Voltage VREFj. If the incoming string bit string HOST_DATA 283 value is logic high 20 or 3. At 3V, the voltage VH0ST_DATA at the output 287 of the comparator 286 will be logic high (or VH0STjmta is about 0. 3V, which is 3. 3V times 0. 1), so the voltage at the first input terminal 284 of the comparator 286 will be higher than the reference voltage VrEFj at the second input terminal. An output terminal 287 of the comparator 286 is connected to an input terminal of the summing means 289. A voltage source 246 that continuously supplies the reference voltage VREF is connected to the other wheel-in terminals of the summing device 20 1238604 289. When the host device 201 is configured to transmit digital host data to the remote device 203, the digital host data at the output 287 of the comparator 286 will be added to the voltage component VPWR 205 of the power signal PWR 204 on the wire pair 202 (then adjusted change). The output of the summing device 289 is VREF + 5 VH0ST DATA, and the range is 3. 3V to 3. 6V). Therefore, the supply voltage Vrd_supply of the terminal device 203 is sufficient to activate the remote device 203 and change above the minimum acceptable voltage threshold for a logic high signal. Therefore, the modulation of the voltage supply will not adversely affect the digital circuit 220 of the remote device 203. 10 In the illustrated embodiment, the remote device 203 includes an analog circuit 210 and a digital circuit 230. The analog circuit 210 implements an active amplifier circuit to amplify the AC signal AC-IN 208 to increase the noise ratio (SNR) and reduce the interference capacitance effect. The AC-IN shown in the example is a current signal; however, it must be understood that a voltage source and series resistance can be used to achieve the same function. The amplified current signal of the output node 217 of the amplifier 215 will be transmitted to the host device 201. In this field, a technician can easily use many alternative circuits to achieve this amplification effect. In the illustrated embodiment, the amplifier 215 is a standard operational amplifier state, such as iTL72, manufactured by Texas Industrial in Dallas, Texas diodes 20 and 211 are standard Shixi small-signal diodes, and diode 219 is 7 ^ Said a monopolar body. Resistors 2π and 214 are 100K ohm resistors and resistors 216 and 218 are 1M ohm and 464 ohm resistors, respectively. The values of these components can be varied to optimize the noise ratio and dynamic range of a particular measurement application. In the embodiment, the amplifier 215 drives the load R2 218. The amplifier 215 21 1238604 has a first power input PWR + connected to the remote device 203 positive supply voltage VRD_SUPPLY or the wire 202a. The amplifier 215 has a second power input PWR · connected to the negative supply voltage (GND) of the remote device 203 or the wire 202b. The AC signal AC_IN 208 is received by the inverting input terminal of the amplifier 215 and the bias reference signal VAMP REF generated at the connection points of the resistors 213 5 and 4 is received by the non-inverting input terminal of the amplifier 215. The voltage Vamp_out of the node 217 at the output terminal of the amplifier 215 reflects the difference between the AC input signal AC_IN 208 and the amplifier reference signal Vamp_ref. Therefore, the amplifier output voltage VAMP0UT changes as the AC input signal AC_IN 208 changes. The amplifier 215 drives the voltage VAMP_0UT through the resistor 10 R2 218 and is inversely proportional to the AC input signal AC_IN 208. (The inverse relationship is due to the topology of the inverting amplifier). When the value of the input signal AC_IN 208 is DC or does not exist, there is no need to pull extra current through the power feeding loop. However, when the value of the input signal AC_IN 208 causes the amplifier 215 to output near the VAMP 0UTS static reference voltage vAMP REF (usually one and a half of the 15 voltage supplied by the amplifier), the power feed lines 202a and 202b must pull up the extra current through the power circuit. This additional loop current is directly proportional to the amplified 彳 § current flowing through the load resistor 218. Therefore, the current flowing through the power circuit wires 202a and 202b varies according to the AC input signal ACjn 208. Because during the sensing-to-host communication, the host device 201 supplies a fixed fixed supply of 20 volts (Vrd-supply = Vpwr) to the remote device 203 (that is, between the wires 202a and 202b), the AC input changes The signal AC-IN 208 operates to modulate the current component of the power signal PWR204 on the wire pair 202 without affecting the supply voltage VRD_SUPPLY of the remote device 203. This ensures that the digital and analog circuits powered by the host Vrd_supply will not be adversely affected. 22 1238604 Referring now to the voltage reference circuit 240 on the host device 201, when the operational amplifier 245 attempts to maintain its inverting and non-inverting input terminals 241 and 242 to a virtual zero potential, the voltage v0UT of the output terminal 243 of the operational amplifier 245 varies The current of the wire 202a is changed (because the current component jpwR of the electric power number PWR on the electric wire pair 202 is adjusted by the remote device 203 to the electric wire pair 202). Therefore, the change of ν〇υτ reflects the modulation result of the far-end sensing data and the power signal PWR 205 current component IPWR 206. Or other suitable filters that will only pass frequencies in the required range). Operational amplifier 245 and BFP250 work together to effectively demodulate (or restore) the remote analog sensor data from the power signal of wire pair 202. The restored analog sensor signal 252 is then processed by a measurement calculation circuit 260. Digital communication between the host device 201 and the remote device 203 is also possible. To achieve this, the remote device 203 includes at least 15 digital circuits 220 that implement a communication interface. In the illustrated embodiment, the communication interface 220 is a serial interface, which generally includes all functions of preparing, making, transmitting, receiving, and restoring digital signals. As is well known in the industry, it includes amplifier circuits, sampling and holding circuits, and frame detection circuits. And tandem-parallel and / or parallel_tandem conversion. The communication interface 220 may further include an error detection / correction circuit according to a communication protocol, and an instruction packet extraction circuit. These functions can be implemented in Figure 6; however, if they are not clearly marked in Figure 6, it must also be understood that these functions will be included when the host and the remote device need to communicate correctly (and vice versa then the remote A specific implementation of the sensor device 203 digital circuit 22. The digital circuit 220 includes a host device 23 1238604 containing a comparator 236 and a decoder 238. The comparator 236 couples its first input 234 (coupled to a wire) 202a) The voltage is compared with the reference voltage Vref 3 of the second input terminal 235. The reference voltage VREF ”is roughly set to (VR + VH0ST DATA) / 2 (for example, approximately (3. 3V + 0. 3V) / 2 or 1. 8V). The comparator 236 is preferably characterized by a unity gain. 5 Therefore, if the supply voltage VrD_supply has been adjusted to be lower than vREF_3, the voltage 287 at the output terminal 287 of the comparator 286 will be a logic low (or approximately 0V). If the incoming HOST_DΑΤΑ 283 serial digits are logic high or higher than VREF_3, the voltage at the output 287 of the comparator 286 will be logic high (or approximately 3.3V). The decoder processes the digital bit string at the output 287 of the comparator 286 and formats the restored host data 239 into a format suitable for processing by the sensor processor 230. Therefore, the host data (which may include encoded instructions) is transmitted from the host device 201 to the remote sensor device 203. The remote sensor device 203 is also configured to transmit data to the host device 201. In this regard, the processor 230 generates a number of 15-bit control / data # numbers to be transmitted to the host device 201 (hereinafter referred to as "digital sensor data"). The processor 240 may be implemented by one or more of the following components: a microprocessor, a microcontroller, an ASIC, an FPGA, a digital state machine, and / or other digital circuits. In the illustrated embodiment, the processor 230 internally converts digital sensor data from a parallel format to a serial bit string and outputs it to the serial output pin 233 of the processor. Electrical resistance 228 is coupled between the tandem output pin 233 and the positive power feeding line 202 &. -In general, if the output pin 233 can be lowered and a sufficient current is supplied, the resistor 228 can be connected to a positive or negative power feeding node. The implementation shown is compatible with an open collector output that limits current reduction. Therefore, when the driving logic is low, connecting the resistor to the positive power feed terminal will increase the output terminal 233 to supply 24 1238604 current. The power (Vcc) input pin 231 of the process 230 is connected to the positive supply voltage of the remote device wire 202a, and the ground (gnd) input pin 232 is connected to the negative (or ground) supply voltage of the remote device wire 202b. In the embodiment, the processor 230 outputs the serial digital sensor data to the pin 233 in the bit string SENSOR_DATA format 5 to drive the current Ird flowing through the resistor 228. When the digital value output to pin 233 is logic, the output voltage of pin 233 is approximately equal to the positive power feed voltage, so there is no need to increase the extra current through the power circuit. However, when the value of the digital 7L output to the pin ⑶ is logic 0, the output voltage value of the pin 233 must be pulled to the ground potential 10 so that k becomes an extra current in the power supply loop through the resistor 228. Because the remote clothing is set to 7, the voltage Vrd-supply and GND should be deflected. During the sensor-host communication, the voltage reference circuit 24 of the host I is set to 201 to maintain a fixed value. The additional current consisting of the wires 202a and 202b connected to the host device 201) causes the load current flowing through the resistor 2 8 8 to be a I5 logic potential switch. Therefore, the amount of current 1 flowing through the resistor US will change according to the logic 230 or logic 1 of the processor 230. The power component PWR 204 on the wire pair 202 is supplied by the host device 201. The voltage component VPWR 205 is a fixed value 'digital sensor data bit string sens — it will effectively interact with the power signal on the wire pair 202. The current component is modulated. 20 The host & device 201 includes a digital sensor data restoration circuit. In this regard, the host device 201 includes a comparator 264 and a decoder 265. The comparator 264 compares its first input creep 261 (coupled to the operational amplifier 245 output terminal 243) with the voltage V0UI ′ and its second round-in terminal 262 reference voltage VREF_2. The reference voltage vREF-2 is roughly set to (Vr + ν · —with) / 2 (for example, approximately (33v + 25 1238604 0-3V) / 2 or 1. 8V). The comparator 264 is preferably characterized by a unity gain. Therefore, if the voltage 263 at the output 263 of the comparator 264 is lower than Vref_2, the voltage at the output 263 of the comparator 264 will be logic low (or approximately). If the voltage V0UT at the output terminal 263 of the comparator 264 is higher than VREF_2, the voltage at the output terminal 263 of the comparator 264 will be logic high (or approximately 3 · 3ν). The decoder 265 processes the digital bit string of the output terminal 263 of the comparator 264 and formats the restored sensor data 266 into a format suitable for processing by the sensor processor 230. Therefore, the digital sensor data 逆 k inverse sensor set 203 is transmitted to the host device 201. FIG. 7 is a flow chart showing the operation of the number transmission between the host device 201 and the remote sensor device 10 203 in FIG. 6. As shown in the figure, the host device 201 requires the remote sensor device to identify itself in the step of moving. To achieve this, the host device 201 generates the host data including the number 7 for the sensor device processor 23 and holds the host data HOST-DATA 283, as well as the power # 2 of the electric wire 202a "202b. The host information h〇st_data 283 is used for voltage regulation. In step 304, the 'host device 201 provides a substantially constant voltage source to the remote device 203. In step 306, the' remote sensor device 203 responds to the host with its identified identity. Clothing set 201. To achieve this, the processor extracts identification information and / or category data from the memory (not shown in the figure) and converts it into a serial digital bit string SENSOR at the serial output pin 233. —DATA, whose output is adjusted with current h. The host breaks 201 to verify the identification information in step 308. Sighs that the identification information is valid, the host device 201 in step 310 26 1238604 The sensor device processor 230 uses the commanded digital host data HOST_DATA 283 and adjusts the voltage with the power signals of the wires 202a and 202b to instruct the remote sensor device 203 to measure the host device 201 Then in step 312 Its transmission circuit is closed to provide a substantially constant voltage source to the remote device 203. The remote sensor device 203 then performs an analog measurement in step 314 and adjusts the loop current in step 316. The host device 201 is switched from the electrical wire This power modulation signal of 202 is demodulated and demodulated. Although the preferred embodiment of the present invention is disclosed for demonstration purposes, these 10 techniques can be variously modified, added or deleted in the industry. Without departing from the scope and spirit of the invention disclosed in the scope of the following patent applications. Other benefits or applications of the invention disclosed herein will become more apparent after a certain period of time. [Simplified illustration of the drawing] Figure 1 shows the remote end of the conventional art High-order circuit diagram of a signal sensing device. Figure 2A is a high-order circuit diagram of a first embodiment of the remote current sensing technology system of the present invention. Figure 2B is a diagram of a second embodiment of the remote current sensing technology system of the present invention. High-order circuit diagram. Fig. 3A is a flowchart showing the operation of the twentieth embodiment of the remote current sensing technology method of the present invention. Fig. 3B is a diagram showing the use of the present invention. The operation flowchart of the second embodiment of the remote current sensing technology method. Figure 4A is a circuit block diagram showing a first example application of the present invention. Figure 4B is a circuit block diagram showing a second example application of the present invention. 27 1238604 Figure 5 A is a flowchart showing the flow of communication signals between the host and the remote sensor device in Figure 4 A. Figure 5B is a flow of the communication signals between the host and the remote sensor device in Figure 4B Operation flow chart. 5 FIG. 6 is a circuit diagram of an embodiment of a preferred host / sensor system to which the technology of the present invention is applied. FIG. 7 is a diagram showing the operation of signal transmission between the host device and the remote sensor device in FIG. 6 flow chart. [Representative symbol table of main components of the figure] 3, 11 ... Remote device 135a ... Host communication signal voltage adjustment 4, 13, 201 ... Host device transformer 6, 17 ... Feedback resistor 138 ... Remote communication signal current Demodulation 7, 15 ... Operational amplifier transformer 9 ... Filter, wave 152 ... Measurement circuit 14, 115 ... Voltage reference circuit 15 4 ... Measurement signal current modulator 16 ... Voltage source 161a ... Host communication Signal voltage solution 19 ... Signal filter modulator 20, 40 ... Current controller 165 ... Control circuit 21 ... Remote signal 167 ... Remote communication signal current modulator 22 ... Reduced signal 203 ... Remote sense Detector device 39 ... current demodulator 230 ... processor 121 ... measurement signal current modulator 238 ... decoder 123 ... measurement processing circuit 260 ... measurement calculation 131 ... digital processing circuit 265 ... Decoders 132, 164 ... Communication interface 270 ... Host processor 28

Claims (1)

ί Χι^%- 一 ' V ·· Λ ....... ! 师脚屮; 94.03.25. L—:!二―」ii一里^飽ί〇 12〇6號申請案申請專利範圍修正本 拾、申請專利範圍:ί Χι ^%-一 'V ·· Λ .......! Teacher's footsteps; 94.03.25. L— :! Two ― “ii 一 里 ^ 满 〇 〇〇〇〇〇〇〇〇〇〇 Amend the scope of this patent and patent application: 1·種經由單對電線耦合至一遠端裝置之一主機裝置,其 中該單對電線包含第一條電線與第二條電線,該遠端裝 置匕έ用以產生第一遠端U虎之第一遠端信號產生電 路以及當該第一遠端信號被傳送至該主機裝置時用以 將該單對電線上-電力信號之電流成分與該第一遠端 h就做調變之第一遠端電流調變器,該主機裝置包含: 甩壓苓考與控制迴路電路,其在該第一遠端信號 傳ϋ至忒主機裝置期間產生並在該單對電線上供應一 實質定額之該電力信號電壓成分;以及 、、,第一主機電流解調變器,用以在該第一遠端信號傳 1該主機裝置期間從該單對電線上該電力信號之該 電流成分將該第一遠端信號解調變。 2·如申請專利範圍第i項所述之主機裝置,其中該電壓參 考與控制迴路電路包含:1. A host device coupled to a remote device via a single pair of wires, wherein the single pair of wires includes a first wire and a second wire, and the remote device is used to generate a first remote U tiger A first remote signal generating circuit and a first component for modulating the current component of the power signal on the single pair of wires and the first remote h when the first remote signal is transmitted to the host device; A remote current modulator, the host device includes: a pressure test and control loop circuit, which is generated during the transmission of the first remote signal to the host device and supplies a substantially fixed amount of the A power signal voltage component; and, a first host current demodulator for transmitting the first current signal of the power signal from the single pair of wires during the first remote signal transmission to the host device The far-end signal is demodulated. 2. The host device as described in item i of the patent application scope, wherein the voltage reference and control loop circuit includes: 免壓產生裔,在該第一遠端信號傳送至該主機裝 置期間產生一實質定額參考電壓; 運算放大H,其第-輸人端轉合以接收該參考電 壓1二輸人端耗合至該第-條電、線、_迴授電阻耗合 、::輪出端與该第二輸入端之間以及輸出反映流經該 =電阻電流之運算放大II輸出電壓之輸出端,其中該 =算放大器用以將該第—輸人端接收之該參考電壓= 製至該第二輸入端;以及該第一主機電流解調變器包 29 個濾波器,對該運算放大器輸出 還原該第一遠端信號。 3·如申請專利範圍第2項所述之主機裝置,其更包含. 主機信號產生電路,用以產生—主機信號匕;3 · -主機電流調變H,在該主機信號 * :期:’當蝴參考與控制迴路電路在該單 供應實質定額之該電力信號電塵成分時用以將該 電線上該電力信號之電流成分與魅機信號做調變; 其中該遠端裝置包含·· 10 一料電流觸變H,在該主機信號傳送至 I置期間從該單對電線上該電力信號之該 該主機信號解調變。 刀將 15 4·如申請專利範圍第!項所述之主機裝置,其更包含: 主機信號產生電路,用以產生一主機信號,· 一主機電流調變器,在該主機信號傳送至該遠端裳 置期間,當該電壓參考與控制迴路電路在該單對電線: =應實質定額之該電力信號電壓成分時用以將:單對 電線上該電力信號之電流成分無主機錢做調變; 其中該遠端裝置包含: 20 電壓信號過濾以The voltage-free generation generates a substantially fixed reference voltage during the transmission of the first remote signal to the host device; the operational amplifier H, whose first input terminal is switched to receive the reference voltage, and the second input terminal is consumed to The first-line, line, _feedback resistance consumption :: between the wheel output end and the second input end, and the output reflects the output terminal of the operational amplifier II output voltage flowing through the = resistor current, where the = The arithmetic amplifier is used to control the reference voltage received by the first input terminal to the second input terminal; and the first host current demodulation converter packs 29 filters to restore the output of the operational amplifier to the first Far-end signal. 3. The host device as described in item 2 of the patent application scope, which further includes a host signal generating circuit for generating a host signal dagger; 3 ·-host current modulation H, at which the host signal *: period: ' When the butterfly reference and control loop circuit supplies a substantial amount of the electric signal electric dust component of the electric signal, it is used to modulate the electric current component of the electric signal and the charm signal on the electric wire; wherein the remote device includes ·· 10 A material current is thixotropic H, which is demodulated from the host signal of the power signal on the single pair of wires during the transmission of the host signal to I. Swordsmanship 15 4 · As the scope of patent application! The host device described in the above item further includes: a host signal generating circuit for generating a host signal, and a host current modulator, when the host signal is transmitted to the remote server, when the voltage reference and control The loop circuit is used when the single pair of wires: = the voltage component of the power signal that should be substantially fixed: the current component of the power signal on the single pair of wires is modulated without host money; where the remote device contains: 20 voltage signals Filter by 一遠端電流解調變器,在該主機信號傳送至該遠端 裝置期間從該單對電線上該電力信號之該電流成分: 該主機信號解調變。 5·如申晴專利範圍第1項所述之主機裝置,其中: 该遠端裝置包含用以產生第二遠端信號之第二遠 30A remote current demodulator converts the current component of the power signal from the single pair of wires during the host signal transmission to the remote device: the host signal is demodulated. 5. The host device according to item 1 of Shen Qing's patent scope, wherein: the remote device includes a second remote device for generating a second remote signal 30 端信號產生電路以及當該第二遠端信號傳送至該主機 裝置期間用以將該單對電線上該電力信號之該電流成 分與該第二遠端信號做調變之第二遠端電流調變器;以 及 5 該主機裝置包含: 第二主機電流解調變器用以在該第二遠端信號傳 送至該主機裝置期間從該單對電線上該電力信號之該 電流成分將該第二遠端信號解調變;Terminal signal generating circuit and a second remote current regulator for modulating the current component of the power signal on the single pair of wires and the second remote signal when the second remote signal is transmitted to the host device And the host device includes: a second host current demodulator for transmitting the second remote signal from the current component of the power signal on the single pair of wires during the second remote signal transmission to the host device; End signal demodulation; 其中該電壓參考與控制迴路電路在該第二遠端信 10 號傳送至該主機裝置期間在該單對電線上供應一實質 定額之該電力信號電壓成分。 6.如申請專利範圍第5項所述之主機裝置,其中該電壓參 考與控制迴路電路包含: 一電壓產生器,在該第一遠端信號傳送至該主機裝 15 置期間產生一實質定額參考電壓;The voltage reference and control loop circuit supplies a substantial amount of the power signal voltage component on the single pair of wires during the second remote signal 10 is transmitted to the host device. 6. The host device according to item 5 of the patent application scope, wherein the voltage reference and control loop circuit includes: a voltage generator that generates a substantial fixed reference during the first remote signal transmission to the host device Voltage; 一運算放大器,其第一輸入端耦合以接收該參考電 壓、第二輸入端耦合至該第一條電線、一迴授電阻耦合 於該輸出端與該第二輸入端之間以及輸出反映流經該 迴授電阻電流之運算放大器輸出電壓之輸出端,其中該 20 運算放大器用以將該第一輸入端接收之該參考電壓複 製至該第二輸入端; 該第一主機電流解調變器包含: 一個濾波器,對該運算放大器輸出電壓信號過濾以還 原該第一遠端信號以及該第二主機電流解調變器包含: 31 一個濾波器,對該運算放大器輸出電壓信號過濾以 還原該第二遠端信號。 7. 如申請專利範圍第3項所述之主機裝置,其中: 該遠端裝置包含用以產生第二遠端信號之第二遠 5 端信號產生電路以及當該第二遠端信號傳送至該主機 裝置期間用以將該單對電線上該電力信號之該電流成 分與該第二遠端信號做調變之第二遠端電流調變器;以 及 該主機裝置包含·· 10 第二主機電流解調變器用以在該第二遠端信號傳 送至該主機装置期間從該早對電線上該電力信號之該 電流成分將該第二遠端信號解調變; 其中該電壓參考與控制迴路電路在該第二遠端信 號傳送至該主機裝置期間在該單對電線上供應一實質 15 定額之該電力信號電壓成分。 8. 如申請專利範圍第7項所述之主機裝置,其中該電壓參 考與控制迴路電路包含: 一電壓產生器,在該第一遠端信號傳送至該主機裝 置期間產生一實質定額參考電壓; 20 一運算放大器,其第一輸入端耦合以接收該參考電 壓、第二輸入端耦合至該第一條電線、一迴授電阻耦合 於該輸出端與該第二輸入端之間以及輸出反映流經該 迴授電阻電流之運算放大器輸出電壓之輸出端,其中該 運算放大器用以將該第一輸入端接收之該參考電壓複 32 製至該第二輸入端; 該第一主機電流解調變器包含: 一個濾波器,對該運算放大器輸出電壓信號過濾以 還原該第一遠端信號以及該第二主機電流解調變器包 含: 一個濾、波器,對該運算放大器輸出電壓信號過滤以 還原該第二遠端信號。 9. 如申請專利範圍第1項所述之主機裝置,其更包含: 主機信號產生電路,用以產生一主機信號; 一主機電壓調變器,在該主機信號傳送至該遠端裝 置期間用以將該早對電線上該電力信號之電壓成分與 該主機信號做調變; 其中該遠端裝置包含: 一遠端電壓解調變器,在該主機信號傳送至該遠端 裳置期間從該早對電線上該電力信號之該電壓成分將 該主機信號解調變。 10. 如申請專利範圍第9項所述之主機裝置,其中該電壓參 考與控制迴路電路包含: 一電壓產生器,在該第一遠端信號傳送至該主機裝 置期間產生一實質定額參考電壓; 一運算放大器,其第一輸入端耦合以接收該參考電 壓、第二輸入端耦合至該第一條電線、一迴授電阻耦合 於該輸出端與該第二輸入端之間以及輸出反映流經該 迴授電阻電流之運算放大器輸出電壓之輸出端,其中該 I23M0#An operational amplifier having a first input terminal coupled to receive the reference voltage, a second input terminal coupled to the first wire, a feedback resistor coupled between the output terminal and the second input terminal, and an output reflection flowing through An output terminal of the operational amplifier output voltage of the feedback resistor current, wherein the 20 operational amplifier is used to copy the reference voltage received by the first input terminal to the second input terminal; the first host current demodulator includes : A filter that filters the output voltage signal of the operational amplifier to restore the first remote signal and the second host current demodulator includes: 31 a filter that filters the output voltage signal of the operational amplifier to restore the first Two far-end signals. 7. The host device according to item 3 of the patent application scope, wherein: the remote device includes a second remote 5-terminal signal generating circuit for generating a second remote signal and when the second remote signal is transmitted to the second remote signal A second remote current modulator for modulating the current component of the power signal and the second remote signal on the single pair of wires during the host device; and the host device includes a second host current of 10 A demodulator is used to demodulate the second remote signal from the current component of the power signal on the early pair of wires during the transmission of the second remote signal to the host device; wherein the voltage reference and control loop circuit During the transmission of the second remote signal to the host device, a substantial 15 wattage of the power signal voltage component is supplied on the single pair of wires. 8. The host device according to item 7 of the scope of patent application, wherein the voltage reference and control loop circuit includes: a voltage generator that generates a substantially fixed reference voltage during the first remote signal transmission to the host device; 20 An operational amplifier having a first input coupled to receive the reference voltage, a second input coupled to the first wire, a feedback resistor coupled between the output and the second input, and an output reflection current An output terminal of the operational amplifier output voltage through the feedback resistance current, wherein the operational amplifier is used to copy the reference voltage received by the first input terminal to the second input terminal; the first host current is demodulated The filter includes: a filter that filters the output voltage signal of the operational amplifier to restore the first remote signal and the second host current demodulator includes: a filter and a wave filter that filter the output voltage signal of the operational amplifier to Restore the second remote signal. 9. The host device according to item 1 of the scope of patent application, further comprising: a host signal generating circuit for generating a host signal; a host voltage regulator used during the transmission of the host signal to the remote device To modulate the voltage component of the power signal on the wire with the host signal; wherein the remote device includes: a remote voltage demodulator, which is transmitted from the host signal to the remote server during transmission The voltage component of the power signal on the early pair wire demodulates the host signal. 10. The host device according to item 9 of the scope of patent application, wherein the voltage reference and control loop circuit includes: a voltage generator that generates a substantially fixed reference voltage during the first remote signal transmission to the host device; An operational amplifier having a first input terminal coupled to receive the reference voltage, a second input terminal coupled to the first wire, a feedback resistor coupled between the output terminal and the second input terminal, and an output reflection flowing through The output terminal of the operational amplifier output voltage of the feedback resistor current, wherein the I23M0 # 運算放大器用以將該第一輸入端接收之該參考電壓複 製至該第二輸入端;以及該第一主機電流解調變器包 含: 一個濾波器,對該運算放大器輸出電壓信號過濾以 5 還原該第一遠端信號。 11. 如申請專利範圍第9項所述之主機裝置,其中:The operational amplifier is configured to copy the reference voltage received from the first input terminal to the second input terminal; and the first host current demodulation converter includes: a filter for filtering the output voltage signal of the operational amplifier to restore by 5 The first remote signal. 11. The host device as described in item 9 of the scope of patent application, wherein: 該遠端裝置包含用以產生第二遠端信號之第二遠 端信號產生電路以及當該第二遠端信號傳送至該主機 裝置期間用以將該早對電線上該電力信號之該電流成 10 分與該第二遠端信號做調變之第二遠端電流調變器;以 及 該主機裝置包含: 第二主機電流解調變器用以在該第二遠端信號傳 送至該主機裝置期間從該單對電線上該電力信號之該 15 電流成分將該第二遠端信號解調變;The remote device includes a second remote signal generating circuit for generating a second remote signal, and the current of the power signal on the early pair of wires is generated when the second remote signal is transmitted to the host device. 10 second remote current modulator that modulates the second remote signal; and the host device includes: a second host current demodulator for transmitting the second remote signal to the host device Demodulating the second remote signal from the 15 current component of the power signal on the single pair of wires; 其中該電壓參考與控制迴路電路在該第二遠端信 號傳送至該主機裝置期間在該單對電線上供應一實質 定額之該電力信號電壓成分。 12. 如申請專利範圍第11項所述之主機裝置,其中該電壓參 20 考與控制迴路電路包含: 一電壓產生器,在該第一遠端信號傳送至該主機裝 置期間產生一實質定額參考電壓; 一運算放大器,其第一輸入端耦合以接收該參考電 壓、第二輸入端耦合至該第一條電線、一迴授電阻耦合 34 於該輸出端與該第二輸入端之間以及輸出反映流經該 迴授電阻電流之運算放大器輸出電壓之輸出端,其中該 運算放大器用以將該第一輸入端接收之該參考電壓複 製至該第二輸入端; 該第一主機電流解調變器包含: 一個濾波器,對該運算放大器輸出電壓信號過濾以 還原該第一遠端信號以及該第二主機電流解調變器包 含: 一個濾波器,對該運算放大器輸出電壓信號過濾以 還原該第二遠端信號。 13. —種經由單對電線耦合至一遠端裝置之一主機裝置,其 中該單對電線包含第一條電線與第二條電線,該遠端裝 置包含用以產生第一遠端信號之第一遠端信號產生電 路以及當該主機信號被傳送至該遠端裝置時用以從該 單對電線上一電力信號之電流成分將一主機信號解調 變之第一遠端電流解調變器,該主機裝置包含: 一電壓參考與控制迴路電路,其在該第一遠端信號 傳送至該主機裝置期間於該單對電線上供應一實質定 額之該電力信號電壓成分;以及 用以產生該主機信號之主機信號產生電路; 一主機電流調變器,在該主機信號傳送至該遠端裝 置期間,當該電壓參考與控制迴路電路在該單對電線上 供應實質定額之該電力信號電壓成分時用以將該單對 電線上該電力信號之電流成分與該主機信號做調變。 1238604 Ο :: r J - ,.:. : : . r . 〜 ....-.ij 14. 如申請專利範圍第13項所述之主機裝置,其中該電壓參 考與控制迴路電路包含: 一電壓產生器,在該第一遠端信號傳送至該主機裝 置期間產生一實質定額參考電壓; 5 一運算放大器,其第一輸入端耦合以接收該參考電 壓、第二輸入端耦合至該第一條電線、一迴授電阻耦合 於該輸出端與該第二輸入端之間以及輸出反映流經該 迴授電阻電流之運算放大器輸出電壓之輸出端,其中該 運算放大器用以將該第一輸入端接收之該參考電壓複 10 製至該第二輸入端。 15. 如申請專利範圍第14項所述之主機裝置,其更包含: 一主機電流解調變器,在該第一遠端信號傳送至該 主機裝置期間從該單對電線上該電力信號之該電流成 分將第一遠端信號解調變器; 15 其中該遠端裝置包含: 第一遠端信號產生電路,用以產生該第一遠端信 號; 第一遠端電流調變器,在該第一遠端信號傳送至該 主機裝置期間,當該電壓參考與控制迴路電路在該單對 20 電線上供應實質定額之該電力信號電壓成分時用以將 該單對電線上該電力信號之電流成分與該第一遠端。 16. 如申請專利範圍第13項所述之主機裝置,其更包含: 一主機電流解調變器,在該第一遠端信號傳送至該 主機裝置期間從該早對電線上該電力信號之該電流成 36 分將第一遠端信號解調變器; 其中該遠端裝置包含: 第一遠端信號產生電路,用以產生該第一遠端信 號; 第一遠端電流調變器,在該第一遠端信號傳送至該 主機裝置期間,當該電壓參考與控制迴路電路在該單對 電線上供應實質定額之該電力信號電壓成分時用以將 該單對電線上該電力信號之電流成分與該第一遠端。 17. 如申請專利範圍第16項所述之主機裝置,其中: 該第一主機電流解調變器包含: 一個濾波器,對該運算放大器輸出電壓信號過濾以 還原該第一遠端信號。 18. 如申請專利範圍第13項所述之主機裝置,其中: 該遠端裝置包含用以產生第二遠端信號之第二遠 端信號產生電路以及當該第二遠端信號傳送至該主機 裝置期間用以將該早對電線上該電力信號之該電流成 分與該第二遠端信號做調變之第二遠端電流調變器;以 及 該主機裝置包含: 第二主機電流解調變器用以在該第二遠端信號傳 送至該主機裝置期間從該單對電線上該電力信號之該 電流成分將該第二遠端信號解調變; 其中該電壓參考與控制迴路電路在該第二遠端信 號傳送至該主機裝置期間在該單對電線上供應一實質 定額之該電力信號電壓成分。 19. 如申請專利範圍第18項所述之主機裝置,其中該電壓參 考與控制迴路電路包含: 一電壓產生器,在該第一遠端信號傳送至該主機裝 置期間產生一實質定額參考電壓; 一運算放大器,其第一輸入端耦合以接收該參考電 壓、第二輸入端耦合至該第一條電線、一迴授電阻耦合 於該輸出端與該第二輸入端之間以及輸出反映流經該 迴授電阻電流之運算放大器輸出電壓之輸出端,其中該 運算放大器用以將該第一輸入端接收之該參考電壓複 製至該第二輸入端; 該第一主機電流解調變器包含: 一個濾波器,對該運算放大器輸出電壓信號過濾以 還原該第一遠端信號以及該第二主機電流解調變器包 含·· 一個渡波器,對該運算放大器輸出電壓信號過濾以 還原該第二遠端信號。 20. 如申請專利範圍第16項所述之主機裝置,其中: 該遠端裝置包含用以產生第二遠端信號之第二遠 端信號產生電路以及當該第二遠端信號傳送至該主機 裝置期間用以將該单對電線上該電力信號之該電流成 分與該第二遠端信號做調變之第二遠端電流調變器;以 及 該主機裝置包含: 第二主機電流解調變器用以在該第二遠端信號傳 送至該主機裝置期間從該單對電線上該電力信號之該 電流成分將該第二遠端信號解調變; 其中該電壓參考與控制迴路電路在該第二遠端信 號傳送至該主機裝置期間在該單對電線上供應一實質 定額之該電力信號電壓成分。 2L如申請專利範圍第20項所述之主機裝置,其中該電壓參 考與控制迴路電路包含: 一電壓產生器,在該第一遠端信號傳送至該主機裝 置期間產生一實質定額參考電壓; 一運算放大器,其第一輸入端耦合以接收該參考電 壓、第二輸入端耦合至該第一條電線、一迴授電阻耦合 於該輸出端與該第二輸入端之間以及輸出反映流經該 迴授電阻電流之運算放大器輸出電壓之輸出端,其中該 運算放大器用以將該第一輸入端接收之該參考電壓複 製至該第二輸入端; 該第一主機電流解調變器包含: 一個濾波器,對該運算放大器輸出電壓信號過濾·以 還原該第一遠端信號以及該第二主機電流解調變器包 含: 一個濾、波器,對該運算放大器輸出電壓信號過濾、以 還原該第二遠端信號。 22. —種用以在一主機裝置與一遠端裝置間傳送信號之方 法,其中該主機裝置與遠端裝置由包含第一條電線與第 /電線之補電線辆’並且該主縣置透過該單對 I線供應含有電流成分與電㈣分之電力信號至該遠 端裝置;該方法包含·· 在該主機端,轉該對魏上該電力㈣電壓成分 在一實質固定值; 在該遠端裝置端,將該遠端信號與該對電線上該電 力信號之該電流成分做電流調變;以及 、☆在該主機裝置端將該對電線上該電力信號之該電 流成分解調變以還原該遠端信號。 .如申請專利範圍第22項所述之方法,其更包含下列 驟: 在該主機裝置端產生一主機信號; 在忒主機裝置端將該主機信號與該對電線上該電 力信號之該電流成分做電流調變;以及 在該遠端裝置端將該對電線上該電力信號之該電 流成分解調變以還原該主機信號。 如申請專利範圍第22項所述之方法,其更包含下列步 驟: ^ 在該主機裝置端產生一主機信號; 在該主機裝置端將該主機信號與該對電線上該電 力信號之該電壓成分做電壓調變;以及在該遠端裝置端 將該對電線上該電力信號之該電壓成分解調變以還原 該主機信號。 •如申請專利範圍第22項所述之方法,其更包含下列+ 随_4 在該遠端裝置端產生第二遠端信號; 在該遠端裝置端將該第二遠端信號與該對電線上 /笔力化號之該電流成分做電流調變;以及 在該主機裝置端將該對電線上該電力信號之該電 流成分解調變以還原該第二遠端信號。 26·如申凊專利範圍第23項所述之方法,其更包含下列步 驟: 在該遠端裝置端產生第二遠端信號; 10 15 在°亥达‘裳置端將該第二遠端信號與該對電線上 "亥兒力^號之該電流成分做電流調變;以及 ^在該主機裝置端將該對電線上該電力信號之該電 級成分解調變以還原該第二遠端信號。 27·如申請專卿圍第24項所狀方法,其更包含下 驟: 在该遠端裝置端產生第二遠端信號; 。在忒通端裝置端將該第二遠端信號與該對電線上 · 4電力k號之該電流成分做電流調變;以及 士 、在該主機裝置端將該對電線上該電力信號之該電 流成分解調變以還原該第二遠端信號。 28’種用以在一主機裝置與一遠端裝置間傳送信號之方 法2中該主機裝置與遠端裝置由包含第-條電線與第 二木电線之單對電線連接’並且該主機裝置透過該單對 -線供應含有電流成分與電壓成分之電力信號至該遠 41 丨卿6_ 端裝置;該方法包含: 在該主機端: 維持該對電線上該電力信號電壓成分在一實質固 定值; ' ' 產生一主機信號;以及 將该主機信號與該對電線上該電力信號之該電流 成分做電流調變;以及 在該遠端裝置端:The voltage reference and control loop circuit supplies a substantially fixed amount of the power signal voltage component on the single pair of wires while the second remote signal is transmitted to the host device. 12. The host device as described in item 11 of the scope of the patent application, wherein the voltage reference and control loop circuit includes: a voltage generator that generates a substantial fixed reference during the first remote signal transmission to the host device Voltage; an operational amplifier having a first input coupled to receive the reference voltage, a second input coupled to the first wire, a feedback resistance coupling 34 between the output and the second input, and an output An output terminal reflecting the output voltage of the operational amplifier flowing through the feedback resistor current, wherein the operational amplifier is used to copy the reference voltage received by the first input terminal to the second input terminal; the first host current is demodulated The filter includes: a filter that filters the output voltage signal of the operational amplifier to restore the first remote signal and the second host current demodulator includes: a filter that filters the output voltage signal of the operational amplifier to restore the Second far-end signal. 13. A host device coupled to a remote device via a single pair of wires, wherein the single pair of wires includes a first wire and a second wire, and the remote device includes a first A remote signal generating circuit and a first remote current demodulator for demodulating a host signal from a current component of a power signal on the single pair of wires when the host signal is transmitted to the remote device The host device includes: a voltage reference and control loop circuit that supplies a substantially fixed amount of the power signal voltage component on the single pair of wires during the first remote signal transmission to the host device; and is used to generate the A host signal generating circuit of a host signal; a host current modulator, when the host signal is transmitted to the remote device, when the voltage reference and control loop circuit supplies a substantial amount of the power signal voltage component on the single pair of wires It is used to modulate the current component of the power signal on the single pair of wires and the host signal. 1238604 Ο :: r J-,.:.::. R. ~ ....-. Ij 14. The host device described in item 13 of the patent application scope, wherein the voltage reference and control loop circuit includes: a A voltage generator that generates a substantially fixed reference voltage during the transmission of the first remote signal to the host device; 5 an operational amplifier having a first input coupled to receive the reference voltage and a second input coupled to the first A wire, a feedback resistor is coupled between the output terminal and the second input terminal, and an output terminal outputting an operational amplifier output voltage reflecting the current flowing through the feedback resistor, wherein the operational amplifier is used for the first input The reference voltage received by the terminal is duplicated to the second input terminal. 15. The host device according to item 14 of the scope of patent application, further comprising: a host current demodulator that transmits the power signal from the single pair of wires during the first remote signal transmission to the host device. The current component demodulates the first remote signal demodulator; 15 wherein the remote device includes: a first remote signal generating circuit for generating the first remote signal; the first remote current modulator, in When the first remote signal is transmitted to the host device, when the voltage reference and control loop circuit supplies a substantially fixed amount of the power signal voltage component on the single pair of 20 wires, it is used to A current component is associated with the first distal end. 16. The host device according to item 13 of the scope of patent application, further comprising: a host current demodulator, which transmits the power signal from the early pair of wires during the first remote signal transmission to the host device. The current is 36 minutes to demodulate the first remote signal. The remote device includes: a first remote signal generating circuit for generating the first remote signal; a first remote current modulator, During the transmission of the first remote signal to the host device, when the voltage reference and control loop circuit supplies a substantially fixed amount of the power signal voltage component on the single pair of wires, A current component is associated with the first distal end. 17. The host device according to item 16 of the scope of patent application, wherein: the first host current demodulator comprises: a filter that filters the output voltage signal of the operational amplifier to restore the first remote signal. 18. The host device according to item 13 of the scope of patent application, wherein: the remote device includes a second remote signal generating circuit for generating a second remote signal and when the second remote signal is transmitted to the host A second remote current modulator for modulating the current component of the power signal on the wire and the second remote signal during the device; and the host device includes: a second host current demodulation And a device for demodulating the second remote signal from the current component of the power signal on the single pair of wires during the transmission of the second remote signal to the host device; wherein the voltage reference and control loop circuit is in the first During the transmission of the two remote signals to the host device, a substantially fixed amount of the power signal voltage component is supplied on the single pair of wires. 19. The host device as described in claim 18, wherein the voltage reference and control loop circuit includes: a voltage generator that generates a substantially fixed reference voltage during the first remote signal transmission to the host device; An operational amplifier having a first input terminal coupled to receive the reference voltage, a second input terminal coupled to the first wire, a feedback resistor coupled between the output terminal and the second input terminal, and an output reflection flowing through The output terminal of the output voltage of the operational amplifier of the feedback resistance current, wherein the operational amplifier is used to copy the reference voltage received by the first input terminal to the second input terminal; the first host current demodulator includes: A filter that filters the output voltage signal of the operational amplifier to restore the first remote signal and the second host current demodulator includes a crossover filter that filters the output voltage signal of the operational amplifier to restore the second Far-end signal. 20. The host device according to item 16 of the scope of patent application, wherein: the remote device includes a second remote signal generating circuit for generating a second remote signal and when the second remote signal is transmitted to the host A second remote current modulator for modulating the current component of the power signal on the single pair of wires and the second remote signal during the installation; and the host device includes: a second host current demodulation And a device for demodulating the second remote signal from the current component of the power signal on the single pair of wires during the transmission of the second remote signal to the host device; wherein the voltage reference and control loop circuit is in the first During the transmission of the two remote signals to the host device, a substantially fixed amount of the power signal voltage component is supplied on the single pair of wires. 2L The host device according to item 20 of the scope of the patent application, wherein the voltage reference and control loop circuit includes: a voltage generator that generates a substantially fixed reference voltage during the first remote signal transmission to the host device; An operational amplifier having a first input coupled to receive the reference voltage, a second input coupled to the first wire, a feedback resistor coupled between the output and the second input, and an output reflection flowing through the The output terminal of the output voltage of the operational amplifier for feedback resistance current, wherein the operational amplifier is used to copy the reference voltage received by the first input terminal to the second input terminal; the first host current demodulator includes: a A filter to filter the output voltage signal of the operational amplifier to restore the first remote signal and the second host current demodulator include: a filter and a wave filter to filter the output voltage signal of the operational amplifier to restore the Second far-end signal. 22. —A method for transmitting a signal between a host device and a remote device, wherein the host device and the remote device are connected by a supplementary electric wire vehicle including a first electric wire and a second electric wire and the main county is disposed through The single pair of I-line supplies a power signal containing a current component and an electric signal to the remote device; the method includes: at the host terminal, transferring the electric voltage signal component of the pair of Wei to a substantially fixed value; The remote device end performs current modulation on the remote signal and the current component of the power signal on the pair of wires; and, ☆ demodulation of the current component of the power signal on the pair of wires at the host device To restore the far-end signal. The method as described in item 22 of the scope of patent application, further comprising the following steps: generating a host signal at the host device side; at the host device side, the host signal and the current component of the power signal on the pair of wires Perform current modulation; and demodulate the current component of the power signal on the pair of wires at the remote device end to restore the host signal. The method according to item 22 of the scope of patent application, further comprising the following steps: ^ generating a host signal at the host device side; and combining the host signal with the voltage component of the power signal on the pair of wires at the host device side Perform voltage modulation; and demodulate the voltage component of the power signal on the pair of wires at the remote device end to restore the host signal. The method according to item 22 of the scope of patent application, which further includes the following + _4 generates a second remote signal on the remote device side; the second remote signal and the pair are generated on the remote device side The current component on the wire / stroke number is current modulated; and the current component of the power signal on the pair of wires is demodulated at the host device end to restore the second remote signal. 26. The method as described in claim 23 of the patent scope, further comprising the following steps: generating a second remote signal at the remote device end; The signal is current modulated with the current component of the pair of wires " Heier force ^; and ^ demodulation of the electric level component of the power signal on the pair of wires on the host device side to restore the second Far-end signal. 27. The method as described in claim 24, further comprising the steps of: generating a second remote signal at the remote device end; At the terminal device end, the second remote signal is modulated with the current component of the electric power k number on the pair of wires; and, at the host device end, the electric signal of the pair of wires is The current component is demodulated to restore the second remote signal. 28'Method 2 for transmitting a signal between a host device and a remote device The host device and the remote device are connected by a single pair of wires including a first wire and a second wooden wire 'and the host device A power signal containing a current component and a voltage component is supplied to the remote 41-terminal device through the single pair-line; the method includes: at the host terminal: maintaining the voltage component of the power signal on the pair of wires at a substantially fixed value ; '' Generating a host signal; and performing current modulation on the host signal and the current component of the power signal on the pair of wires; and at the remote device end: ^將該對電線上該電力信號之該電流成分解調變以 還原該主機信號。 29.如申請專利範圍第28項所述之方法,其更包含下列步 驟: 在該遠端裝置端: 產生第一遠端信號; 將該第一遠端信號與該對電線上該電力信號之該 電流成分做電流調變;以及在該主機裝置端:^ Demodulate the current component of the power signal on the pair of wires to restore the host signal. 29. The method according to item 28 of the scope of patent application, further comprising the following steps: at the remote device end: generating a first remote signal; combining the first remote signal with the power signal on the pair of wires The current component performs current modulation; and at the host device side: 將該對電線上該電力㈣之該電流成分解調變以 還原該第一遠端信號。 3〇·如申請專利範圍第29項所述之方法,其更包含下列步 在該遠端裝置端: 產生第二遠端信號; 將該第二遠端信號與該對電線上該電力信號之該 電流成分做電流調變;以及 42 在該主機裝置端· 將該對電線上該電力信號之該電流成分解調變以 還原該第二遠端信號。 ‘ 31. —種用以透過單對電線供應電力以及從一遠端裝置傳 5 送信號之電壓參考與電力迴路控制電路,其中該單對電 線包含第一條電線與第二條電線,該遠端裝置用以將該 單對電線上電力信號之電流成分與一遠端信號做電流 調變,該電路包含: 一電壓產生器用以產生一參考電壓; · 10 一運算放大器,其第一輸入端耦合以接收該參考電 壓、第二輸入端耦合至該第一條電線、一迴授電阻耦合 於該輸出端與該第二輸入端之間以及輸出反映流經該 迴授電阻電流之運算放大器輸出電壓之輸出端,其中該 運算放大器用以將該第一輸入端接收之該參考電壓複 15 製至該第二輸入端;以及 一個濾波器,對該運算放大器輸出電壓信號過濾以 還原該遠端信號。 ^ 43The current component of the electric power on the pair of wires is demodulated to restore the first remote signal. 30. The method according to item 29 of the scope of patent application, further comprising the following steps at the remote device end: generating a second remote signal; combining the second remote signal with the power signal on the pair of wires The current component is subjected to current modulation; and 42 at the host device side, the current component of the power signal on the pair of wires is demodulated to restore the second remote signal. '31. —A voltage reference and power loop control circuit for supplying power through a single pair of wires and transmitting signals from a remote device, wherein the single pair of wires includes a first wire and a second wire, the remote The terminal device is used to modulate the current component of the power signal on a single pair of wires with a remote signal. The circuit includes: a voltage generator for generating a reference voltage; 10 an operational amplifier having a first input terminal An operational amplifier output coupled to receive the reference voltage, a second input terminal coupled to the first wire, a feedback resistor coupled between the output terminal and the second input terminal, and an output reflecting a current flowing through the feedback resistor An output terminal of the voltage, wherein the operational amplifier is used to copy the reference voltage received by the first input terminal to the second input terminal; and a filter is used to filter the output voltage signal of the operational amplifier to restore the remote end signal. ^ 43
TW093101206A 2003-07-31 2004-01-16 Remote current sensing and communication over single pair of power feed wires TWI238604B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/632,463 US7170394B2 (en) 2003-07-31 2003-07-31 Remote current sensing and communication over single pair of power feed wires

Publications (2)

Publication Number Publication Date
TW200505176A TW200505176A (en) 2005-02-01
TWI238604B true TWI238604B (en) 2005-08-21

Family

ID=32851239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093101206A TWI238604B (en) 2003-07-31 2004-01-16 Remote current sensing and communication over single pair of power feed wires

Country Status (5)

Country Link
US (1) US7170394B2 (en)
CN (1) CN1581718A (en)
GB (1) GB2404831B (en)
SG (1) SG108985A1 (en)
TW (1) TWI238604B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7835531B2 (en) * 2004-03-30 2010-11-16 Akg Acoustics Gmbh Microphone system
DE102004039518A1 (en) * 2004-08-14 2006-02-23 Wabco Gmbh & Co.Ohg Sensor with two electrical connections
US8543008B2 (en) * 2005-03-01 2013-09-24 Alexander I Soto System and method for a subscriber powered network element
GB2432229B (en) * 2005-11-09 2010-08-18 Siemens Plc A Communication System for an Electric Motor Control System
DE102006022283A1 (en) * 2006-05-11 2007-11-15 Micronas Gmbh Monolithic sensor arrangement or method for driving a monolithic sensor arrangement
DE102006022985A1 (en) * 2006-05-15 2007-11-22 Micronas Gmbh Circuit arrangement with a serial test interface or serial test operating method
EP1936579A3 (en) 2006-12-22 2013-01-16 BWI Company Limited S.A. System for connecting a sensor to a controller
EP2053254B1 (en) * 2007-10-24 2010-03-17 Festo AG & Co. KG Fluid valve assembly with at least one electromagnetic valve and an identification data containing device
US8630766B2 (en) * 2008-05-20 2014-01-14 Bosch Automotive Service Solutions Llc Universal vehicle input/output transceiver and method of operation thereof
US8035507B2 (en) 2008-10-28 2011-10-11 Cooper Technologies Company Method and apparatus for stimulating power line carrier injection with reactive oscillation
US20100289629A1 (en) * 2008-10-28 2010-11-18 Cooper Technologies Company Load Control Device with Two-Way Communication Capabilities
JP5369010B2 (en) * 2010-01-25 2013-12-18 パナソニック株式会社 Communications system
US9679869B2 (en) 2011-09-02 2017-06-13 Skyworks Solutions, Inc. Transmission line for high performance radio frequency applications
US8791719B2 (en) * 2011-10-24 2014-07-29 Skyworks Solutions, Inc. Dual mode power amplifier control interface with a two-mode general purpose input/output interface
US20130282891A1 (en) * 2012-04-20 2013-10-24 Kevin E. Davis Resource Usage Pattern Matching
WO2013188712A1 (en) 2012-06-14 2013-12-19 Skyworks Solutions, Inc. Power amplifier modules including related systems, devices, and methods
US9193474B2 (en) * 2013-06-06 2015-11-24 Hamilton Sundstrand Corporation Signal transmission via current modulation of power input
US9008197B2 (en) 2013-07-26 2015-04-14 General Electric Company Current loop voltage modulator for communication interface
EP3485800A1 (en) * 2017-11-15 2019-05-22 Koninklijke Philips N.V. Sensing device and method for multiple remote sensors
DE102018204603A1 (en) * 2018-03-27 2019-10-02 Robert Bosch Gmbh Sensor arrangement for a vehicle
FR3111011A1 (en) * 2020-06-02 2021-12-03 Idemia Starchip INTEGRATED CIRCUIT TESTER ON SILICON CAKE

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151585A (en) * 1977-06-16 1979-04-24 Hydro-Quebec Series tapping of an HVDC transmission line
FR2550901B1 (en) * 1983-08-19 1986-08-08 Protecbat Detection Electro Fs METHOD FOR TRANSMITTING MESSAGES BETWEEN A CENTRAL STATION AND SEVERAL REMOTE STATIONS
US4746897A (en) * 1984-01-30 1988-05-24 Westinghouse Electric Corp. Apparatus for transmitting and receiving a power line
US5117219A (en) * 1987-10-21 1992-05-26 Pittway Corporation Smoke and fire detection system communication
US4999607A (en) * 1987-12-07 1991-03-12 Biotronics Enterprises, Inc. Monitoring system with improved alerting and locating
US5254953A (en) * 1990-12-20 1993-10-19 Hewlett-Packard Company Identification of pin-open faults by capacitive coupling through the integrated circuit package
US5557209A (en) * 1990-12-20 1996-09-17 Hewlett-Packard Company Identification of pin-open faults by capacitive coupling through the integrated circuit package
US5274336A (en) * 1992-01-14 1993-12-28 Hewlett-Packard Company Capacitively-coupled test probe
DE69229389T2 (en) * 1992-02-25 1999-10-07 Hewlett Packard Co Circuit test system
US5696451A (en) * 1992-03-10 1997-12-09 Hewlett-Packard Co. Identification of pin-open faults by capacitive coupling
US5420500A (en) * 1992-11-25 1995-05-30 Hewlett-Packard Company Pacitive electrode system for detecting open solder joints in printed circuit assemblies
US5652755A (en) * 1994-02-03 1997-07-29 Boehringer Mannheim Corporation Printer interface system
FR2752126B1 (en) * 1996-07-31 1999-04-09 Gandar Marc SYSTEM FOR REMOTE POWERING OF ELEMENTS CONNECTED TO A NETWORK
TW406487B (en) * 1998-12-31 2000-09-21 Biwave Technology Inc Single cable transmission device used for signal and power monitoring and control system
AUPQ865900A0 (en) * 2000-07-07 2000-08-03 Cleansun Pty Ltd Power line communications method
US6901336B2 (en) * 2003-03-31 2005-05-31 Agilent Technologies, Inc. Method and apparatus for supplying power, and channeling analog measurement and communication signals over single pair of wires

Also Published As

Publication number Publication date
GB2404831A (en) 2005-02-09
US20050024066A1 (en) 2005-02-03
US7170394B2 (en) 2007-01-30
GB2404831B (en) 2006-08-30
CN1581718A (en) 2005-02-16
TW200505176A (en) 2005-02-01
SG108985A1 (en) 2005-02-28
GB0414535D0 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
TWI238604B (en) Remote current sensing and communication over single pair of power feed wires
CN100490310C (en) Chopper automatic zero-stabilizing current mode instrumentation amplifier
US4888559A (en) Correction arrangement for an amplifier
JPH01161907A (en) Phase modulator circuit
JP2006217626A (en) Differential termination and attenuator circuit network
TW200416513A (en) Capacitive feedback circuit
JP2000148257A5 (en)
CN101772708B (en) Voltage transformation circuit
JPS61105776A (en) Dc connection peak/peak detector circuit
JP2004187168A (en) Circuit structure, optical receiver, and optical link
JP3632822B2 (en) Temperature transmitter input circuit
CN211928462U (en) Device for sensing common mode feedback current and MEMS system
JP4511771B2 (en) Voltage applied current measuring device and semiconductor test device
TW416227B (en) Level clamp circuit
US6091294A (en) Amplifier circuit
JP2000155139A (en) Current detecting device
JPH07131489A (en) Receiving circuit for light signal
TW201117559A (en) Voltage generation system for generating a tunable DC slope and related method
JPS6046451A (en) Humidity detecting circuit
JP2000341095A (en) Comparator circuit
JPH0348713Y2 (en)
Hebert An Improved Balanced, Floating Output Driver IC
JPH0441614Y2 (en)
WO1985005499A1 (en) Piezoelectric polymer force transducer with an output circuit
JP2001053980A (en) Driver circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees