TWI236712B - Method for forming oxide on ONO structure - Google Patents

Method for forming oxide on ONO structure Download PDF

Info

Publication number
TWI236712B
TWI236712B TW93120185A TW93120185A TWI236712B TW I236712 B TWI236712 B TW I236712B TW 93120185 A TW93120185 A TW 93120185A TW 93120185 A TW93120185 A TW 93120185A TW I236712 B TWI236712 B TW I236712B
Authority
TW
Taiwan
Prior art keywords
substrate
item
scope
patent application
layer
Prior art date
Application number
TW93120185A
Other languages
Chinese (zh)
Other versions
TW200603284A (en
Inventor
Chih-Hao Wang
Hsin-Huei Chen
Chong-Jen Huang
Chong-Mu Chen
Kuang-Wen Liu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW93120185A priority Critical patent/TWI236712B/en
Application granted granted Critical
Publication of TWI236712B publication Critical patent/TWI236712B/en
Publication of TW200603284A publication Critical patent/TW200603284A/en

Links

Abstract

A semiconductor device having a silicon oxide/silicon nitride/silicon oxide (""ONO"") structure is formed by providing a first silicon oxide layer and a silicon nitride layer over a substrate having a memory region and a logic device region; patterning the first silicon oxide layer and the silicon nitride layer to define bottom oxide and silicon nitride portions of partially completed ONO stacks and to expose the substrate in the logic device regions; performing a rapid thermal annealing process in the presence of a radical oxidizing agent to form concurrently a second silicon oxide layer on the exposed surface of the silicon nitride layer and a gate oxide layer over the substrate; and depositing a conductive layer over the completed ONO stacks and the gate oxide. The invention is employed in manufacture of, for example, memory devices having and peripheral logic devices and memory cells including ONO structures. Exposing the patterned silicon nitride to the oxygen radical during the RTO according to the invention significantly reduces the processing time, and reduces the thermal budget. Moreover, because according to the invention the upper surface and the sidewalls of the silicon nitride layer are covered by the top oxide layer, the silicon nitride is not exposed during a subsequent cleaning process. As a result of increased contact area between the polysilicon gate and the top oxide layer, the coupling ratio of the gate is increased.

Description

1236712 〇7672twf.doc/〇〇6 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種半導體元件及龙 別是有關於-種具有氧化矽/氮化矽/氧化i (〇二〇d 構的半導體元件,及其中之氧化物的形成 )、、、° 【先前技術】 / 在傳統製程中,具有0N0結構之开杜、 :隨層、氮化石夕層以及頂氧化層覆蓋於―基底’上方:: 再進仃一蝕刻製程,以圖案化0Ν0結構。 =Ν0結構之巾_氧化層可藉域化氮切方 成。然而,傳統的氮化矽氧化製程必須耗費許 ^有較高的熱預算。舉例來說,在某些傳 :1236712 〇7672twf.doc / 〇〇6 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a semiconductor device and a long-standing method-a kind of silicon oxide / silicon nitride / oxide i (〇 二〇d structure of semiconductor elements and the formation of oxides) ,,, ° [Previous technology] / In the traditional process, the Kaidu with 0N0 structure,: with the layer, nitride layer and top oxide layer ―Above the substrate '': A further etching process is performed to pattern the ONO structure. = N0 structure of the towel _ oxide layer can be cut by domain nitrogen. However, the traditional silicon nitride oxidation process must consume a high thermal budget. For example, in some pass:

HI放置在—爐㈣,並將溫度維持在攝氏_ S 持項60为鐘,以對氮化矽進行溼式氧化製程。 …主^ ’傳統製㈣㈣會在氧化步驟完錢,接著進 中卻可能會蝴頂氧化層,甚 =ϋ閘極間產生漏電流。因此,儲存在氮切層中的 電何便會化失,進而導致元件產生電性問題。 為了職魏化層在清絲財的損失,胃知 疋先沈積穿隧層與氮切層,並將其圖案化,之後再二 式氧化法在氮化石夕層上長出頂氧化層。然而,澄式氧化法 對於基底與氮化石夕層的氧化選擇比相當高,因此,氧 化t對基底的氧化逮率會遠大於氮化石夕層的氧化速率。舉 例來說,若欲以澄式氧化法形成厚度励埃的頂氧化層, 1236¾ f.doc/006 i使用成厚度1000埃的氧化層。由此可知, ^成後,氧化製程形成頂氧化層’則當頂氧化層 底上的厚氧化層移除。如此—來便會增 加製,=雜度,也會導致一不平坦的基底表面。 Πη sit^上域氧化層的方法有—種稱為原位蒸汽生成 A底。甬二:::eneratl〇n,ISSG)製程。ISSG 製程係將 ί氧之盘二-體5曰圓)加熱至一足夠的高溫,以催化 氧之耽體與έ虱之㈣間的 則此=基即可有效地氧化基底上的忒=:基 其適二步請g製程, 火後二:=== 厚ί=:周遭的原位回火。此二步驟製程可形成-==至:0埃之間的二氧化石夕層,其與非利用此 1所形成的二氧化石夕層相較下,可在 ==卩;預/或操作模式下,提供一具有較小的 Μ〇Π6171911號所敘述的-種製程係可以在 執生成t彳中依序且有選擇性地形成兩種不同厚度的 开;由場隔離區定義出晶圓上的區域。傳統 二二化層的方法係在晶圓上所有暴露出的區域上形 層,、’然後在晶圓上配置一罩幕,並將軍幕被 * 路出欲形成薄氧化層的區域。接著,以澄式姓 安法利用氫氟酸將罩幕層所裸露的區域中的厚氧化層移 123吼_。6 除。之後再將罩幕剝除,並利用不含氫氟酸的水溶液清洗 晶圓。接著將晶圓置於一含有氫氣與氮氣的環境下,再以 低壓快速熱回火的方式移除原生氧化層(native oxide)並鈍 化矽表面,以使殘留的氧化層厚度減少至大約4埃。其中, 熱回火製程中的溫度約為攝氏600度至1050度。上述之 方法可改善氧化層厚度的均勻性及其氧化品質,而剩下的 氧化溥膜經由上述之回火過程後,即可成為更堅固的氧化 石夕。 【發明内容】 根據本發明所述,先形成穿隧層及氮化矽層並將其圖 案化之後,再於一含有氧自由基的環境下進行一原位蒸汽 生成(in situ steam generati〇n,ISSG)製程,以同時开^成 MOS區域中的頂氧化層、埋人式汲極氧化層以及間極氧 化層。將暴露之_錄化絲露於氧自由基下,可以較 2時間氧化氮化石夕’例如約!分鐘。所以製程所耗費的 夺間可因此縮短許多,並可降低熱預算。此外,因為本發 的i表面與側壁皆覆蓋有頂氧化層,因心 H讀财,即可職暴露出氮 :極與頂氧化層接觸面積的増加,因而増進了 :: 程 r結構之半導體其氧:於 ’以在圖案化之氣切層的上表面及側 1236〇7总 doc/006 層’並同時在基底中形成埋人式擴散 以及在基底的MOS區域中形成間極氧化層Λ。、/ , 此處所謂之氧自由基,係指一曰 電子且獨立存在的含氧物籀。 有或夕對未成對 原子或分子:„而未成對電子指的是在-個 IS率ίΐ;吏,氧化。因為 = 異細、,所以基底錢切層的氧化選擇性也 聰:二二^化層、埋人式峨化層以及 熱預算。 綠並可驗製程時間,降低製程的 有負in義方面來看,本發明的特徵在於提供一種具 //氧切(⑽/G)結構料導體元件之 蓋法係先形成第一氧切層以及氮化石夕層覆 存有i由a: # 氧切層與氮化㈣。接著在 同時在《utt冑的魏下進行快速熱敎製程,以便於 紐形成==的表面上形成第二氧_’並在 右廣義方面來看,本發明的特徵在於提供一種具 ii方:。”匕矽/氧化矽(0酬結構的記憶體元件之 石夕ί,盆二^法係先在基底上形成第一氧化石夕層與氮化 曰::土 &上係具有一記憶體區以及一金氧半導體 二ίϊϊί化第—氧化石夕層與氣化石夕層’以在記憶胞區 上也成圖案化之第一氧化石夕層與氮化石夕層。然後在圖案化 ^367〇U wf.doc/〇〇6 於存有她極,再 :==暴形露 導體區上形賴極氧化層。"雜魏層,縣金氧半 由基。而在一二二::;::Cm!包括-氧自 度的記憶元件。層的厚度係退大於開極氧化層的厚 基气ίίϊΓ之ί些實施例中’快速熱回火製程為一原位 :含氧氣趙與含氣氣體,且其流速均需維以3 二ΐ元ΐ氧化製程。在某些實施例中,係同時導入人ί =/、含II氣體’且其與載氣的比例係落於適當範^之 含氧些實施财’錢之氣體為絲(¾), Γ二其流速比例 氫“氣 1236¾ :twf.doc/006 1 ·· 2。晶圓的溫度則係維持在約攝氏7〇〇度至13〇〇度之 間,較佳的是大約攝氏900度至115〇度之間。晶圓暴露 於此混合氣體下的時間係取決於欲形成的氧化層厚度、氣 體流速以及溫度。暴露時間短則1至1〇秒,長則1〇〇至 1000秒,甚至更久。晶圓暴露於混合氣體下的時間通常 是10秒,而在特定的實施例中是3〇秒,某些實施例中為 120秒,其他實施例中則為300秒,更有其他實施例其晶 圓的暴露時間為500秒。本發明之特定實施例中,當製程 所使用的溫度係為攝氏850度、900度、950度戋是1000 度。、氧氣與氫氣的流速比值(h2/ h2+ 〇2)、約為5%、25 =33=(例如’氫氣的流速為6—,而氧氣的流速 為12slm)時,則製程所需的時間即大約 90秒或是120秒。 ^ 右畜廣義方面來看,本發明的特徵在於提供一種具 氮化矽/氧化矽結構的半導體元件。此元件包括 =、土底上的第-氧切層、覆蓋住部 層的氮化石夕層、完全覆蓋住氮 ^ :?第二一及覆蓋於第二氧切層上== 埋入式汲極與埋人心極/源極氧化層、覆蓋於 /源極氧化層上的第二氧曰I土底^以及部分埋入式汲極 第氧化石夕層、覆蓋於部分之第-氧化 f.doc/006 石夕層上的氮化⑦層、完全覆蓋住氮化 之第二氧化㈣以及覆蓋於第二氧化J上= 導體層。 就另-廣義方面來看,本發明的特性在於提供 有氧化石规切/氧切結構於_發性記紐中、的記憶 胞’包括位於基底中的埋入式源極與汲極、覆蓋於埋入^ π原,上的埋人歧極纖極氧化層、覆蓋於沒極/源^ 間之基底j及部分埋入式沒極/源極氧化層上的第一氧化 ^層:覆蓋於部分之第-氧化⑦層上的氮化判、完 imt與第一氧化矽層接觸之第二氧化矽層以及 覆蓋於第一氧化石夕層上的閘極導體層。 a在本發明之某些實施例中,在Lb石夕(SiN)上的氧 化曰與在石夕(S!)上的氧化層之厚度比(SiN:Si)約為〇6 : 1至〇.8 :卜較佳的是約為0.68 : 1至〇.78 :卜 為讓本發明之上述和其他目的、特徵和伽能更明 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 & 【實施方式】 以下將配合本發明之每—實施例的說關示, 明加以詳細敘述。此些_係概略崎示本發明之 = 其他_與結構’並未按照一定“例 ·本發明之實施例的構件若與其他圖示中的構 相同:雖然在所有圖中都可輕㈣認出此些構件, ===楚,本說明書不會將所有相同的構件 12 rf.doc/006HI is placed in the furnace grate, and the temperature is maintained at 60 degrees Celsius_S holding the item for 60 minutes to perform a wet oxidation process on silicon nitride. … The main system is that traditional plutonium will be used up during the oxidation step, but the next step may be the top oxide layer, which may cause leakage current between the gates. Therefore, the electricity stored in the nitrogen cutting layer will be lost, which will cause electrical problems in the device. In order to reduce the loss of the chemical layer in Qingsi, Wei Zhiyu first deposited the tunneling layer and the nitrogen cutting layer and patterned it, and then the top oxide layer was grown on the nitrided layer by the double oxidation method. However, the Cheng oxidation method has a relatively high oxidation selectivity ratio between the substrate and the nitrided layer. Therefore, the oxidation rate of the substrate by oxidation t will be much higher than the oxidation rate of the nitrided layer. For example, if a top oxide layer with a thickness of 150 Angstroms is to be formed by a clear oxidation method, 1236¾ f.doc / 006 i uses an oxide layer with a thickness of 1000 Angstroms. It can be known that after the formation, the top oxide layer is formed by the oxidation process, and then the thick oxide layer on the bottom of the top oxide layer is removed. In this way-it will increase the system, the impurity will also lead to an uneven substrate surface. There are several methods of Πη sit ^ upper-layer oxide layer—known as in-situ steam generation A bottom. 22 :: eneratlon, ISSG) process. The ISSG process is to heat the plate 2 of oxygen (5 rounds) to a high enough temperature to catalyze the gap between the body of oxygen and the stalk of lice. This base can effectively oxidize 忒 on the substrate =: Based on the appropriate two steps, please use the g process. After the fire two: === 厚 ί =: Temper in situ around. This two-step process can form a dioxide layer between-== and 0 Angstroms, which can be compared with the dioxide layer formed without using this 1 at == 卩; pre / or operation In the mode, a process system with a smaller number of M0Π6171911 is provided, which can sequentially and selectively form two different thickness openings in the execution time; the wafer is defined by the field isolation region. On the area. The traditional method of layering two layers is to form a layer on all exposed areas on the wafer. Then, a mask is placed on the wafer, and the military curtain is routed to the area where a thin oxide layer is to be formed. Next, the thick oxide layer in the exposed area of the mask layer was removed by using hydrofluoric acid under the Cheng surname Anfa. 6 division. The mask is then peeled off and the wafer is cleaned with an aqueous solution that does not contain hydrofluoric acid. The wafer is then placed in an environment containing hydrogen and nitrogen, and then the native oxide is removed and the silicon surface is passivated by means of low-temperature rapid thermal tempering to reduce the residual oxide thickness to about 4 angstroms. . The temperature in the thermal tempering process is about 600 ° C to 1050 ° C. The above method can improve the uniformity of the thickness of the oxide layer and its oxidation quality, and the remaining hafnium oxide film can become a stronger oxide after the above-mentioned tempering process. [Summary of the Invention] According to the present invention, after a tunneling layer and a silicon nitride layer are formed and patterned, an in-situ steam generation (in situ steam generati〇n) is performed in an environment containing oxygen radicals. (ISSG) process to simultaneously form a top oxide layer, a buried-type drain oxide layer, and an interlayer oxide layer in the MOS region. By exposing exposed silk to oxygen free radicals, it is possible to oxidize nitrided stones in 2 hours ’, for example, about! minute. Therefore, the time spent in the manufacturing process can be greatly shortened, and the thermal budget can be reduced. In addition, because the i-surface and the sidewall of the hair are covered with a top oxide layer, due to the reading of the heart H, the nitrogen: the contact area between the electrode and the top oxide layer can be exposed, and thus the semiconductor of the Cheng structure is introduced: Its oxygen: in 'to the top surface and side of the patterned gas-cut layer 1236207 total doc / 006 layer' and simultaneously form a buried diffusion in the substrate and an interlayer oxide layer in the MOS region of the substrate Λ . , /, Here, the so-called oxygen radical refers to an oxygen-containing oxygenate that exists independently. There are pairs of unpaired atoms or molecules: „while unpaired electrons refer to the rate of a IS; 吏, oxidation. Because = is different, so the oxidation selectivity of the base money slice is also Cong: 22 ^ Chemical layer, buried Ehua layer and thermal budget. Green and can check the process time and reduce the negative aspects of the process, the present invention is characterized by providing a structure material with // oxygen cut (⑽ / G) The capping method of the conductor element is to first form a first oxygen-cut layer and a nitride nitride layer covered with a: # oxygen-cut layer and hafnium nitride. Then perform a rapid hot-rolling process at the same time under the "utt 胄 wei", In order to facilitate the formation of a second oxygen on the surface of the button, and in the broad sense, the present invention is characterized in that it provides a method with the following formula: "Silicon silicon / silicon oxide Shi Xi'er, the basin's second method firstly forms the first oxidized oxidized layer and nitridation on the base: :: soil & the upper system has a memory region and a gold oxide semiconductor oxidized-oxidized oxidized layer And gasified stone layer 'to form the first oxide stone layer and nitride stone layer also patterned on the memory cell area ... then patterned ^ 367〇U wf.doc / 〇〇6 in the existence of her pole, and then: == exposed exposed conductor area on the cathode layer of the oxide layer. &Quot; Heterogene layer, the county gold and oxygen semi-based In one or two two ::; :: Cm! Including-oxygen self-memory memory element. The thickness of the layer is thicker than the thick base gas of the open-oxide layer. In some embodiments, the rapid thermal tempering process is one. In situ: Oxygen-containing gas and gas-containing gas, and their flow rates need to be maintained in a three-two-element osmium oxidation process. In some embodiments, humans are introduced simultaneously with ί = /, gas containing II ', and its carrier gas. The ratio of the ratio falls in the appropriate range. The gas containing oxygen is the wire (¾), and its flow rate is proportional to that of the hydrogen "gas 1236¾: twf.doc / 006 1 ·· 2. The temperature of the wafer is Maintained between about 700 ° C and 13,000 ° C, preferably between about 900 ° C and 1150 ° C. The time that the wafer is exposed to this mixed gas depends on the thickness of the oxide layer to be formed , Gas flow rate and temperature. The exposure time is as short as 1 to 10 seconds, and as long as 100 to 1000 seconds, or even longer. The exposure time of the wafer to the mixed gas is usually 10 In certain embodiments, it is 30 seconds, in some embodiments, it is 120 seconds, in other embodiments, it is 300 seconds, and in other embodiments, the wafer exposure time is 500 seconds. In the embodiment, when the temperature used in the manufacturing process is 850 degrees Celsius, 900 degrees, and 950 degrees Celsius, and 1000 degrees Celsius, the flow rate ratio of oxygen to hydrogen (h2 / h2 + 〇2), about 5%, 25 = 33 = (For example, the flow rate of hydrogen is 6-, and the flow rate of oxygen is 12 slm), the time required for the process is about 90 seconds or 120 seconds. ^ In a broad sense, the present invention is characterized by providing a Semiconductor device with silicon nitride / silicon oxide structure. This element includes =, the first oxygen-cutting layer on the soil bottom, the nitrided layer covering the partial layer, completely covering the nitrogen ^:? The first one and covering the second oxygen-cutting layer == buried type Electrode and buried electrode / source oxide layer, the second oxygen layer covering the / source oxide layer, the bottom of the earth, and the partially buried drain oxide layer, and the partial oxide-f layer. doc / 006 The hafnium nitride layer on the Shixi layer, the second hafnium oxide completely covering the nitride, and the second oxide J = conductor layer. In another broad sense, the feature of the present invention is to provide a memory cell with a oxidized stone structure / oxygen-cut structure in the hairpin, including the buried source and drain in the substrate, covering A buried oxide layer on the buried substrate, the substrate j covering the substrate / source, and the first oxide layer on the partially buried substrate / source oxide layer: covering The nitrided layer on a part of the first hafnium oxide layer, the second silicon oxide layer in contact with the first silicon oxide layer, and the gate conductor layer covering the first stone oxide layer. a In some embodiments of the present invention, the thickness ratio (SiN: Si) of the oxidation on Lb Shi Xi (SiN) to the oxide layer on Shi Xi (S!) is about 0: 6 to 1 to 0. .8: It is preferably about 0.68: 1 to 0.88: In order to make the above and other objects, features, and energy of the present invention more comprehensible, the preferred embodiments are described below with the accompanying The drawings are explained in detail as follows. & [Embodiment] The following description will be described in detail with reference to each of the embodiments of the present invention. These _ are schematic illustrations of the present invention = other_ and the structure is not according to a certain "example. If the components of the embodiment of the present invention are the same as those in the other illustrations: Although it can be easily recognized in all the drawings With these components, === Chu, this specification will not include all the same components 12 rf.doc / 006

依照本發明之實施例,在ISSG的條件下,於加熱之 晶圓表面上使氫氣與氧氣產生反應,即可形成氧自由基。 原位蒸汽生成製程是屬於一低壓製程,其係以一比例將氧 氣與氫氣混合後,未經事先的燃燒過程即直接導入製程腔 室内。晶圓被加熱後可視為一點火源,使氫氣與氧氣間的 反應即會發生在晶圓表面附近(原位)。一般來說,在ISSG 製程的條件下,主要是藉由以下的反應式來產生氧自由 基。 H2+ 〇2 —>20H Η2+ 0Η-^Η20 + Η 〇2+ Η—>0Η + Ο" Η2+ Ο^ΟΗ + Η 在ISSG氧化製程中,氫氣的存在可加速氧分子游離 形成易反應的氧原子。依照本發明所述,在ISSG製程中 氮化矽上之氧化物的形成速率(即氧化物之形成厚度相對 於氮化矽之損耗厚度)顯現出其與氧原子(氧自由基〇·) 濃度有报強的關連性,而與其他種類的分子或原子無關。 氧自由基0·的濃度並非取決於反應氣體的體積,而是取 決於壓力、溫度以及氫氣在腔室中的相對數量。 ^腔室中之壓力與溫度的主要功能是使分子間產生碰 才里而壓力或流速的主要功能則是使分子再結合。在分子 發生碰撞與再結合的期間,自由基的生成平衡會使得氧自 由基達到最高的濃度。因此,ISSG製程是依腔室内所使 用的製程壓力、氣體流速以及溫度而定,且上述之值皆在 一特定的範圍内。因此,在本發明的某些實施例中,使用 13 1236712 07672twf.doc/006 以下參數之製程可得到較佳之效能:溫度約在攝氏800度 至1000度的範圍内,壓力約在1托(torr)至2〇托的範 圍内,而H2+〇2的流速大約是在isim至4〇slm的範圍内。 且ΐνΗ2+〇2的比值大約是在至4〇%的範圍内。 在本發明的某些實施例中,載氣係與氫氣和氧氣之混 合氣體一起流過腔室,用以提高壓力的均勻性。其中載氣 例如是氮氣。但由於載氣在氧自由基的原位生成製程中並 不是必要之元素,因此其流速可以是0slm (若無使用載 氣)至50slm之間。 在習知製程中,所使用的氫氣與氧氣的比例相當高, 例如是1/67 : 1,且反應溫度例如是攝氏1〇〇〇度,在氮 化矽上之氧化物與矽上之氧化物的生成速率之比值 (SiN/Si)例如是約〇·26。而依照本發明之作法,可使氮 化石夕上之氧化物與石夕上的氧化物的生成速率達到更高之比 值,亦可在氮化矽與矽的表面上同時生成氧化物。 第1圖所繪示之流程圖為具有〇Ν〇結構之元件形成 氧化物的習知製程100。而第2Α圖至第2G圖則係洽示 習知製程巾不同階段所形成之結構的勤示意圖。請^照 第1圖及第2A ®,習知製程10〇的步驟1〇2,係在基 202中形成隔離結構2〇4,以定義出第一區域綱以=第 二區,208。基底202例如是—石夕晶圓,而隔離結構綱 例如是溝渠式隔離結構。第—區域施係用以形成記憶 I :第Γ區域2〇8則係用以形成邏輯元件。接著在步; 1〇4中,在第一區域206及第二區域2〇8上形成 層210,如第2Β圖所示。再於步驟1〇6巾,沈積一層氣 Ι2367〇Ά 然後在步驟108中,對氮化矽層212進行氧化製程 切層2U覆蓋於穿隧氧化層210上,如第 成頂氧化層214。由於氧化過程中氮切層212之 有部分被耗損,因而所留下的氮化矽層213的厚唐鉍兔:According to an embodiment of the present invention, under the conditions of ISSG, hydrogen and oxygen are reacted on the surface of the heated wafer to form oxygen radicals. The in-situ steam generation process belongs to a low-pressure process. After mixing oxygen and hydrogen in a proportion, it is directly introduced into the process chamber without a prior combustion process. After the wafer is heated, it can be regarded as an ignition source, so that the reaction between hydrogen and oxygen will occur near the wafer surface (in situ). Generally, under the conditions of the ISSG process, the oxygen free radical is mainly generated by the following reaction formula. H2 + 〇2 — > 20H Η2 + 0Η- ^ Η20 + Η 〇2 + Η— > 0Η + 〇 " Η2 + Ο ^ ΟΗ + Η In the ISSG oxidation process, the presence of hydrogen can accelerate the free formation of oxygen molecules to form reactive oxygen atom. According to the present invention, during the ISSG process, the rate of oxide formation on silicon nitride (ie, the thickness of the oxide formed relative to the loss thickness of silicon nitride) shows its concentration with oxygen atoms (oxygen radicals 0 ·). It has a strong correlation and has nothing to do with other kinds of molecules or atoms. The concentration of oxygen radical 0 · does not depend on the volume of the reaction gas, but on the pressure, temperature, and the relative amount of hydrogen in the chamber. ^ The main function of pressure and temperature in the chamber is to cause collisions between molecules, and the main function of pressure or flow rate is to recombine molecules. During the collision and recombination of molecules, the balance of free radical generation will make the oxygen free radical reach the highest concentration. Therefore, the ISSG process depends on the process pressure, gas flow rate, and temperature used in the chamber, and the above values are all within a specific range. Therefore, in some embodiments of the present invention, the process using 13 1236712 07672twf.doc / 006 can obtain better performance: the temperature is in the range of 800 to 1000 degrees Celsius, and the pressure is about 1 Torr (torr) ) To 20 Torr, and the flow rate of H2 + 02 is approximately in the range of isim to 40 slm. And the ratio of ΐνΗ2 + 02 is in the range of about 40%. In some embodiments of the present invention, a carrier gas is passed through the chamber together with a mixed gas of hydrogen and oxygen to improve the uniformity of pressure. The carrier gas is, for example, nitrogen. However, since the carrier gas is not an essential element in the in situ generation process of oxygen radicals, its flow rate can be between 0 slm (if no carrier gas is used) to 50 slm. In the conventional process, the ratio of hydrogen to oxygen used is quite high, for example, 1/67: 1, and the reaction temperature is, for example, 1000 degrees Celsius. Oxides on silicon nitride and oxidation on silicon The ratio (SiN / Si) of the product generation rate is, for example, about 0.26. According to the method of the present invention, the generation rate of the oxide on the nitrided stone and the oxide on the stone can reach a higher ratio, and the oxide can be simultaneously formed on the surface of silicon nitride and silicon. The flowchart shown in FIG. 1 is a conventional process 100 for forming an oxide with a NO structure. Figures 2A to 2G are schematic diagrams showing the structures formed at different stages of the conventional process towel. Please refer to Fig. 1 and Fig. 2A ®, the step 10 of the conventional manufacturing process 10 is to form an isolation structure 204 in the base 202 to define the first area outline = the second area, 208. The substrate 202 is, for example, a Shixi wafer, and the isolation structure is, for example, a trench isolation structure. The first region is used to form a memory I: The first Γ region 208 is used to form a logic element. Then in step 104, a layer 210 is formed on the first region 206 and the second region 208, as shown in FIG. 2B. Then, in step 106, a layer of gas 12367 is deposited, and then in step 108, an oxidation process is performed on the silicon nitride layer 212. A cutting layer 2U is covered on the tunneling oxide layer 210, such as the top oxide layer 214. Since the nitrogen cutting layer 212 is partially consumed during the oxidation process, the thick bismuth layer of the silicon nitride layer 213 that remains is:

減202之第-區域206上定義出〇Ν〇結構22〇以及〇ν〇 結構222 ’並暴露出第二區域208中之基底2〇2的表面。 所形成的每一 0Ν0結構220與222皆構成一 〇Ν〇堆疊 結構,且由基底202依序往上分別為底氧化層故、氮^ ,層226以及頂氧化層似。而本實施例係藉由源極/沒 極區230關ΟΝΟ堆疊結構。在步驟U2中,進行離子 ,入製程’以形成埋入式擴散區232,並構成一埋入式源 極/及極,如第2Ε圖所示。然後在步驟U4中,進行 化製程’以於第二區域2〇8上生成元件閘極氧化層挪, ^且生成源極/沒極氧化層234。而由於部分的埋入式擴 j 化過程^皮損耗’因此會產生厚度較薄的埋 233 ’如第2F圖所示。在此處所使用的條件· 構中的魏化層厚度的增加量非常小,相當 。,、思義的數量’例如是數埃。在步驟116中,多晶石夕層 238係沈積覆蓋於閘極氧化層236、ΟΝΟ結構22〇與μ; 然而,值得注意的是,移除 層210將使得整個製程更加複雜 產生一不平坦之表面。 以及埋入式源極後極氧化層234之上,2 · 移除覆蓋於第二區域上的氧化 複雜,且會在第二區域208上 魏而,佶沒、、4·立- 15 1236¾ twf.doc/006 第3圖是繪示本發明之一實施例的一種氧化製程之步 驟流程圖。而第4A圖至第4G圖則係繪示本發明之氧化 製程300中不同階段所形成之結構的剖面示意圖。請參照 第3圖及第4A圖,製程300的步驟302,係在基底402 中形成一隔離結構404,以定義出第一區域406與第二區 域408。第一區域406係用以形成記憶胞;而第二區域408 係用以形成邏輯元件隔離結構。基底402例如是一矽晶 圓,而隔離結構例如是溝渠式隔離結構404。在步驟304 中,形成穿隧氧化層410覆蓋住第一區域406及第二區域 408,如第4B圖所示。再於步驟3〇6中,沈積一層氮化 矽層412覆蓋於穿隧氧化層41〇上,如第4C圖所示。這 些步驟皆可以利用習知技術來完成。而且,請參照第4C 圖,完成這些步驟的結果是提供一個具有由隔離結構4〇4 所定義出的區域之基底402,且在此些區域上覆蓋有一穿 隧氧化層410,而穿隧氧化層41〇上則形成有一具有暴露 出之表面的氮化矽層412。依據本發明所述,在步驟3〇8 中利用罩幕(未繪示)進行一圖案化製程,以定義出基底 402的第一區域406上預定形成之〇N〇結構中的底氧化 層部分424以及氮化矽層部分426,如圖式中標記42〇與 422所示之結構,並暴露出第二區域4〇8中的基底4〇2表 面’如第4D圖所不。此時,第二區域4〇8中的賴元件 之閘極氧化層與ΟΝΟ結射的魏化料未形成。而本 實施例中/已定義之氧化物錢化物所構狀部分完成的 ΟΝΟ堆疊結構之間為—源極/汲極㊣請。在步驟31〇中, 進行-離子植入製程,以在基底術的源極級極區物 1236¾¾ twf.doc/006 中形成一埋入式擴散區,以構成埋入式源極/汲極432, 如第4E圖所示。 然後’依照本發明所述’在步驟312中,於存在一氧 自由基的環境下進行快速熱氧化(Rapid Thermal Oxidation,RTO)製程,以同時形成頂氧化層428、埋入 式汲極/源極氧化層434以及閘極氧化層436,如第4F圖 所示。且在生成頂氧化層428的同時’會耗損部分之氮化 矽層426,而剩下較薄的氮化矽層427。由上述製程所形 成的每一 0N0結構421與423皆構成一 0N0堆疊結構, 且由基底402依序往上分別為底氧化層424、氮化石夕層427 以及頂氧化層428。 之後,在步驟314中,沈積多晶矽層438覆蓋住閘極 氧化層436、ΟΝΟ堆疊結構421與423以及埋入式源極/ 汲極氧化層434,如第4G圖所示。 請參照第5圖,其繪示依照習知製程在記憶胞區所形 成之ΟΝΟ結構500的剖面示意圖。όνο結構5〇〇係形成 在基底502上,其包括一 ΟΝΟ堆疊結構522,而此〇Ν〇 堆疊結構522係由基底502依序往上分別為底氧化層 524、氮化矽層526以及頂氧化層528所組成。埋入式& 散區(源極/汲極區)532係形成於與〇Ν〇堆疊結構 相鄰的基底5G2巾’其形成方法例如是離子植人法 /汲極氧化層似則係藉由氧化埋人式擴散區说而成。 多晶石夕層538係覆蓋於0Ν0堆疊結構522的頂氧化 以及與ΟΝΟ堆疊結構522相鄰的源極/沒極氧化声曰似 上。值得注意的是,使用習知澄式氧化製程形成上^ 17 1236712 〇7672twf.doc/0〇6 堆疊結構522之了百a 而此清洗f程需要騎行一清洗製程, 526的角ίί、Γ刻頂氧化層528,並暴露出氮化石夕層 ⑽的角洛或邊緣。請 的ΟΝΟ堆疊蛀描士火^知方法所形成 受侧的破壞i,將^頂乳化層538之邊緣529遭 晶石夕層538沈積化石夕層的邊、緣527。當多 出的邊終597 !! 構上時,氮化梦層所暴露 卜功Γ π曰,、覆蓋於其上的多晶矽層538接觸,而從 6至多晶梦層528形成一漏電流路徑,並因此 降低0N0結構5〇〇的效能。 士欢^月可避免上述漏電流的問題。第6圖係緣示依照 ^明而形成的-種0Ν0結構_的剖面示意圖。請參 第6圖,本發明之ΟΝΟ結構600係形成在基底6〇2上, 包括一 ΟΝΟ堆疊結構622,而〇Ν〇堆疊結構幻2係由 基底=02依序往上分別為底氧化層624、氮化石夕層_以 及頂氧化層628所組成。埋人式擴散區(_/汲極區)632 係形成於與ΟΝΟ堆疊結構622相鄰的基底6〇2中,其形 成方法例如是離子植入法。源極/汲極氧化層634則係在 含氧自由基的RTO製程中,藉由氧化埋入式擴散區632 而成。且頂氧化層628亦是在此製程中與源極/汲極氧化 層634同時形成,如前述有關第3圖及第4D圖至第4F 圖之s兒明。而多晶石夕層638係覆蓋於ΟΝΟ堆疊結構622 的頂氧化層628以及與ΟΝΟ堆疊結構622相鄰的源極/汲 極氧化層634之上。依照本發明所述,本發明之頂氧化層 628,係於圖案化氮化石夕層626及底氧化層624之後,從 氮化石夕層626所暴露出的表面上氧化形成。而且此方法所 18 1236712 〇7672twf.doc/0〇6 之頂氧,層628可完全覆蓋住氮化碎層—的邊緣與 柳t且頂氧化層628係包圍著氮化梦層626❾邊緣而與 4近。P分的源極/沒極氧化層634接觸。因此,氮化石夕層 626可與之後形成於其上的多晶销⑽完全隔離,進而 改。ΟΝΟ結構600的效能與可靠度。 實例一 在本實例中,在晶圓基底上形成圖案化之氮化石夕 (S,)與梦⑻表面,再將晶圓放置在原位蒸汽生成 的爐官内。接著在ISSG腔室中將晶圓加熱至約攝氏請 度,並使其暴露於氫氣、氧氣以及作域氣的氮氣下約300 秒,以在矽與氮化矽的表面上形成氧化層。其中ISSG製 程之腔室中氫氣的流速為2slm,氧氣的流速為 8slm。而 在矽表面上所形成的氧化層厚度約為158埃,在氮化矽表 面上所形成的氧化層厚度約為128埃。 實例二 本實例將比較利用ISSG製程在氮石夕化合物(siN) 上生成氧化物的速率之實際值與由反應式推導而得之理論 值其間的差異。 而理論值速率可由以下式子推導而出:On the second region 206 of the minus 202, the ONO structure 22O and the ONV structure 222 'are defined and the surface of the substrate 202 in the second region 208 is exposed. Each of the ONO structures 220 and 222 formed constitutes a ONO stack structure, and sequentially from the substrate 202 upwards are a bottom oxide layer, a nitrogen layer, a layer 226, and a top oxide layer. In this embodiment, the source / inverter region 230 is used to turn off the ONO stack structure. In step U2, an ion implantation process is performed to form a buried diffusion region 232 and form a buried source / and electrode, as shown in FIG. 2E. Then, in step U4, a chemical process is performed to generate an element gate oxide layer on the second region 208, and a source / inverted oxide layer 234 is formed. However, due to a part of the buried expansion process ^ skin loss ', a relatively thin buried 233' is generated as shown in FIG. 2F. The conditions and structures used here have a very small increase in the thickness of the weird layer, which is equivalent. , The number of meanings' is, for example, several Angstroms. In step 116, the polycrystalline silicon layer 238 is deposited to cover the gate oxide layer 236, the ONO structures 22 and μ; however, it is worth noting that removing the layer 210 will make the entire process more complicated and produce an uneven surface. surface. And on the buried source back electrode oxide layer 234, 2 · remove the complex oxide covering the second area, and it will be obliterated on the second area 208, 4 · Li-15 1236¾ twf .doc / 006 FIG. 3 is a flowchart showing the steps of an oxidation process according to an embodiment of the present invention. 4A to 4G are schematic cross-sectional views illustrating structures formed at different stages in the oxidation process 300 of the present invention. Referring to FIG. 3 and FIG. 4A, in step 302 of the process 300, an isolation structure 404 is formed in the substrate 402 to define a first region 406 and a second region 408. The first region 406 is used to form a memory cell, and the second region 408 is used to form a logic element isolation structure. The substrate 402 is, for example, a silicon wafer, and the isolation structure is, for example, a trench isolation structure 404. In step 304, a tunneling oxide layer 410 is formed to cover the first region 406 and the second region 408, as shown in FIG. 4B. In step 306, a silicon nitride layer 412 is deposited on the tunneling oxide layer 410, as shown in FIG. 4C. These steps can be accomplished using conventional techniques. Moreover, please refer to FIG. 4C. The result of completing these steps is to provide a substrate 402 having regions defined by the isolation structure 404, and covering these regions with a tunneling oxide layer 410, and tunneling oxidation. A silicon nitride layer 412 having an exposed surface is formed on the layer 41. According to the present invention, a patterning process is performed by using a mask (not shown) in step 308 to define a portion of the under-oxide layer in the OO structure predetermined to be formed on the first region 406 of the substrate 402. 424 and the silicon nitride layer portion 426 have the structures shown as 42 and 422 in the figure, and expose the surface of the substrate 402 in the second region 408 as shown in FIG. 4D. At this time, the gate oxide layer of the Lai element in the second region 408 and the oxide material emitted by the ONO are not formed. However, in the present embodiment / the defined structure formed by the oxide chalcogenide is between a source / drain, please refer to the source / drain. In step 31, an ion implantation process is performed to form a buried diffusion region in the basal source-level electrode region 1236¾¾twf.doc / 006 to form a buried source / drain 432. As shown in Figure 4E. Then, in accordance with the present invention, in step 312, a rapid thermal oxidation (RTO) process is performed in the presence of an oxygen radical to form a top oxide layer 428 and a buried drain / source at the same time. The electrode oxide layer 434 and the gate oxide layer 436 are as shown in FIG. 4F. And while the top oxide layer 428 is being formed, a portion of the silicon nitride layer 426 is consumed, and a thinner silicon nitride layer 427 remains. Each of the 0N0 structures 421 and 423 formed by the above process constitutes a 0N0 stacked structure, and from the base 402 in sequence, the bottom oxide layer 424, the nitride oxide layer 427, and the top oxide layer 428 are sequentially formed. Thereafter, in step 314, a polycrystalline silicon layer 438 is deposited to cover the gate oxide layer 436, the ONO stack structures 421 and 423, and the buried source / drain oxide layer 434, as shown in FIG. 4G. Please refer to FIG. 5, which illustrates a schematic cross-sectional view of the ONO structure 500 formed in the memory cell area according to a conventional process. The structure 500 is formed on the substrate 502, which includes a 10NO stack structure 522, and the ONO stack structure 522 is a bottom oxide layer 524, a silicon nitride layer 526, and a top layer in order from the base 502. It is composed of an oxide layer 528. The buried & scattered region (source / drain region) 532 is formed on the 5G2 substrate adjacent to the ONO stack structure. Its formation method is, for example, ion implantation / drain oxide layer. It is said by oxidized buried human diffusion area. The polycrystalline silicon layer 538 covers the top oxidation of the ONO stack structure 522 and the source / non-polar oxidation sound adjacent to the ONO stack structure 522. It is worth noting that the conventional oxidizing process is used to form the ^ 17 1236712 〇7672twf.doc / 0〇6 stacking structure 522 and a cleaning process, and this cleaning process requires cycling a cleaning process, the angle of 526, Γ top oxidation Layer 528 and expose the corners or edges of the nitride layer. Please use the stacking method to describe the damage caused by the known method. The edge 529 of the top emulsion layer 538 is deposited by the crystal layer 538 and the edge 527 of the fossil layer. When the extra edge ends 597 !!, the polycrystalline silicon layer 538 overlying the exposed silicon nitride layer Γ π is contacted, and a leakage current path is formed from 6 to polycrystalline silicon layer 528. As a result, the effectiveness of the 500 structure of 0N0 is reduced. Shihuan can avoid the above leakage current problem. FIG. 6 is a schematic cross-sectional view of a kind of ON0 structure formed in accordance with the description. Please refer to FIG. 6. The ONO structure 600 of the present invention is formed on a substrate 602, including a ONO stack structure 622, and the ONO stack structure 2 is a bottom oxide layer sequentially from the base = 02. 624. A nitride nitride layer and a top oxide layer 628. The buried diffusion region (_ / drain region) 632 is formed in the substrate 602 adjacent to the ONO stack structure 622, and a formation method thereof is, for example, an ion implantation method. The source / drain oxide layer 634 is formed by oxidizing the buried diffusion region 632 in the RTO process containing oxygen radicals. The top oxide layer 628 is also formed at the same time as the source / drain oxide layer 634 in this process, as described above with reference to Figures 3 and 4D to 4F. The polycrystalline silicon layer 638 covers the top oxide layer 628 of the ONO stack structure 622 and the source / drain oxide layer 634 adjacent to the ONO stack structure 622. According to the present invention, the top oxide layer 628 of the present invention is formed after the patterned nitride stone layer 626 and the bottom oxide layer 624 are oxidized from the surface exposed by the nitride stone layer 626. In addition, the top layer of this method, 18 1236712 〇7672twf.doc / 0〇6, layer 628 can completely cover the edge of the nitrided layer—and the top oxide layer 628 surrounds the edge of the nitrided dream layer 626❾. 4 near. The P-source / non-electrode oxide layer 634 is in contact. Therefore, the nitride nitride layer 626 can be completely isolated from the polycrystalline silicon pin formed later thereon, and can be further modified. The efficiency and reliability of the ONO structure 600. Example 1 In this example, a patterned nitride nitride (S,) and a nightmare surface are formed on a wafer substrate, and the wafer is placed in a furnace where steam is generated in situ. Then, the wafer is heated in an ISSG chamber to about Celsius and exposed to hydrogen, oxygen, and nitrogen gas for about 300 seconds to form an oxide layer on the surface of silicon and silicon nitride. The flow rate of hydrogen in the ISSG process chamber is 2 slm, and the flow rate of oxygen is 8 slm. The thickness of the oxide layer formed on the silicon surface is about 158 angstroms, and the thickness of the oxide layer formed on the silicon nitride surface is about 128 angstroms. Example 2 This example compares the difference between the actual value of the rate of oxide formation on the zeolite compound (siN) using the ISSG process and the theoretical value derived from the reaction formula. The theoretical value rate can be derived from the following formula:

Si3N4+6H20->3 S i02+4NH3Si3N4 + 6H20- > 3 S i02 + 4NH3

Si3N4 · (28·086χ 3+14x 4g/mole) / (3.1g/cm3)= 45.25cm3/moleSi3N4 · (28 · 086χ 3 + 14x 4g / mole) / (3.1g / cm3) = 45.25cm3 / mole

Si02 · ( 28+16x 2g/mole )/( 2.21 g/cm3) = 27.18cm3/mole I236m.d。義 (27.18χ 3) /45.25=1.8 右將ISSG製程之實驗資料中的氧化層生成厚度相對 於氮化矽層(SiNGen)之耗損厚度繪製成一關係圖,則 所得之斜率為1.6301。而位於頂氧化層與氮化層之界面 的薄層中之氮合併氧化物(氮氧化物)的形成,可用以說 明理論值速率與所測得之實驗值速率間的差異。且由於氮 合併氧化物的存在,使得氧化物層_氮化物層之界面的精 準位置,尤其是在ΟΝΟ堆疊結構中的頂氧化薄膜盥氮 物層之界面的精準位置難以決定。 實例三 本實例將比較在三種不同溫度下之ISSG製程中,其 氮梦化合物(二氣魏’ DCS)上之氧化層的生成速率’。、 此二種溫度分別為攝氏850度、900度以及95〇度。而每 -溫度下的晶圓皆暴露於氫氣與氧氣巾,錢氣與氧氣的 流速比(h2/h2+〇2)大約是33% (h2流速為6slm,而〇2 流速為12slm)。而測量氧化層厚度的時間間隔大約是如 秒、60秒、90秒以及12〇秒。 攝氏㈣度的製程中,氧化層在氮化石夕及石夕 ☆的生成速率比(SlN/Si)約在0 68:】至〇75:】的範 =的ίίΐί攝氏900度的製程中,氧化層在氮化石夕及 石夕上的生成速率比(Si臟)約在G69:丨至 範圍内。而在溫度為攝氏95G度的製 · =的生成速率比(_)約在。.72:1 = 20 1236712 07672twf.doc/006 習知方法在氮化矽層上之薄氧化膜的形成係依據線性 生成法(linear growth law)則而得。相對地,ISSG製程中 之氧化層的形成顯然是利用控制其擴散而得。當氧彳=層厚 度的數值平方與氧化時間呈線性比例時,則其係符合^物 線生成法則(parabolic growth law) 〇 實例四 本實例將比較不同參數之ISSG製程中的氮化石夕 (DCS)上之氧化層生成速率。製程中氫氣與氧氣的比值 (%/氏+〇2)分別為約25%以及約33%,且溫度分別約 為攝氏850度、900度以及950度。而測量氧化層厚度的 時間間隔大約是30秒、60秒、90秒以及12〇秒。並利用 一燈式(lamp type,XT)單晶圓腔室於事先形成氮化矽膜。 了般來說,在較高溫的製程中,每一時間間隔内所形成的 氧化層皆會較厚。也就是說,在較高溫下的製程中,其氧 化層生成速率較快,因為氧自由基中明顯增加的動能可使 更谷易克服活性能的障礙。而且,在每一製程溫度下, %沿2+〇2比值愈高其氧化層的生成速率愈快。因在 一給定的製程溫度下,氫氣濃度愈高,則氧化層達到指定 f度所需的製程時間愈短。明顯地,氫氣的高濃度可加速 氧分子游離為纽應的氧自由基,進而使更多氧自由基能 夠I斑/5窳。 實例五 在本實例中,氧化層係利用攝氏85〇度及95〇度的 21 1236¾¾ :twf.doc/006 ISSG ,程形成於氮化層上。而此氮化層可以是利用多種 不同之方式形成,其包括二氯石夕烧基⑷之氣 化層(XTlamptype腔室)、利用單晶圓腔室(XTlamp type)生成的燒基氮化物以及彻單日日日圓腔室系 成的烧基氮化物。如預期的,在較高的溫度下頂氧 曰$生成速度較快。且在同—溫度下,上述三種不同型 式之薄膜上的氧化層生成速率相似。 之—或更多參數之恰當值,將會因其他一或更多 Ϊ參f值而有所不同。舉例來說,通常在較高_溫度 、P可縮^:製程所需的時間。而^,在任—給定的製程 Ϊ二合ί體中氫氣相對於氧氣的比例較高,製 方斜爾^二°這些實例係依照本發明而在此提供建議 用以決疋較佳之參數結合,並非用以表現特定之實 限定發揭露如上,然其並非用以 *二、/何料此技藝者,在不脫離本發明之精神 口範圍内’當可作些許之更動與 ,圍當視後附之申請專利制所界定者為準發月之㈣ 【圖式簡單說明】 干 ϊ1圖請示習知祕製程之步驟流程圖。 示意=A圖至第2G圖是緣示第】圖中每一步驟的剖面 驟流^圖是緣示本發明之一實施例的一種氧化製程之步 22 123674^ f.doc/006 第4A圖至第4G圖是是繪示第3圖中每一氧化製程 步驟的剖面示意圖。 第5圖是繪示依照習知製程所形成的ΟΝΟ結構之剖 面示意圖。 第6圖是繪示依照本發明之製程所形成的ΟΝΟ結構 之剖面示意圖。 【主要元件符號說明】 100 :習知製程Si02 · (28 + 16x 2g / mole) / (2.21 g / cm3) = 27.18cm3 / mole I236m.d. (27.18χ 3) /45.25=1.8 Right draw the relationship between the thickness of the oxide layer in the experimental data of the ISSG process and the loss thickness of the silicon nitride layer (SiNGen) as a relationship chart, and the resulting slope is 1.6301. The formation of nitrogen-combined oxides (nitrogen oxides) in a thin layer at the interface between the top oxide layer and the nitride layer can be used to illustrate the difference between the theoretical value rate and the measured experimental value rate. Moreover, the precise position of the interface between the oxide layer and the nitride layer, especially the precise position of the interface between the nitrogen oxide layer and the top oxide film in the ONO stack structure, is difficult to determine due to the presence of nitrogen-bound oxides. Example 3 This example will compare the formation rate of the oxide layer on the nitrogen dream compound (Diqiwei 'DCS) in the ISSG process at three different temperatures. The two temperatures are 850 ° C, 900 ° C and 95 ° C. While the wafer at each temperature is exposed to hydrogen and oxygen towels, the flow rate ratio of money gas to oxygen (h2 / h2 + 02) is about 33% (h2 flow rate is 6 slm, and 0 2 flow rate is 12 slm). The time interval for measuring the thickness of the oxide layer is approximately seconds, 60 seconds, 90 seconds, and 120 seconds. In the process of celsius degrees, the oxide layer is oxidized in the process of forming nitride nitride and stone ☆ (SlN / Si) in the range of 0 68:] to 〇75:]. The generation rate ratio of the layer on the nitrided stone and the stone (Si dirty) is within the range of G69: to. The production rate ratio (_) at the temperature of 95G ° C is about. .72: 1 = 20 1236712 07672twf.doc / 006 The conventional method for forming a thin oxide film on a silicon nitride layer is obtained according to the linear growth method. In contrast, the formation of the oxide layer in the ISSG process is obviously obtained by controlling its diffusion. When the square of the value of oxygen 彳 = layer thickness is linearly proportional to the oxidation time, then it is in accordance with the parabolic growth law. Example 4 This example will compare the DCS nitride nitride (DCS) in the ISSG process with different parameters. ) On the formation rate of the oxide layer. The ratios of hydrogen to oxygen (% / ° C + 02) in the process are about 25% and 33%, respectively, and the temperatures are about 850 ° C, 900 ° C, and 950 ° C, respectively. The time interval for measuring the thickness of the oxide layer is about 30 seconds, 60 seconds, 90 seconds, and 120 seconds. A lamp type (XT) single wafer chamber is used to form a silicon nitride film in advance. In general, in higher temperature processes, the oxide layer formed at each time interval will be thicker. That is to say, in the process at a higher temperature, the generation rate of the oxide layer is faster, because the significantly increased kinetic energy in the oxygen radical can make it easier for the valley to overcome the obstacle of active energy. Moreover, at each process temperature, the higher the ratio of% along 2 + 02, the faster the formation rate of the oxide layer. Because at a given process temperature, the higher the hydrogen concentration, the shorter the process time required for the oxide layer to reach a specified f degree. Obviously, the high concentration of hydrogen can accelerate the release of oxygen molecules into neo-oxygen radicals, which in turn enables more oxygen radicals to be able to reach 斑 / 5 窳. Example 5 In this example, the oxide layer is formed on the nitrided layer using 21 1236¾¾: twf.doc / 006 ISSG at 85 ° and 95 ° C. The nitrided layer can be formed in a number of different ways, including a gasification layer (XTlamp type chamber) of dichlorite and sintered base, a sintered nitride generated using a single wafer chamber (XTlamp type), and A single-day-Japanese-yen chamber is a sintered nitride. As expected, the top oxygen generation rate is faster at higher temperatures. At the same temperature, the formation rates of the oxide layers on the three different types of films are similar. The appropriate value of one or more parameters will vary depending on the f value of one or more other parameters. For example, at higher temperatures, P can be reduced ^: the time required for the process. And ^, the ratio of hydrogen to oxygen is high in any-given process Ϊ two-pronged body, the formula is ^ 2 ° These examples are in accordance with the present invention and provide suggestions here to determine the best combination of parameters It is not used to express the specific facts. The disclosure is as above, but it is not used to * 2. / What to expect this artist, without departing from the spirit of the present invention, should make some changes and look around. The attached patent application system is defined as the quasi-issued month. [Simplified illustration of the drawing] Please refer to the flowchart of the steps of the know-how process for the illustration of the 1st drawing. Schematic = A to 2G are marginal diagrams.] The cross-sectional flow at each step in the diagram is a diagram showing the steps of an oxidation process according to an embodiment of the present invention. 22 123674 ^ f.doc / 006 Fig. 4A 4G are schematic cross-sectional views showing each oxidation process step in FIG. 3. FIG. 5 is a schematic cross-sectional view showing an ONO structure formed according to a conventional process. FIG. 6 is a schematic cross-sectional view showing the ONO structure formed according to the process of the present invention. [Description of main component symbols] 100: Known manufacturing process

102〜116、302〜314 :製程步驟 202、402、502、602 :基底 2〇4、404 :隔離結構 206、406 ·•第一區域 208、408 :第二區域 210、410 :穿隧氧化層 212、213、226、412、426、427、526、626 :氮化石夕 層102 ~ 116, 302 ~ 314: Process steps 202, 402, 502, 602: Substrates 204, 404: Isolation structures 206, 406First area 208, 408: Second area 210, 410: Tunneling oxide layer 212, 213, 226, 412, 426, 427, 526, 626: Nitride layer

214、228、428、528、628 :頂氧化層 220、222、420、422、500、600 : ΟΝΟ 結構 224、424、524、624 ··底氧化層 230、430 :源極/;及極區 極) 232、233、432、532、632:埋入式擴散區(源極/沒 234、434、534、634 :埋入式源極/汲極氧化層 236、436 ·問極氧化層 238、438、528、638 :多晶秒層 23 f.doc/006 300 :本發明之製程 421、423、522、622 : ΟΝΟ 堆疊結構 527、627 :氮化矽層之邊緣 529 ··頂氧化層之邊緣214, 228, 428, 528, 628: Top oxide layers 220, 222, 420, 422, 500, 600: ONO structures 224, 424, 524, 624.Bottom oxide layers 230, 430: source /; and polar regions Electrodes) 232, 233, 432, 532, 632: buried diffusion regions (source / not 234, 434, 534, 634: buried source / drain oxide layers 236, 436) · interrogated oxide layer 238, 438, 528, 638: polycrystalline second layer 23 f.doc / 006 300: the process 421, 423, 522, 622 of the present invention: 〇ΝΟ stacked structure 527, 627: the edge of the silicon nitride layer 529 ·· of the top oxide layer edge

24twenty four

Claims (1)

1236712 07672twfl .d〇c/〇〇5 修正曰期94.3.30 十、申請專利範圍·· L —種ΟΝΟ結構的形成方法,包括·· 你基底之表面上提供一氧化物-氮化物薄膜,該氧々 物-虱化物薄膜包括·· 厣胰 币一乳化層,覆蓋於該基底上; —氮化石夕層,覆蓋於該第一氧化層上; 氮化物細,以於該基底上定義出一 且、、、"構之一底氧化物與一氮化矽部分,該底氧化物1236712 07672twfl .d〇c / 〇〇5 amended date of 94.3.30 X. scope of patent application · L-a method of forming a 0ΝΟ structure, including · providing an oxide-nitride film on the surface of your substrate, the Oxygen-lice compound film includes ... an emulsified layer of pancreatic coin covering the substrate; a layer of nitride stone covering the first oxide layer; the nitride is fine to define a substrate on the substrate And ,,, " a base oxide and a silicon nitride portion, the base oxide 與该氮化發部分具有一晨霞屮的彳日丨辟 一 有一異雨山ΛΛ1、百暴路出的側壁,且該氮化矽部分具 百暴路出的表面;以及 以>5 4異:有生自由基氧化劑的環境τ,使該暴露之側壁 2该暴狀表面暴露於—快速熱氧化作财,以於該圖 =2,部分及該圖案化之氧化物部分的該«之表 面與该暴路之側壁上形成一氧化層。 2甘如申請專利範圍第i項所述之〇Ν〇結構的形成方 去,其中該自由基氧化劑包括一氧自由基。The side of the nitrided hair part has a morning glow, and the side wall with a different rain mountain ΛΛ1, a hundred storm road exits, and the silicon nitride part has a hundred storm road exit surface; and > 5 4 : Environment τ with free radical oxidant, so that the exposed surface of the exposed side wall 2 is exposed to-rapid thermal oxidation for money, so that the figure = 2, part and the patterned oxide part of the «surface An oxide layer is formed on the side wall of the storm road. (2) The method for forming a NOO structure as described in item i of the patent application, wherein the free radical oxidant includes an oxygen free radical. 3·如申請專利範圍第1項所述之〇Ν〇結構的形成方 法’其中該自由基氧化劑包括〇·。 、4·如申請專利範圍第1項所述之ΟΝΟ結構的形成方 法,其中暴露之製程包括將該基底加熱至一特定之溫度, ,在-特定之動下,令該暴露之側壁及該暴露之表面暴 路於一以特定比例之一含氧氣體與一含氫氣體混合而成的 ,體中,且持續一特定之時間,藉由該含氧氣體與該含氫 氣體之組成成分的反應而在加熱的該基底附近產生該自由 基氧化劑。 25 1236712 07672twfl .doc/006 修正臼期94.3.30 5. 如申請專利範圍第4項所述之〇N〇結構的形成方 法,其中加熱該基底包括將該基底加熱至約攝氏7〇^度至 攝氏1300間的範圍内。 又 6. 如申請專利範圍第4項所述之〇N〇結構的形成方 法,其中該加熱該基底之步驟包括將該基底加熱至^攝氏 900度至攝氏115〇間的範圍内。 7·如申請專利範圍第4項所述之ΟΝΟ結構的形成方 法,其中該加熱該基底之步驟包括將該基底加熱至纟$ 850度至攝氏1〇〇〇間的範圍内。 8·如申請專利範圍第1項所述之〇Ν〇結構的形成方 法其中該暴路之製程包括將該基底加熱至一特定之溫 度,並在一特定之壓力下,令該暴露之側壁及該暴露之表 面暴露於一以特定比例之〇2與Η2混合而成的氣體中,且 持續一特定時間,藉由〇2與Η2之組成元素的反應而在加 熱的該基底附近產生〇-。 9·如申請專利範圍第8項所述之ΟΝΟ結構的形成方 法,其中該暴露之製程包括將該基底加熱至約攝氏7〇〇度 至攝氏1300度的範圍内,並於一約在1托(t〇rr)至2〇 托(torr)之範圍内的壓力下,令該暴露之側壁及該暴露之 表面暴露於一 〇2與H2之比例(Η2/Η2+02)約在至 40%之範圍内的混合氣體中,且持續約1至1〇〇〇秒的時間。 10·如申請專利範圍第9項所述之〇Ν〇結構的形成方 法’其中該加熱該基底之步驟包括將該基底加熱至約攝氏 900度至攝氏1150間的範圍内。 11·如申請專利範圍第9項所述之〇Ν〇結構的形成方 1236712 07672twfl .doc/006 修正日期94.3.30 法’其中該加熱該基底之步驟包括將該基底加熱至約攝氏 850度至攝氏1〇〇〇間的範圍内。 12·如申請專利範圍第9項所述之〇N〇結構的形成方 法,其=該暴露之製程包括在該基底上流動的〇2與氏之 该混合氣體,其比例(H2/H2+〇2)約在5%至33%的範圍 内。 13·如申請專利範圍第9項所述之〇N〇結構的形成方 法,其中該暴露之製程包括在該基底上流動的〇2與氏之 该混合氣體’其比例(¾ : 〇2)約在1 : 19至丨:2的範 圍内。 14·如申印專利範圍第9項所述之〇N〇結構的形成方 法,其中該暴露之製程包括〇2與%之該混合氣體在該基 底上流動的時間約在10秒至5〇〇秒的範圍内。 15·如申請專利範圍第9項所述之qNq結構的形成方 法,其中該暴露之製程包括〇2與%之該混合氣體在該基 底上流動的時間約在30秒至300秒的範圍内。 16·如申请專利範圍第1項所述之〇N〇結構的形成方 法,其中該暴露之製程包括於—爐管内加熱該基底,並在 -特定之壓力下,導人-崎定比例之〇2與%混合而成 的氣體,且持續一特定時間,藉由〇2與h2之組成成分的 反應而在加熱的该基底附近產生〇-。 17.如申請專利範圍第10項所述之〇n〇結構的形成方 法’其中該導人〇ah2之該混合氣體之步驟更包括導入 一載氣。 18·如申明專利範圍第17項所述之〇腿結構的形成方 27 1236712 修正日期94.3.30 07672twfl.doc/006 法’其中該導入〇2與H2之該混合氣體的步驟更包括導入 一氮氣(N2)作為載氣。 19·如申請專利範圍第16項所述之ΟΝΟ結構的形成方 法’其中該導入該特定比例的〇2與Η2的混合氣體的步 驟,包括在一特定之流速比例下導入〇2與Η2。 20·如申請專利範圍第19項所述之ΟΝΟ結構的形成方 法’其中該導入〇2與Η2之該混合氣體之步驟更包括以一 特定之流速導入乂作為一載氣。 21·如申請專利範圍第19項所述之0Ν0結構的形成方 法’其中該導入〇2與η2之步驟包括以一相加流速大約在 1至40slm之範圍内導入〇2與η2。 22·如申請專利範圍第2〇項所述之〇Ν〇結構的形成方 法’其中a亥‘入〇2與Η2之步驟包括以一相加流速大約在 1至40slm之範圍内導入〇2與η2,且導入ν2包括以大於 50slrn的流速導入。 23· —種具有ΟΝΟ結構之半導體元件的製造方法,包 括: 在一基底的表面上提供一氧化物-氮化物薄膜,該基底 具有藉由一絕緣體所定義出的第一及第二區域,該氧化物_ 氮化物薄膜包括一覆蓋於基底上之第一氧化石夕層,以及覆 蓋於該第一氧化矽層上之一氮化石夕層; 圖案化該氧化物-氮化物薄臈,以於該基底上之該第二 區域内暴露出該基底的表面,並於該基底上之該第一區域 内定義出一 ΟΝΟ堆疊結構中的一底氧化層與一氮化矽層 之部分,該底氧化層部分與該氮化矽層部分皆具有一暴露 28 1236712 °7672twfl.doc/006 修正曰期94.3.30 出之側壁,且該氮化石夕層部分具有一暴露出之表面,· 當該基底之溫度大約為攝氏7〇〇度至12〇之 ^暴露之難及該暴叙表峰露於—自由基氧化劑 以於圖案化之^化石夕層部分的該暴露之侧壁及該暴露 心’形成一第二氧化層,並同時於該第二區域内之 口〆土&表面上形成一閘極氧化層;以及 形成-導電層以覆蓋住該第二氧化層與該閘極 層0 24.如申請專利範圍第23項所述之具有〇ν〇結構之半 -讀的製造方法’該自由基氧化劑包括一氧自 由基。 °中料利範圍第23項所述之具有QNQ結構之半 * 1件的製造方法,該自由基氧化劑包括〇_。 道磁2-6·如申请專利範圍第23項所述之具有〇Ν〇結構之半 敎至造方法,其巾該暴露之製程包括將該基底加 =该溫度範_之—溫度,並在—特定之壓力下,令該 二路之侧壁及该暴露之表面暴露於—以特定比例之一含氧 軋體,含氫氣體混合而成的氣體中,且持續一特定時 ^藉由该含氧氣體與該含氫氣體之組成成分的反應而在 π”、、的該基底附近產生該自由基氧化劑。 莫辦27·如申晴專利範圍第26項所述之具有ΟΝΟ結構之半 =元件的製造方法,其中該加熱該基底之步驟包括將該 土底加熱至約攝氏900度至攝氏1150間的範圍内。 、曾^#28·如申請專利範圍第26項所述之具有ΟΝ〇結構之半 =广元件的製造方法,其中該加熱該基底之步驟包括將該 土底加熱至約攝氏850度至攝氏1000間的範圍内。 29 1236712 〇7672twfl .doc/006 修正日期94.3.30 、29·如申凊專利範圍第23項所述之具有〇N〇結構之半 導體兀件的製造方法,其巾縣紅製程包括將該基底加 熱至該溫度範圍内之一溫度,並在一特定之壓力下,令該 暴露之側壁及該暴露之表面暴露於一以特定比例之〇2與 %混合而成的氣體中,且持續一特定時間,藉由仏與氏 之組成成分的反應而在加熱的該基底附近產生〇_。 、刈·如申請專利範圍第29項所述之具有0N0^構之半 導體兀件的製造方法,其巾該暴露之製程包括將該基底加 熱至讜溫度範圍内之一溫度,並於一約在丨托(沁汀)至 20托(torr)之範圍内的壓力下,令該暴露之側壁及該暴露 之表面暴露於一 〇2與H2之比例(H2/H2+〇2)約在0.1%至 40%之範圍内的混合氣體中,且持續約丨至1〇〇〇秒的時間。 31·如申請專利範圍第3〇項所述之具有〇N〇結構之半 導體元件的製造方法,其中該加熱該基底之步驟包括將該 基底加熱至約攝氏900度至攝氏1150間的範圍内。 32·如申請專利範圍第3〇項所述之具有〇N〇結構之半 導體元件的製造方法,其中該加熱該基底之步驟包括將該 基底加熱至約攝氏850度至攝氏1〇〇〇間的範圍内。 33·如申請專利範圍第30項所述之具有0N0結構之半 導體元件的製造方法,其中該暴露之製程包括在該基底上 流動的〇2與氏之該混合氣體,其比例(η2/Η2+〇2)約在 5%至33%的範圍内。 34·如申請專利範圍第30項所述之具有〇Ν〇結構之半 導體元件的製造方法,其中該暴露之製程包括在該基底上 流動的〇2與Η2之該混合氣體,其比例(η2 : 〇2)約在工·· 30 1236712 修正日期94.3.30 〇7672twfl.doc/〇〇6 19至1 : 2的範圍内。 35·如申請專利範圍第30項所述之具有〇N〇結構之半 導體元件的製造方法,其中該暴露之製程包括〇2與%之 該混合氣體在該基底上流動的時間約在丨〇秒至5〇〇秒的範 圍内。 36·如申請專利範圍第3〇項所述之具有ΟΝΟ結構之半 導體元件的製造方法,其中該暴露之製程包括〇2與氏之 該混合氣體在該基底上流動的時間約在3〇秒至3〇〇秒的 圍内。 ^ 37·如申請專利範圍第23項所述之具有όνο結構之半 導體元件的製造方法,其中該暴露之製程包括於一爐管内 加熱該基底,並在一特定之壓力下,導入一以特定比例之 〇2與Η2混合而成的氣體,且持續一特定時間,藉由ο〕與 Η2之組成元素的反應而在加熱的該基底附近產生〇_。 、38.如申請專利範圍第37項所述之具有〇Ν〇結構之半 導體7L件的製造方法,其中該導入〇2與Η2之該混合氣體 的步驟更包括導入一載氣。 、39·如申請專利範圍第38項所述之具有〇Ν〇結構之半 導體7L件的製造方法,其中該導入〇2與Η2之該混合氣體 之步驟更包括導入一氮氣(Ν2)作為載氣。 、40·如申請專利範圍第37項所述之具有〇]^〇結構之半 導體70件的製造方法,其中該導入該特定〇2與Η2之比例 的混合氣體的步驟,更包括在一特定之流速比例下導入 與Η2 〇 41 ·如申請專利範圍第40項所述之具有ΟΝΟ結構之半 31 1236712 修正日期94.3.30 〇7672twfl.doc/0〇6 導體元件的製造方法,其中該導入〇2與Η2之該混合氣體 之步驟更包括以一特定之流速導入%作為一載氣。 42·如申請專利範圍第40項所述之具有ΟΝΟ結構之半 導體元件的製造方法,其中該導入〇2與Η:之步驟包括以 相加流速大約在1至40slm之範圍内導入〇2與η2。 43·如申請專利範圍第41項所述之具有ΟΝΟ結構之半 導體元件的製造方法,其中該導入〇2與Η2之步驟包括以 一相加流速大約在1至40slm之範圍内導入〇2與η2,且 導入Ns包括以大於5〇sim的流速導入%。 44·如申請專利範圍第23項所述之具有ΟΝΟ結構之半 導體元件的製造方法,其中該第二氧化層與該閘極氧化層 之形成厚度比約在0.6 : 1至0·8 : 1之範圍内。 45·如申請專利範圍第23項所述之具有ΟΝΟ結構之半 導體元件的製造方法,其中該暴露之製程包括在一爐管内 加熱該基底,且當該基底之溫度維持在該溫度範圍内之一 溫度下並持續約1〇秒至500秒時,於該爐管内產生該自由 基氧化劑。 46·如申請專利範圍第23項所述之具有0Ν0結構之半 導體元件的製造方法,其中該暴露之製程包括在一爐管内 加熱該基底,且當該基底之溫度維持在該溫度範圍内之一 溫度下並持續約30秒至300秒時,於該爐管内產生該自由 基氧化劑。 47· —種具有ΟΝΟ結構之記憶體元件的製造方法,包 括: 在一基底的表面上提供一氧化物-氮化物薄膜,該基底 32 1236712 〇7672twfl.doc/006 修正日期94.3.30 具有藉由-絕緣體所定義出的一第一區域及 該氧化物-氮化物薄膜包括覆蓋於基底上之—第—氧化石夕 層,以及覆蓋於該第-氧切層上之_氮化石夕層; 圖案化該氧化物-氮化物薄膜,以於該基底上之該第二 區域内暴露出該基底的表面,並於該基底上之該第」區域 内定義出二ΟΝΟ堆疊結構中的一底氧化層與一氮化石夕層 之部分,該底氧化層部分與該氮化矽層部分皆具有一暴露 出之側壁,且該氮化矽層部分具有一暴露出之表面; 當该基底之溫度大約在攝氏7〇〇度至12〇〇度之間時, 將該暴露之侧壁及該暴露之表面暴露於一自由基氧化劑 中’以於圖案化之氮化石夕層部分的該暴露之側壁及該暴露 之表面上,形成一第二氧化層,並同時於該第二區域内之 该基底表面上形成一閘極氧化層;以及 形成一導電層以覆蓋住該第二氧化層與該閘極氧化 層。 4 8 ·如申請專利範圍第4 7項所述之具有〇 Ν 〇結構之記 憶體元件的製造方法,該自由基氧化劑包括一氧自由基。 49·如申請專利範圍第47項所述之具有〇Ν〇結構之記 憶體元件的製造方法,該自由基氧化劑包括〇-。 50·如申請專利範圍第47項所述之具有〇Ν〇結構之記 憶體元件的製造方法,其中該暴露之製程包括將該基底加 熱至該溫度範圍内之一溫度,並在一特定之壓力下,令該 暴路之側壁及邊暴露之表面暴露於一以特定比例之一含氧 氣體與一含氫氣體混合而成的氣體中,且持續一特定時 間’藉由该含乳氣體與該含氫氣體之組成元素的反應而在 33 1236712 07672twfl.doc/006 修正曰期94.3.30 加熱的該基底附近產生該自由基氧化劑。 立5L如申請專利範圍第5〇項所述之具有〇N〇結構之記 憶體元件的製造方法,其中該加熱該基底之步驟包括將該 基底加熱至約攝氏900度至攝氏1150間的範圍内。 52·如申請專利範圍第50項所述之具有ΟΝΟ結構之記 十思體元件的製造方法,其中該加熱該基底之步驟包括將該 基底加熱至約攝氏850度至攝氏1〇〇〇間的範圍内。 53·如申請專利範圍第47項所述之具有〇Ν〇結構之記 憶體το件的製造方法,其中該暴露之製程包括將該基底加 熱至该溫度範圍内之一溫度,並在一特定之壓力下,令該 暴路之側壁及該暴露之表面暴露於一以特定比例之〇2與 Η2混合而成的氣體中,且持續一特定時間,藉由〇2與印 之組成元素的反應而在加熱的該基底附近產生〇-。 54·如申請專利範圍第53項所述之具有〇Ν〇結構之記 憶體元件的製造方法,其中該暴露之製程包括將該基底加 熱至0亥、/jnL度範圍内之^~溫度,並於一約在1托(torr )至 20托(torr)之範圍内的壓力下,令該暴露之側壁及該暴露 之表面暴露於一 〇2與H2之比例(H2/H2+〇2)約在〇·ι%至 40%之範圍内的混合氣體中,且持續約1至1〇〇〇秒的時間。 55·如申請專利範圍第54項所述之具有0Ν0結構之記 憶體元件的製造方法,其中該加熱該基底之步驟包括將該 基底加熱至約攝氏900度至攝氏1150間的範圍内。 56·如申請專利範圍第54項所述之具有ΟΝΟ結構之記 憶體元件的製造方法,其中該加熱該基底之步驟包括將該 基底加熱至約攝氏850度至攝氏1000間的範圍内。 34 1236712 修正曰期94.3.30 07672twfl .doc/〇〇6 57·如申請專利範圍第54項所述之具有ΟΝΟ結構之記 憶體元件的製造方法,其中該暴露之製程包括在該基底上 流動的〇2與Η:之該混合氣體,其比例(Η2/Η2+02)約在 5%至33%的範圍内。 58·如申請專利範圍第54項所述之具有ΟΝΟ結構之記 憶體元件的製造方法,其中該暴露之製程包括在該基底上 流動的〇2與%之該混合氣體,其比例(Η2 : 〇2)約在工: 19至1.2的範圍内。 59·如申請專利範圍第54項所述之具有ΟΝΟ結構之記 憶體元件的製造方法,其中該暴露之製程包括02與%之 j/心&氧體在該基底上流動的時間約在1Q秒至$⑻秒的 圍内。 6〇·如申請專利範圍第54項所述之具有ΟΝΟ結構之記 憶,元件的製造方法,其中該暴露之製程包括02與Η2^ 該混合氣體在該基底上流動的時間約在3〇秒至3〇〇秒的範 圍内。 江61.如申請專利範圍第47項所述之具有Ονο結構之記 憶體,件的製造方法,其中該暴露之製程包括於—爐管内 加熱該基底,並在—特定之壓力下,導人-以狀比例之 〇2與氏混合而成的氣體,且持續一特定時間,藉由〇2與 Η2之組成成分的反應而在加熱的該基底附近產生〇_。 62.如申請專利範圍第61項所述之具ν 載:中該導…一氣體& 63·如申請專利範圍第62項所述之具有〇Ν〇結構之記 35 !236712 07672twfl.d〇c/〇〇6 修正曰期 94.3.30 憶體元件的製造方法,其中該導入〇2與H2之該混合氣體 之步驟更包括導入一氮氣(N2)作為載氣。 64·如申請專利範圍第61項所述之具有ΟΝΟ結構之記 憶體元件的製造方法,其中該導入該特定〇2與η2之比例 的混合氣體之步驟,更包括在一特定之流速比例下導入〇2 與Η2 〇 65·如申請專利範圍第64項所述之具有ΟΝΟ結構之記 憶體7L件的製造方法,其中該導入〇2與Η2之該混合氣體 之步驟更包括以一特定之流速導入Ν2作為一載氣。 66·如申請專利範圍第64項所述之具有ΟΝΟ結構之記 憶體元件的製造方法,其中該導入〇2與Η2之步驟包括以 一相加流速大約在1至4〇slm之範圍内導入〇2與Η2。 67·如申請專利範圍第65項所述之具有〇Ν〇結構之記 憶體元件的製造方法,其中該導入〇2與Η2之步驟包括以 一相加流速大約在1至40slm之範圍内導入〇2與η2,且 導入%包括以大於5〇sim的流速導入ν2。 68·如申請專利範圍第47項所述之具有0Ν0結構之記 憶體元件的製造方法,其中該第二氧化層與該閘極氧化層 之形成厚度比約在〇·6 : 1至0.8 : 1之範圍内。 69·如申請專利範圍第47項所述之具有〇Ν〇結構之記 憶體元件的製造方法,其中該暴露之製程包括在一爐管内 加熱该基底,且當該基底之溫度維持在該溫度範圍内之一 溫度下並持續約1〇秒至500秒時,於該爐管内產生該自由 基氧化劑。 70·如申請專利範圍第47項所述之具有〇Ν〇結構之記 36 1236712 07672twfl.doc/006 修正曰期94.3.30 憶體兀件的製造方法,其中該暴露之 加熱該基底,且當祕紅溫 ㈣^ ^内 基氧化劑。 才於。亥爐官内產生該自由 件,I!括一種具有氧化石夕/氮化石夕/氧化石夕結構的半導體元 一第一氧化矽層,覆蓋於一基底上· 二々氮化矽層,覆蓋於該第一氧化矽層上; 一第—氧化石夕層,完全覆蓋 一氧化矽層接觸;以及 “ g,並與该第 一間極導電層,覆蓋於該第二氧切層上。 件,Γ括一種具有氧化石夕/氮化石夕/氧化石夕結構的記憶胞元 一埋入式汲極與-埋人式源極,配置於_ 埋入汲極氧化層,覆蓋住該埋人歧^:以及一 埋入式,極氧化層,覆蓋住該埋入式源極; 一第一氧化矽層,覆蓋住位在該基底上之竽 極間的一區域,並覆蓋住部分:該埋么 汲極虱化層與部分之該埋入式源極氧化層; 二,化,層,覆蓋住部分之該第一氧化矽層,· -第二氧切層’完全覆蓋住該氮化^ 乳化矽層接觸;以及 日1/、/弟 閘極導電層,覆蓋於該第二氧化矽層上。 37 73. 1236712 〇7672twfl.doc/006 修正日期94.3.30 埋入式汲極與一埋入式源極,配置於-基底中; _ ,入式汲極氧化層,覆蓋於該埋入式汲極上,以及 1人„化層’覆蓋於該埋人式源極上; 極鱼兮第^化⑪層’覆A住位在該基底上之該埋入式汲 式源極_—區域,域蓋住部分之該埋入式 / η氧,層與部分之該埋入式源極氧化層; 一氮化矽層,覆蓋住部分之該第一氧化矽層; 氧化化ΙΓ完全覆蓋住該氮切層並與該第一 —閘極導電層,覆蓋於該第二氧化矽層上。 383. The method for forming a NOO structure as described in item 1 of the scope of the patent application, wherein the free radical oxidant includes O ·. 4. The method for forming a ΝΟΟ structure as described in item 1 of the scope of patent application, wherein the process of exposing includes heating the substrate to a specific temperature, and, under a specific action, causing the exposed sidewall and the exposure The surface is blasted in a mixture of an oxygen-containing gas and a hydrogen-containing gas in a specific ratio in the body, and lasts for a specific time, by the reaction of the oxygen-containing gas and the constituents of the hydrogen-containing gas The free radical oxidant is generated near the heated substrate. 25 1236712 07672twfl .doc / 006 Modified acetabular period 94.3.30 5. The method of forming a 0NO structure as described in item 4 of the scope of patent application, wherein heating the substrate includes heating the substrate to about 70 ° C to In the range of 1300 degrees Celsius. 6. The method for forming a 0NO structure as described in item 4 of the scope of the patent application, wherein the step of heating the substrate includes heating the substrate to a range of 900 ° C to 115 ° C. 7. The method for forming an ONO structure as described in item 4 of the scope of the patent application, wherein the step of heating the substrate includes heating the substrate to a range of $ 850 ° to 10,000 ° C. 8. The method for forming a Ν0 structure as described in item 1 of the scope of the patent application, wherein the process of the storm circuit includes heating the substrate to a specific temperature, and subjecting the exposed sidewall and the substrate to a specific pressure. The exposed surface is exposed to a gas mixed with a specific ratio of 02 and Η2 for a specific period of time, and a 0- is generated near the heated substrate by the reaction of the components of 22 and Η2. 9. The method for forming an ONO structure as described in item 8 of the scope of the patent application, wherein the exposure process includes heating the substrate to a range of about 700 ° C to 1300 ° C, and at about 1 Torr. (T〇rr) to 20 Torr, the exposed sidewall and the exposed surface are exposed to a ratio of 10 to H2 (Η2 / Η2 + 02) is about to 40% In the range of the mixed gas, and for a time of about 1 to 1,000 seconds. 10. The method of forming a NOO structure as described in item 9 of the scope of the patent application, wherein the step of heating the substrate includes heating the substrate to a range between about 900 ° C and 1150 ° C. 11. The method of forming the ONO structure as described in item 9 of the scope of patent application 1236712 07672twfl.doc / 006 date of revision 94.3.30 method, wherein the step of heating the substrate includes heating the substrate to about 850 ° C to In the range of 1000 degrees Celsius. 12. The method of forming a 0NO structure as described in item 9 of the scope of the patent application, which = the exposure process includes the flow of 0 2 and the mixed gas of H2 on the substrate, and the ratio (H2 / H2 + 〇2 ) In the range of 5% to 33%. 13. The method of forming a 0NO structure as described in item 9 of the scope of the patent application, wherein the process of exposing includes the flow of 〇2 flowing on the substrate to the mixed gas of 氏 's ratio (¾: 〇2) is about In the range of 1: 19 to 丨: 2. 14. The method for forming a 0NO structure as described in item 9 of the scope of the printed patent, wherein the exposure process includes 0.02% and% of the mixed gas flowing on the substrate for about 10 seconds to 500. Within seconds. 15. The method for forming a qNq structure as described in item 9 of the scope of the patent application, wherein the exposure process includes 02 and% of the time that the mixed gas flows on the substrate in the range of about 30 seconds to 300 seconds. 16. The method for forming a 0NO structure as described in item 1 of the scope of the patent application, wherein the process of exposing includes heating the substrate in a furnace tube, and inducing a predetermined ratio under a specific pressure. A gas mixed with 2% and for a specific time, 0- is generated near the heated substrate by the reaction of the components of 02 and h2. 17. The method for forming a 00n structure described in item 10 of the scope of the patent application, wherein the step of introducing the mixed gas of the person 0ah2 further includes introducing a carrier gas. 18. The formation method of the leg structure described in item 17 of the declared patent scope 27 1236712 Date of revision 94.3.30 07672twfl.doc / 006 Method 'wherein the step of introducing the mixed gas of 02 and H2 further includes introducing a nitrogen gas (N2) as a carrier gas. 19. The method for forming an ONO structure as described in item 16 of the scope of the patent application, wherein the step of introducing a mixed gas of 0 and Η2 at the specific ratio includes introducing 〇2 and Η2 at a specific flow rate ratio. 20. The method for forming an ONO structure as described in item 19 of the scope of the patent application, wherein the step of introducing the mixed gas of 0 and Η2 further includes introducing 乂 as a carrier gas at a specific flow rate. 21. The method for forming an ON0 structure as described in item 19 of the scope of the patent application, wherein the step of introducing 〇2 and η2 includes introducing 〇2 and η2 at an additive flow rate in a range of approximately 1 to 40 slm. 22. The method for forming a Ν0 structure as described in item 20 of the scope of the application for patent, wherein the step of a 0 ′ entering 0 2 and 导入 2 includes the introduction of 0 2 and 1 at a flow rate of approximately 1 to 40 slm. η2, and introduction of ν2 includes introduction at a flow rate greater than 50 slrn. 23. · A method for manufacturing a semiconductor device having an ONO structure, comprising: providing an oxide-nitride film on a surface of a substrate, the substrate having first and second regions defined by an insulator, the The oxide_nitride film includes a first oxide layer on the substrate and a nitride layer on the first silicon oxide layer; patterning the oxide-nitride thin film to The surface of the substrate is exposed in the second region on the substrate, and a portion of a bottom oxide layer and a silicon nitride layer in a 100N stack structure is defined in the first region on the substrate. The bottom Both the oxide layer portion and the silicon nitride layer portion have an exposed side wall of 28 1236712 ° 7672twfl.doc / 006, which amends the date of 94.3.30, and the nitrided layer portion has an exposed surface. When the substrate The temperature is about 700 ° C to 120 ° C. The difficulty of exposure and the exposure of the exposed peaks are exposed to free radical oxidants to pattern the exposed sidewalls of the fossil layer and the exposed core. Form a first An oxide layer, and at the same time, a gate oxide layer is formed on the mouth soil & surface in the second area; and a conductive layer is formed to cover the second oxide layer and the gate layer The half-reading manufacturing method having the 0ν〇 structure described in the scope item 23 'The radical oxidant includes a monooxy radical. ° Half the QNQ structure described in item 23 of the middle material benefit range * 1 piece of manufacturing method, the free radical oxidant includes 0_. Dao Magnetic 2-6 · As described in item 23 of the scope of the patent application, a semi-structured method with an ONO structure, the exposure process of the towel includes adding the substrate to the temperature range and the temperature, and — At a specific pressure, the side walls of the two channels and the exposed surface are exposed to — a mixture of an oxygen-containing rolling body and a hydrogen-containing gas in a specific ratio for a specific time ^ by the The reaction of the oxygen-containing gas with the constituents of the hydrogen-containing gas generates the free radical oxidant near the substrate of π ",. Moban 27. Half of the structure with ONO as described in item 26 of Shen Qing's patent scope = A method for manufacturing an element, wherein the step of heating the substrate includes heating the soil base to a range between about 900 degrees Celsius and 1150 degrees Celsius. Zeng ^ # 28. As described in item 26 of the scope of the patent application, it has ONO. Half of structure = manufacturing method of wide element, wherein the step of heating the substrate includes heating the soil bottom to a range of about 850 ° C to 1000 ° C. 29 1236712 〇7672twfl.doc / 006 Date of amendment 94.3.30, 29. Rushen Patent No. 23 The manufacturing method of the semiconductor element with the 〇N〇 structure is described. The process of manufacturing a red towel includes heating the substrate to a temperature within the temperature range, and exposing the exposed sidewall and the exposure under a specific pressure. The surface of the substrate is exposed to a gas mixed with a specific ratio of 02 and% for a specific period of time, and the reaction between the constituents of thorium and the thorium generates near the heated substrate. According to the method for manufacturing a semiconductor element having a 0N0 ^ structure as described in item 29 of the scope of the patent application, the process of exposing the towel includes heating the substrate to a temperature within the temperature range, and at about Qin Ting) to a pressure in the range of 20 torr, so that the exposed sidewall and the exposed surface are exposed to a ratio of 102 to H2 (H2 / H2 + 〇2) of about 0.1% to 40%. In a mixed gas in the range, and lasting from about 丨 to 1000 seconds. 31. The method for manufacturing a semiconductor device having an OO structure as described in claim 30 of the patent application scope, wherein the substrate is heated The steps include heating the substrate to about The range is from 900 degrees to 1150 degrees Celsius. 32. The method for manufacturing a semiconductor device having a 0N structure as described in item 30 of the patent application scope, wherein the step of heating the substrate includes heating the substrate to about Celsius degrees. The range is from 850 degrees to 1000 degrees Celsius. 33. The method for manufacturing a semiconductor device having a 0N0 structure as described in item 30 of the scope of patent application, wherein the process of exposing includes the flow of 0 2 and The ratio of this mixed gas (η2 / Η2 + 02) is in the range of about 5% to 33%. 34. The method for manufacturing a semiconductor device having an ONO structure as described in item 30 of the scope of patent application, The exposure process includes the mixed gas of 〇2 and Η2 flowing on the substrate, and the ratio (η2: 〇2) is about 30 · 30 1236712 the date of revision is 94.3.30 〇7672twfl.doc / 〇〇6 19 In the range of 1: 2. 35. The method for manufacturing a semiconductor device having an OO structure as described in item 30 of the scope of the patent application, wherein the exposure process includes 〇2 and% of the mixed gas flowing on the substrate for about 丨 0 seconds In the range of 500 seconds. 36. The method for manufacturing a semiconductor device having an ONO structure as described in item 30 of the scope of the patent application, wherein the exposure process includes the time for which the mixed gas of 0 2 and the flow of the mixed gas on the substrate is about 30 seconds to Within 300 seconds. ^ 37. The method for manufacturing a semiconductor device having a structure as described in item 23 of the scope of patent application, wherein the process of exposing includes heating the substrate in a furnace tube, and introducing a specific ratio under a specific pressure. The gas mixed with 而成 2 and , 2 lasts for a specific time, and generates __ near the heated substrate by the reaction of ο] and the constituent elements of Η2. 38. The method for manufacturing a 7L semiconductor device having an ONO structure as described in item 37 of the scope of the patent application, wherein the step of introducing the mixed gas of 02 and Y2 further includes introducing a carrier gas. 39. The method for manufacturing a semiconductor 7L with an ONO structure as described in item 38 of the scope of the patent application, wherein the step of introducing the mixed gas of 02 and Y2 further includes introducing a nitrogen gas (N2) as a carrier gas. . 40. The method for manufacturing 70 semiconductors having a structure of 0] ^ 〇 as described in item 37 of the scope of the patent application, wherein the step of introducing the mixed gas having the specific ratio of 02 to Η2 further includes a specific Flow rate ratio introduction and Η2 〇41 · Has a half of an ONO structure as described in item 40 of the scope of patent application 31 1236712 Amended date 94.3.30 〇7672twfl.doc / 0〇6 The method of manufacturing a conductive element, where the introduction 〇2 The step of mixing the gas with Η2 further includes introducing% as a carrier gas at a specific flow rate. 42. The method for manufacturing a semiconductor device having an ONO structure as described in item 40 of the scope of the patent application, wherein the step of introducing 〇2 and Η: includes introducing 〇2 and η2 at an additive flow rate in a range of approximately 1 to 40 slm. . 43. The method for manufacturing a semiconductor device having an ONO structure as described in item 41 of the scope of the patent application, wherein the step of introducing 〇2 and Η2 includes introducing 〇2 and η2 at an additive flow rate in the range of approximately 1 to 40 slm And introducing Ns includes introducing% at a flow rate greater than 50 sim. 44. The method for manufacturing a semiconductor device having an ONO structure as described in item 23 of the scope of the patent application, wherein the thickness ratio of the formation of the second oxide layer to the gate oxide layer is approximately 0.6: 1 to 0.8: 1. Within range. 45. The method for manufacturing a semiconductor device having an ONO structure as described in item 23 of the scope of patent application, wherein the exposed process includes heating the substrate in a furnace tube, and when the temperature of the substrate is maintained within one of the temperature ranges When the temperature lasts for about 10 seconds to 500 seconds, the free radical oxidant is generated in the furnace tube. 46. The method for manufacturing a semiconductor device having an ON structure as described in item 23 of the scope of patent application, wherein the exposed process includes heating the substrate in a furnace tube, and when the temperature of the substrate is maintained within one of the temperature ranges When the temperature lasts for about 30 seconds to 300 seconds, the free radical oxidant is generated in the furnace tube. 47 · —A method for manufacturing a memory element having an ONO structure, comprising: providing an oxide-nitride film on the surface of a substrate, the substrate 32 1236712 〇7672twfl.doc / 006 correction date 94.3.30 by A first region defined by the insulator and the oxide-nitride film include a first oxide layer and a nitride layer covered on the substrate and a nitride layer; Forming the oxide-nitride film so that the surface of the substrate is exposed in the second region on the substrate, and defining a bottom oxide layer in the 20N0 stack structure in the first region on the substrate And a portion of a nitride layer, the bottom oxide layer portion and the silicon nitride layer portion each have an exposed sidewall, and the silicon nitride layer portion has an exposed surface; when the temperature of the substrate is approximately Between 700 ° C and 1200 ° C, the exposed sidewalls and the exposed surfaces are exposed to a free radical oxidant to the exposed sidewalls and the exposed portions of the patterned nitrided layer. Exposed On the surface, a second oxide layer is formed, and at the same time, a gate oxide layer is formed on the surface of the substrate in the second region; and a conductive layer is formed to cover the second oxide layer and the gate oxide layer. 4 8 · The method for manufacturing a memory element having a structure of 0 Ν 0 as described in item 47 of the scope of patent application, wherein the radical oxidant includes an oxygen radical. 49. The method for manufacturing a memory element having an ONO structure as described in item 47 of the scope of the patent application, wherein the free radical oxidant includes 0-. 50. The method of manufacturing a memory device having a NO structure as described in item 47 of the scope of the patent application, wherein the process of exposing includes heating the substrate to a temperature within the temperature range and applying a specific pressure Next, the side wall and the exposed surface of the storm road are exposed to a gas mixed with an oxygen-containing gas and a hydrogen-containing gas in a specific ratio for a specific time 'through the milk-containing gas and the The reaction of the constituent elements of the hydrogen-containing gas generates the radical oxidant near the substrate heated at 33 1236712 07672twfl.doc / 006, modified at 94.3.30. 5L The method for manufacturing a memory element with an OO structure as described in item 50 of the scope of patent application, wherein the step of heating the substrate includes heating the substrate to a range between about 900 ° C and 1150 ° C. . 52. The method for manufacturing a mindless body element having an ONO structure as described in item 50 of the scope of application for a patent, wherein the step of heating the substrate includes heating the substrate to a temperature between about 850 ° C and 1,000 ° C. Within range. 53. The method of manufacturing a memory το structure having a NO structure as described in item 47 of the scope of the patent application, wherein the exposure process includes heating the substrate to a temperature within the temperature range, and Under pressure, the side wall of the storm road and the exposed surface are exposed to a gas mixed with a specific ratio of 0 2 and krypton 2 for a specific period of time through the reaction of 0 2 and the constituent elements of India. O- is generated near the heated substrate. 54. The method for manufacturing a memory device having an ONO structure as described in item 53 of the scope of the patent application, wherein the process of exposing includes heating the substrate to a temperature in the range of 0 °, / jnL degrees, and Under a pressure in the range of about 1 torr (torr) to 20 torr (torr), the exposed sidewall and the exposed surface are exposed to a ratio of 102 to H2 (H2 / H2 + 〇2) at about In a mixed gas in the range of 0.00% to 40%, and for a period of about 1 to 10,000 seconds. 55. The method of manufacturing a memory element having an ON structure as described in item 54 of the scope of the patent application, wherein the step of heating the substrate includes heating the substrate to a range between about 900 ° C and 1150 ° C. 56. The method for manufacturing a memory element having an ONO structure as described in item 54 of the scope of patent application, wherein the step of heating the substrate includes heating the substrate to a range between about 850 ° C and 1000 ° C. 34 1236712 Amendment date 94.3.30 07672twfl.doc / 〇〇6 57. The method of manufacturing a memory element with a 0NO structure as described in the 54th scope of the application for a patent, wherein the process of exposing includes the flow on the substrate. 〇2 and Η: the mixed gas, the ratio (Η2 / Η2 + 02) is about 5% to 33%. 58. The method for manufacturing a memory element having an ONO structure as described in item 54 of the scope of application for a patent, wherein the exposure process includes 〇2 and% of the mixed gas flowing on the substrate, and the ratio (Η2: 〇 2) About work: in the range of 19 to 1.2. 59. The method for manufacturing a memory element having a 0NO structure as described in item 54 of the scope of the patent application, wherein the exposure process includes 02 and% of the j / heart & oxygen flow time on the substrate is about 1Q Seconds to $ leap seconds. 60. The method for manufacturing a memory with a 0NO structure as described in Item 54 of the scope of patent application, wherein the exposure process includes 02 and Η2 ^ The time for the mixed gas to flow on the substrate is about 30 seconds to In the range of 300 seconds. Jiang 61. The method of manufacturing a memory and a piece having a structure as described in item 47 of the scope of the patent application, wherein the process of exposing includes heating the substrate in a furnace tube, and inducing a person at a specific pressure- The gas mixed with O2 in a proportion of 0% and for a specific time, O_ is generated near the heated substrate by the reaction of the components of O2 and Y2. 62. As described in item 61 of the scope of the patent application, it is included in the following: a gas ... & 63. As described in item 62 of the scope of the patent application, it has a structure of 〇Ν〇35! 236712 07672twfl.d. c / 〇〇6 Revise the date 94.3.30 manufacturing method of the memory element, wherein the step of introducing the mixed gas of 02 and H2 further includes introducing a nitrogen gas (N2) as a carrier gas. 64. The method for manufacturing a memory element having an ONO structure as described in item 61 of the scope of the patent application, wherein the step of introducing the mixed gas with the specific ratio of 02 and η2 further includes the introduction at a specific flow rate ratio 〇2 and Η2 〇65 · The method for manufacturing a 7L piece of memory with an ONO structure as described in item 64 of the scope of the patent application, wherein the step of introducing the mixed gas of 〇2 and Η2 further includes introducing at a specific flow rate Ν2 acts as a carrier gas. 66. The method for manufacturing a memory element having an ONO structure as described in item 64 of the scope of the patent application, wherein the steps of introducing 0 and 2 include introducing at an added flow rate in a range of approximately 1 to 40 slm. 2 and Η2. 67. The method for manufacturing a memory element having a NO structure as described in item 65 of the scope of application for a patent, wherein the step of introducing 0 and 2 includes introducing at an additive flow rate in a range of approximately 1 to 40 slm. 2 and η2, and introduction% includes introduction of ν2 at a flow rate greater than 50 sim. 68. The method for manufacturing a memory element having an ON structure as described in item 47 of the scope of the patent application, wherein the thickness ratio of the formation of the second oxide layer and the gate oxide layer is about 0.6: 1 to 0.8: 1 Within range. 69. The method for manufacturing a memory device having a NO structure as described in item 47 of the scope of patent application, wherein the exposure process includes heating the substrate in a furnace tube, and when the temperature of the substrate is maintained in the temperature range The free radical oxidant is generated in the furnace tube at an internal temperature for about 10 seconds to 500 seconds. 70. As described in item 47 of the scope of the patent application, a record with a 〇NO structure 36 1236712 07672twfl.doc / 006 amended the date 94.3.30 manufacturing method of memory elements, wherein the exposed heating heats the substrate, and when Mithril temperature ^ ^ endogenous oxidant. Only in. The freeware is produced internally by the Hai furnace, including a semiconductor element with a oxide oxide / nitride / oxidized oxide structure, a first silicon oxide layer, covering a substrate, and a silicon nitride layer, covering On the first silicon oxide layer; a first-oxide layer, completely covering the silicon oxide layer in contact; and "g", and the first interlayer conductive layer covering the second oxygen cutting layer. , Γ includes a memory cell with a structure of oxidized stone / nitrided stone / oxidized stone-a buried drain and a buried human source, which are arranged in the buried drain oxide layer to cover the buried human Qi: and a buried, polar oxide layer, covering the buried source; a first silicon oxide layer, covering an area between the poles on the substrate, and covering a part: the A buried drain layer and a portion of the buried source oxide layer; a second layer, which covers a portion of the first silicon oxide layer, and a second oxygen cut layer that completely covers the nitride ^ Emulsified silicon layer contact; and 1 /, / gate conductive layer covering the second silicon oxide layer. 3 7 73. 1236712 〇7672twfl.doc / 006 Date of revision 94.3.30 Buried drain and a buried source are arranged in the-substrate; _, a buried drain oxide layer covers the buried drain On the pole, and one person's "chemical layer" covers the buried source; the pole fish layer ^ 's chemical conversion layer' covers the buried drain source _ area, which is located on the substrate. A part of the buried / η oxygen, a layer and a part of the buried source oxide layer; a silicon nitride layer covering a part of the first silicon oxide layer; an oxidation IΓ completely covers the nitrogen cut Layer and the first-gate conductive layer, covering the second silicon oxide layer. 38
TW93120185A 2004-07-06 2004-07-06 Method for forming oxide on ONO structure TWI236712B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93120185A TWI236712B (en) 2004-07-06 2004-07-06 Method for forming oxide on ONO structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93120185A TWI236712B (en) 2004-07-06 2004-07-06 Method for forming oxide on ONO structure

Publications (2)

Publication Number Publication Date
TWI236712B true TWI236712B (en) 2005-07-21
TW200603284A TW200603284A (en) 2006-01-16

Family

ID=36675009

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93120185A TWI236712B (en) 2004-07-06 2004-07-06 Method for forming oxide on ONO structure

Country Status (1)

Country Link
TW (1) TWI236712B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544629A (en) * 2019-09-24 2019-12-06 北京北方华创微电子装备有限公司 Oxide layer removing method and semiconductor processing equipment
TWI829426B (en) * 2022-11-14 2024-01-11 力晶積成電子製造股份有限公司 Multilayer stacking wafer bonding structure and method of manufacturing the same

Also Published As

Publication number Publication date
TW200603284A (en) 2006-01-16

Similar Documents

Publication Publication Date Title
US7919372B2 (en) Method for forming oxide on ONO structure
TWI309471B (en) A method of manufacturing a semiconductor device and a semiconductor device
TW200408115A (en) Semiconductor memory device and method for manufacturing semiconductor device
TW200522278A (en) Method for manufacturing flash memory device
JP2005108864A (en) Method of manufacturing nonvolatile memory element having sonos structure
TWI249185B (en) Semiconductor device and method of manufacturing the same
JP2001332547A (en) Semiconductor device and its manufacturing method
TWI283456B (en) Method of manufacturing semiconductor device
JP2002299614A (en) Mis field effect transistor, method for manufacturing it, semiconductor storage medium and method for manufacturing it
TW200837834A (en) Method for manufacturing semiconductor device
TWI236712B (en) Method for forming oxide on ONO structure
TWI272698B (en) Method of fabricating flash memory device
JP2004214608A (en) Method of manufacturing semiconductor device
JP2007005754A (en) Method of manufacturing dielectric film of flash memory element
JP3983923B2 (en) Manufacturing method of semiconductor device
JP2004079606A (en) Semiconductor device having high dielectric constant film and its manufacturing method
TWI224362B (en) Method for making silicon oxide/silicon nitride/silicon oxide structure
TWI284942B (en) A system and method of forming a split-gate flash memory structure
TWI248111B (en) Semiconductor device and method of manufacturing the same
TW200406032A (en) Semiconductor integrated circuit device and method of manufacturing the same
KR100336567B1 (en) Isolation method of semiconductor device
KR100799057B1 (en) Method of Manufacturing a Flash Memory Device
JPH10335500A (en) Manufacture of semiconductor device
JPH08264634A (en) Separate formation in semiconductor device
TW589719B (en) Method for manufacturing flash memory