TWI236167B - Light-emitting layer structure of GaN light emitted diode - Google Patents

Light-emitting layer structure of GaN light emitted diode Download PDF

Info

Publication number
TWI236167B
TWI236167B TW93123355A TW93123355A TWI236167B TW I236167 B TWI236167 B TW I236167B TW 93123355 A TW93123355 A TW 93123355A TW 93123355 A TW93123355 A TW 93123355A TW I236167 B TWI236167 B TW I236167B
Authority
TW
Taiwan
Prior art keywords
layer
ultra
gallium nitride
light
barrier layer
Prior art date
Application number
TW93123355A
Other languages
Chinese (zh)
Other versions
TW200607113A (en
Inventor
Jeng-Jang You
Ru-Chin Tu
Liang-Wen Wu
Tz-Ji Wen
Feng-Ren Jian
Original Assignee
Formosa Epitaxy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Epitaxy Inc filed Critical Formosa Epitaxy Inc
Priority to TW93123355A priority Critical patent/TWI236167B/en
Application granted granted Critical
Publication of TWI236167B publication Critical patent/TWI236167B/en
Publication of TW200607113A publication Critical patent/TW200607113A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

This invention provides a method to grow epitaxial film with better epitaxial character for light-emitting layer of GaN light emitted diode, and also improve the luminescent efficiency at the same time. Between the GaN N-contact layer and the GaN P-contact layer, a lower barrier layer, at least one intermediate layer and an upper barrier layer separately above the GaN N-contact layer are formed sequentially upwards from the N-contact layer. That is to say, the structure has at least one intermediate layer sandwiched between the upper barrier layer and lower barrier layer. When the number of intermediate layer is greater than one and thus there are many intermediate layers sandwiched between the upper barrier layer and the lower barrier layer, there has an intermediate barrier layer sandwiched between the adjacent intermediate layers.

Description

1236167 九、發明說明: 【發明所屬之技術領域】 本發明是有關氮化鎵系發光二極體,特別是有關氣化嫁 系發光二極體發光層之結構。 【先命技術】 壽命長,同時耗電量少、 發光二極體由於具有高耐震性 中的各項用品,如 發熱度小,所以其應用範圍遍及日常生活 各種電子產品之指示燈或光源等。近年來,發光二極體更朝 向多色彩及高亮度化發展,其中,能達到實用程度之高效率 且高亮度的藍光發光二極體,-直是學界與產業界的研發重 點。日本日亞化學公司(Nichia)於1995年1〇月宣稱成功研 製藍光具高亮度之氮化姻鎵發光二極體後,在全球光電產業 界造成很大的震撼,各界都積極投入經費及人力研發氮化鎵 系(例如氮化鎵、氮化鋁鎵、氮化銦鎵等)發光二極體。 如第一圖所示,習知之氮化鎵系發光二極體,其傳統結 構係以藍寶石為基板10 ’然後在此藍寶石基板10之一側, 依序從下而上分別磊晶形成一 N型氮化鎵接觸層11、一氮化 銦鎵發光層12、一 P型氮化鎵接觸層13,最後,再於p型氮 化鎵接觸層13與N型氮化鎵接觸層U上分別形成一正電極 14與負電極15。在此傳統結構下之氮化鎵系發光二極體,其 發光層主要是以氮化銦鎵(InxGakN,OSxSl)為位井 (Potential Well)之多重量子井(Multi-quantum Well)結構,電子 1236167 與電洞在InxGa^N位井結合而釋放出光子。其中,& ^ N 氮化銦蘇 的磊晶成長需要極高的溫度,才能得到磊晶特性較佳的磊曰 膜,但是為了增加發光的效率,利用氮化銦鎵材料的銦叢極 (In Segregation)與與相分離(phase Separation)特性,以彤成許 多銦侷限態(Localized State)而增加電子、電洞的結合機率, 其磊晶成長的溫度則無法太高(大於85〇〇c),此實為一兩難 的情形。 【發明内容】 為克服先前技術之缺點,本發明乃提出數種氮化鎵系發 光二極體之發光層結構,能同時提高其發光效率與成長出磊 晶特性較佳的蠢晶膜。 本發明所提出之氮化鎵系發光二極體之發光層結構,係 位於N型氮化鎵接觸層與p型氮化鎵接觸層之間,由N型氮 化鎵接觸層往上依序分別形成一下位能障層(L〇wer Barrier Layer)、至少一層的中間層(intermediate Layer)、以及一上位 月b障層(Upper Barrier Layer),亦即是以上、下位能障層包夾 至少一層中間層的結構。當中間層的數目大於一時,亦即上、 下位能障層包炎多層中間層時,上下相鄰的中間層與中間層 之間還包夾有一中位能障層(Intermediate Barrier Layer)。 位能障層有較中間層為高的能隙(Band Gap),以提高電 子、電洞於中間層内結合的機率,進而提高發光二極體的發 1236167 光效率。位能障層的厚度在5〜30〇A之間,成長溫度在 400〜1000°C 之間。 茲配合下列圖示、實施例之詳細說明及申請專利範圍, 將上述及本發明之其他目的與優點詳述於後。 【實施方式】 第二A、二B、二C圖係依據本發明第一實施例之氮化 鎵系發光二極體之結構示意圖。如第二A、二B、二C圖所 示,此氮化鎵系發光二極體係以藍寶石為基板20,然後在此 藍寶石基板20依序從下而上分別蟲晶形成一 N型氮化錄接觸 層21、一未摻雜的氮化鋁鎵銦(AluyGaxIiiyN,0$x,y£l)下位 能障層22、至少一層的中間層23、一未摻雜的氮化鋁鎵銦 (Ah-p-qGapInqN,〇Sp,q$l)上位能障層24、以及一 P型氮化鎵 接觸層25,最後,再於P型氮化鎵接觸層25與N型氮化鎵 接觸層21上分別形成一正電極26與負電極27。 如本實施例的第二A圖所示,中間層23進一步包含由下 而上的一氮化銦(InN)超薄量子點層(Ultra-thin Quantum-dot Layer)231 與一未摻雜的氮化鋁鎵銦(AlunGanJnJSi,〇Sm,nSl) 量子井層(Quantum-well Layer)232。 如本實施例的第二B圖所示,中間層23可以於氮化鋁鎵 銦量子井層232上,進一步有另一氮化銦超薄量子點層231,。 如本實施例的第二C圖所示,當中間層23超過一層以上 1236167 時,上、下相鄰的中間層23與23,之間,須夹有一未摻雜的 氮化鋁鎵銦(Al^-jGailrijN,〇Si,j£l)中位能障層28。 上、中、下位能障層24、28、22的厚度均在5〜300A之 間,成長溫度在400〜1000°C之間。超薄量子點層231、231, 的厚度在2〜3〇λ之間,成長溫度在400〜l〇〇〇°C之間。量子 井層232的厚度在5〜ΙΟΟΑ之間,量子井層和位能障層之材質 雖均為氮化紹鎵銦化合物,其組成不必相同,亦即前述分子 式中的(X,y),(p,q),(m,n),(i,j)不必相同。 第三A、三B、三C圖係依據本發明第二實施例之氮化 鎵系發光二極體之結構示意圖。其結構與第一實施例相同, 其差別僅在中間層所採用的材質。如本實施例的第三A圖所 示,中間層33進一步包含由下而上的一氮化銦(inN)超薄層 (Ultra-thin Layer)331 與一未摻雜的氮化鋁鎵銦 (Ali-m-nGamInnN,〇£m,n£l)量子井層(Quantum-well Layer)332。 如本實施例的第三B圖所示,中間層33可以於氮化鋁鎵 銦量子井層332上,進一步有另一氮化銦超薄層331,。 如本實施例的第三C圖所示,當中間層33超過一層以上 時,上、下相鄰的中間層33與33’之間,須夾有一未掺雜的 氮化鋁鎵銦(AhyGaiInjN,〇£i,j$l)中位能障層38。 上、中、下位能障層34、38、32的厚度均在5〜300A之 間,成長溫度在400~1000。<:之間。氮化銦超薄層331、331, 1236167 的厚度在2 l〇人之間’成長溫度在〜獅之間。上、 中、下位此卩平層34、38、32,以及量子井層332(其厚度在 。之間)之材質雖均為氮化銘鎵銦化合物,其組成不必 相同,亦即則述分子式中的(x,y),(P,q),(m,n),(i,j)不必相 同。 B圖係依據本發明第三實施例之氮化鎵系發 光二極體之結構示意圖。其結構與第一、二實施例相同,其 差別僅在中間層之結構與所採用的材質。如本實施例的第四 A圖所不,中間層43進一步包含由超薄氮化銦單層 (Μ—)431與超薄氮化鎵單層432由下而上依序交互疊 加而成的超晶格量子井層(Supper⑽以侧u㈣,亦即, 由下位能障層42往上,分別依序為超薄氮化銦單層43i、超 薄氮化鎵單層432、然後再依序是超薄氮化銦單層431,、超1236167 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a structure of a light emitting layer of a gallium nitride based light emitting diode, and more particularly to a vaporized doped light emitting diode. [Avant-garde technology] Long life, low power consumption, light-emitting diodes have high shock resistance, such as low heat generation, so its application range throughout the daily life of various electronic products such as indicators or light sources, etc. . In recent years, light-emitting diodes have become more multi-colored and high-brightness. Among them, blue light-emitting diodes that can achieve practical high efficiency and high brightness have been the focus of research and development in academia and industry. Japan ’s Nichia announced in October 1995 that the successful development of blue-light gallium nitride gallium nitride light-emitting diodes has caused great shock in the global optoelectronic industry, and all sectors have actively invested funds and manpower. Research and development of gallium nitride-based light emitting diodes (such as gallium nitride, aluminum gallium nitride, indium gallium nitride, etc.). As shown in the first figure, the conventional GaN-based light-emitting diode has a conventional structure that uses sapphire as the substrate 10 ′ and then epitaxially forms an N on one side of the sapphire substrate 10 in order from the bottom to the top. Type gallium nitride contact layer 11, an indium gallium nitride light emitting layer 12, a p-type gallium nitride contact layer 13, and finally, on the p-type gallium nitride contact layer 13 and the n-type gallium nitride contact layer U, respectively A positive electrode 14 and a negative electrode 15 are formed. In this conventional structure, the light emitting layer of the gallium nitride based light emitting diode is mainly a multi-quantum well structure with indium gallium nitride (InxGakN, OSxSl) as a potential well. 1236167 combines with holes in the InxGa ^ N well to release photons. Among them, the epitaxial growth of & ^ N Indium Nitride Su requires extremely high temperature in order to obtain an epitaxial film with better epitaxial properties, but in order to increase the efficiency of light emission, an indium gallium nitride indium cluster electrode ( In Segregation) and phase separation characteristics, in order to increase the incorporation probability of electrons and holes with many indium localized states, the temperature of its epitaxial growth cannot be too high (greater than 8500c). ), This is a dilemma. [Summary of the Invention] In order to overcome the disadvantages of the prior art, the present invention proposes several types of gallium nitride-based light emitting diode light emitting layer structures, which can simultaneously improve its light emitting efficiency and grow a stupid crystal film with better epitaxial characteristics. The light-emitting layer structure of the gallium nitride-based light-emitting diode proposed by the present invention is located between the N-type gallium nitride contact layer and the p-type gallium nitride contact layer, and sequentially from the N-type gallium nitride contact layer upwards. Form a lower barrier layer (lower barrier layer), at least one intermediate layer (intermediate layer), and a higher-level b barrier layer (upper barrier layer), that is, the upper and lower barrier layers are sandwiched at least The structure of a middle layer. When the number of intermediate layers is more than one, that is, when the upper and lower energy barrier layers cover the multilayer intermediate layer, an intermediate medial barrier layer is sandwiched between the upper and lower adjacent intermediate layers and the intermediate layer. The potential barrier layer has a higher band gap than the intermediate layer, so as to increase the probability that electrons and holes are combined in the intermediate layer, thereby improving the light emitting diode's 1236167 light efficiency. The potential barrier layer has a thickness between 5 and 30 Å, and a growth temperature between 400 and 1000 ° C. The above and other objects and advantages of the present invention are described in detail below in conjunction with the following drawings, detailed description of the embodiments, and the scope of patent application. [Embodiment] The second A, second B, and second C diagrams are structural diagrams of a gallium nitride-based light emitting diode according to the first embodiment of the present invention. As shown in the second A, two B, and two C diagrams, this GaN-based light-emitting diode system uses sapphire as the substrate 20, and then the sapphire substrate 20 sequentially forms a N-type nitride from the bottom to the top, respectively. Recording contact layer 21, an undoped aluminum gallium indium nitride (AluyGaxIiiyN, 0 $ x, y £ l) lower energy barrier layer 22, at least one intermediate layer 23, an undoped aluminum gallium indium nitride ( Ah-p-qGapInqN, 0Sp, q $ l) the upper barrier layer 24 and a P-type GaN contact layer 25, and finally, the P-type GaN contact layer 25 and the N-type GaN contact layer A positive electrode 26 and a negative electrode 27 are formed on 21 respectively. As shown in FIG. 2A of this embodiment, the intermediate layer 23 further includes an indium nitride (InN) ultra-thin quantum dot layer (Ultra-thin Quantum-dot Layer) 231 and an undoped Quantum-well layer 232. AlunGanJnJSi, 0Sm, nSl. As shown in FIG. 2B of this embodiment, the intermediate layer 23 may be on the AlGaN indium quantum well layer 232, and there is another indium nitride ultrathin quantum dot layer 231 ′. As shown in the second C diagram of this embodiment, when the intermediate layer 23 is more than one layer 1236167, there must be an undoped aluminum gallium indium nitride between the upper and lower adjacent intermediate layers 23 and 23, ( Al ^ -GailrijN, OSi, j £ l) median energy barrier layer 28. The thicknesses of the upper, middle, and lower barrier layers 24, 28, and 22 are all between 5 and 300 A, and the growth temperature is between 400 and 1000 ° C. The thickness of the ultra-thin quantum dot layers 231 and 231 is between 2 and 30 °, and the growth temperature is between 400 and 1000 ° C. The thickness of the quantum well layer 232 is between 5 and 100 Å. Although the materials of the quantum well layer and the barrier layer are both gallium indium nitride compounds, their composition need not be the same, that is, (X, y) in the aforementioned molecular formula, (P, q), (m, n), (i, j) need not be the same. The third A, three B, and three C diagrams are structural diagrams of a gallium nitride-based light emitting diode according to a second embodiment of the present invention. Its structure is the same as that of the first embodiment, and the difference is only in the material used for the middle layer. As shown in FIG. 3A of this embodiment, the intermediate layer 33 further includes an indium nitride (inN) ultra-thin layer 331 and an undoped aluminum gallium indium nitride from bottom to top. (Ali-m-nGamInnN, 0 £ m, n £ l) Quantum-well Layer 332. As shown in FIG. 3B of this embodiment, the intermediate layer 33 may be on the aluminum gallium indium quantum well layer 332, and further has another indium nitride ultra-thin layer 331 ′. As shown in the third C diagram of this embodiment, when the intermediate layer 33 is more than one layer, an undoped aluminum gallium indium nitride (AhyGaiInjN) must be sandwiched between the upper and lower adjacent intermediate layers 33 and 33 '. 〇 £ i, j $ l) median energy barrier layer 38. The thicknesses of the upper, middle, and lower barrier layers 34, 38, and 32 are all between 5 and 300 A, and the growth temperature is between 400 and 1,000. <: Between. The thickness of the indium nitride ultra-thin layers 331, 331, and 1236167 is between 2 and 10, and the growth temperature is between ˜lion. Although the materials of the upper, middle and lower flat layers 34, 38, 32, and the quantum well layer 332 (with a thickness of between) are all gallium indium nitride compounds, their composition need not be the same, that is to say the molecular formula (X, y), (P, q), (m, n), (i, j) need not be the same. Figure B is a schematic structural diagram of a gallium nitride-based light emitting diode according to a third embodiment of the present invention. Its structure is the same as the first and second embodiments, and the difference is only in the structure of the middle layer and the material used. As shown in FIG. 4A of this embodiment, the intermediate layer 43 further includes a super-thin indium nitride single layer (M—) 431 and an ultra-thin gallium nitride single layer 432 which are sequentially and superimposedly superimposed from bottom to top. Superlattice quantum well layer (Supper⑽ to the side u㈣, that is, from the lower energy barrier layer 42 upwards, respectively, an ultra-thin indium nitride single layer 43i, an ultra-thin gallium nitride single layer 432, and then sequentially Is ultra-thin indium nitride single layer 431,

薄氮化鎵單層432,,然後依此類推。或者,由下位能障層C 往上,分別依序為超薄氮化鎵單I炫、超薄氮化鋼單層 奶、然後再依序是超薄氮化鎵單層炫,、超薄氮化錮單層 31其厚度均係介於2〜20A之間,成長溫度在働〜⑽代 之間,然後依此類推。超薄氮化銦單層431、超薄氮化錄單 層432分別至少有一層(總層數為二)、至多五層(總層 十)。 43超過一層以上 如本實施例的第四B圖所示,當中間層 1236167 時,上、下相鄰的中間層43與43,之間,須夾有一未摻雜的 氮化銘鎵銦(Al^jGailnjN,〇Si,j^l)中位能障層48。 上、中、下位能障層44、48、42的厚度均係介於5〜300入 之間,成長溫度在400〜l〇〇〇°c之間。上、中、下位能障層 44、48、42之材質雖均為氮化鋁鎵銦化合物,其組成不必相 同,亦即前述分子式中的(心丫乂❻叫乂^:^不必相同。 第五A、五B圖係依據本發明第四實施例之氮化鎵系發 光一極體之結構示意圖。其結構與第三實施例相同,其差別 僅在上、中、下位能障層所採用的材質不同。如本實施例的 第五A、五B圖所示,上、中、下位能障層54、%、52係採 用和第二實施例之中間層43類似結構、有銦掺雜、由超薄氮 化紹(A1N)單層與㈣氮化鎵單層由下而上依序交互疊加而 成的超曰曰格位能障層,其厚度均係介於2〜2〇人之間。和第三 實施例之中間層43類似,上、中、下位能障層54、%、52 的超薄氮化!S單層與超薄氮化鎵單層分別至少有—層(總層 數為一)至多五層(總層數為十),成長溫度在4〇〇〜 之間上、中、下位能障層54、58、52所分別包含的單層數 不必相同。上、中、下位能障層54、58、52的厚度均在5〜3〇〇λ 之間,成長溫度在400〜l〇〇〇〇c之間。 准以上所述者,僅為本發明之較佳實施例而已,當不 能以此限以發明實施n即纽財發”請專利範 1236167 圍所作之均等變化與修飾,皆應仍屬本發明專利涵蓋之範圍 内。 【圖式簡單說明】 第一圖係傳統結構之氮化鎵系發光二極體之結構示意圖。 第二A、二B、二C圖係依據本發明第一實施例之氮化鎵系 發光二極體之結構示意圖。 第三A、三B、三C圖係依據本發明第二實施例之氮化鎵系 發光二極體之結構示意圖。 第四A、四B圖係依據本發明第三實施例之氮化鎵系發光二 極體之結構示意圖。 第五A、五B圖係依據本發明第四實施例之氮化鎵系發光二 極體之結構示意圖。 【主要元件符號說明】 10 藍寶石基板 11 N型氮化鎵接觸層 12 氮化銦鎵發光層 13 P型氮化鎵接觸層 14 正電極 15 負電極 20 藍寶石基板 21 N型氮化鎵接觸層 11 未摻雜的氮化鋁鎵銦(Al—GaJnyN,0^x,y^l)下位能障層 中間層 中間層 氮化銦超薄量子點層 氮化銦超薄量子點層 未摻雜的氮化鋁鎵銦(AlunGanJrgSi,0细,1^1)量子井層 未摻雜的氮化鋁鎵銦(A^qGapInqN,0穿來1)上位能障層 P型氮化鎵接觸層 正電極 負電極 未摻雜的氮化鋁鎵銦(A^i-jGailnjN,0$i拓1)中位能障層 藍寶石基板 N型氮化鎵接觸層 未摻雜的氮化鋁鎵銦(AlnyGaxInyN,〇£x,y^l)下位能障層 中間層 中間層 氮化銦超薄層 氮化銦超薄層 未摻雜的氮化紹鎵銦(Al^nGamliinN,0^m,n^l)量子井層 未摻雜的氮化鋁鎵銦(AU-p-qGapInqN,0穿來1)上位能障層 P型氮化鎵接觸層 12 1236167 36 37 38 40 41 42 43 43, 431 431, 432 432, 44 45 46 47 48 50 51 52 正電極 未摻雜的氮化鋁鎵銦(AlujGailnjN,03^1)中位能障層 藍寶石基板 N型氮化鎵接觸層 未摻雜的氮化鋁鎵銦(AWyGaJnyN,0分於1)下位能障層 中間層 中間層 超薄氮化銦單層 超薄氮化錮單層 超薄氮化鎵單層 超薄氮化鎵單層 未摻雜的氣化紹銶銦(A^qGapInqN,〇£p,q$i)上位能障層 P型氮化鎵接觸層 正電極 未摻雜的氮化銘鎵銦(AlwGaiInjN,0$i,j$i)中位能障芦 藍寶石基板 N型氮化鎵接觸層 有銦摻雜、由超薄氮化銘單層與超薄氮化鎵單層疊加而成的超曰 格下位能障層 13 中間層 中間層 超薄氮化銦單層 超薄氮化銦單層 超薄氮化鎵單層 超薄氮化鎵單層 有銦摻雜、由超薄氮化鋁單層與超薄氮化鎵單層疊加而成的超晶 格上位能障層 P型氮化鎵接觸層 正電極 負電極 有銦摻雜、由超薄氮化鋁單層與超薄氮化鎵單層疊加而成的超晶 格中位能障層 14A single thin layer of gallium nitride 432, and so on. Or, from the lower barrier layer C upwards, they are respectively ultra-thin gallium nitride single-layer, ultra-thin nitrided steel single-layer milk, and then sequentially ultra-thin gallium nitride single-layer, ultra-thin The thickness of the hafnium nitride single layer 31 is between 2 and 20A, the growth temperature is between hafnium and hafnium, and so on. The ultra-thin indium nitride single layer 431 and the ultra-thin nitride single layer 432 each have at least one layer (the total number of layers is two) and at most five layers (the total layer is ten). 43 is more than one layer. As shown in Figure 4B of this embodiment, when the intermediate layer 1236167, the upper and lower adjacent intermediate layers 43 and 43, must be sandwiched with an undoped gallium indium nitride ( Al ^ jGailnjN, 0Si, j ^ 1) meso barrier layer 48. The thicknesses of the upper, middle, and lower energy barrier layers 44, 48, and 42 are all between 5 and 300, and the growth temperature is between 400 and 1000 ° C. Although the materials of the upper, middle, and lower barrier layers 44, 48, and 42 are all aluminum gallium indium compounds, their compositions do not have to be the same, that is, the ones in the aforementioned molecular formula (Heart yell 乂 ❻ ^: ^ need not be the same. The five A and five B diagrams are schematic diagrams of the structure of a gallium nitride light-emitting diode according to the fourth embodiment of the present invention. The structure is the same as that of the third embodiment, and the difference is only used in the upper, middle, and lower barrier layers. The materials are different. As shown in the fifth A and fifth B diagrams of this embodiment, the upper, middle, and lower barrier layers 54,%, and 52 are similar in structure to the intermediate layer 43 of the second embodiment, and are doped with indium. Ultra-thin lattice barriers, which are superimposed from the bottom of the ultra-thin single-layer nitride (A1N) single layer and the gallium gallium nitride single-layer layer in sequence, have thicknesses ranging from 2 to 20 people. Similar to the intermediate layer 43 of the third embodiment, the ultra-thin nitride of the upper, middle, and lower barrier layers 54%, 52! S single layer and ultra-thin gallium nitride single layer have at least one layer ( The total number of layers is one) up to five layers (the total number of layers is ten), and the growth temperature is between 400 and 500. The upper, middle, and lower energy barrier layers 54, 58 and 52 respectively include The number of single layers does not have to be the same. The thicknesses of the upper, middle, and lower barrier layers 54, 58, 52 are all between 5 and 300, and the growth temperature is between 400 and 100c. The authors are only the preferred embodiments of the present invention. When it is not possible to limit the implementation of the invention to n, the new wealth is made. "Equivalent changes and modifications made around patent range 1236167 should still fall within the scope of the invention patent. [Brief description of the drawings] The first diagram is a schematic structural diagram of a gallium nitride based light emitting diode with a conventional structure. The second diagram A, two B, and two C are gallium nitride based on the first embodiment of the present invention. Schematic diagram of the structure of a light-emitting diode. The third diagram A, three B, and three C are diagrams of the structure of a gallium nitride-based light-emitting diode according to the second embodiment of the present invention. The fourth diagrams A and four B are according to the present invention. Schematic diagram of the structure of the gallium nitride-based light-emitting diode of the third embodiment. Figures 5A and 5B are schematic diagrams of the structure of the gallium nitride-based light-emitting diode according to the fourth embodiment of the present invention. ] 10 Sapphire substrate 11 N-type gallium nitride contact layer 12 Indium gallium nitride light emitting layer 13 P-type GaN contact layer 14 Positive electrode 15 Negative electrode 20 Sapphire substrate 21 N-type GaN contact layer 11 Undoped aluminum gallium indium nitride (Al-GaJnyN, 0 ^ x, y ^ l) lower barrier Layer intermediate layer intermediate layer indium nitride ultrathin quantum dot layer indium nitride ultrathin quantum dot layer undoped aluminum gallium indium nitride (AlunGanJrgSi, 0 fine, 1 ^ 1) quantum well layer undoped aluminum nitride Gallium indium (A ^ qGapInqN, 0 through 1) Upper barrier layer P-type gallium nitride contact layer positive electrode negative electrode undoped aluminum gallium indium nitride (A ^ i-jGailnjN, 0 $ i extension 1) Potential barrier layer sapphire substrate N-type gallium nitride contact layer undoped aluminum gallium indium nitride (AlnyGaxInyN, 0 £ x, y ^ l) lower barrier layer intermediate layer intermediate layer indium nitride ultra-thin layer indium nitride Ultra-thin layer undoped gallium indium nitride (Al ^ nGamliinN, 0 ^ m, n ^ l) quantum well layer undoped aluminum gallium indium nitride (AU-p-qGapInqN, 0 to 1) Barrier layer P-type GaN contact layer 12 1236167 36 37 38 40 41 42 43 43, 431 431, 432 432, 44 45 46 47 48 50 51 52 Positive electrode undoped aluminum gallium nitride (AlujGailnjN, 03 ^ 1) N-type gallium nitride contact on the median barrier layer sapphire substrate Undoped aluminum gallium indium (AWyGaJnyN, 0 points to 1) lower barrier layer middle layer middle layer ultra thin indium nitride single layer ultra thin hafnium nitride single layer ultra thin gallium nitride single layer ultra thin nitride Gallium single-layer undoped vaporized indium (A ^ qGapInqN, 0 £ p, q $ i) upper barrier layer P-type gallium nitride contact layer positive electrode undoped gallium indium nitride (AlwGaiInjN, 0 $ i, j $ i) The N-type gallium nitride contact layer of the median energy barrier sapphire substrate is doped with indium, and it is an ultra-thin grid composed of an ultra-thin nitride monolayer and an ultra-thin gallium nitride single layer. Lower energy barrier layer 13 Intermediate layer Intermediate layer Ultra-thin indium nitride single layer Ultra-thin indium nitride single-layer Ultra-thin gallium nitride single-layer Ultra-thin gallium nitride single-layer The super-lattice upper barrier layer P-type gallium nitride contact layer is superimposed with an ultra-thin gallium nitride single layer. The positive electrode and the negative electrode are doped with indium. The ultra-thin aluminum nitride single layer and the ultra-thin gallium nitride single layer. Superlattice median energy barrier layer 14

Claims (1)

12361671236167 、申請專利範圍:Scope of patent application: 結構,此氮化鎵系發光 寶石基板從下而上依序 一種氮化鎵系發光二極體之發光層 二極體係以藍寳石為基板,於此藍 分別包含有氮化鎵接觸層、1光層覆蓋該 氮化鎵接觸層之#表面Up型氮化鎵接觸層覆蓋 該發光層,該p 0化鎵接觸層㈣N型氮化鎵接觸層之 未被覆蓋之表面上分财正電極與—負電極,其中,該 發光層從下而上依序分別包含有: ⑴-下位能_ 位鱗層係以未掺雜的氮化銘錄 銦(AWyGax^N,0^^)為枒料; (2) 至少一層重複參加之中間層,其中,當該中間層數大 於一時,上下相鄰之該中間層之間,夾有-中位能障 層,該中位能障層係以未摻雜的氮化鋁鎵銦 為材料;以及 (3) -上位能障廣’該上位能障層_未掺雜的氮化銘錄 銦(Alh-yGaxIiV^i^x,^)為材料。 2. 如專射請範圍第!項所述之氮化㈣發光二極體之發光 卿,其中該中間層進一步由下而上包含一以氮化銦為 材料之第-超薄量子點層’與—以未摻雜的氮化銘鎵銦 (AlimGamInnN,0$m,d)為材料之量子井層。 3. 如專财請範圍第2項所述之氮化鎵系發光二極體之發光 層結構’其中該中間層於該量子井層上進一步包含一以氣 15 1236167 化銦為材料之第二超薄量子點層。 4. 如專利申請範圍第2項所述之氮化鎵系發光二極體之發光 層結構,其中,該上位能障層、中位能障層、下位能障層 厚度均係介於5〜300A之間,第一超薄量子點層厚度係介 於2〜30A之間。 5. 如專利申請範圍第3項所述之氮化鎵系發光二極體之發光 層結構,其中,該上位能障層、中位能障層、下位能障層 厚度均係介於5〜300入之間,第一超薄量子點層、以及第 二超薄量子點層厚度均係介於2〜3〇λ之間。 6. 如專利申請範圍第1項所述之氮化鎵系發光二極體之發光 層結構,其中該中間層進一步由下而上包含一以氮化銦為 材料之第一超薄層,與一以未摻雜的氮化鋁鎵銦 (Al^nGamlrinN,〇Sm,nSl)為材料之量子井層。 7. 如專利申請範圍第6項所述之氮化鎵系發光二極體之發光 層結構,其中該中間層於該量子井層上進一步包含一以氮 化銦為材料之第二超薄層。 8. 如專利申請範圍第6項所述之氮化鎵系發光二極體之發光 層結構,其中,該上位能障層、中位能障層、下位能障層 厚度均係介於5〜300A之間,而第一超薄層厚度係介於 2〜1〇Α之間。 9. 如專利申請範圍第7項所述之氮化鎵系發光二極體之發光 16 1236167 層結構,其中,該上位能障層、中位能障層、下位能障層 厚度均係介於5〜300A之間,而第一超薄層、以及第二超 薄層厚度均係介於2〜1〇Α之間。 10. 如專利申請範圍第1項所述之氮化鎵系發光二極體之發光 層結構,其中,該中間層係由至少一層、以氮化銦為材料 之第一超薄單層,以及至少一層、以氮化鎵為材料之第二 超薄單層,交互重疊而成之超晶格量子井層。 11. 如專利申請範圍第10項所述之氮化鎵系發光二極體之發 光層結構,其中,該第一超薄單層層數與第二超薄單層層 數相同,且最多均不超過五層,其厚度均係介於2〜20人之 間。 12·如專利申請範圍第10項所述之氮化鎵系發光二極體之發 光層結構,其中,該上位能障層、中位能障層、下位能障 層厚度均係介於5〜30〇λ之間。 13.—種氮化鎵系發光二極體之發光層結構,此氮化鎵系發光 二極體係以藍寶石為基板,於此藍寶石基板從下而上依序 分別包含有一 N型氮化鎵接觸層、一發光層覆蓋該N型 氮化鎵接觸層之部份表面、以及一 P型氮化鎵接觸層覆蓋 該發光層,該P型氮化鎵接觸層與該N型氮化鎵接觸層之 未被覆蓋之表面上分別有一正電極與一負電極,其中,該 發光層從下而上依序分別包含有: 17 1236167 (1) 下位旎障層,該下位能障層係由有銦摻雜,至少一 層、以氮化鋁為材料之第五超薄單層,以及至少一 層、以氮化鎵為材料之第六超薄單層,交互重疊而成 之超晶格位能障層; (2) 至J 一層重複疊加之中間層,其中,當該中間層數大 於4,上下相鄰之該中間層之間,夹有一中位能障 層,該中位能障層係由有銦摻雜,至少一層、以氮化 鋁為材料之第七超薄單層,以及至少一層、以氮化鎵 為材料之第八超薄單層,交互重昼而成之超晶格位能 障層;以及 (3) —上位能障層,該上位能障層係由有銦掺雜,至少一 層、以氮化鋁為材料之第九超薄單層,以及至少一 層、以氮化鎵為材料之第十超薄單層,交互重叠而成 之超晶格位能障層。 14·如專利申,月犯圍第13項所述之氮化鎵系發光二極體之發 光層結構,其中’該中間層係由至少-層、以氮化銦為材 料之第一超薄單層,以及至少—層、以氮化嫁為材料之第 四超薄單層,交互重疊而成之超晶格量子井層。 15.如專财請範圍第13項所述之氮化鎵系發光二極體之發 光層結構,其中,該上位能障層、中位能障層、下位能障 層厚度均係介於5〜300A之間。 18 1236167 16. 如專利申請範圍第14項所述之氮化鎵系發光二極體之發 光層結構,其中,該第三超薄單層層數與第四超薄單層層 數相同,且最多均不超過五層,其厚度均係介於2〜2〇A之 間。 17. 如專利申請範圍第13項所述之氮化鎵系發光二極體之發 光層結構,其中,該第五超薄單層層數與第六超薄單層層 數相同,且最多均不超過五層,其厚度均係介於2〜20入之 間。 18. 如專利申請範圍第13項所述之氮化鎵系發光二極體之發 光層結構,其中,該第七超薄單層層數與第八超薄單層層 數相同,且最多均不超過五層,其厚度均係介於2〜20A之 間。 19. 如專利申請範圍第13項所述之氮化鎵系發光二極體之發 光層結構,其中,該第九超薄單層層數與第十超薄單層層 數相同,且最多均不超過五層,其厚度均係介於2〜20A之 間。 19Structure, the gallium nitride-based light-emitting sapphire substrate is a GaN-based light-emitting layer of a gallium nitride-based light-emitting diode in order from bottom to top. The sapphire is used as the substrate, and the blue contains a gallium nitride contact layer, 1 The optical layer covers the #surface of the gallium nitride contact layer. The Up-type gallium nitride contact layer covers the light-emitting layer. The p 0 gallium nitride contact layer ㈣ the n-type gallium nitride contact layer has an uncovered positive electrode on the uncovered surface and —Negative electrode, in which the light-emitting layer sequentially includes from the bottom to the top: ⑴-lower potential energy_ The scale layer is made of undoped nitride indium (AWyGax ^ N, 0 ^^) as the material (2) at least one repeating intermediate layer, wherein, when the number of intermediate layers is greater than one, a -median energy barrier layer is sandwiched between the adjacent intermediate layers above and below, and the median energy barrier layer is Doped aluminum gallium indium nitride is used as the material; and (3)-the upper barrier is wide-the upper barrier layer_undoped nitride indium (Alh-yGaxIiV ^ i ^ x, ^) is used as the material. 2. If shooting, please range first! The luminescence layer of the hafnium nitride light-emitting diode according to the item, wherein the intermediate layer further includes a-ultra-thin quantum dot layer using indium nitride as the material from the bottom up and an undoped nitride Indium gallium indium (AlimGamInnN, 0 $ m, d) is the quantum well layer of the material. 3. The structure of the light-emitting layer of the gallium nitride-based light-emitting diode as described in item 2 of the scope of the exclusive financial application, wherein the intermediate layer further includes a second layer of gas 15 1236167 indium on the quantum well layer. Ultra-thin quantum dot layer. 4. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 2 of the scope of patent application, wherein the thickness of the upper barrier layer, the median barrier layer, and the lower barrier layer are all between 5 ~ Between 300A, the thickness of the first ultra-thin quantum dot layer is between 2 and 30A. 5. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 3 of the patent application scope, wherein the thicknesses of the upper barrier layer, the middle barrier layer, and the lower barrier layer are all between 5 and 5. The thickness of the first ultra-thin quantum dot layer and the second ultra-thin quantum dot layer are between 2 and 30 λ. 6. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 1 of the scope of patent application, wherein the intermediate layer further includes a first ultra-thin layer made of indium nitride as a material from bottom to top, and A quantum well layer using undoped aluminum gallium indium nitride (Al ^ nGamlrinN, 0Sm, nSl) as a material. 7. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 6 of the patent application scope, wherein the intermediate layer further includes a second ultra-thin layer using indium nitride as a material on the quantum well layer. . 8. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 6 of the scope of patent application, wherein the thickness of the upper barrier layer, the median barrier layer, and the lower barrier layer are all between 5 and 5. 300A, and the thickness of the first ultra-thin layer is between 2 ~ 10A. 9. The luminescent 16 1236167 layer structure of the gallium nitride based light emitting diode as described in item 7 of the scope of patent applications, wherein the thickness of the upper barrier layer, the middle barrier layer, and the lower barrier layer are all between 5 ~ 300A, and the thickness of the first ultra-thin layer and the second ultra-thin layer are between 2 ~ 10A. 10. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 1 of the scope of patent application, wherein the intermediate layer is a first ultra-thin single layer made of at least one layer and made of indium nitride, and A superlattice quantum well layer formed by overlapping at least one second ultra-thin single layer using gallium nitride as a material. 11. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 10 of the scope of patent application, wherein the number of the first ultra-thin single-layer is the same as that of the second ultra-thin single-layer, and at most both No more than five layers, and the thickness is between 2 and 20 people. 12. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 10 of the scope of patent application, wherein the thicknesses of the upper energy barrier layer, the middle energy barrier layer, and the lower energy barrier layer are all between 5 and 30〇λ. 13. A light emitting layer structure of a gallium nitride based light emitting diode. The gallium nitride based light emitting diode system uses sapphire as a substrate, and the sapphire substrate includes an N-type gallium nitride contact in order from bottom to top. Layer, a light-emitting layer covering a part of the surface of the N-type gallium nitride contact layer, and a P-type gallium nitride contact layer covering the light-emitting layer, the P-type gallium nitride contact layer and the N-type gallium nitride contact layer On the uncovered surface, there is a positive electrode and a negative electrode, respectively. The light-emitting layer sequentially includes: 17 1236167 (1) a lower barrier layer, the lower barrier layer is made of indium Doped, at least one layer of a fifth ultra-thin single layer made of aluminum nitride, and at least one layer of a sixth ultra-thin single layer made of gallium nitride, superimposed on the superlattice barrier layer (2) to J layers of intermediate layers that are repeatedly superimposed, wherein, when the number of intermediate layers is greater than 4, a median barrier layer is sandwiched between the upper and lower adjacent intermediate layers, and the median barrier layer is formed by Indium doped, at least one layer, a seventh ultra-thin single layer made of aluminum nitride, and At least one eighth ultra-thin single layer made of gallium nitride, and a superlattice barrier layer formed by repetition; and (3) an upper barrier layer, the upper barrier layer is made of indium Doped, at least one layer of a ninth ultra-thin single layer made of aluminum nitride, and at least one layer of a tenth ultra-thin single layer made of gallium nitride, superimposed on the superlattice barrier layer . 14. According to the patent application, the light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 13 of the monthly criminal law, wherein 'the intermediate layer is the first ultra-thin layer composed of at least-layers and made of indium nitride. A single layer, and at least one layer, a fourth ultra-thin single layer made of nitrided materials, and superlattice quantum well layers formed by overlapping. 15. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 13 of the exclusive financial scope, wherein the thickness of the upper barrier layer, the middle barrier layer, and the lower barrier layer are all between 5 ~ 300A. 18 1236167 16. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 14 of the scope of patent application, wherein the number of the third ultra-thin single-layer is the same as the number of the fourth ultra-thin single-layer, and No more than five layers at most, and their thicknesses are between 2 ~ 20A. 17. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 13 of the scope of patent application, wherein the number of the fifth ultra-thin single-layer is the same as that of the sixth ultra-thin single-layer, and at most both No more than five layers, the thickness of which is between 2 ~ 20. 18. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 13 of the patent application scope, wherein the number of the seventh ultra-thin single-layer is the same as the number of the eighth ultra-thin single-layer, and at most both No more than five layers, and its thickness is between 2 ~ 20A. 19. The light-emitting layer structure of the gallium nitride-based light-emitting diode according to item 13 of the scope of patent application, wherein the number of the ninth ultra-thin single-layer is the same as that of the tenth ultra-thin single-layer, and at most both No more than five layers, and its thickness is between 2 ~ 20A. 19
TW93123355A 2004-08-04 2004-08-04 Light-emitting layer structure of GaN light emitted diode TWI236167B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93123355A TWI236167B (en) 2004-08-04 2004-08-04 Light-emitting layer structure of GaN light emitted diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93123355A TWI236167B (en) 2004-08-04 2004-08-04 Light-emitting layer structure of GaN light emitted diode

Publications (2)

Publication Number Publication Date
TWI236167B true TWI236167B (en) 2005-07-11
TW200607113A TW200607113A (en) 2006-02-16

Family

ID=36648978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93123355A TWI236167B (en) 2004-08-04 2004-08-04 Light-emitting layer structure of GaN light emitted diode

Country Status (1)

Country Link
TW (1) TWI236167B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4191227B2 (en) 2007-02-21 2008-12-03 昭和電工株式会社 Group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
TWI389344B (en) 2008-08-25 2013-03-11 Epistar Corp Opto-electrical device

Also Published As

Publication number Publication date
TW200607113A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
TWI451591B (en) Nitride-based light emitting device
TWI436495B (en) Nitride-based light emitting device
US10147845B2 (en) Semiconductor structure
KR100604406B1 (en) Nitride semiconductor device
TWI270222B (en) Light emitting diode chip
JP2008508720A5 (en)
US20070267640A1 (en) Semiconductor light emitting diode and method of manufacturing the same
TWI445204B (en) Light emitting device with graded composition hole tunneling layer
US7692181B2 (en) Gallium-nitride based light emitting diode light emitting layer structure
TWI524551B (en) Nitride semiconductor structure and semiconductor light-emitting element
CN109742203A (en) A kind of iii-nitride light emitting devices
KR20100067504A (en) Nitride semiconductor light emitting device using multilayer struture quantum barrier
CN108550669A (en) Nitride semiconductor structure and semiconductor light-emitting elements
Lai et al. Enhancement in the extraction efficiency and resisting electrostatic discharge ability of GaN-based light emitting diode by naturally grown textured surface
CN206401345U (en) A kind of LED epitaxial slice
TWI236167B (en) Light-emitting layer structure of GaN light emitted diode
JP2003060234A5 (en)
TWI415301B (en) Nitride semiconductor emitting structure
CN113013301B (en) Nitride light emitting diode
TW201029218A (en) Optical diode structure and manufacturing method
CN110635005A (en) GaN-based light emitting diode epitaxial structure and preparation method thereof
CN105633228B (en) LED epitaxial slice built with novel quantum and preparation method thereof
CN213636023U (en) Multi-quantum well structure and light emitting diode
TWI568022B (en) Semiconductor stack structure
JP4084787B2 (en) Gallium nitride light emitting diode