TWI235894B - Fusing roller assembly for electrophotographic image forming apparatus - Google Patents

Fusing roller assembly for electrophotographic image forming apparatus Download PDF

Info

Publication number
TWI235894B
TWI235894B TW90127243A TW90127243A TWI235894B TW I235894 B TWI235894 B TW I235894B TW 90127243 A TW90127243 A TW 90127243A TW 90127243 A TW90127243 A TW 90127243A TW I235894 B TWI235894 B TW I235894B
Authority
TW
Taiwan
Prior art keywords
roller
hot
melt
drum
heating coil
Prior art date
Application number
TW90127243A
Other languages
Chinese (zh)
Inventor
Kyung-Woo Lee
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2001-0013451A external-priority patent/KR100400003B1/en
Priority claimed from KR10-2001-0024378A external-priority patent/KR100374618B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Application granted granted Critical
Publication of TWI235894B publication Critical patent/TWI235894B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2053Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0095Heating devices in the form of rollers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

A structurally improved fusing roller assembly based on the heat pipe principle is provided. The fusing roller assembly includes a fusing roller and a heat pipe coaxially mounted inside the fusing roller. A resistance heater is helically wound around the exterior cylindrical surface of the heat pipe, and rests between the inner cylindrical surface of the fusing roller and the exterior cylindrical surface of the hat pipe. The heat pipe is hermetically sealed with a quantity of a working fluid contained inside. The surface of fusing roller can be instantaneously heated up to a target fusing temperature. The fusing roller assembly can be heated up to a target fusing temperature within a shorter period of time without need for warm-up and stand-by period, so that power consumption decreases.

Description

1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 玖、發明說明: 發明領域 本發明是有關於一種用於電子攝影影像形成裝置之熱 熔滾筒組件,且特別是有關於一種可以以低功率消耗來瞬 間加熱之用於電子攝影影像形成裝置之熱熔滾筒組件。 習知技術敘沭 在一般的電子攝影影像形成裝置(如影印機及雷射光 束印表機)中,當相鄰於感光鼓(photoreceptor drum)的靜電 電荷滾筒旋轉時,塗於感光鼓表面之感光材質會均勻地充 電。雷射掃描單元(laser scanning unit,簡稱LSU)所掃描 出來的雷射光束會使已充電的感光材質曝光,而使得潛在 的靜電影像會在感光材質上形成預定的圖案。顯影劑單元 會將碳粉(toner)供給到感光材質,以將感光材質上所形成 之潛在的靜電影像顯影成可見的碳粉影像。當感光鼓攜帶 碳粉影像時,預定轉移電壓會施加至以預定力與感光鼓連 接之轉移滾筒。在此情形中,當印表紙送入轉移滾筒與光 感應介質之間的間隙(gaP)時,在感光材質上所形成的碳粉 影像會轉移到印表紙。包含熱熔滾筒的定影單元(fixingunit) 會瞬間加熱到碳粉影像所轉移到的印表紙’以熱熔及定影 碳粉影像到印表紙。一般而言’鹵素燈係用來當做用於定 影單元的熱源。鹵素燈係安裝於熱熔滾筒的內部及以輻射 熱將熱熔滾筒的表面加熱到目標溫度。 在使用鹵素燈當做熱源之電子攝影影像形成裝置之習 知的熱熔滾筒裝置中,熱熔滾筒的外表必須產生熱;因此 842 lpifl .doc/008 5 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 熱熔滾筒係經由來自鹵素燈的輻射熱’而從內部往外加 熱。壓力滚筒係置於熱熔滾筒之下。當攜帶有粉末型式之 碳粉影像的紙通過熱熔滾筒與壓力滾筒之間時,會藉由預 定力而將紙熱壓,以及會藉由來自熱熔滾筒與壓力滾筒之 熱及力而將碳粉影像熱熔及定影到印表紙。 電熱調節器(thermist〇r)可用於偵測及轉換熱熔滾筒 的表面溫度成電子訊號,以及®溫器(thermostat)可用來切 斷送到鹵素燈的電源供應。 當用於影像形成的影像形成裝置打開時,使用鹵素 燈當做熱源之習知的熱熔滾筒裝置會不必要地消耗大量的 功率,並且需要相當長的預熱(warm-up)期間。換句話說, 在電源啓用之後,待用(standby)期間會隨之而來,直到熱 熔滾筒的溫度到達目標溫度。例如,持續幾十秒到幾分鐘。 已發現具有習知的熱熔滾筒裝置,因爲熱熔滾筒係經由來 自熱源的輻射熱而加熱,所以熱轉移的速率是低的。特別 是,用於由於經由與印表紙連接所產生之熱滾筒中的溫度 下降之溫度變化的補償延遲時,會使得很難均勻地控制沿 著熱熔滾筒的軸向長度之溫度分布。甚至在印表機暫停操 作之待用模式中,爲了要保持熱熔滾筒中的溫度爲固定, 必須定期地施加電源,因此會產生不必要的功率消耗。再 者,熱熔滾筒從其待用模式切換到用於影像輸出的操作模 式要花相當長的時間,而使得結果的影像不能快速地列印 出來。 用於習知的熱熔滾筒裝置之替代的設計係使用置於 8421pifl.doc/008 6 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 彈性圓柱形的膠捲管(film tube)的下面部分之中之加熱盤 (heating plate),而壓力滾筒係鑲嵌於加熱盤之下。膠捲管 係經由分離的旋轉單元而旋轉,以及在加熱盤及壓力滾筒 之間的一部份,會局部加熱及變形。當考慮到有助於低功 率消耗的方面時,具有加熱盤之局部加熱膠捲管的此種方 法並不適合高速列印。 曰本專利申請號sho 58-163836(1983年9月16日)、 hei 3-107438(1991 年 5 月 13 日)、hei 3-136478(1991 年 6 月 7 日)、hei 5-135656(1993 年 6 月 7 日)、hei 6-296633(1994 年 11 月 30 曰)、hei 6-316435(1994 年 12 月 20 曰)、hei 7-65878(1995 年 3 月 24 日)、hei 7-105780(1995 年 4 月 28 日)、hei 7-244029(1995 年 9 月 22 日)、hei 8-110712(1996 年 5 月 1 日)、hei 10-27202(1998 年 2 月 9 日)、hei 10-84137(1998 年 3 月 30 日)、以及 hei 10-208635(1998 年 7 月8日),係揭露熱熔滾筒裝置所配備的加熱管(heat-pipe)。 如此之使用加熱管的熱熔滾筒裝置可以瞬間加熱’因 此會降低功率消耗。當在待用與列印操作之間做切換時’ 熱熔滾筒裝置也會有短時期的延遲。特別是,揭露於曰本 專利申請號 hei 5-135656、hei 10-84137、hei 6-296633、 以及hei 10-208635中的熱熔滾筒裝置,在熱熔滾筒(此係 置於定影區域之外)的一端,係使用不同型式的熱源。用 於這些熱熔滾筒裝置中的每一個熱源的安排會增加熱熔滾 筒裝置的容積及需要複雜的結構。因·此,必須改善如此的 熱熔滾筒裝置之結構的複雜度。 8421pifl.doc/008 7 1235894 爲第90127243號中文全份說明書無劃線修正本修正曰期·2〇〇31218 揭露於日本專利申請號sho 58-163836、hei 3-l07438、hei3-136478、hei6-316435、hei7-65878、hei7-105780、以及hei 7-244〇29中的熱熔滾筒裝置係使其熱源 置於其熱熔滾筒之內,以至於仍然會導致上述之增加此裝 置的容積之問題。然而,每個熱熔滾筒裝有多個區域性加 熱管,因而使熱熔滾筒裝置的構造及製造變的複雜。此外, 加熱管之區域的安排會於加熱管連接的部分及加熱管沒有 連接的部分之間產生溫度誤差。 發明摘要 爲了解決技術中之這些及其他的問題,本發明的一 個目的就是提供一種電子攝影影像形成裝置及方法。 另一目的就是提供一種改善的熱熔滾筒及熱熔方 法。 還有另一目的就是提供一種用於電子攝影影像形成 裝置之熱熔滾筒裝置,其中熱熔滾筒之局部的溫度誤差會 明顯的降低,藉此改善全部的熱分佈特性。 本發明的再另一目的就是提供一種用於電子攝影影 像形成裝置之熱熔滾筒裝置,其容易製造及設計,以使熱 熔滾筒裝置之任何增加的尺寸最小化。 還有另一目的就是提供一種熱熔滾筒,係能在較短 時間的時間內,從備用狀態進行到列印狀態。 也有一個目的就是提供更有能量效率之電子攝影影 像的製程及裝置。 進一步的目的就是提供具有能在較短時期的時間 8421pifl.doc/008 8 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 內,使熱熔滾筒的溫度從室溫改變到操作溫度之組件的一 種熱熔滾筒,用於建造熱熔滾筒的方法,以及用於從碳粉 到可列印介質所形成的電子攝影影像的方法。 還有進一步的目的就是提供具有能在備用操作時間 的期間,使熱熔滾筒的溫度能維持在室溫之組件的一種熱 熔滾筒,用於建造熱熔滾筒的方法,以及用於從碳粉到可 列印介質所形成的電子攝影影像的方法。 再進一步的目的就是提供具有在熱熔滾筒的外部圓 柱形表面上,顯示出改善的熱平衡及最小局部熱差異之組 件的一種熱熔滾筒,用於建造熱熔滾筒的方法,以及用於 從碳粉到可列印介質所形成的電子攝影影像的方法。 爲了達成本發明的這些及其他目的,在第一實施例 中所提供的熱熔方法及滾筒裝置,係可以使用緊密地密封 兩端的加熱管來實施,以保持在加熱管之內部凹處內的真 空。加熱管之內部凹處包含預定量的工作流體。加熱管係 同軸地裝於圓柱形熱熔滾筒之中空內部之內,而熱產生器 係螺旋地纏繞於加熱管的圓柱形外部的周圍(也就是在加 熱管與熱熔滾筒之內部圓柱形表面之間的環狀空隙)。 圖式簡單說明= 藉由考慮配合所附之相似的參考標號表示相同或相似 的元件之圖式之以下的詳細敘述時,將使本發明之更完整 的領會及其伴隨的許多優點立即能更顯而易見的了解,其 中: 第1圖係一般的電子攝影影像形成裝置之透視圖; 842 lpifl .doc/008 9 1235894 舄第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 第2圖係電子攝影影像形成裝置之習知的熱熔滾筒裝 置之剖視圖; 第3圖顯示含有習知的熱熔滾筒裝置之電子攝影影像 形成裝置之定影單元的結構; 第4圖顯示含有不同之習知的熱熔滾筒裝置之電子攝 影影像形成裝置之定影單元的結構; 第5圖係根據本發明的原理所建造之含有熱熔滾筒裝 釐的第一實施例之電子攝影影像形成裝置之定影單元的橫 截面圖; 第6圖係根據第5圖所繪示之熱熔滾筒裝置的結構之 部分透視圖,然未繪示加熱管的細部; 第6A圖係第6圖中所顯示之電阻加熱線圏之部分切 斷的橫截面之詳細圖; 第6B圖、第6C圖及第6D圖繪示的是根據本發明的 原理之熱熔滾筒裝置之建造步驟的順序; 第7圖繪示的是第5圖及第6圖中所顯示之熱熔滾 筒裝置之內部結構的橫截面圖; 第8圖係第7圖中所顯示之實施例之操作模式的詳 細的橫截面圖; 第9圖繪示的是溫度隨著時間的作用而改變之兩座 標的圖; 第10圖係根據本發明的原理所建造的熱熔滾筒裝置 之第二實施例的橫截面圖; 第11圖顯示的是第10圖中所顯示之熱熔滾筒裝置 8421pifl.doc/008 10 1235894 爲第90127243號中文全份說明書無劃線修正本修正曰期:2003.12.18 之詳細描述X之部分縱向截面圖; 第12圖係第10圖中所顯示之實施例之操作模式的 詳細的橫截面圖; 第13圖繪示的是溫度隨著時間的作用而改變之兩個 座標的圖; 第14圖繪示的是當溫度上升及工作期間的加熱管作 用時,工作流體的相位改變圖; 第15圖顯示的是加熱管的內部結構及標示出熱轉移 之液體到蒸汽的相位改變; 第16圖顯示的是當用於分別使用FC-40及蒸餾水當 做工作流體的飽和溫度作用時,飽和壓力的變化圖。 第17圖係當用於鋁、銅及304不鏽鋼之加熱管的材 質的溫度變化作用時,極限張力強度變化的圖; 第18A圖及第18B圖係當分別使用FC-40及蒸餾水 當做工作流體時,顯示最大可允許應力及相關於溫度變化 之作用於加熱管壁上之最大應力變化的圖; 第19A圖及第19B圖係當分別使用FC-10及蒸餾水 當做工作流體時,繪示相關於管厚度(T)變化之最大應力 變化的圖;以及 第20圖及第21圖繪示的是用於上述之熱熔滾筒裝 置之第一實施例之在熱熔滾筒的中間之配合時間的溫度變 化圖。 重要元件標號: 1 :退紙器 8421pifl.doc/008 11 1235894 修正日期:2003.12.18 爲第90127243號中文全份說明書無劃線修正本 2 :袖珍鍵盤 3 :控制板蓋 4:上蓋打開按鈕 5 :紙指示視窗 6 :多用途送紙盤 7 :紙匣 8 :可選擇匣 9:備用紙支撐器 10,210 :熱熔滾筒裝置 11,212 :熱熔滾筒 11a:覆蓋層 12,260 :熱產生器 13、23、220 :壓力滾筒 13a :彈簧組件 14,250 :印表紙 14a,251 :碳粉影像 15,230 :電熱調節器 16,240 :恆溫器 21 :膠捲管 22 :加熱盤 200 :定影單元 211 :防護層 213 :加熱單元 213a :熱產生電線 8421pifl.doc/008 12 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 213b :外表層 213c :電絕緣覆蓋層 213d :密封墊 213’ :空間隔離物 214 :工作流體 215 :電極 242 :內部凹處 244 ··芯 246 :內部圓柱形表面 262 :加熱管 264 :末端帽 266 :內部周圍表面 268 :內部凹處 較佳實施例: 第1圖顯示的是一般的電子攝影影像形成裝置,電 子像形成衣置包括退紙器(paper eject〇r)i、袖珍鍵 盤(keyPad)2、控制板蓋(c〇ver)3、上蓋(upper-c〇ver)打開按 鈕4、紙指示視窗5、多用途送紙盤(paper feed化”)6、紙 匣(caSSette)7、可選擇匣8、以及輔助紙支撐器(supp〇rt)。 第2圖係電子攝影影像形成裝置之習知的熱熔滾筒 I置之彳頁截面圖,其使用鹵素燈當做熱源。第3圖係第2 圖之熱溶滾筒的剖視圖,其具有當做熱源的鹵素燈及壓力 滾筒’係用於習知的電子攝影影像形成裝置。參照第2圖, 習知的熱熔滾筒裝置1〇包括圓柱形熱熔滾筒U及在熱熔 8421pifl.doc/008 13 1235894 爲第90127243號中文全份說明書無劃線修正本修正日期:2〇〇31218 滾筒11內部的熱產生器12(如鹵素燈)。因爲熱熔滾筒11 的外表必須產生熱,所以熱熔滾筒1 1會經由來自熱產生 器12的輻射熱而從內部往外加熱。 參照第3圖,壓力滾筒13係置於具有由鐵弗龍(Teflon) 所組成的覆蓋層11a之熱熔滾筒11之下。經由施加預定 力於熱熔滾筒11上,而使經由彈簧組件13a所彈性支撐 的壓力滾筒13會將印表紙14壓過熱熔滾筒11與壓力滾 筒13之間。當印表紙14攜帶粉末型式之碳粉影像14a於 熱熔滾筒11與壓力滾筒13之間時,印表紙14會經由預 定力而被熱壓。換句話說,碳粉影像14a會經由來自熱熔 滾筒11與壓力滾筒13之熱及力,而熱熔及定影到印表紙 14 〇 電熱調節器15係用於偵測及轉換熱熔滾筒11的表 面溫度成電子訊號,而用於切斷熱產生器12(如鹵素燈)的 電源供應之恆溫器16,係置於與熱熔滾筒11相鄰。當熱 熔滾筒11的表面溫度超過特定的起始(threshold)値時,恆 溫器16會中斷熱產生器12的電源供應。電熱調節器I5 會偵測熱熔滾筒11的表面溫度,以及將偵測的結果傳送 到用於印表機的控制器(未顯示)。控制器係依照所偵測之 熱熔滾筒11的表面溫度而控制送到熱產生器12的鹵素燈 之電源供應,以保持表面溫度在特定的範圍內。恆溫器16 係用來當做用於熱熔滾筒11及鄰近元件的熱偵測器’當 電熱調節器15及控制器不能控制熱熔滾筒11的溫度時’ 會由恆溫器16來運作。 8421pifl.doc/008 14 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 當用於影像資訊的影像形成裝置打開時,使用鹵素 燈當做熱源之習知的熱熔滾筒裝置會不必要地消耗大量的 功率,並且需要相當長的預熱期間。換句話說,在啓用電 源之後,待用期間會隨之而來,直到熱熔滾筒11的溫度 到達目標溫度,例如,持續幾十秒到幾分鐘。對習知的熱 熔滾筒裝置而言,因爲熱熔滾筒11係經由來自熱源的輻 射熱而加熱,所以熱轉移的速率是低的。特別是,由於經 由與印表紙連接所產生之熱滾筒中的溫度下降而做的溫度 變化補償延遲時,會使得很難均勻控制熱熔滾筒11的溫 度分布。甚至在印表機暫停操作之待用模式中,爲了要保 持熱熔滾筒11中的溫度爲固定,必須定期地施加電源, 因此會產生不必要的功率消耗。再者,從待用模式切換到 用於影像輸出的操作模式要花相當長的時間,而使得結果 的影像不能快速地列印出來。 第4圖係用於電子攝影影像形成裝置之習知的熱熔 滾筒裝置的剖視圖。加熱盤22係置於彈性圓柱形的膠捲 管21的下面部分中,以及壓力滾筒Μ係鑲嵌於加熱盤22 之下。膠捲管21係經由分離的旋轉單元而旋轉,而在加 熱盤22及壓力滾筒23之間的一部份則會被局部加熱及變 形。經由加熱盤22而局部加熱膠捲管21的方法係具有低 功率消耗方面的優點。然而,局部加熱的方法不適合於高 速列印。 根據本發明之含有熱熔滾筒裝置的第〜實施例之電 子攝影影像形成裝置之定影單元係顯示於第5圖中,而第 8421pifl.doc/008 15 1235894 爲第90127243號中文全份說明書無劃線修正本 修正曰期:2003.12.18 6圖係更詳細地顯示第5圖之熱熔滾筒裝置的結構之透視 圖’以及第7圖係第5圖及第6圖之熱熔滾筒裝置的縱截 面圖。 一起參照第5圖、第6圖、以及第6A圖,定影單元200 包括熱熔滾筒裝置210,在退出攜帶碳粉影像251的印表 紙250時,會以一個方向旋轉,也就是在第5圖中所見到 的順時針方向,而與熱熔滾筒裝置210連接的壓力滾筒220 係以逆時針方向旋轉。熱熔滾筒裝置210包括具有外邊圓 柱形防護層211之圓柱形的熱熔滾筒212,其係置於經由 鐡弗龍所覆蓋之表面上,以及熱產生器260係置於熱熔滾 筒212內。用於感測熱熔滾筒212的表面溫度之電熱調節 器230係鑲嵌於熱熔滾筒212的頂端。 置於熱熔滾筒212內的熱產生器260係使用來自外部 的電源供應單元(未顯示)所供應的電源來產生熱。熱產生 器260具有置於多匝(turn)的加熱單元213之內的加熱管 262,並以末端帽264來緊密地密封加熱管262,而保持在 預定的壓力。加熱管262可容納預定容量的工作流體214。 置於與防護層211連接的熱熔滾筒212之上的電熱 調節器230係用以感測熱熔滾筒212及防護層211的表面 溫度。當熱熔滾筒212及防護層211的表面溫度快速地增 加時,也置於熱熔滾筒212之上的恆溫器240會切斷電源 供應單元的電源。 加熱單元213係經由來自外部的電源供應單元的電 源所供應。加熱單元213最好建造爲與熱熔滾筒212的內 8421pifl.doc/008 16 1235894 爲第90127243號中文全份說明書無劃線修正本 修正曰期:2003.12.18 部及加熱管262的外部連接之螺旋狀阻抗加熱線圈。 電熱調節器230係直接實際連接於防護層211並感 測防護層211的溫度。由熱熔滾筒212之圓柱形的內部凹 處(interior cavity)242所形成的內部空間係由熱產生器260 所佔用。加熱單元213可以爲以螺旋狀阻抗加熱線圈所組 成之多匝的螺旋狀線圏,係置於沿著內部凹處242,而直 接實際連接於熱熔滾筒212之內部的圓柱形壁。加熱單元 213包括由電阻材質(如鐵鉻(Fe-C〇或鎳鉻(Ni-Cr)線圈)所 組成的熱產生電線213a,以及由介電材質(如氧化鎂(MgO)) 所組成,用以保護熱產生電線213a的電絕緣覆蓋層213c。 加熱單元213的電絕緣覆蓋層213c係防止將於稍後敘述 之容易因爲超過時間或因爲工作流體214中的溫度變化而 發生於熱產生電線213a中的變形或特徵改變。外表層213b 係由相關的惰性材質(如不鏽鋼)所組成,用以在電絕緣覆 蓋層213c周圍形成防護鞘(sheath)。熱產生電線213a的兩 端不爲電絕緣覆蓋層213c所覆蓋,係用以形成熱熔滾筒 212的兩端之電極215。爲了防止由MgO所組成的電絕緣 覆蓋層213c曝露於空氣,電絕緣覆蓋層213c係由密封墊 (seal)213d所完成。密封墊213d最好由氧化锆(ZK)2)陶瓷 組成,用以改善熱阻、鏽阻(corrosion-resistance)及耐久性 (endurance)。加熱單元213的電阻係25-40歐姆(Ω)(對應 於220伏特(V)的交流(AC)電源)及5-20Ω(對應於110V的 AC電源)。 如第6Β圖、第6C圖及第6D圖所繪示,在熱熔滾筒 17 8421pifl.doc/008 1235894 爲第90127243號中文全份說明書無劃線修正本修正日期:2〇〇31218 212的內部圓柱形表面246之相對的內壁間的距離爲d!, 而多匝的加熱單元213之外部圓柱形袠面係具有直徑d2。 如第6B圖所顯示,加熱單元213係以多匝的螺旋狀物而 螺旋狀地纏繞於加熱管262之外部圓柱形的表面之大體上 的整個軸向長度。多匝的加熱單元213之平均的外部圓柱 形直徑爲d2,其稍大於山。如第6C圖所顯示,相反的軸 向力F係施加於加熱單元213之相對的軸向端點之電極 215,用以將加熱單元213的直徑降低到一個値,也就是 低於A,而與加熱單元213 —起的加熱管262係同軸地插 入到熱熔滾筒212的內部凹處242。如第6D圖所顯示, 力F移除之後,加熱單元213之每個迴圏的外表立即會直 接實際及熱連接於熱熔滾筒212的內部圓柱形表面246 ; 本質上,力F的移除可允許加熱單元213假定外部圓柱形 直徑心與熱熔滾筒212的內徑(inner diametei*)相等。在加 熱單元213之鄰近的迴圈之間的間距(pitch)xl,x2不必須 相等。然而,重要的是加熱單元213之每個迴圈之大部分 或全部的外表係直接實際及熱連接於熱熔滾筒212的內部 圓柱形表面246。 然後,如經由第6C圖與第6D圖之間的轉換所顯示, 一旦熱產生器260裝於熱熔滾筒212的內部凹處242之內’ 爲了使加熱管262的圓柱形壁能徑向地往外擴張,空氣壓 力會施加到加熱管262的內部,直到加熱單元213的內部 表面係實質地直接實際連接於熱熔滾筒212的圓柱形外表 及同時地直接實際及熱連接於熱熔滾筒212的內部圓柱形 8421pin.doc/008 18 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 表面246。然後加熱管262的內部凹處242會塡滿預定量 的工作流體214,且加熱管262會在預定壓力時被密封。 工作流體214係包含於熱產生器260之圓柱形外表 周圍中所安裝的加熱管262之密封的內部空間。工作流體 214係包含5-50%容積的量,並且最好是5-15%之以加熱 管262的內部凹處268爲基準的容積。根據加熱管的原理, 工作流體214可防止旋轉的熱熔滾筒212之局部的表面溫 度誤差,否則表面溫度誤差會因加熱單元213的存在而可 能發生,且工作流體214可用來當做能均勻地加熱加熱管 262之整個圓柱形容積的熱介質,並且同時地,熱熔滾筒 212比目前所可用的習知的裝置,能在較短期間內就可以 使用。如果工作流體214的量少於以熱熔滾筒212的容積 爲基準之大約5%容積時,可能會發生工作流體214未完 全蒸發的變乾(dry-cmt)現象,以及除此之外在蒸發後,會 有立即液化的發生。 加熱管262可以由不鏽鋼(如304SS)或銅(Cxi)所組 成。如果加熱管262由不鏽鋼所組成,除了可使用水(蒸 餾水)之外,也可使用大部分眾所周知的工作流體。FC-40(可 由3M公司獲得)爲當做工作流體214的水之最佳的替代選 擇。同時,如果加熱管262由銅所組成,幾乎全部的眾所 周知的工作液體都可使用。水(例如是蒸餾水)係爲用於由 銅所組成的加熱管262之最佳的工作流體。 參照第7圖,末端帽(end cap)264係耦接至加熱管262 之軸向相對的兩端,用以密封加熱管262的內部圓柱形凹 8421pifl.doc/008 19 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 處,而藉此能形成真空緊密密封的內部凹處268。加熱單 元213之軸向相對的端點會軸向地延伸超過加熱管262而 形成電極215,用以嚙合(engage)如輪流的滑動環(slip ring)(未顯示)的電性接點之操作,而提供經過加熱單元213 的電流。非傳導性的電刷(bmshing)及傳動裝置束縛帽 (gear-binding cap)也可以鑲嵌在熱熔滾筒212之外部圓柱 形表面上。電極215係電性連接到熱產生器260之加熱單 元213之電傳導端的導線。雖然將加熱單元213及電極215 的結構耦接到電源的來源之電性連接未更詳細地繪示,但 是此結構可輕易地實施。 在操作使用的期間,具有上述結構的熱熔滾筒裝置21〇 會經由分離的旋轉單元而旋轉。爲了此目的,可安裝額外 的零件。例如,傳動裝置束縛帽係爲耦接到用以使熱熔滾 筒裝置210旋轉所需的旋轉激勵傳動裝置(spur gear)的額 外零件。 在根據本發明的原理所建造之電子攝影影像形成裝置 的定影單元200中,當電流經由電極215(也就是來自電源 供應器)而流到加熱單元213時,加熱單元213會產生熱, 這是因爲當電流流經熱產生器260之加熱單元213時,會 使電阻發熱,並且熱熔滾筒212會經由所產生的熱而從內 部往外加熱。同時,包含於加熱管262中的工作流體214 會經由熱而蒸發。經由加熱單元213所產生的熱會轉移到 熱熔滾筒212的圓柱形壁,而同時熱熔滾筒212的主體會 經由蒸發的工作流體而均勻地加熱。因此,熱熔滾筒212 8421pifl.doc/008 20 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2〇〇3·12·18 的表面溫度會在實質上較短期間的時間之內,到達目標熱 熔溫度。 來自銅或不鏽鋼所組成的金屬之穿孔層(perforated layer)或隔板(screen)所組成之芯244係形成圓柱形狀,而 用來當做毛細管(capillary);芯244可以位於沿著加熱管262 之內部周圍表面266上。適合於加熱管262的材質係列於 表2中。先前所敘述的FC-40或水(蒸餾水),或列於表3 中的材質可用來當做工作流體214。當選擇水(蒸餾水)當 做工作流體214時,熱熔滾筒裝置在不考慮環保的情形下, 可低花費的實施。一旦熱熔滾筒212的溫度到達熱熔碳粉 影像的目標熱熔溫度,碳粉影像會轉移(也就是永久結合) 到可列印紙。當碳粉影像已轉移到的可列印紙吸收來自熱 熔滾筒212的熱時,在加熱管262中的內部凹處268的內 部之蒸汽的工作流體會轉回成液相。液化的工作流體接下 來可又經由熱產生器260的加熱而汽化,以使得熱熔滾筒 212的溫度可保持在預定溫度。 如果碳粉的熱熔溫度在160-180°C的範圍之內時,根 據本發明所建造的熱熔滾筒裝置可在約十秒之內,到達目 標溫度。然後,熱熔滾筒212的表面溫度會經由週期性地 將電流施加到加熱單元213而保持,以及會回應於藉由電 熱調節器230所感測到之熱熔滾筒212的表面溫度,並藉 由電熱調節器230而保持在預定的溫度範圍之內。如果電 熱調節器230及控制器不能適當地控制表面溫度,而使得 熱熔滾筒212的表面溫度突然升高時,置於緊鄰於熱熔滾 8421pifl.doc/008 21 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 筒212的圓柱形表面之恆溫器240會感測熱熔滾筒212的 表面溫度,並會切斷送到加熱單元213的電流供應以防止 過熱。電源供應器的操作可取決於目標溫度而變化。將可 知電源供應器的操作可經由如週期性的打開/關閉電源的 控制或工作週期比之技術而控制。 具有前段中所述配置之熱熔滾筒裝置可經由下列步 驟而製造: (a) 準備金屬管當做用於熱熔滾筒的材質; (b) 準備金屬筒當做用於加熱管的結構; (c) 經由以蒸餾水或揮發性液體來淸洗金屬管及金屬 筒而使金屬管及金屬筒之曝露的表面乾淨; (d) 經由以蒸餾水或揮發性液體來淸洗螺旋電阻加熱 線圈而使螺旋電阻加熱線圏之曝露的表面乾淨; (e) 將螺旋電阻加熱線圈纏繞爲相等或稍大於金屬管 的內徑(inner diameter)之具有外徑(outer diameter)的螺旋 線圈,以及插入到加熱管之環狀的外部圓柱形容積; (f) 可選擇地,將芯插入以形成圓柱,用以標示出加 熱管的內部圓柱形表面; (g) 以末端帽來密封加熱管之相對的底端’以使得能 保持工作流體鑲嵌物(inlet),而螺旋地纏繞於加熱管周圍 之電阻加熱線圈的兩端導線係用來當做電線; (h) 將帶有螺旋纏繞的加熱線圈之加熱管同軸地插入 到金屬管的內部; (i) 使用高壓惰性氣體來塡充密封的加熱管’用以快 8421pifl.doc/008 22 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 速地使加熱管的圓柱形殻擴大’直到加熱線圈的繞阻能直 接實際及同時地熱連接於熱熔滾筒的內部圓柱形表面及加 熱管的外部圓柱形表面,或是另一種選擇’使在加熱管的 外部圓柱形表面與熱熔滾筒的內部圓柱形表面之間的輻射 氣隙(air gap)分離最小; ⑴經由排空、加熱、以及冷卻加熱管來淸除來自加 熱管的內部容積之外來氣體,以排出來自加熱管的內部容 積之氣體,而在內部容積內產生真空; (k) 將5-50%容積的工作流體(如不是FC-40,就是蒸 餾水)經由工作流體鑲嵌物而注入到加熱管的內部凹處; (l) 密封加熱管的工作流體鑲嵌物; (m) 使用鐵弗龍來噴灑覆蓋金屬管的表面,並風乾及 磨光金屬管,以形成熱熔滾筒上的防護覆蓋; (η)將當做軸承(bearing)的非傳導性電刷插入到熱熔 滾筒的一端;以及 (0)將由金屬、抗熱塑膠、或環氧化物(epoxy)所組成 的傳動裝置束縛帽鑲嵌於熱熔滾筒組件的一端。 在熱熔滾筒裝置的製造期間,當在插入芯244之後, 在軸向相對底端使用末端帽264來焊接覆蓋金屬管時,如 果使用到芯244,爲了防止加熱管氧化的目的,氬氣會藉 由工作流體鑲嵌物而注入到金屬筒的內部凹處268。在將 工作流體注入到加熱管之前,會淸除來自內部凹處268的 外來氣體,而且內部凹處268會被排空,並在真空下重複 地加熱及冷卻,以至於能排出加熱管的內部容積之全部氣 8421pifl.doc/008 23 1235894 爲第90127243號中文全份說明書無劃線修正本修正曰期:2003.12.18 體,因此實質上可移除附著於加熱管的內壁之全部的外來 材質。例如,在淸除內部凹處268的一個過程中,必須將 具有40大氣壓的內部壓力之加熱管加熱到250°c的溫度。 在室溫時,內部凹處268應該有理想的壓力;也就是,在 內部凹處268之內,應該沒有分子。 第8圖及第9圖繪示的是顯示於第7圖中的實施例 之熱操作模式。加熱單元213的各自匝係藉由熱傳導而直 接加熱到熱熔滾筒212,或加熱管262,如箭頭K所表示, 以及間接加熱到由加熱單元213的相鄰匝之間的間隙所表 示的空氣空間,如箭頭L所表示。取決於加熱單元213的 各自匝之半徑配置,那些匝也會藉由輻射熱而間接加熱到 工作流體214或熱熔滾筒212,如箭頭Μ所表示。如第9 圖之在暫態時間h及靜態(quiescent)時間t2所顯示,加熱 單元213的兩相鄰匝之輻射校正所用到的溫度Tl,T3,大 體上會提供相同的上升時間及溫度輪廓圖。在加熱單元213 的那兩個相鄰匝之間的間隙Α內所量測到之在暫態溫度上 升時間^之溫度T2開始會跟隨著溫度Τι,τ3,但是接著 會量測到較低的溫度而落後那些溫度。接下來,在靜態時 間t2的期間,三個溫度均大體上相同 參照第10圖到第13圖,在加熱單元213的相鄰螺 旋線之間的間隙A中之中間部分或空間隔離物(spacer)213, 可插入於加熱管262及熱熔滾筒212之間,用以將來自加 熱單兀213及加熱管262的熱傳送到熱熔滾筒212。最好 是,空間隔離物213’的高度^相等於或大於加熱單元213 8421pifl.doc/008 24 1235894 爲第90127243號中文全份說明書無劃線修正本修正日期:2003.12.18 的高度t2,用以形成如空間隔離物213’的高度^與加熱單 元213的高度t2之間的差一樣大的空間E。空間E包含空 氣,而使得加熱單元213所產生的熱會藉由空氣而以輻射 熱傳送到熱熔滾筒212。 經由使用塡滿間隙A及將熱從加熱線圏與加熱管262 傳送到熱熔滾筒212之空間隔離物213’,如第10圖、第 11圖及第12圖所顯示的設計與只使用熱線圈做熱傳輸的 設計比較之下,熱傳導性可以相當程度地加強,並且整個 熱熔滾筒212的溫度會均勻地增加到目標溫度。此外,最 好是使用具有優良熱傳導性的材質,特別是使用如鋁的群 組10材質來建造空間隔離物213’。 加熱管262具有剛好的圓柱形管的形狀且兩端密封。 預定量的工作流體214係包含於加熱管262的內部凹處 268。特別是,類似網狀結構的芯244會用於加熱管262 的內部,以使得來自加熱單元213的熱可在短時間之內, 均勻傳送遍佈加熱管262的內部。顯然地,用以均勻傳送 熱遍佈加熱管262的許多方法都可以實施。 工作流體214係因來自加熱單元213所產生及傳送 的熱而汽化,並將熱傳送到熱熔滾筒212,因此可用來做 爲防止在熱熔滾筒212的軸向長度上方之表面溫度的顯著 差異之熱介質,且能在非常短的時間內加熱整個熱熔滾筒 212。爲了此功能,工作流體214具有相關於內部凹處268 的容積之5-50%的容積率,最好是5-15%。當工作流體214 的容積率未大於約5%時,變乾現象的機率是非常高的。 8421pifl.doc/008 25 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12· 18 此外,最好能避免設計爲使用具有未大於內部凹處268的 容積容量之5%容積的工作流體214。 工作流體214係依照加熱管262的材質而選擇。換 句話說,當加熱管262係由不鏽鋼組成時,最好不要使用 水(也就是蒸餾水)來當做工作流體214。除了蒸餾水之外, 大部分現今熟知的工作流體都可以使用。最佳是使用3M 公司所製造的FC-40。 第12圖及第13圖繪示的是顯示於第10圖中的實施 例之熱操作模式。如箭頭K所表示,加熱單元213的相鄰 繞組(winding),係取決於其半徑配置,可藉由直接熱傳導 而加熱到熱熔滾筒212,或加熱管262及工作流體214。 相鄰繞組也可以直接加熱到空間隔離物213’,如箭頭L所 表示,這是由於相鄰繞組係緊鄰到插入的空間隔離物 213’。空間隔離物213’也會藉由熱傳導而直接加熱到熱熔 滾筒212。再次取決於其半徑配置,加熱單元213的這些 匝也會間接加熱到熱熔滾筒212及工作流體214,如箭頭 Μ所表示。在暫態及靜止時間週期的期間,在熱熔滾筒212 上之鐵弗龍的防護層211的表面所量測到的溫度Τ4&Τ5(係 各自輻射校正在加熱單元213的兩相鄰匝之間之加熱單元 213及空間隔離物213’的一個匝)都是相同的,如第13圖 所顯示。因此,所提供的空間幾乎相同,但是確定熱熔滾 筒的外部溫度沿著其整個軸向長度的均勻性。要注意的 是,加熱單元213之每個匝的直徑應該近似相等,但是最 有可能的是比中間的空間隔離物213’之半徑的截面大小稍 8421pifl.doc/008 26 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 微小的値。 空間隔離物213’可由型式10鋁所組成,而熱熔滾筒 212係由型式60鋁所組成。然而,型式10鋁係較容易變 形,因此空間隔離物213’係較有彈性。如果加熱管262由 不是銅就是鋁所組成,當經由高壓空氣來塡充時,加熱管 262的圓柱形殻會扭曲,以及會使空間隔離物213’變形, 而使系列10鋁之空間隔離物213’之徑向地內部及徑向地 外部表面之處能直接實際及同時熱連接於加熱管262的外 部直徑及型式60鋁之熱熔滾筒212之內部直徑;然而, 型式60鋁之熱熔滾筒212將不會變形。型式50鋁的硬度 比型式60系列的鋁大,並且型式50及型式60系列的鋁 的硬度比型式10的鋁的硬度大。型式50、型式60及型式 1〇系列的鋁之熱轉移特性係大體上相等,且型式50、型 式60及型式10系列的鋁之導電率係大體上相同的。 具有前段中所述之用於第二實施例的配置之熱熔滾 筒裝置可經由下列步驟而製造: (a) 準備金屬管當做用於熱熔滾筒的材質; (b) 準備金屬筒當做用於加熱管的結構; (c) 經由以蒸餾水或揮發性液體來淸洗金屬管及金屬 筒而使金屬管及金屬筒之曝露的表面乾淨; (d) 經由以蒸餾水或揮發性液體來淸洗螺旋電阻加熱 線圈而使螺旋電阻加熱線圈之曝露的表面乾淨; (e) 可選擇地,將芯插入以形成圓柱,用以標示出加 熱管的內部圓柱形表面; 8421pifl.doc/008 27 1235894 爲第90127243號中文全份說明書無劃線修正本 修正曰期:2003.12.18 ⑴將螺旋電阻加熱線圏纏繞爲相等或稍大於金屬管 的內徑之具有外部直徑的螺旋線圈’以及插入到加熱管之 環狀的外部圓柱形容積’其具有使螺旋形加熱線圏之各自 匝分離的熱傳導材質(如型式10鋁)之連續的空間,以及插 入於加熱管的外部圓柱形表面及熱熔滾筒的內部圓柱形表 面; (g) 以末端帽來密封加熱管之相對的底端’以使得能 保持工作流體鑲嵌物,而螺旋地纏繞於加熱管周圍之電阻 加熱線圈的兩端導線係用來當做電線; (h) 將帶有螺旋纏繞的加熱線圏之加熱管同軸地插入 到金屬管的內部; ⑴使用高壓惰性氣體來塡充密封的加熱管’用以快 速地使加熱管的圓柱形殼擴大’直到加熱線圏的繞阻能直 接實際及同時地熱連接於熱熔滾筒的內部圓柱形表面及加 熱管的外部圓柱形表面,或是另一種選擇’使在加熱管的 外部圓柱形表面與熱熔滾筒的內部圓柱形表面之間的輻射 氣隙分離最小; (j) 經由排空、加熱、以及冷卻加熱菅來淸除末自加 熱管的內部容積之外來氣體,以排出來自加熱管的內部容 積之氣體,而在內部容積內產生真空; (k) 將5-50%容積的工作流體(如不是FC-40 ’就是蒸 餾水)經由工作流體鑲嵌物而注入到加熱管的內部凹處; ⑴密封加熱管的工作流體鑲嵌物; (m)使用鐵弗龍來噴灑覆蓋金屬管的表面’以及風乾 8421pifl.doc/008 28 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 及磨光金屬管,以形成熱熔滾筒上的防護覆蓋; (η)將當做軸承的非傳導性電刷插入到熱熔滾筒的一 端;以及 (〇)將由金屬、抗熱塑膠、或環氧化物所組成的傳動 裝置束縛帽鑲嵌於熱熔滾筒組件的一端。 爲了使根據本發明之熱熔滾筒裝置的操作容易了 解,將會敘述與本發明相關的加熱管。有關熱轉移元件的 加熱管係使用用於使工作流體從其液相到其氣相之相改變 所需的潛熱,而將來自高熱密度狀態的熱轉移到低熱密度 狀態。因爲加熱管利用工作流體之相改變的特性,所以其 熱傳導係數高於任意已知的金屬。在室溫操作的加熱管之 熱傳導係數高於具有熱傳導係數&(400W/mk)的銀或銅數 百倍。 第14圖繪示的是當溫度上升及工作週期的加熱管作 用時’工作流體的相改變圖。表1顯示的是加熱管及其他 的熱轉移材質之有效的熱傳導。 表1 材質 有效熱傳導(W/mK) 加熱管 50000-200000 鋁 180 銅 400 鑽石 2000 1公斤(kg)的水從溫度25t上升到26°c所需的能量爲 4.18k焦耳(j)。當水的相位(phase)從液體改變到沒有溫度 8421pifl.doc/008 29 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 改變的蒸汽時,需要2442kJ的能量。加熱管轉移大約比 經由液體到蒸汽的相位(phase)改變之潛熱大584倍。對在 室溫工作的加熱管而言,熱傳導係數係比已知之當做優良 導體之銀或銅是大數百倍。使用液態金屬當做工作流體的 加熱管在高溫下工作的熱傳導可到達108W/mK。 第15圖顯示的是含有芯的加熱管之內部結構,用以 提供在加熱管的內部內之毛細管結構,以及其熱轉移過程 係依照液體到蒸汽及蒸汽到液體的改變。電阻加熱線圈(未 分離顯示於第15圖中)及芯係做成圓柱狀,以及分別直接 鑲嵌於加熱管的外部圓柱形表面上及內部周圍表面上。表 2顯示的是用於各種不同工作流體之建議的及不建議的加 熱管材質。 表2 工作流體 建議 不建議 氨 鋁、碳鋼、不銹鋼、 鎳 銅 丙酮 鋁、銅、不銹鋼、 矽土 - 甲醇 銅、不鏡鋼、鎳、 矽土 鋁 水 銅,347不銹鋼 鋁、不銹鋼、鎳、 碳鋼、Inconel、砂 土 Thermex 銅、砂土、不銹鋼 - 8421pifl.doc/008 30 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 表3顯示的是用於不同工作溫度範圍之各種不同的適 合的工作流體。 表3 極限溫度 (-273 〜-120〇C) 低溫 (-120 〜+470〇C) 高溫 (+450〜+2700〇C ) 氦 水 鉋 氣 乙醇 鈉 氮 甲醇、丙酮、氨、 二氯二氟代甲烷 鋰 我們已發現在選擇工作流體中,有許多種需要考慮: (1)所使用的加熱管材質之相容性;(2)在加熱管內之適合 工作溫度的工作流體;以及(3)工作流體的熱傳導。 當加熱管型式的熱熔滾筒由不鏽鋼(SUS)或(Cu)銅所 組成時,適合的工作流體會受限於加熱管材質及工作溫度 的相容性方面。FC-40在165°C的工作溫度時,具有一大 氣壓或更低的飽和壓力而被視爲相當適合的材質。 已知的FC-40爲無毒、不可燃及與大部分的金屬相容。 FC-40也具有零度臭氧(zero-ozone)消耗電位。依照以FC-40當做工作流體的熱力學,在飽和溫度及壓力之間的關係 可以由方程式(1)來表示:1235894 is the Chinese version of the entire manual No. 90127243. 12. 18. Description of the invention: FIELD OF THE INVENTION The present invention relates to a hot-melt roller assembly for an electrophotographic image forming apparatus, and more particularly, to a hotmelt image forming apparatus that can be instantaneously heated with low power consumption. Fused roller assembly. Known techniques are described in general electrophotographic image forming devices (such as photocopiers and laser beam printers). When the electrostatic charge roller adjacent to the photoreceptor drum rotates, it is coated on the surface of the photoreceptor drum. The photosensitive material charges evenly. The laser beam scanned by the laser scanning unit (LSU) will expose the charged photosensitive material, so that a potential electrostatic image will form a predetermined pattern on the photosensitive material. The developer unit supplies toner to the photosensitive material to develop a potential electrostatic image formed on the photosensitive material into a visible toner image. When the photosensitive drum carries a toner image, a predetermined transfer voltage is applied to a transfer drum connected to the photosensitive drum with a predetermined force. In this case, when the printing paper is fed into the gap (gaP) between the transfer roller and the photosensitive medium, the toner image formed on the photosensitive material is transferred to the printing paper. The fixing unit including the fuser roller will instantly heat the printing paper to which the toner image is transferred to fuse and fix the toner image to the printing paper. Generally, a 'halogen lamp' is used as a heat source for a fixing unit. The halogen lamp is installed inside the fuser drum and heats the surface of the fuser drum to a target temperature by radiant heat. In the conventional hot-melt roller device using a halogen lamp as a heat source for an electrophotographic image forming device, the outer surface of the hot-roller roller must generate heat; therefore, 842 lpifl. doc / 008 5 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18 The fuser roller is heated from the inside to the outside via radiant heat 'from a halogen lamp. The pressure roller is placed under the fuser roller. When the paper carrying the toner image of the powder type passes between the fuser roller and the pressure roller, the paper is hot-pressed by a predetermined force, and the paper is conveyed by the heat and force from the fuser roller and the pressure roller. The toner image is fused and fixed to the printing paper. A thermistor can be used to detect and convert the surface temperature of the fuser drum into an electronic signal, and a thermostat can be used to cut off the power supply to the halogen lamp. When an image forming apparatus for image formation is turned on, a conventional fuser roller apparatus using a halogen lamp as a heat source consumes a large amount of power unnecessarily and requires a considerable warm-up period. In other words, after the power is turned on, a standby period follows, until the temperature of the fuser roller reaches the target temperature. For example, lasting from tens of seconds to minutes. It has been found that with a conventional fuser roller device, the rate of heat transfer is low because the fuser roller is heated by radiant heat from a heat source. In particular, it is difficult to uniformly control the temperature distribution along the axial length of the fuser roller when compensating for delay due to a temperature change in the thermal roller caused by the connection with the printing paper. Even in the standby mode in which the printer is suspended, in order to keep the temperature in the fuser cylinder constant, power must be applied periodically, and therefore unnecessary power consumption is generated. Furthermore, it takes a considerable time for the fuser roller to switch from its standby mode to an operating mode for image output, so that the resulting image cannot be printed quickly. An alternative design for the conventional hot-melt roller unit is to use the 8421pifl. doc / 008 6 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18 The heating plate in the lower part of the elastic cylindrical film tube, and the pressure roller is embedded under the heating plate. The film tube is rotated by a separate rotating unit, and a part between the heating plate and the pressure roller is locally heated and deformed. This method of locally heating the film tube with a heating plate is not suitable for high-speed printing when considering aspects that contribute to low power consumption. Japanese Patent Application No. sho 58-163836 (September 16, 1983), hei 3-107438 (May 13, 1991), hei 3-136478 (June 7, 1991), hei 5-135656 (1993 June 7, 2014), hei 6-296633 (November 30, 1994), hei 6-316435 (December 20, 1994), hei 7-65878 (March 24, 1995), hei 7-105780 (April 28, 1995), hei 7-244029 (September 22, 1995), hei 8-110712 (May 1, 1996), hei 10-27202 (February 9, 1998), hei 10 -84137 (March 30, 1998), and hei 10-208635 (July 8, 1998), disclose the heat-pipe of the hot-roller unit. Such a hot-melt roller device using a heating tube can be instantaneously heated ', thereby reducing power consumption. There is also a short delay in the fuser unit when switching between standby and printing operations. In particular, the hot-melt roller devices disclosed in Japanese Patent Application Nos. Hei 5-135656, hei 10-84137, hei 6-296633, and hei 10-208635 are disclosed in the hot-melt roller (which is placed outside the fixing area) ) One end uses a different type of heat source. The arrangement of each heat source for these hot-melt roller devices increases the volume of the hot-roller roller device and requires a complicated structure. Therefore, it is necessary to improve the complexity of the structure of such a fuser roller device. 8421pifl. doc / 008 7 1235894 is the entire Chinese specification No. 90127243. The underlined amendments. The revision date is 20000318 and is disclosed in Japanese Patent Application Nos. sho 58-163836, hei 3-l07438, hei3-136478, hei6-316435, Hei 7-65878, hei7-105780, and hei 7-244〇29 have their heat sources placed in their fuser rollers, so that they still cause the above-mentioned problem of increasing the volume of the device. However, each of the fuser drums is provided with a plurality of regional heating pipes, which complicates the construction and manufacture of the fuser drum device. In addition, the arrangement of the area of the heating tube may cause a temperature error between the portion where the heating tube is connected and the portion where the heating tube is not connected. SUMMARY OF THE INVENTION In order to solve these and other problems in the technology, it is an object of the present invention to provide an electrophotographic image forming apparatus and method. Another object is to provide an improved hot-melt roller and hot-melt method. Still another object is to provide a hot-melt roller apparatus for an electrophotographic image forming apparatus, in which a local temperature error of the hot-melt roller is significantly reduced, thereby improving the overall heat distribution characteristics. Still another object of the present invention is to provide a hot-melt roller device for an electrophotographic image forming apparatus, which is easy to manufacture and design so as to minimize any increased size of the hot-melt roller device. Yet another object is to provide a hot-melt cylinder which can be switched from a standby state to a printing state in a short period of time. There is also a purpose to provide a more energy-efficient process and apparatus for electrophotographic images. A further purpose is to provide 8421pifl with a time that can be in a short period of time. doc / 008 8 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18, a fuser roller that changes the temperature of the fuser roller from room temperature to operating temperature, a method for constructing a fuser roller, and an electrophotographic image formed from toner to a printable medium Methods. Yet another object is to provide a hot-melt roller having a component capable of maintaining the temperature of the hot-roller roller at room temperature during a standby operation time, a method for constructing the hot-roller roller, and a method for removing toner from toner. Method for printing an electrophotographic image formed by a printable medium. A further object is to provide a hot-melt roller having components on the outer cylindrical surface of the hot-rolled roller that show improved thermal balance and minimal local thermal differences, a method for constructing a hot-melt roller, and a method for Method for forming an electrophotographic image formed by printing onto a printable medium. In order to achieve these and other objectives of the present invention, the hot-melt method and the roller device provided in the first embodiment can be implemented by using a heating tube that tightly seals the two ends to keep it in the inner recess of the heating tube. vacuum. The inner recess of the heating tube contains a predetermined amount of working fluid. The heating tube is coaxially installed inside the hollow interior of the cylindrical hot-melt roller, and the heat generator is spirally wound around the cylindrical outer portion of the heating tube (that is, the inner cylindrical surface of the heating tube and the hot-melt roller). Between the gaps). Brief description of the drawings = By considering the following detailed description of the drawings that represent the same or similar elements with the accompanying similar reference numerals, the complete understanding of the present invention and its accompanying many advantages will be immediately improved. Obvious understanding, of which: Figure 1 is a perspective view of a general electrophotographic image forming device; 842 lpifl. doc / 008 9 1235894 全 No. 90127243 Full Chinese Manual Unlined Revised Date: 2003. 12. 18 FIG. 2 is a cross-sectional view of a conventional hot-melt roller device of an electrophotographic image forming device; FIG. 3 shows a structure of a fixing unit of an electrophotographic image forming device including a conventional hot-melt roller device; The structure of a fixing unit of an electrophotographic image forming device of a different conventional hot-melt roller device; FIG. 5 is an electronic photographic image-forming device of the first embodiment containing a hot-melt roller container constructed according to the principle of the present invention Cross-sectional view of the fixing unit; Figure 6 is a partial perspective view of the structure of the hot-melt roller device shown in Figure 5, but the details of the heating tube are not shown; Figure 6A is shown in Figure 6 Detailed sectional view of a partially cut-away cross section of the resistance heating wire; Figures 6B, 6C, and 6D show the sequence of steps for constructing a hot-melt roller device according to the principles of the present invention; Figure 7 Shown are cross-sectional views of the internal structure of the hot-melt roller device shown in Figs. 5 and 6; Fig. 8 is a detailed cross-sectional view of the operation mode of the embodiment shown in Fig. 7; Figure 9 Shows two graphs of temperature changes with time; Figure 10 is a cross-sectional view of a second embodiment of a hot-melt roller device constructed in accordance with the principles of the present invention; Figure 11 shows a The hot melt roller device shown in Fig. 8841pifl. doc / 008 10 1235894 is the complete Chinese manual No. 90127243. No amendments. This revision date: 2003. 12. 18 is a detailed longitudinal cross-sectional view of part X; FIG. 12 is a detailed cross-sectional view of the operation mode of the embodiment shown in FIG. 10; FIG. 13 shows the change of temperature with time Figures of two coordinates; Figure 14 shows the phase change of the working fluid when the temperature rises and the heating tube works during operation; Figure 15 shows the internal structure of the heating tube and the liquid marked with heat transfer Phase change to steam; Figure 16 shows the change in saturation pressure when used with FC-40 and distilled water as the working fluid's saturation temperature, respectively. Figure 17 shows the change in ultimate tensile strength when the temperature of the material used for the heating pipe of aluminum, copper and 304 stainless steel changes; Figures 18A and 18B show the use of FC-40 and distilled water as working fluids, respectively. Figures showing the maximum allowable stress and the maximum stress change on the heating pipe wall related to temperature changes; Figures 19A and 19B are relevant when using FC-10 and distilled water as working fluids, respectively. Figures of the maximum stress change in the variation of the tube thickness (T); and Figures 20 and 21 show the timing of the fit in the middle of the fuser roller for the first embodiment of the fuser roller device described above. Temperature change graph. Important component numbers: 1: Ejector 8421pifl. doc / 008 11 1235894 Date of amendment: 2003. 12. 18 is the entire Chinese manual No. 90127243. No line correction. 2: Pocket keyboard 3: Control board cover 4: Top cover open button 5: Paper indicator window 6: Multipurpose tray 7: Paper tray 8: Optional tray 9 : Spare paper support 10, 210: Hot-melt roller device 11, 212: Hot-melt roller 11a: Cover layer 12, 260: Heat generators 13, 23, 220: Pressure roller 13a: Spring assembly 14, 250: Printing paper 14a 251: toner image 15, 230: thermostat 16, 240: thermostat 21: film tube 22: heating plate 200: fixing unit 211: protective layer 213: heating unit 213a: heat generating wire 8421pifl. doc / 008 12 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18 213b: Outer surface layer 213c: Electrical insulating cover layer 213d: Sealing pad 213 ': Space spacer 214: Working fluid 215: Electrode 242: Internal recess 244 ·· Core 246: Internal cylindrical surface 262: Heating tube 264: End Cap 266: Internal peripheral surface 268: Internal recess. Preferred embodiment: Figure 1 shows a general electronic photographic image forming device. The electronic image forming device includes a paper ejector, and a keypad (keyPad). ) 2. Control board cover (cover) 3. Upper cover (upper-cover) open button 4. Paper instruction window 5. Multipurpose paper feed tray (paper feed) 6. CaSSette 7. A cassette 8 and an auxiliary paper support (support) can be selected. Fig. 2 is a cross-sectional view of a front page of a conventional fuser roller I of an electrophotographic image forming apparatus, and a halogen lamp is used as a heat source. FIG. 2 is a cross-sectional view of a hot-melt roller having a halogen lamp and a pressure roller as a heat source, and is a conventional electrophotographic image forming apparatus. Referring to FIG. 2, the conventional hot-rolling roller device 10 includes a cylinder Hot melt roller U and hot melt 8421pifl. doc / 008 13 1235894 is the complete Chinese manual No. 90127243. No line correction. The date of this revision: 20000318 Heat generator 12 (such as a halogen lamp) inside the drum 11. Since the outer surface of the fuser roller 11 must generate heat, the fuser roller 11 is heated from the inside to the outside by radiant heat from the heat generator 12. Referring to FIG. 3, the pressure roller 13 is placed under the hot-melt roller 11 having a cover layer 11a composed of Teflon. By applying a predetermined force to the fuser roller 11, the pressure roller 13 elastically supported by the spring assembly 13a presses the printing paper 14 between the fuser roller 11 and the pressure roller 13. When the printing paper 14 carries a powder type toner image 14a between the fuser roller 11 and the pressure roller 13, the printing paper 14 is hot-pressed by a predetermined force. In other words, the toner image 14 a passes the heat and force from the fuser roller 11 and the pressure roller 13, and the fuser fuses and fixes to the printing paper 14. The electrothermal regulator 15 is used to detect and convert the fuser roller 11. The surface temperature becomes an electronic signal, and the thermostat 16 for cutting off the power supply of the heat generator 12 (such as a halogen lamp) is placed adjacent to the fuser 11. When the surface temperature of the fuser drum 11 exceeds a certain threshold, the thermostat 16 interrupts the power supply to the heat generator 12. The thermistor I5 detects the surface temperature of the fuser roller 11 and transmits the detection result to a controller (not shown) for the printer. The controller controls the power supply of the halogen lamp sent to the heat generator 12 according to the detected surface temperature of the fuser roller 11 to keep the surface temperature within a specific range. The thermostat 16 is used as a thermal detector for the fuser roller 11 and its neighboring components. When the thermistor 15 and the controller cannot control the temperature of the fuser roller 11, the thermostat 16 will operate. 8421pifl. doc / 008 14 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18 When the image forming apparatus for image information is turned on, a conventional fuser roller apparatus using a halogen lamp as a heat source consumes a large amount of power unnecessarily and requires a considerable warm-up period. In other words, after the power is turned on, the standby period follows until the temperature of the fuser drum 11 reaches the target temperature, for example, for several tens of seconds to several minutes. With the conventional fuser roller device, since the fuser roller 11 is heated by radiant heat from a heat source, the rate of heat transfer is low. In particular, the delay in temperature compensation due to the temperature drop in the heat roller caused by the connection with the printing paper makes it difficult to uniformly control the temperature distribution of the fuser roller 11. Even in the standby mode in which the printer is suspended, in order to keep the temperature in the fuser cylinder 11 constant, a power source must be applied periodically, so unnecessary power consumption is generated. Furthermore, it takes a considerable time to switch from the standby mode to the operation mode for image output, so that the resulting image cannot be printed quickly. Fig. 4 is a sectional view of a conventional hot-melt roller device used in an electrophotographic image forming apparatus. The heating plate 22 is placed in the lower portion of the elastic cylindrical film tube 21, and the pressure roller M is set under the heating plate 22. The film tube 21 is rotated by a separate rotating unit, and a portion between the heating plate 22 and the pressure roller 23 is locally heated and deformed. The method of locally heating the film tube 21 via the heating plate 22 has the advantage of low power consumption. However, the local heating method is not suitable for high-speed printing. According to the present invention, the fixing unit of the electronic photography image forming apparatus of the first embodiment containing the hot-melt roller device is shown in Fig. 5, and 8421pifl. doc / 008 15 1235894 is an unlined amendment to the entire Chinese manual No. 90127243. Date of amendment: 2003. 12. Fig. 18 is a perspective view showing the structure of the hot-melt roller device of Fig. 5 in more detail, and Fig. 7 is a longitudinal sectional view of the hot-melt roller device of Figs. 5 and 6. Referring to FIG. 5, FIG. 6, and FIG. 6A together, the fixing unit 200 includes a fuser roller device 210, and when ejecting the printing paper 250 carrying the toner image 251, it rotates in one direction, that is, in FIG. 5. As seen in the clockwise direction, the pressure roller 220 connected to the fuser roller device 210 rotates counterclockwise. The hot-melt roller device 210 includes a cylindrical hot-melt roller 212 having a cylindrical protective layer 211 on the outer side, which is placed on the surface covered by the Pforon, and a heat generator 260 is placed in the hot-rolled roller 212. A thermistor 230 for sensing the surface temperature of the fuser drum 212 is mounted on the top of the fuser drum 212. The heat generator 260 placed in the fuser drum 212 uses a power supplied from an external power supply unit (not shown) to generate heat. The heat generator 260 has a heating tube 262 placed inside a multi-turn heating unit 213, and tightly seals the heating tube 262 with an end cap 264, while maintaining it at a predetermined pressure. The heating pipe 262 may contain a working fluid 214 having a predetermined capacity. The thermistor 230 placed on the hot-melt roller 212 connected to the protective layer 211 is used to sense the surface temperature of the hot-melt roller 212 and the protective layer 211. When the temperature of the surface of the fuser drum 212 and the protective layer 211 increases rapidly, the thermostat 240 also placed on the fuser drum 212 will cut off the power of the power supply unit. The heating unit 213 is supplied via a power source from an external power supply unit. The heating unit 213 is preferably constructed with the inner 8421pifl of the fuser drum 212. doc / 008 16 1235894 is an unlined revision of the entire Chinese manual No. 90127243. Date of revision: 2003. 12. Spiral impedance heating coils connected to 18 and the outside of the heating tube 262. The thermistor 230 is directly connected to the protective layer 211 and senses the temperature of the protective layer 211 directly. The internal space formed by the cylindrical interior cavity 242 of the fuser drum 212 is occupied by the heat generator 260. The heating unit 213 may be a multi-turn spiral coil composed of a coil with a helical impedance heating coil, which is placed along the inner recess 242 and directly connected to the cylindrical wall of the inside of the fuser 212. The heating unit 213 includes a heat generating wire 213a composed of a resistive material (such as iron-chromium (Fe-C0 or Ni-Cr) coil), and a dielectric material (such as magnesium oxide (MgO)). An electrically insulating covering layer 213c for protecting the heat-generating wires 213a. The electrically insulating covering layer 213c of the heating unit 213 prevents the heat-generating wires from occurring easily due to time exceeding or due to temperature changes in the working fluid 214, which will be described later. Deformation or feature change in 213a. The outer surface layer 213b is composed of a related inert material (such as stainless steel) to form a sheath around the electrically insulating cover 213c. The ends of the heat-generating wire 213a are not electrically The insulating covering layer 213c is used to form the electrodes 215 at both ends of the hot-melt roller 212. In order to prevent the electrically insulating covering layer 213c composed of MgO from being exposed to the air, the electrically insulating covering layer 213c is formed by a seal. Completed by 213d. The sealing gasket 213d is preferably composed of zirconia (ZK) 2) ceramics to improve thermal resistance, corrosion-resistance, and endurance. The resistance of the heating unit 213 is 25-40 ohm (Ω) (corresponding to an alternating current (AC) power supply of 220 volts (V)) and 5-20 Ω (corresponding to an AC power supply of 110 V). As shown in Figures 6B, 6C and 6D, the hot melt roller 17 8421pifl. doc / 008 1235894 is the complete Chinese manual No. 90127243. No line correction. The date of this revision: 20000318 212 The distance between the opposite inner walls of the inner cylindrical surface 246 is d !, and the multi-turn heating unit 213 The outer cylindrical palate has a diameter d2. As shown in Fig. 6B, the heating unit 213 is spirally wound around the outer cylindrical surface of the heating tube 262 in a substantially spiral length in a plurality of turns in a substantially entire axial length. The average outer cylindrical diameter of the multi-turn heating unit 213 is d2, which is slightly larger than the mountain. As shown in Figure 6C, the opposite axial force F is applied to the electrode 215 at the opposite axial end of the heating unit 213 to reduce the diameter of the heating unit 213 to one 値, which is lower than A, and A heating tube 262 that is coaxial with the heating unit 213 is inserted coaxially into the internal recess 242 of the thermal fuser drum 212. As shown in FIG. 6D, immediately after the force F is removed, the outer appearance of each loop of the heating unit 213 is directly and physically connected to the inner cylindrical surface 246 of the fuser drum 212; essentially, the force F is removed The heating unit 213 may be allowed to assume that the outer cylindrical diameter center is equal to the inner diameter of the fuser drum 212 (inner diametei *). The pitch x1, x2 between adjacent loops of the heating unit 213 need not be equal. What is important, however, is that most or all of the appearance of each loop of the heating unit 213 is directly and physically connected to the inner cylindrical surface 246 of the fuser cylinder 212. Then, as shown by switching between FIG. 6C and FIG. 6D, once the heat generator 260 is installed within the inner recess 242 of the fuser drum 212, so that the cylindrical wall of the heating pipe 262 can be radially Expanding outward, air pressure will be applied to the inside of the heating tube 262 until the inner surface of the heating unit 213 is actually directly connected to the cylindrical appearance of the fuser drum 212 and simultaneously directly and physically connected to the fuser drum 212. Internal cylindrical 8421pin. doc / 008 18 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18 Surface 246. Then, the inner recess 242 of the heating tube 262 is filled with a predetermined amount of the working fluid 214, and the heating tube 262 is sealed at a predetermined pressure. The working fluid 214 is a sealed inner space of a heating pipe 262 installed in the periphery of the cylindrical appearance of the heat generator 260. The working fluid 214 contains a volume of 5-50%, and preferably a volume of 5-15% based on the internal recess 268 of the heating tube 262. According to the principle of the heating tube, the working fluid 214 can prevent a local surface temperature error of the rotating hot-melt roller 212, otherwise the surface temperature error may occur due to the presence of the heating unit 213, and the working fluid 214 can be used to uniformly heat The entire cylindrical volume of the heating medium of the heating tube 262, and at the same time, the hot-melt roller 212 can be used in a shorter period of time than conventional devices currently available. If the amount of the working fluid 214 is less than about 5% of the volume based on the volume of the hot-melt drum 212, a dry-cmt phenomenon may occur in which the working fluid 214 is not completely evaporated, and in addition, it is evaporated. After that, there will be immediate liquefaction. The heating tube 262 may be composed of stainless steel (such as 304SS) or copper (Cxi). If the heating pipe 262 is composed of stainless steel, in addition to water (distilled water), most well-known working fluids can be used. FC-40 (available from 3M) is the best alternative to water as working fluid 214. Meanwhile, if the heating pipe 262 is composed of copper, almost all well-known working liquids can be used. Water (e.g., distilled water) is an optimal working fluid for the heating pipe 262 composed of copper. Referring to Figure 7, an end cap 264 is coupled to the axially opposite ends of the heating tube 262 to seal the internal cylindrical recess 8421pifl of the heating tube 262. doc / 008 19 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18, and thereby a vacuum-tight internal recess 268 can be formed. The axially opposite ends of the heating unit 213 will extend axially beyond the heating tube 262 to form an electrode 215, which is used to engage electrical contacts such as a slip ring (not shown) in turns. While providing a current through the heating unit 213. Non-conductive brushes and gear-binding caps can also be embedded on the outer cylindrical surface of the fuser roller 212. The electrode 215 is a wire electrically connected to the electrically conductive end of the heating unit 213 of the heat generator 260. Although the electrical connection that couples the structure of the heating unit 213 and the electrode 215 to the source of the power source is not shown in more detail, this structure can be easily implemented. During operation and use, the hot-melt roller device 21o having the above-mentioned structure is rotated via a separate rotating unit. For this purpose, additional parts can be installed. For example, the transmission restraint cap is an additional component coupled to a rotationally excited spur gear required to rotate the hot-melt roller device 210. In the fixing unit 200 of the electrophotographic image forming apparatus constructed in accordance with the principles of the present invention, when a current flows to the heating unit 213 through the electrode 215 (that is, from a power supply), the heating unit 213 generates heat, which is Because when the current flows through the heating unit 213 of the heat generator 260, the resistor will generate heat, and the fuser drum 212 will be heated from the inside to the outside by the generated heat. At the same time, the working fluid 214 contained in the heating pipe 262 is evaporated by heat. The heat generated by the heating unit 213 is transferred to the cylindrical wall of the fuser drum 212, and at the same time, the main body of the fuser drum 212 is uniformly heated by the evaporated working fluid. Therefore, the hot-melt roller 212 8421pifl. doc / 008 20 1235894 is the complete Chinese manual No. 90127243. No revisions. Date of revision: The surface temperature of 2003 · 12 · 18 will reach the target melting temperature within a substantially shorter period of time. The core 244 made of a perforated layer or screen made of copper or stainless steel is formed into a cylindrical shape and is used as a capillary; the core 244 may be located along the heating tube 262. The inner peripheral surface 266. The material series suitable for the heating pipe 262 are shown in Table 2. The previously described FC-40 or water (distilled water), or the materials listed in Table 3 can be used as the working fluid 214. When water (distilled water) is selected as the working fluid 214, the hot-melt roller device can be implemented at low cost without considering environmental protection. Once the temperature of the fuser roller 212 reaches the target fuser temperature of the fuser toner image, the toner image is transferred (ie, permanently bonded) to the printable paper. When the printable paper to which the toner image has been transferred absorbs the heat from the fuser cylinder 212, the working fluid of the vapor inside the inner recess 268 in the heating tube 262 is returned to the liquid phase. The liquefied working fluid can then be vaporized by heating by the heat generator 260, so that the temperature of the hot-melt drum 212 can be maintained at a predetermined temperature. If the hot-melt temperature of the toner is in the range of 160-180 ° C, the hot-melt roller device constructed according to the present invention can reach the target temperature in about ten seconds. Then, the surface temperature of the fuser roller 212 is maintained by periodically applying a current to the heating unit 213, and it is responsive to the surface temperature of the fuser roller 212 sensed by the thermistor 230, and is electrically heated. The regulator 230 is maintained within a predetermined temperature range. If the thermistor 230 and the controller cannot properly control the surface temperature, so that the surface temperature of the fuser drum 212 suddenly rises, it is placed next to the fuser 8421pifl. doc / 008 21 1235894 is the Chinese version of the entire manual No. 90127243. 12. The thermostat 240 on the cylindrical surface of the 18 cylinder 212 senses the surface temperature of the fuser drum 212 and cuts off the current supply to the heating unit 213 to prevent overheating. The operation of the power supply may vary depending on the target temperature. It will be known that the operation of the power supply can be controlled via techniques such as periodic power on / off control or duty cycle ratio technology. The hot-melt roller device having the configuration described in the previous paragraph can be manufactured by the following steps: (a) preparing a metal tube as the material for the hot-melt roller; (b) preparing a metal tube as the structure for heating the tube; (c) Clean the exposed surface of the metal tube and metal tube by washing the metal tube and metal tube with distilled water or volatile liquid; (d) Heat the spiral resistance by cleaning the spiral resistance heating coil with distilled water or volatile liquid. The exposed surface of the wire coil is clean; (e) The spiral resistance heating coil is wound to a spiral coil with an outer diameter equal to or slightly larger than the inner diameter of the metal tube, and the ring inserted into the heating tube Shaped external cylindrical volume; (f) optionally insert the core to form a cylinder to mark the internal cylindrical surface of the heating tube; (g) seal the opposite bottom end of the heating tube with an end cap to ' This makes it possible to maintain the working fluid inlet, and the two ends of the resistance heating coil spirally wound around the heating tube are used as wires; (h) heating with spiral winding Heating tube coil is coaxially inserted into the inside of the metal tube; (I) using high-pressure inert gas filling the sealed heat pipe Chen 'for fast 8421pifl. doc / 008 22 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18 Quickly expand the cylindrical shell of the heating tube until the winding resistance of the heating coil can be directly and practically thermally connected to the inner cylindrical surface of the fuser drum and the outer cylindrical surface of the heating tube, or another option is to make Minimal radiant air gap separation between the outer cylindrical surface of the heating tube and the inner cylindrical surface of the fuser drum; 淸 Elimination of the internal volume from the heating tube via evacuation, heating, and cooling of the heating tube Foreign gas to exhaust the gas from the internal volume of the heating tube and create a vacuum in the internal volume; (k) Pass 5-50% of the working fluid (such as FC-40 or distilled water) through the working fluid inlay And injected into the inner recess of the heating tube; (l) sealed working fluid inlay of the heating tube; (m) spraying on the surface of the metal tube with Teflon, and air drying and polishing the metal tube to form a hot-melt roller (Η) a non-conductive brush as a bearing is inserted into one end of the hot-melt roller; and (0) will be composed of metal, heat-resistant plastic, or epoxy Transmission means embedded in the end cap to be bound hot roller assembly. During the manufacture of the hot-melt roller device, when the end cap 264 is used to weld and cover the metal pipe at the axially opposite bottom end after the core 244 is inserted, if the core 244 is used, in order to prevent the heating pipe from oxidizing, argon gas will be It is injected into the inner recess 268 of the metal cylinder by the working fluid inlay. Before the working fluid is injected into the heating tube, the foreign gas from the internal recess 268 will be purged, and the internal recess 268 will be evacuated, and repeatedly heated and cooled under vacuum, so that the interior of the heating tube can be discharged. The total volume of gas is 8421pifl. doc / 008 23 1235894 is the entire Chinese manual No. 90127243. No amendments. This revision date: 2003. 12. 18 body, so that virtually all foreign materials attached to the inner wall of the heating tube can be removed. For example, in a process of removing the internal recess 268, a heating pipe having an internal pressure of 40 atmospheres must be heated to a temperature of 250 ° C. At room temperature, the internal recess 268 should have the desired pressure; that is, within the internal recess 268, there should be no molecules. 8 and 9 show the thermal operation modes of the embodiment shown in Fig. 7. The respective turns of the heating unit 213 are directly heated to the fuser drum 212 or the heating tube 262 by heat conduction, as indicated by the arrow K, and indirectly heated to the air indicated by the gap between adjacent turns of the heating unit 213 Space, as indicated by arrow L. Depending on the radius configuration of the respective turns of the heating unit 213, those turns are also indirectly heated to the working fluid 214 or the fuser drum 212 by radiant heat, as indicated by arrow M. As shown in Figure 9 at the transient time h and the quiescent time t2, the temperatures Tl, T3 used for the radiation correction of two adjacent turns of the heating unit 213 will generally provide the same rise time and temperature profile Illustration. The temperature T2 measured in the gap A between the two adjacent turns of the heating unit 213 during the transient temperature rise time ^ will initially follow the temperature Ti, τ3, but then a lower Temperature behind those temperatures. Next, during the static time t2, the three temperatures are substantially the same. Referring to FIG. 10 to FIG. 13, the middle portion or the space spacer (spacer) in the gap A between the adjacent spirals of the heating unit 213 ) 213, which can be inserted between the heating tube 262 and the hot-melt roller 212 to transfer heat from the heating unit 213 and the heating tube 262 to the hot-melt roller 212. Preferably, the height of the space spacer 213 ′ is equal to or greater than the heating unit 213 8421pifl. doc / 008 24 1235894 is the complete Chinese manual No. 90127243. 12. The height t2 of 18 is used to form a space E as large as the difference between the height of the space spacer 213 'and the height t2 of the heating unit 213. The space E contains air, so that the heat generated by the heating unit 213 is transmitted to the fuser drum 212 by radiant heat through the air. Through the use of the full gap A and the transfer of heat from the heating wire 圏 and the heating pipe 262 to the space spacer 213 'of the fuser drum 212, the design and hot-line only as shown in Figures 10, 11 and 12 Under the comparison of the design of the circle for heat transfer, the thermal conductivity can be strengthened to a considerable degree, and the temperature of the entire hot melt drum 212 will be uniformly increased to the target temperature. In addition, it is preferable to use a material having excellent thermal conductivity, especially a group 10 material such as aluminum to construct the space partition 213 '. The heating tube 262 has a shape of a just cylindrical tube and is sealed at both ends. A predetermined amount of the working fluid 214 is contained in the inner recess 268 of the heating pipe 262. In particular, a core-like structure 244 is used for the interior of the heating tube 262 so that the heat from the heating unit 213 can be uniformly transmitted throughout the interior of the heating tube 262 in a short time. Obviously, many methods for uniformly transferring heat throughout the heating tube 262 can be implemented. The working fluid 214 is vaporized by the heat generated and transmitted from the heating unit 213 and transmits the heat to the fuser drum 212, so it can be used to prevent a significant difference in surface temperature over the axial length of the fuser drum 212 Heat medium, and can heat the entire fuser drum 212 in a very short time. For this function, the working fluid 214 has a volume ratio of 5-50%, preferably 5-15%, relative to the volume of the internal recess 268. When the volume ratio of the working fluid 214 is not greater than about 5%, the probability of the drying phenomenon is very high. 8421pifl. doc / 008 25 1235894 is the Chinese version of the entire manual No. 90127243. 12.18 In addition, it is best to avoid using a working fluid 214 designed to have a volume not exceeding 5% of the volume capacity of the internal recess 268. The working fluid 214 is selected according to the material of the heating pipe 262. In other words, when the heating pipe 262 is composed of stainless steel, it is better not to use water (i.e., distilled water) as the working fluid 214. With the exception of distilled water, most of today's well-known working fluids can be used. It is best to use FC-40 manufactured by 3M. Figures 12 and 13 show the thermal operation modes of the embodiment shown in Figure 10. As indicated by arrow K, the adjacent windings of the heating unit 213, depending on their radius configuration, can be heated to the fuser drum 212, or the heating tube 262 and the working fluid 214 by direct heat conduction. Adjacent windings can also be heated directly to the space spacer 213 ', as indicated by arrow L, because the adjacent windings are immediately adjacent to the inserted space spacer 213'. The space spacer 213 'is also directly heated to the hot-melt roller 212 by heat conduction. Depending again on its radius configuration, these turns of the heating unit 213 are also indirectly heated to the fuser drum 212 and the working fluid 214, as indicated by arrow M. During the transient and stationary time periods, the temperatures T4 & T5 measured on the surface of the protective layer 211 of Teflon on the hot-melt roller 212 (the respective radiation corrections are between two adjacent turns of the heating unit 213). The heating unit 213 and one turn of the space spacer 213 ′ are the same, as shown in FIG. 13. Therefore, the space provided is almost the same, but the uniformity of the external temperature of the hot melt roller along its entire axial length is determined. It should be noted that the diameter of each turn of the heating unit 213 should be approximately equal, but it is most likely that the cross-sectional size of the radius of the space spacer 213 ′ in the middle is slightly 8421pifl. doc / 008 26 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18 Tiny cormorants. The space spacer 213 'may be composed of type 10 aluminum, and the hot-melt roller 212 is composed of type 60 aluminum. However, the type 10 aluminum system is more easily deformed, so the space spacer 213 'system is more elastic. If the heating tube 262 is composed of either copper or aluminum, the cylindrical shell of the heating tube 262 will be distorted when it is charged by high-pressure air, and the space spacer 213 'will be deformed, thereby making the series 10 aluminum space spacer The radially inner and outer surfaces of 213 'can be directly and practically thermally connected to the outer diameter of the heating tube 262 and the inner diameter of the hot-melt roller 212 of type 60 aluminum; however, the hot-melt of type 60 aluminum The drum 212 will not be deformed. The hardness of type 50 aluminum is greater than that of type 60 series, and the hardness of aluminum of types 50 and 60 series is greater than that of type 10 aluminum. The heat transfer characteristics of aluminum of type 50, type 60, and type 10 series are substantially equal, and the conductivity of aluminum of type 50, type 60, and type 10 series is substantially the same. The hot-melt roller device having the configuration for the second embodiment described in the previous paragraph can be manufactured by the following steps: (a) preparing a metal pipe as a material for the hot-melt roller; (b) preparing a metal cylinder as a device for The structure of the heating tube; (c) The exposed surface of the metal tube and the metal tube is cleaned by washing the metal tube and the metal tube with distilled water or a volatile liquid; (d) The spiral is washed by the distilled water or volatile liquid. The resistance heating coil makes the exposed surface of the spiral resistance heating coil clean; (e) optionally, insert the core to form a cylinder to mark the inner cylindrical surface of the heating tube; 8421pifl. doc / 008 27 1235894 is an unlined amendment to the entire Chinese manual No. 90127243. Date of amendment: 2003. 12. 18 ⑴ The spiral resistance heating wire 电阻 is wound into a helical coil with an external diameter equal to or slightly larger than the inner diameter of the metal tube, and an outer cylindrical volume inserted into the annular shape of the heating tube. Continuous space of separate heat-conducting material (such as type 10 aluminum) with separate turns, and inserted into the outer cylindrical surface of the heating tube and the inner cylindrical surface of the fuser drum; Bottom end 'so that the working fluid inlay can be maintained, and the two ends of the resistance heating coil spirally wound around the heating tube are used as wires; (h) the heating tube with the spirally wound heating coil 圏 is coaxial Ground into the metal tube; ⑴ use high-pressure inert gas to fill the sealed heating tube 'to quickly expand the cylindrical shell of the heating tube' until the winding resistance of the heating wire 直接 can be directly and physically thermally connected to the heat The inner cylindrical surface of the fuser drum and the outer cylindrical surface of the heating tube, or another option 'make the outer cylindrical surface of the heating tube and the hot melt roll The minimum separation of the radiant air gap between the internal cylindrical surfaces of the tube; (j) Exhaust gas from the internal volume of the heating tube by evacuation, heating, and cooling to remove the internal volume of the heating tube Gas, and create a vacuum in the internal volume; (k) 5-50% volume of working fluid (such as FC-40 'or distilled water) is injected into the inner recess of the heating tube through the working fluid inlay; Working fluid inlays for tubes; (m) Use Teflon to spray cover the surface of metal tubes' and air-dried 8421pifl. doc / 008 28 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18 and polished metal tube to form a protective cover on the fuser roller; (η) insert a non-conductive brush as a bearing into one end of the fuser roller; and (〇) be made of metal, heat-resistant plastic, or ring The transmission device cap made of oxide is embedded in one end of the hot-melt roller assembly. In order to make the operation of the hot-melt roller device according to the present invention easy to understand, a heating tube related to the present invention will be described. The heating tube for the heat transfer element uses the latent heat required to change the phase of the working fluid from its liquid phase to its gas phase, and transfers heat from a high heat density state to a low heat density state. Because the heating tube takes advantage of the phase-changing nature of the working fluid, its thermal conductivity is higher than any known metal. The thermal conductivity of heating tubes operating at room temperature is hundreds of times higher than that of silver or copper with a thermal conductivity & (400 W / mk). Fig. 14 is a diagram showing the phase change of the working fluid when the temperature rises and the heating tube of the working cycle functions. Table 1 shows the effective heat transfer of heating tubes and other heat transfer materials. Table 1 Material Effective heat conduction (W / mK) Heating tube 50000-200000 Aluminum 180 Copper 400 Diamond 2000 1 kilogram (kg) of water required to increase the temperature from 25t to 26 ° c is 4. 18k joules (j). When the phase of water changes from liquid to no temperature 8421pifl. doc / 008 29 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18 When changing the steam, 2442kJ of energy is required. The heating tube transfers approximately 584 times more latent heat than the phase change via liquid to vapor. For heating tubes operating at room temperature, the thermal conductivity is hundreds of times greater than silver or copper, which is known as a good conductor. Heat transfer tubes that use liquid metal as the working fluid can reach 108 W / mK at high temperatures. Figure 15 shows the internal structure of a heating tube with a core to provide the capillary structure inside the heating tube, and its heat transfer process is based on the change from liquid to steam and steam to liquid. The resistance heating coil (not shown separately in Figure 15) and the core system are made into a cylindrical shape, and are directly embedded on the outer cylindrical surface and the inner peripheral surface of the heating pipe, respectively. Table 2 shows the recommended and non-recommended heating pipe materials for various working fluids. Table 2 Working fluid recommendations are not recommended. Ammonia aluminum, carbon steel, stainless steel, nickel copper acetone aluminum, copper, stainless steel, silica-copper methoxide, stainless steel, nickel, silica aluminous copper, 347 stainless steel aluminum, stainless steel, nickel, Carbon Steel, Inconel, Thermex, Copper, Sand, Stainless Steel-8421pifl. doc / 008 30 1235894 is the Chinese version of the entire manual No. 90127243. 12. 18 Table 3 shows various suitable working fluids for different operating temperature ranges. Table 3 Limiting temperature (-273 to -120 ° C) Low temperature (-120 to + 470 ° C) High temperature (+450 to + 2700 ° C) Helium water planing ethanol sodium nitrogen methanol, acetone, ammonia, dichlorodifluoro We have found that in the selection of working lithium, there are many types of fluids that need to be considered: (1) compatibility of the materials used in the heating tube; (2) working fluids suitable for the working temperature in the heating tube; and (3) ) Heat transfer of working fluid. When the heating tube type is composed of stainless steel (SUS) or (Cu) copper, the suitable working fluid will be limited by the compatibility of the material of the heating tube and the working temperature. FC-40 has a saturation pressure of one atmosphere or less at an operating temperature of 165 ° C and is considered a suitable material. FC-40 is known to be non-toxic, non-flammable and compatible with most metals. FC-40 also has a zero-ozone depletion potential. According to the thermodynamics of using FC-40 as the working fluid, the relationship between saturation temperature and pressure can be expressed by equation (1):

Log10P(torr)=A.^^ ...(1) 在此,Α=8·2594,以及B=2310,以及溫度T係以攝氏度 數來量測。 第16圖顯示的是相關於以FC-40及水當做工作流體 8421pifl.doc/008 31 1235894 修正日期:2003.12.18 爲第90127243號中文全份說明書無劃線修正本 的飽和溫度之飽和壓力的變化。表4顯示的是來自第14 圖所用的FC-40在特定飽和溫度時的飽和壓力。 表4 飽和溫度(°c) 飽和壓力(巴(bar)) 100 0. 15 150 0.84 200 3.2 250 9.3 300 22.54 350 47.5 400 89.5 450 154.5 就加熱管的安全操作而言,用於加熱管的適合材質 及其末端帽的厚度係依照美國機械工程師協會(American Society of Mechanical Engineers,簡稱 ASME)規範來決定, 其爲壓力容器的量測標準。例如,如果圓柱形加熱管的厚 度在直徑的10%之內,施加至加熱管之壁的最大應力(ama_) 及半圓末端帽最大應力(crmax(2))係表示爲: CT max(l) 2 ^d〇 ^d〇 .⑺ O' max(2) 2 ^ 在此,ΔΡ係在加熱管的內部及外部之間的壓力差,dQ係 加熱管的外徑,^係加熱管的厚度,以及t2係末端帽的厚 8421pin.doc/008 32 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 度。 依照ASME規範,在一任意溫度之最大可允許應力 係與在此溫度之最大極限張力強度的0.25倍相等。如果在 加熱管範圍中的工作流體在工作溫度時之蒸汽壓與工作流 體之飽和蒸汽壓相等時,壓力差(ΔΡ)係相等於蒸汽壓與大 氣壓之間的差。 第17圖係當由鋁(A1)、銅(Cu)、以及304不鏽鋼(304SS) 之加熱管所組成之三種不同的熱熔滾筒結構,考慮在大約 〇°C與大約500°C之間所延伸的溫度範圍之溫度變化作用 時,關於各種不同的加熱管材質之極限張力強度變化的 圖。第18A圖係當使用FC-40當做用於由鋁、銅、以及304 不鏽鋼所組成的加熱管之工作流體時,顯示最大可允許應 力及相關於溫度變化之作用於加熱管壁上之最大應力的變 化的圖。第18B圖係當在大約0°C與大約300°C之間所延 伸的溫度範圍,使用蒸餾水當做用於由鋁、銅、以及304 不鏽鋼所組成的加熱管之工作流體時,相關於溫度變化之 作用於銅加熱管壁上之最大應力的變化的圖。如第18A圖 所顯示,304不鏽鋼的最大可允許應力係遠大於銅或鋁的 最大可允許應力。對於由304不鏽鋼所組成的加熱管及末 端帽,在到達大約400°C的工作溫度時,可確定爲未有工 作流體漏失的安全操作。 第19A圖及第19B圖係繪示當分別在從大於15(TC 到低於500°C之所延伸的溫度範圍,使用FC-10及蒸餾水 當做工作流體時,相關於管厚度變化之作用於銅加熱管上 8421pifl.doc/008 33 1235894 爲第90127243號中文全份說明書無劃線修正本 修正曰期:2003.12.18 之最大應力的變化的圖。如第19A圖及第19B圖所顯示, 雖然對於使用FC-10當做工作流體之加熱管的厚度會從0.8 毫米(mm)增加到1.5mm,以及對於使用蒸餾水當做工作流 體之加熱管的厚度會從1.0mm增加到1.8mm分別地做變 化,但是在操作溫度大於大約165°C,而少於200°C時, 作用於加熱管上的最大應力不會改變非常多。 第20圖及第21圖係用於如上所述之熱熔滾筒裝置 的第一實施例之相對應於時間(超過〇與65秒之間的期間) 之在熱熔滾筒中間所量測到之溫度變化(超過〇°C與400°C 之間的範圍)的圖。熱熔滾筒裝置具有由銅所組成的熱熔 滾筒及包含蒸餾水當做工作流體。熱熔滾筒裝置具有 1.0mm的厚度、17.85mm的夕f徑、以及285mm的長度。 此測試係使用32Ω、電壓200V、以及大約1.5kW之瞬間 最大的功率消耗的螺旋電阻加熱線圈,而以47rpm之熱熔 滾筒的旋轉率操作。螺旋電阻加熱線圈係直接連接於熱熔 滾筒之內部圓柱形表面。 第20圖顯示的是用於含有佔用熱熔滾筒之10%的內 部容積之蒸餾水當做工作流體之熱熔滾筒裝置的量測。第 21圖顯示的是用於含有佔用熱熔滾筒之30%的內部容積之 蒸餾水當做工作流體之熱熔滾筒裝置的量測。參照第20 圖,此原型(prototype)花大約8到12秒來使熱熔滾筒的溫 度從大約22°C的室溫上升到大約175°C的操作溫度,以及 花少於14秒,會到達200°C。參照第21圖,它花大約13 秒來使熱熔滾筒的溫度從大約22°C的室溫上升到175°C, 8421pin.doc/008 34 1235894 爲第90Π7243號中文全份說明書無劃線修正本 修正日期:2003.12.18 以及反而要花22秒,才會到達200°C。 比較第20圖及第21圖的結果,溫度增加率取決於 在熱熔滾筒之密封的內部中所含有之工作流體的容積比是 顯然可知的。依照不同情況下所執行之實驗的結果,具有 佔用熱熔滾筒之內部空間的5-50%之工作流體的量之熱熔 滾筒係可操作的。只塡滿熱熔滾筒之容積的5-15%之工作 流體之溫度增加率是高的 以溫度增加率來與習知的影像形成裝置做比較,對 根據本發明之採用用於熱熔滾筒裝置之嚴格的可行設計中 的一個之影像形成裝置而言,在待用狀態期間,不需要連 續供應熱熔滾筒裝置的電源。雖然當影像形成開始時,要 供應電源,但是根據本發明所建造的熱熔滾筒裝置可以形 成影像,也就是仍然可以以快於同時期的配備之高速來熱 熔碳粉影像。 當工作流體的容積超過50%容積時,溫度增加率會 變成無用地緩慢。同時,如果工作流體的容積少於5%容 積時,會由於未充分供應工作流體,而發生變乾現象或可 能發生變乾現象,而使得熱熔滾筒也沒有作用或如加熱管 一樣,根本沒有作用。 在根據本發明的原理所建造的熱熔滾筒裝置中,可 施加的電源爲90-240V的電壓及50-70HZ的頻率,也可以 是更高的頻率。 如上所述,根據本發明所建造的熱熔滾筒裝置包括具 有優良傳導性的金屬熱熔滾筒之主體中的加熱線圈及工作 8421pifl.doc/008 35 1235894 爲第90127243號中文全份說明書無劃線修正本 修正日期:2003.12.18 流體,使得熱熔滾筒的表面可以瞬間加熱到目標熱熔溫 度,用以定影已轉移到印表紙的碳粉影像。與習知的鹵素 燈型式或直接表面加熱型式之使用鈀(Pd)、釕(RU)或碳(C) 爲基底的熱之熱熔滚筒裝置比較,本發明的熱熔滾筒可在 短時期的時間內,到達目標熱熔溫度,而能降低功率消耗, 以及熱熔滾筒的表面溫度可以均勻地保持。本發明的熱熔 滾筒裝置不需要預熱及備用時期,因此裝有本發明的熱熔 滾筒裝置之任何影像形成裝置(如印表機、影印機、或傳 真機)不需要供應電源給準備好列印之熱熔滾筒。因此, 影像形成裝置之全部的功率消耗可以降低。除此之外,本 發明的熱熔滾筒裝置係以加熱管的原理爲基準,而使得熱 熔滾筒之縱向中的溫度分布可均勻地控制,因此能最佳地 改善碳粉熱熔的特性。 除此之外,本發明的熱熔滾筒裝置可容易地大規模 製造,以及確定安全操作。熱熔滾筒裝置的零件係與其他 商業上地可用零件相容。熱熔滾筒裝置的品質可容易地控 制。具有根據本發明的熱熔滾筒裝置之高速印表機可以實 施。 熱熔滾筒裝置及用於製造根據本發明的熱熔滾筒裝 置的方法可提供以下的優點: 第一,熱熔滾筒裝置可經由簡單的自動化過程而製 造。 第二,在加熱管之軸向,或縱向中的溫度變化是小 的(在± 1。的範圍內)。 8421pifl.doc/008 36 1235894 修正日期:2003.12.18 爲第90127243號中文全份說明書無劃線修正本 第二,具有熱熔滾筒裝置之高速印表機可以簡單地 實施。 第四,熱源及加熱管(其爲熱熔滾筒裝置的主要元件) 係組成爲分離的單元’而使得熱熔滾筒裝置可容易地大規 模製造’以及確定安全操作。熱熔滾筒裝置的零件係與其 他商業上地可用零件相容。熱熔滾筒裝置的品質可容易地 控制。 第五,由於包含於密封的加熱管中的工作流體之連 續的蒸發及凝結循環,雖然在高溫時,在加熱管內部的壓 力會增加(對於FC-40,在165°C時爲一大氣壓或較少),但 是爆裂及嚴重變形的風險是非常低的。 雖然本發明已以較佳實施例揭露於上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍內,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所介定者爲準。 8421pin.doc/008 37Log10P (torr) = A. ^^ ... (1) Here, A = 8 · 2594, and B = 2310, and the temperature T is measured in degrees Celsius. Figure 16 shows the saturation pressure related to the saturation temperature of FC-40 and water as the working fluid 8421pifl.doc / 008 31 1235894. Variety. Table 4 shows the saturation pressure of the FC-40 used in Figure 14 at a specific saturation temperature. Table 4 Saturation temperature (° c) Saturation pressure (bar) 100 0. 15 150 0.84 200 3.2 250 9.3 300 22.54 350 47.5 400 89.5 450 154.5 For the safe operation of heating pipes, suitable materials for heating pipes The thickness of the end cap is determined in accordance with the American Society of Mechanical Engineers (ASME) specifications, which is a measurement standard for pressure vessels. For example, if the thickness of the cylindrical heating tube is within 10% of the diameter, the maximum stress (ama_) applied to the wall of the heating tube and the maximum stress of the semi-circular end cap (crmax (2)) are expressed as: CT max (l) 2 ^ d〇 ^ d〇.⑺ O 'max (2) 2 ^ Here, ΔP is the pressure difference between the inside and outside of the heating tube, dQ is the outer diameter of the heating tube, and ^ is the thickness of the heating tube, And the thickness of the t2 series end cap 8421pin.doc / 008 32 1235894 is the full Chinese manual No. 90127243. No line correction. The date of this amendment: 2003.12.18 degrees. According to the ASME code, the maximum allowable stress at an arbitrary temperature is equal to 0.25 times the maximum ultimate tensile strength at this temperature. If the vapor pressure of the working fluid in the heating tube range at the working temperature is equal to the saturated vapor pressure of the working fluid, the pressure difference (ΔP) is equal to the difference between the vapor pressure and the atmospheric pressure. Figure 17 shows the structure of three different hot-melt rollers composed of aluminum (A1), copper (Cu), and 304 stainless steel (304SS) heating tubes, considering the temperature between about 0 ° C and about 500 ° C. A graph of changes in the ultimate tensile strength of various heating tube materials when temperature changes in an extended temperature range are applied. Figure 18A shows the maximum allowable stress and the maximum stress on the wall of the heating tube when the FC-40 is used as the working fluid for the heating tube composed of aluminum, copper, and 304 stainless steel. Figure of change. Figure 18B is the temperature change when using distilled water as the working fluid for heating tubes composed of aluminum, copper, and 304 stainless steel over a temperature range between about 0 ° C and about 300 ° C. The change of the maximum stress on the copper heating tube wall. As shown in Figure 18A, the maximum allowable stress of 304 stainless steel is much larger than the maximum allowable stress of copper or aluminum. For heating tubes and end caps made of 304 stainless steel, when it reaches an operating temperature of approximately 400 ° C, it can be determined as a safe operation without loss of working fluid. Figures 19A and 19B show the effects of changes in tube thickness when using FC-10 and distilled water as working fluids in the extended temperature range from greater than 15 ° C to less than 500 ° C, respectively. On the copper heating tube, 8421pifl.doc / 008 33 1235894 is the complete Chinese manual No. 90127243. No line correction. This revision date: 2003.12.18 shows the change of the maximum stress. As shown in Figures 19A and 19B, Although the thickness of the heating tube using FC-10 as the working fluid will increase from 0.8 millimeters (mm) to 1.5mm, and the thickness of the heating tube using distilled water as the working fluid will increase from 1.0mm to 1.8mm. However, when the operating temperature is greater than about 165 ° C and less than 200 ° C, the maximum stress on the heating tube will not change very much. Figures 20 and 21 are for the hot-melt rollers described above. Correspondence of the first embodiment of the device to the time (period between 0 and 65 seconds) of the temperature change (over the range between 0 ° C and 400 ° C) measured in the middle of the fuser drum Fig. Hot-melt roller unit with copper The hot-melt roller and containing distilled water are used as working fluid. The hot-melt roller device has a thickness of 1.0mm, a diameter of 17.85mm, and a length of 285mm. This test uses 32Ω, a voltage of 200V, and an instantaneous maximum power of about 1.5kW. The consumed spiral resistance heating coil is operated at a rotation rate of a 47 rpm fuser roller. The spiral resistance heating coil is directly connected to the internal cylindrical surface of the fuser roller. Figure 20 shows the use of Measurement of 10% of the internal volume of distilled water as the working fluid of the hot-roller device. Figure 21 shows the amount of distilled water containing 30% of the internal volume of the hot-melt roller of distilled water as the working fluid. With reference to Figure 20, this prototype took approximately 8 to 12 seconds to raise the temperature of the fuser roller from a room temperature of approximately 22 ° C to an operating temperature of approximately 175 ° C, and took less than 14 seconds, It will reach 200 ° C. Referring to Figure 21, it takes about 13 seconds to raise the temperature of the fuser roller from a room temperature of about 22 ° C to 175 ° C. 8421pin.doc / 008 34 1235894 is No. 90Π7243 Chinese Full manual without line correction This amendment date: 2003.12.18 and it takes 22 seconds instead to reach 200 ° C. Comparing the results of Figure 20 and Figure 21, the temperature increase rate depends on the seal on the hot melt roller The volume ratio of the working fluid contained in the interior is clearly known. According to the results of experiments performed under different circumstances, a hot-melt roller system having an amount of working fluid occupying 5-50% of the internal space of the hot-melt roller Operational. The temperature increase rate of the working fluid, which is only 5-15% of the volume of the hot melt roller, is high. The temperature increase rate is compared with the conventional image forming apparatus. For an image forming apparatus of one of the strictly feasible designs, there is no need to continuously supply the power of the fuser roller apparatus during the standby state. Although power is supplied when image formation starts, the fuser roller device constructed in accordance with the present invention can form an image, that is, the toner image can still be fused at a faster speed than that provided at the same time. When the volume of the working fluid exceeds 50% of the volume, the temperature increase rate becomes uselessly slow. At the same time, if the volume of the working fluid is less than 5%, the drying phenomenon may occur or the drying phenomenon may occur due to insufficient supply of the working fluid, so that the hot-melt roller has no effect or is like a heating pipe, there is no effect. In the hot-melt roller device constructed in accordance with the principles of the present invention, the power that can be applied is a voltage of 90-240V and a frequency of 50-70HZ, or a higher frequency. As mentioned above, the hot-melt roller device constructed according to the present invention includes a heating coil in the main body of a metal hot-melt roller with excellent conductivity and work 8421pifl.doc / 008 35 1235894 is the full Chinese manual No. 90127243 without the underline The date of this amendment: 2003.12.18 fluid, so that the surface of the fuser roller can be instantly heated to the target fuser temperature to fix the toner image that has been transferred to the printing paper. Compared with the conventional hot-melt roller device using a palladium (Pd), ruthenium (RU), or carbon (C) -based hot-melt roller device of the conventional halogen lamp type or direct surface heating type, the hot-melt roller of the present invention can Within the time, the target hot melt temperature is reached, the power consumption can be reduced, and the surface temperature of the hot melt roller can be maintained uniformly. The hot-melt roller device of the present invention does not require preheating and standby periods, so any image forming device (such as a printer, photocopier, or facsimile machine) equipped with the hot-melt roller device of the present invention does not need to be supplied with power. Printed fuser roller. Therefore, the overall power consumption of the image forming apparatus can be reduced. In addition, the hot-melt roller device of the present invention is based on the principle of a heating tube, so that the temperature distribution in the longitudinal direction of the hot-melt roller can be uniformly controlled, so the characteristics of toner hot-melt can be improved optimally. In addition, the hot-melt roller device of the present invention can be easily manufactured on a large scale, and safe operation can be determined. The parts of the fuser unit are compatible with other commercially available parts. The quality of the fuser roller unit can be easily controlled. A high-speed printer having a hot-melt cylinder device according to the present invention can be implemented. The fuser roller device and the method for manufacturing the fuser roller device according to the present invention can provide the following advantages: First, the fuser roller device can be manufactured through a simple automated process. Secondly, the temperature change in the axial direction or the longitudinal direction of the heating pipe is small (within the range of ± 1). 8421pifl.doc / 008 36 1235894 Date of revision: 2003.12.18 is the complete Chinese manual No. 90127243. Unlined correction. Second, high-speed printers with hot-melt rollers can be easily implemented. Fourth, the heat source and the heating tube (which are the main components of the fuser roller device) are constituted as separate units 'so that the fuser roller device can be easily manufactured on a large scale' and the safe operation is determined. The parts of the fuser roller unit are compatible with other commercially available parts. The quality of the fuser roller unit can be easily controlled. Fifth, due to the continuous evaporation and condensation cycles of the working fluid contained in the sealed heating tube, although the pressure inside the heating tube will increase at high temperatures (for FC-40, at 165 ° C, one atmosphere or Less), but the risk of bursting and severe deformation is very low. Although the present invention has been disclosed above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make various modifications and retouches without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application. 8421pin.doc / 008 37

Claims (1)

1235894 修正日期:2005.4.6 爲第90127243號巾文侧__線修正本 拾、申請專利範圍: I 一種熱熔滾筒組件,包括: 一外滾筒,具有內部中空之管狀輪廓; 一內滾筒,其插入於該外滾筒內;以及 一阻抗性加熱線圈,其纏繞於該內滾筒之一外部表 面,S亥阻抗性加熱線圏電性連接至一電源供應,其中具有 纏繞於該外部表面之該阻抗性加熱線圏的該內滾筒係插入 於該外滾筒內,且於該內滾筒之內部使用一高壓力,以使 該內滾筒向該外滾筒擴張,以至於該阻抗性加熱線圈可以 緊密且同時地接觸到該內滾筒之該外部表面與該外滾筒之 一內部表面。 2.如申請專利範圍第1項所述之熱熔滾筒組件,該內 滾筒係以能在壓力下實質變形也能熱傳導的材料製作。 3·如申請專利範圍第1項所述之熱熔滾筒組件,當使 用該高壓力於該內滾筒時,該阻抗性加熱線圈同時接觸到 該內滾筒之該外部表面與該外滾筒之該內部表面兩者。 4 ·如申g靑專利車E圍弟1項所述之熱丨谷汝筒組件,該內 滾筒具有比該外滾筒之內徑小的外徑,該內滾筒安置於該 外滾筒之內,且與該外滾筒同軸心,該阻抗性加熱線圈係 介於該內滾筒之該外部表面與該外滾筒之該內部表面之 間。 5.如申請專利範圍第4項所述之熱熔滾筒組件,其中 該阻抗性加熱線圈相鄰盤繞間的空間被塡上一熱傳導空間 隔離物,該熱傳導空間隔離物同時物理性地接觸到該內滾 38 8421pif2.doc 1235894 筒之該外部表面與該外滾筒之該內部表面兩者。 6. —種製造熱熔滾筒組件的方法,包括下列步驟: 準備一外滾筒,其具有內部中空之管狀輪廓; 準備一內滾筒,以插入於該外滾筒內; 纏繞一阻抗性加熱線圏於該內滾筒之一外部表面; 插入具有纏繞於該外部表面之該阻抗性加熱線圏的 該內滾筒於該外滾筒內;以及 使用一高壓力於該內滾筒之內部,以使該內滾筒向該 外滾筒擴張,以至於該阻抗性加熱線圈可以緊密且同時地 接觸到該內滾筒之該外部表面與該外滾筒之一內部表面。 7. 如申請專利範圍第6項所述之製造熱熔滾筒組件 的方法,更包括在該使用高壓力的步驟後,抽空該內滾筒 以在該內滾筒之內部製造真空的步驟。 8. 如申請專利範圍第7項所述之製造熱熔滾筒組件 的方法,更包括在該抽空的步驟後,注入一工作液體於該 內滾筒內,以部分塡充該內滾筒的步驟。 9. 如申請專利範圍第6項所述之製造熱熔滾筒組件 的方法,更包括在該使用高壓力的步驟後,注入一工作液 體於該內滾筒內,以部分塡充該內滾筒的步驟。 10. 如申請專利範圍第6項所述之製造熱熔滾筒組件 的方法,更包括於該纏繞的步驟前,塡上一熱傳導空間隔 離物於該內滾筒之該外部表面與該外滾筒之該內部表面之 間的步驟,該熱傳導空間隔離物塡充該阻抗性加熱線圈盤 繞間的間隙。 39 8421pif2.doc 1235894 11 ·如申請專利範圍第8項所述之製造熱熔滾筒組件 的方法,更包括塡上一熱傳導空間隔離物於該內滾筒之該 外部表面與該外滾筒之該內部表面之間的步驟,該熱傳導 空間隔離物塡充該阻抗性加熱線圈盤繞間的間隙。 12.如申請專利範圍第6項所述之製造熱熔滾筒組件 的方法,其中在該插入的步驟之前與其時,該阻抗性加熱 線圈之端點被拉開,以造成該阻抗性加熱線圈穩固地加壓 於該內滾筒之該外部表面’以能使具有纏繞於該外部表面 之該阻抗性加熱線圈的該內滾筒合適於該外滾筒內之內 部。 13·如申請專利範圍第8項所述之製造熱熔滾筒組件 的方法,其中在該插入的步驟之前與其時,該阻抗性加熱 線圈之端點被拉開,以造成該阻抗性加熱線圈穩固地加壓 於該內滾筒之該外部表面,以能使具有纏繞於該外部表面 之該阻抗性加熱線圈的該內滾筒合適於該外滾筒內之內 部。 14. 一種熱熔滾筒組件,包括: 一本質地圓柱形中空外滾筒,該外滾筒具有一外部表 面與一內部表面; 一本質地圓柱形內管,被安置於該外滾筒內,該內管 與該外賴,_龍體在_韻顏上加壓 瓦斯下變形的材料製作;以及 一_阻^丨生加熱線圈’安置於該內管之該外部表面與該 外滾R之β內部表面,其中該阻抗性加熱線圈之端點連接 40 8421pif2.doc 1235894 至一電源供應。 15. 如申請專利範圍第14項所述之熱熔滾筒組件,該 內管部分塡充有一工作液體。 16. 如申請專利範圍第14項所述之熱熔滚筒組件,其 中該阻抗性加熱線圈相鄰盤繞間係互相間隔分離。 17. 如申請專利範圍第16項所述之熱熔滾筒組件,更 包括塡上一空間隔離物物質,其介於該內管之該外部表面 與該外滾筒之該內部表面之間,該空間隔離物物質塡充該 阻抗性加熱線圈盤繞間的間隙。 18. 如申請專利範圍第17項所述之熱熔滾筒組件,該 空間隔離物物質與該內管係以熱傳導物質製造。 19. 如申請專利範圍第14項所述之熱熔滾筒組件,該 外滾筒之該外部表面係塗佈鐵弗龍。 20. 如申請專利範圍第Π項所述之熱熔滾筒組件,該 內管被抽空所有氣體,且被部分塡充有一工作液體。 41 8421pif2.doc1235894 Date of revision: 2005.4.6 This is a correction for the __ line of the 9090243 side of the towel. The scope of patent application: I. A hot-melt roller assembly, including: an outer roller with a hollow tubular profile inside; an inner roller, which Inserted into the outer drum; and a resistive heating coil wound around an outer surface of the inner drum, and the resistive heating wire is electrically connected to a power supply having the impedance wound around the outer surface The inner drum of the heating coil is inserted into the outer drum, and a high pressure is used inside the inner drum to expand the inner drum toward the outer drum, so that the resistive heating coil can be tight and simultaneously Ground contacting the outer surface of the inner drum and one of the inner surfaces of the outer drum. 2. The hot-melt roller assembly according to item 1 of the scope of the patent application, the inner roller is made of a material that can deform substantially under pressure and can also conduct heat. 3. According to the hot-melt roller assembly described in item 1 of the scope of patent application, when using the high pressure on the inner roller, the resistive heating coil simultaneously contacts the outer surface of the inner roller and the inner portion of the outer roller. On the surface both. 4 · The heat as described in item 1 of the patent application E of the patent car, the inner roller has a smaller outer diameter than the inner diameter of the outer roller, and the inner roller is placed inside the outer roller. Concentric to the outer drum, the resistive heating coil is interposed between the outer surface of the inner drum and the inner surface of the outer drum. 5. The hot-melt roller assembly according to item 4 of the scope of the patent application, wherein a space between adjacent coils of the resistive heating coil is put on a heat-conducting space spacer, and the heat-conducting space spacer physically contacts the space at the same time. Inner roll 38 8421pif2.doc 1235894 Both the outer surface of the drum and the inner surface of the outer drum. 6. A method of manufacturing a hot-melt roller assembly, comprising the following steps: preparing an outer roller having a hollow tubular profile inside; preparing an inner roller to be inserted into the outer roller; winding an impedance heating wire around the An outer surface of the inner roller; inserting the inner roller with the resistive heating wire wound around the outer surface into the outer roller; and using a high pressure inside the inner roller so that the inner roller faces The outer drum is expanded so that the resistive heating coil can closely and simultaneously contact the outer surface of the inner drum and one of the inner surfaces of the outer drum. 7. The method for manufacturing a hot-melt roller assembly as described in item 6 of the scope of patent application, further comprising the step of evacuating the inner roller to create a vacuum inside the inner roller after the step using high pressure. 8. The method for manufacturing a hot-melt roller assembly as described in item 7 of the scope of patent application, further comprising the step of injecting a working fluid into the inner roller to partially fill the inner roller after the evacuation step. 9. The method for manufacturing a hot-melt roller assembly as described in item 6 of the scope of patent application, further comprising the step of injecting a working fluid into the inner roller to partially fill the inner roller after the step of using high pressure. . 10. The method for manufacturing a hot-melt roller assembly as described in item 6 of the scope of patent application, further comprising, before the step of winding, attaching a heat-conducting space spacer on the outer surface of the inner roller and the outer surface of the outer roller. In the step between the internal surfaces, the heat conducting space spacer fills the gap between the coils of the resistive heating coil. 39 8421pif2.doc 1235894 11 · The method for manufacturing a hot-melt roller assembly as described in item 8 of the scope of patent application, further comprising placing a heat-conducting space spacer on the outer surface of the inner drum and the inner surface of the outer drum Between the steps, the heat-conducting space spacer fills the gap between the resistive heating coil coils. 12. The method for manufacturing a hot-melt roller assembly according to item 6 of the scope of patent application, wherein before and at the time of the step of inserting, the end of the resistive heating coil is pulled apart to make the resistive heating coil stable Grounding the outer surface of the inner roller to ground the inner roller with the resistive heating coil wound around the outer surface is suitable for the inside of the outer roller. 13. The method for manufacturing a hot-melt roller assembly according to item 8 of the scope of patent application, wherein before and at the time of the step of inserting, the ends of the resistive heating coil are pulled apart to make the resistive heating coil stable Ground pressure is applied to the outer surface of the inner drum so that the inner drum having the resistive heating coil wound around the outer surface is adapted to the inside of the outer drum. 14. A hot-melt roller assembly, comprising: a substantially cylindrical hollow outer roller having an outer surface and an inner surface; a substantially cylindrical inner tube disposed within the outer roller, the inner tube With the outer layer, _ Dragon body is made of deformed material under pressure on Yunyan; and a resistance heating coil is placed on the outer surface of the inner tube and the β inner surface of the outer roll R. , Where the end of the resistive heating coil is connected to a power supply at 40 8421pif2.doc 1235894. 15. According to the hot-melt roller assembly described in item 14 of the scope of patent application, the inner tube part is filled with a working fluid. 16. The hot-melt roller assembly according to item 14 of the scope of patent application, wherein adjacent coils of the resistive heating coil are spaced apart from each other. 17. The hot-melt roller assembly according to item 16 of the scope of patent application, further comprising a space spacer substance interposed between the outer surface of the inner tube and the inner surface of the outer roller, the space The spacer substance fills the gap between the coils of the resistive heating coil. 18. According to the hot-melt roller assembly described in item 17 of the scope of patent application, the space spacer substance and the inner pipe system are made of heat-conducting substance. 19. According to the hot-melt roller assembly described in item 14 of the scope of patent application, the outer surface of the outer roller is coated with Teflon. 20. According to the hot-melt roller assembly described in item Π of the patent application scope, the inner tube is evacuated from all gases and partially filled with a working liquid. 41 8421pif2.doc
TW90127243A 2000-12-22 2001-11-02 Fusing roller assembly for electrophotographic image forming apparatus TWI235894B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US25711800P 2000-12-22 2000-12-22
KR10-2001-0013451A KR100400003B1 (en) 2000-12-22 2001-03-15 Fusing roller apparatus of electrophotographic image forming apparatus
KR10-2001-0024378A KR100374618B1 (en) 2001-05-04 2001-05-04 Fusing roller apparatus of electrophotographic image forming apparatus
US09/947,657 US6571080B2 (en) 2000-12-22 2001-09-07 Fusing roller assembly having working fluid and heater coil for quick heating and low power consumption for an electrophotographic image forming apparatus and method of making the same

Publications (1)

Publication Number Publication Date
TWI235894B true TWI235894B (en) 2005-07-11

Family

ID=36500528

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90127243A TWI235894B (en) 2000-12-22 2001-11-02 Fusing roller assembly for electrophotographic image forming apparatus

Country Status (5)

Country Link
EP (1) EP1217466B1 (en)
JP (1) JP3648479B2 (en)
CN (1) CN1170210C (en)
DE (2) DE60119594T2 (en)
TW (1) TWI235894B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403595B1 (en) * 2001-08-25 2003-10-30 삼성전자주식회사 Fusing device of electrophotographic image forming apparatus
KR100485811B1 (en) * 2002-07-25 2005-04-28 삼성전자주식회사 Image fixing device of image forming apparatus
KR100503065B1 (en) * 2002-08-29 2005-07-21 삼성전자주식회사 Fusing device of electrophotographic image forming apparatus
KR100477678B1 (en) * 2002-11-11 2005-03-21 삼성전자주식회사 Fusing roller apparatus of electrophotographic image forming apparatus
CN102650845B (en) * 2011-02-28 2014-08-13 株式会社理光 Image fixing device
CN102509917B (en) * 2011-10-24 2013-10-30 袁芳革 Thermal expansion self-locking type power connection device
CN106842870B (en) * 2017-03-09 2020-03-24 上海富士施乐有限公司 Image forming apparatus and fixing temperature control method
KR102218420B1 (en) * 2019-07-16 2021-02-19 주식회사 포스코 Heat pipe roll based forged roll, and its manufacturing mehtod

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308291A (en) * 1989-05-24 1990-12-21 Onoda Cement Co Ltd Heat fixing roll for copying machine and its manufacture
JPH09197863A (en) * 1996-01-12 1997-07-31 Minolta Co Ltd Fixing device
TW445398B (en) * 1996-12-02 2001-07-11 Aetas Technology Corp Thermal roller of fuser
CA2277146A1 (en) * 1997-01-13 1998-07-16 Randy L. Mittelstaedt Heated roller with integral heat pipe

Also Published As

Publication number Publication date
CN1170210C (en) 2004-10-06
EP1217466A1 (en) 2002-06-26
CN1360232A (en) 2002-07-24
EP1217466B1 (en) 2005-05-25
DE60111007D1 (en) 2005-06-30
DE60119594D1 (en) 2006-06-14
JP3648479B2 (en) 2005-05-18
DE60119594T2 (en) 2007-05-10
JP2002251101A (en) 2002-09-06
DE60111007T2 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US6571080B2 (en) Fusing roller assembly having working fluid and heater coil for quick heating and low power consumption for an electrophotographic image forming apparatus and method of making the same
US6580896B2 (en) Fusing roller assembly for electrophotographic image forming apparatus
TWI235894B (en) Fusing roller assembly for electrophotographic image forming apparatus
US20060045587A1 (en) Fusing roller and fusing apparatus using the same
EP1220054B1 (en) Fusing roller assembly including a working fluid within a heat pipe roller for electrophotographic image forming apparatus
US20050129434A1 (en) Fusing roller apparatus of electro-photographic image forming apparatus, and a process of manufactuing a fusing roller apparatus
JP2004163940A (en) Fixing device for electrophotographic image forming apparatus and method for production of it
US6898390B2 (en) Power supply unit for a fusing roller of an electrophotographic image forming apparatus
EP1496407B1 (en) Fusing roller assembly including a resistance coil for heating wound around a heat pipe roller for electrophotographic image forming apparatus
JP2007004183A (en) Fixing unit, fixing device of image forming apparatus, and method for manufacturing fixing roller
KR100452551B1 (en) A Fusing Equipment of a Image Forming Apparatus
KR100374618B1 (en) Fusing roller apparatus of electrophotographic image forming apparatus
KR100461338B1 (en) Heating roller apparatus for use in an electrophotograph image forming apparatus
JPS59189381A (en) Heat fixing device of copying machine
JP3993985B2 (en) Heater, heating roller, fixing device, and image forming apparatus
JPH10333475A (en) Fixing device
JPH08250266A (en) Rod heater
JPH0469791B2 (en)
JPH0895407A (en) Fixing device and image forming device
JPH04136968A (en) Cylindrical heater
JPS62276576A (en) Fixing device
KR20060024487A (en) Image fixing roller of image forming apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees