1233704 九、發明說明: 【發明所屬之技術領域】 本發明是係提供一種具白光產生器與放大器之半導 體結構,特別是本發明利用多古具 ^ a扪用夕/皮長里子井疊接和電流側 入’應用於白光照明及光纖通信中的白光放大器。 【先前技術】 請參閱『第3、4圖所示』,習用白光產生器與放大 益之半導體結構為利用藍光發光二極體激發i覆蓋 的紅、黃色螢光粉,該白光產生器與放大器^半導㈣ 構缺點如下: 1. 由於此白光產i器與放大器之半導體的紅、黃光成分 是由藍光激發,並不是由電流直接激發,所以其電光 轉換效率極差。 2. 由於激發的波長(藍光)離發光的波長(紅、黃光)較遠, 在元件操作時會有許多的多餘熱損耗,使元件壽命縮 短。 3·此白光產生器與放大器之半導體的包裝需要摻雜螢光 粉,所以其包裝成本較高。 為解決上述缺點,請參閱『第5、6圖所示』,係如 美國專利號US 6,620,643 B1·之另-白光產生器與放 大器之半導體結構及其電激發光頻譜,係直接將紅黃綠 二7L色的量子井成長在發光二極體(LED)的放光主動 區,便可不需加入螢光粉直接電激發出所有混成白光所 1233704 而之波長成伤,並避開上述所有的缺點。然而此發光二 極體並未被市場廣為接受因為其有—關鍵性的缺點。如 ,6所7Γ八電激發光頻譜,仍是由靠近p極(p_sjde) 量子井的中心波長所支配’而不是均勻的白光。由於電 洞的移動度遠小於電子,所以放光的量子井將會集中在p 極,其餘顏色的量子井發光效率就會變的很差。 1233704 【發明内容】 口此+本發明之主要目的係在於提供一可發出均 白光、不需摻雜螢光粉义 "一二 放大器之半導體έ士槎^先功率大之具白光產生器與 大器之半導體結構,係利用多波長量;井 :在=:?的量子井内之載子數目分佈均勾,可 使在不=仏· τ發出穩定均㈣白光,其 不曰心者電流的增加而產生變化,且營^ 粉,可降低封^本;由以㈣^雜螢先 轉換造P W 、為電激直接發光,不會因螢光 轉失’故其發光效率大。此外,在白光特 白光頻譜可藉由調整量子井結構和數目達成, Γ=營光粉本身的原子放光譜線,可應用丄 照明及先纖通信中的白光放大ϋ。 【實施方式】 生『第1、2圖』所示,係本發明之具白光產 生…、放大器之半導體結構示意圖、本發明之且 土 :=大器之半導體結構。如圖所示:-基板i上形 第一光;22層2’—第"光學包覆層3形成於該 、一 设層2上,一電流阻擋與光學包覆層4形成 於°亥第—光學包覆層3上,-形成於該電流阻擔與光學 匕後層4上之多波長量子井5,且該多波長量子井$上 形成一寬帶溝光學包覆層6,藉此形成-具白光產生器 1233704 與放大器之半導體結構。其令該基板2之材料可以為所 有的化合物半導體,如··神化鎵(GaAs)、磷化銦(丨np)、 氮化鋁(AIN )或氮化鎵(GaN),或絕緣體基板,如: 藍寶石(Sapphire )、碳化矽(SiC )、或金鋼鑽 (diamond)。為了達成白光的放光效果,該多波長量子 井5組成中是由許多具有不同的井寬和位障寬或不同合 金2所有不同成分的化合物半導體和其合金材料構成的 異質接面所形成,其實施例如第2圖所示,使用之氮化 鎵銦/氮化鎵(丨nGaN/GaN)或其它不同成分之化合物, 如:磷化銦/砷化鎵銦/磷化砷鎵銦 (inp/lnGaAs/lnGaAsP)、磷化銦/石申化紹銦/石申化錄紹銦 /碑化錄铜(Inp/丨nA丨/^/丨从旧^/丨^八幻氮化鎵/氮 化鎵紹/氮化鎵銦(GaN/AIGaAN/lnGaN)或石申化嫁/石申化 鎵鋁(GaAs/A丨GaAs)所組成,該多波長量子井5之兩 側的P型摻雜區8及η型摻雜區7可藉由再磊晶成長的 方式於:蝕刻成為平台狀之多波長量子井5的側邊製 成’或藉由離子佈植與熱擴散的方式’將各種半導體所 對應的Ρ摻雜物及η摻雜物佈植或擴散到多波長量子井 5:邊’而形成- ρη二極體結構。並可再藉由加熱擴散 的製程,使η、ρ型摻雜區7、只胖士 5丨私不 、 ^ 8擴大到所需要的深度 及对圍且在熱擴散製程進行的同時,利用適當的覆蓋物 〔如.四虱化三矽(Si3N4)〕將發光區蓋住 未受覆蓋層保護、且經過P、n離子佈植或二 1233704 ,長里子井,失序’’(disorder),以降低元件電阻。在該 夕波長1子井量子井5可以以未摻雜之波導覆蓋層上下 層包夾,使其折射率小於所包夾的多波長量子井量子井 5之等效折射率,可形成—光波導結構。再制金屬蒸 鍍方式製成一 η量子井的側壁金屬接點7丄及一 p量子 井的側壁金屬接點8 i,並也可在口極(p_regi〇n)上離 子佈植η極穿隨道式接面(n+ tunne|細⑶如)以簡化 金屬蒸鍍的製程(meta|Hzat丨·0n pr〇cess)。在多波長量 ^井5下方可再成長—層帶寬較量子井為寬的電流阻擔 。先學包覆層4(如:氮化軸(A丨GaN)〕,以防寄生的 二極體導通。本發明之具白光產生器與放大器之半導體 ’係使電流從多波長量子井側邊輸入,電流在每個 为佈均勻’其放光頻譜不會隨著電流的增加而產生 變化’故在不同電流偏壓下可發出穩定均勾的白 :電激直接發光,不需螢光粉換雜,可降低封裝成本及 夕餘的熱損耗’光電轉換效率可大幅提升, ^子井的上下方無任何金屬阻隔,可大幅提高其收光^ :。此外’在白光特性方面其白光頻譜可藉由調整量子 井結構和數目達成,不會受限於螢光粉 譜線。本發明之具白光產生器盥放 Z千放先 應用於白光照明及光纖通信中的白光放°大之^導體結構可 惟以上所述者’僅為本發明之較佳實施例而已,者 不能以此限定本發明實施H故,域本發明申; 1233704 專利範圍及創作說明書内容所作之簡單的等效變化與修 飾,皆應仍屬本發明專利涵蓋之範圍内。 1233704 【圖式簡單說明】 第1圖 本發明之具白光產生器與放大 示意圖。 器之半導體結構 第2圖 本發明之具白光產生器與放大 構0 裔之半導體結 第3圖 第4圖 第5圖 第6圖 器之半導體結構。 器之半導體結構之電激 習用白光產生器與放大 習用白光產生器與放大 發光頻譜。 習用另-白光產生器與放大器之半導體結構。 習用另一白光產生器與放大器之半導體結構之 電激發光頻譜。 【主要元件符號說明】 基板 1 第一光學包覆層 2 第二光學包覆層 3 電流阻擋與光學包覆層 4 多波長量子井 5 寬帶溝光學包覆層6 η型摻雜區 7 η極量子井側壁金屬電極 Ρ型摻雜區 8 Ρ極量子井側壁金屬電極 811233704 IX. Description of the invention: [Technical field to which the invention belongs] The present invention is to provide a semiconductor structure with a white light generator and an amplifier. In particular, the present invention uses multiple ancient tools ^ a 扪 用 扪 / 皮 长 里 子 井'Side-in' is a white light amplifier used in white light illumination and fiber optic communications. [Previous technology] Please refer to "shown in Figures 3 and 4". The conventional white light generator and the semiconductor structure of the amplifier are the red and yellow phosphors covered by the blue light emitting diode to excite i. The white light generator and amplifier ^ Semiconductor structure disadvantages are as follows: 1. Because the red and yellow components of the semiconductor of this white light generator and amplifier are excited by blue light, not directly by current, its electro-optical conversion efficiency is extremely poor. 2. Because the wavelength of excitation (blue light) is far from the wavelength of light emission (red, yellow light), there will be a lot of extra heat loss during the operation of the element, which shortens the life of the element. 3. The packaging of the semiconductor of this white light generator and amplifier needs to be doped with phosphor, so its packaging cost is high. In order to solve the above shortcomings, please refer to "shown in Figures 5 and 6", such as US Patent No. US 6,620,643 B1 · Other-the semiconductor structure of the white light generator and amplifier and its electrical excitation light spectrum, directly red, yellow and green Quantum wells with 2L colors grow in the light emitting active area of the light emitting diode (LED), so you can directly excite all the mixed white light sources without adding fluorescent powder, and the wavelength is damaged, and all the above disadvantages are avoided. . However, this light-emitting diode has not been widely accepted by the market because of its critical shortcomings. For example, the frequency spectrum of 7Γ octa-electric excitation light in 6 is still dominated by the central wavelength of the quantum well near the p-pole (p_sjde), rather than uniform white light. Since the mobility of holes is much smaller than that of electrons, the quantum wells that emit light will concentrate on the p-poles, and the luminous efficiency of the quantum wells of the other colors will become poor. 1233704 [Summary of the invention] The main purpose of the present invention is to provide a white light generator with a high power that can emit white light without doping fluorescent powder. The semiconductor structure of the device uses multi-wavelength quantities; the distribution of the number of carriers in the quantum wells of the wells: = :? are uniformly distributed, which can cause a stable white light to be emitted when not = 仏 · τ, which does not call the current of the heart. The change is caused by the increase, and the powder can be reduced; the PW is first converted to the PW, and the light is directly emitted by the electric shock, and the luminous efficiency is not large due to the loss of fluorescence. In addition, in the white light spectrum, the white light spectrum can be achieved by adjusting the structure and number of quantum wells. Γ = the atomic radiation spectrum line of the light-emitting powder itself, which can be used for white light amplification in lighting and fiber communications. [Embodiment] As shown in "Figures 1 and 2", the present invention is a schematic diagram of a semiconductor structure with white light generation of the present invention, an amplifier, and a semiconductor structure of the present invention. As shown in the figure:-the first light is formed on the substrate i; the 22 layer 2 '-the "optical cladding layer 3 is formed on the first layer 2; a current blocking and the optical cladding layer 4 is formed at ° The first—optical cladding layer 3—a multi-wavelength quantum well 5 formed on the current blocking and optical back layer 4 and a broadband trench optical cladding layer 6 is formed on the multi-wavelength quantum well Formed-semiconductor structure with white light generator 1233704 and amplifier. It allows the material of the substrate 2 to be all compound semiconductors, such as ... gallium (GaAs), indium phosphide (np), aluminum nitride (AIN) or gallium nitride (GaN), or an insulator substrate such as : Sapphire, Silicon Carbide (SiC), or Diamond. In order to achieve the white light radiating effect, the multi-wavelength quantum well 5 is composed of heterojunctions composed of many compound semiconductors with different well widths and barrier widths or all different components of different alloys 2 and their alloy materials. For example, as shown in FIG. 2, indium gallium nitride / gallium nitride (nGaN / GaN) or other compounds with different components are used, such as indium phosphide / indium gallium arsenide / indium gallium arsenide (inp) / lnGaAs / lnGaAsP), Indium Phosphide / Shishenhua Shao Indium / Shishen Hualu Shao Indium / Steel Inscription Copper (Inp / 丨 nA 丨 / ^ / 丨 Cold ^ / 丨 ^ Eight Magic Gallium Nitride / Nitrogen It consists of gallium carbide / indium gallium nitride (GaN / AIGaAN / lnGaN) or Shishenhua / Shishenhua gallium aluminum (GaAs / A 丨 GaAs). The multi-wavelength quantum well 5 is P-type doped on both sides. Region 8 and n-type doped region 7 can be formed by re-epitaxial growth on the sides of the multi-wavelength quantum well 5 etched into a platform-like shape, or by ion implantation and thermal diffusion. The P dopant and η dopant corresponding to the semiconductor are implanted or diffused into the multi-wavelength quantum well 5: side 'to form a -ρη diode structure. It can then be fabricated by heating diffusion. Process, so that the η, ρ-type doped regions 7, only 5 私 5 私, 8 8 to the required depth and the surrounding and while the thermal diffusion process is carried out, using an appropriate covering [such as four lice Silicon silicon (Si3N4)] covers the light-emitting area without being protected by the cover layer, and is implanted with P and n ions or two 1233704, Changlizi well, disorder, in order to reduce the resistance of the device. At this evening wavelength 1 The sub-well quantum well 5 can be sandwiched with the upper and lower layers of the undoped waveguide cover, so that its refractive index is smaller than the equivalent refractive index of the multi-wavelength quantum well quantum well 5 enclosed, and an optical waveguide structure can be formed. The metal metal deposition method is used to make a side wall metal contact 7 丄 of an η quantum well and a side metal contact 8 i of a p quantum well, and an η electrode can be implanted on the mouth electrode (p_regi〇n). Road junction (n + tunne | fine CD such as) to simplify the metal evaporation process (meta | Hzat 丨 · 0n pr〇cess). It can grow under multi-wavelength quantity well 5-the layer bandwidth is wider than that of quantum well First, learn the cladding layer 4 (such as: nitride axis (A 丨 GaN)) to prevent the parasitic diode from conducting. Mingzhi's semiconductor with white light generator and amplifier 'makes the current input from the side of the multi-wavelength quantum well, and the current is uniform in each of them.' The light emission spectrum does not change with the increase of current. ' Pressing can produce a stable and uniform white: electric excitation directly emits light, no fluorescent powder replacement is required, which can reduce packaging costs and thermal losses in the evening. 'The photoelectric conversion efficiency can be greatly improved, and there is no metal above and below the sub-well. Blocking can greatly improve its light absorption ^: In addition, its white light spectrum can be achieved by adjusting the structure and number of quantum wells in terms of white light characteristics, and will not be limited by the phosphor powder line. The Z light amplifier with a white light generator of the present invention is first applied to white light lighting and optical fiber communication in a white light. The large ^ conductor structure may be the only one described above is only a preferred embodiment of the present invention, and cannot be In this way, the implementation of the present invention is limited to the scope of the present invention; the simple equivalent changes and modifications made to the scope of the patent and the content of the creative specification should still fall within the scope of the invention patent. 1233704 [Brief description of the drawing] Figure 1 A schematic diagram of a white light generator and an enlargement according to the present invention. The semiconductor structure of the device FIG. 2 The semiconductor junction with a white light generator and amplifying structure of the present invention FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. The electrical excitation of the semiconductor structure of the device. Conventional white light generator and amplification. Conventional white light generator and amplification. Luminescence spectrum. The conventional semiconductor structure of another-white light generator and amplifier. Use the electrical excitation light spectrum of the semiconductor structure of another white light generator and amplifier. [Description of main component symbols] Substrate 1 First optical cladding layer 2 Second optical cladding layer 3 Current blocking and optical cladding layer 4 Multi-wavelength quantum well 5 Broadband trench optical cladding layer 6 η-type doped region 7 η pole Quantum well sidewall metal electrode P-type doped region 8 P-pole quantum well sidewall metal electrode 81