TWI233248B - Method of making micro crystal optical fiber laser and frequency multiplier crystal optical fiber - Google Patents

Method of making micro crystal optical fiber laser and frequency multiplier crystal optical fiber Download PDF

Info

Publication number
TWI233248B
TWI233248B TW093119817A TW93119817A TWI233248B TW I233248 B TWI233248 B TW I233248B TW 093119817 A TW093119817 A TW 093119817A TW 93119817 A TW93119817 A TW 93119817A TW I233248 B TWI233248 B TW I233248B
Authority
TW
Taiwan
Prior art keywords
crystal
frequency
optical fiber
fiber
laser
Prior art date
Application number
TW093119817A
Other languages
English (en)
Other versions
TW200601651A (en
Inventor
Sheng-Lung Huang
Chia-Yao Lo
Sheng-Pan Huang
Sun-Bin Yin
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW093119817A priority Critical patent/TWI233248B/zh
Priority to US10/976,838 priority patent/US7630415B2/en
Application granted granted Critical
Publication of TWI233248B publication Critical patent/TWI233248B/zh
Publication of TW200601651A publication Critical patent/TW200601651A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

1233248
【^明所屬之技術領域】 特別是關於一 微型晶體光纖 本發明是關於一種微型晶體光纖雷射 可應用於全彩雷射之微型晶體光纖雷射 ^射陣列及倍頻晶體光纖之製造方法。 【先前技術】 性等Ξ ΐ t具有南功率密度高單色性,高指向性及高相干 工點:故普及應用於研發醫'療、通訊、資訊、: j生:射光之雷射元件中,,導體雷射相較於其他 =件’ #氣體雷射、固體雷射等,具有體積小、 』長、價格低廉且適於量產等優點,#利於發展商 品。然而,目前於可見光的三原色(紅、綠、藍)之 有紅光波段之半導體雷射可提供低價之商業化產品,莊 光/綠光波段之半導體雷射則受限於寬能隙半導體"材料|的 價格昂貴、製程困難以及發光效率低等問題,要實際商 '業 化仍需要更進一步的研發與改良。 τ ° 〃 因此,發展出半導體雷射激發固態雷射(di〇de — pumped solid state laser, DPSSL),係以中心波長位於 固態雷射晶體之吸收譜線的半導體雷射作為固態雷^的激 發光源,其激發光通常為南功率之紅外光(波長多為8 〇 〇奈 米或8 8 0奈米),而激發固態雷射所發出的基頻雷射光(波Γ 長約一微米之紅外光)再於共振腔内經過非線性晶體倍 頻,產生所需波長之倍頻雷射光。由此方法所形成之半導 體雷射激發固態雷射的光輸出模態佳、波長涵蓋範圍廣、
第6頁 1233248 五、發明說明(2) 峰值或平均功率大,為十分理相的 發固態雷射中用以作為增益二盥=源,但半導體雷射激 體多為絕緣材料,其導熱性較:屈^頻晶體之固態雷射晶 發的模態下’散熱的問題特別嚴重#差,特別在橫向激 故f 了改善散熱問題常需配合龐大的:響雷射輸出效率, 射晶體生長極為耗時,古 、政熱系統。且固態雷 目前半導體雷射激發固態;射晶體的價格,使得 題。 ^展文限於成本與散熱問 【發明内容】 鑑於習知技術,本發明之 纖雷射及倍頻晶體光纖之製、告 糸,供一種微型晶體光 含增益晶體光纖、倍糖a ^ 法’祕型晶體光纖雷射包 纖(crystal fiber)°取代:二入纖^與半導體雷射,以晶體光 雷射晶體材料,同時晶體;二貝二^ 熱問題。 取的阿比表面積可避免產生散 微型晶體光纖雷射係包含 纖與倍頻晶體光纖。半導體雷㈣、增益晶體光 體光纖係係接收激發= = = =發光;增益晶 具有極化反轉週期,係趣人2頻7^,以及倍頻晶體光纖 頻成所需波長之倍頻光。:t :以將基頻光倍 端錢上光學薄膜形成光纖雷射,】纖可經由於兩 二:f , !頻光纖雷射。本發明除可應用於單色 曰辦\:)之光纖晶體雷射,更可將紅、綠、藍三色 曰曰體光纖雷射組合為陣列,“將其應用為全彩模式:達
第7頁 1233248 五、發明說明(3) 成全彩雷射的開發。 本發明更包含一種彳立相曰μ ϊ ^ . e - ^ 禋彳"^ θ曰體光纖之製造方法,係用以 M t ϋ#功之彳口頻日日體光纖。而生長晶體光纖 的方法有許多種,其中,φ , 田射加熱提拉法(laserheated pedestal growth method 丨μργμ 丁 / χ 煸1 >留曰a a Ε⑽,UPG)不但可輕易生長出直徑 極小之單晶’且生長速度体 At旦 ^ ^ 3, Pa Θ1 * & n 夹此置消耗低、控制容易且無 :木之問碭。本發明的倍頻晶體 射加熱提拉法來形成一晶f_甘& 係宙 柱(fee “。d)’以作為=的=驟包含:提供種晶 拉伸此種晶柱,以抽細種端並往固定方向 及提供-對電極於晶體光纖的兩側:;n,以 電場週期持續換極,並配合拉伸 ,電極係根據外加 換極週期,使得晶體光纖形成極化 2 選擇適當的材料進行包覆以降低傳輸損耗j另外,可再 磨、抛士與鑛膜等後處理以形成所需之晶體光並加以研 先則技術之半導體雷射激發固態雷射自 態雷射晶體之截面積大約為丨0平方厘 ^ 斤使用的固 用時’固態雷射晶體受激發面積卻僅^m’但實際使 。本發明將固態雷射晶體製成直微米 光纖,所使用的固態雷射晶體材料可大旦、碱米的晶體 體光纖相較於習知技術的雷射晶體其内二埶ζ、°同時,晶 量縮短,故散熱效率提高。 …、寻導路徑亦大 為使對本發明的目的、構造特徵 丹功旎有進一步的
第8頁 1233248
了解’兹配合圖示詳細說明如下: 【實施方式】 本發明的微型晶體光纖雷射可製作出紅、綠、藍三原 色之雷射’並將其組合成陣列應用於全彩雷射的開發,請 =f第1圖’其為本發明實施例之微型晶體光纖雷射陣列 不意圖。其包含有半導體雷射陣列丨丨〇、三個增益晶體光 、截1 2 1、與二個倍頻晶體光纖1 3 〇。半導體雷射陣列11 〇係由 二個半導體雷射111所組成,以提供激發光;增益晶體光 纖121與,個倍頻晶體光纖13〇係對準耦合,並安裝於1固定 座12 〇,每^一增益晶體光纖1 2 1係用以接收激發光而產生基 頻光’而每一倍頻晶體光纖1 3 〇皆具有極化反轉週期,倍 頻晶體光纖130係耦合於增益晶體光纖121,不同的極化\ 轉週期可將各基頻光分別倍頻成紅(R)、綠(G)、藍( 原色之倍頻光。 一 f全彩雷射的開發上,可使用具有多個主要輻射波長 口心雷射材料來形成增盈晶體光纖,再經過倍頻即可產 生紅、綠、藍三原色的雷射光。用以作為增益介質之固能 雷射材料可分為2個部份··活性離子(active i〇n)與基材u h〇st),活性離子為主要之工作物質,係提供能階 (energy gap)來產生不同之雷射波長;而基材則提供適當 之%離子空位(cat ion-site)以摻雜活性離子。釔鋁石榴 石(yttrlumn aiuminum garne1:,YAG)與釩酸釔 〇rth〇Vanadate,YV〇4),常用來做為雷射增益介質的基 材,而摻雜歛離子作為活性離子之摻歛釔鋁柘榴石
1233248 五、發明說明(5) (N d : Y A G )和摻鈥釩酸釔(N d : Y V 〇4 )都具有三個主要輻射波 長。摻歛釔鋁柘榴石(Nd:YAG)具有946奈米、1064奈米與 1319奈米的輻射波長;摻鈥釩酸釔(Nd:YV〇4)則具有91 4奈 米、1 0 6 4奈米與1 3 4 1奈米的輻射波長;經過倍頻,兩者皆 可產生紅、綠、藍三原色。倍頻晶體光纖的材料可採用鈮 酸鋰或鈕酸鋰,並需於形成倍頻晶體光纖之時使其具有極 化反轉週期。半導體雷射陣列可選擇波長為8 〇 8奈米或轉 換效率更高之8 8 5奈米之半導體雷射。 +赞明係 為形成具有極化反轉週期之倍頻晶體光纖n 以田射加熱提拉法(laser —heated pedestal growth T二d?r古0來成長晶體光纖,此方法不但易於控制晶 曰w日日向人直徑,且生長速度快、能量消耗低、控制容易 ㈡Π。請參考第2圖,其為本發明實施例的倍 ί: 流種:,熱提拉法來形成晶體 弁_ ή6码^ ^么、種晶柱(步驟21 〇),以作為晶體 驟221挾持成炼融區(步 ----場週期持續換極,f配人::,此對電極係根據外加電 極週期C步驟24 0 ),以在口如伸種晶柱的移動速度以形成換 週期。藉由控制外加電尸、/申#出的晶體光纖產生極化反轉 度(Vc)即可決定:° ^ (T)與種晶柱的拉伸移動速 、Μ 1 Λ ),其關係式如下:
2 {niM' — 折、其中,i、c、n2w與⑽分別為種晶柱的晶體同調長度及 2射率’ λ為其泵激的波長。將鈮酸鋰或鈕酸鋰所形成的 =頻ί體t纖與前述不同材質之增益晶體光纖結合可產生 :兴ΐ舰藍三原色光,使用摻鈥釔鋁柘榴石(Nd:YAG)作為 ϋ曰曰=光纖,其換極週期可為12· 7微米、6· 8微米與4 7 頻為波早6=米的換極週期可將波長13191米之基頻光倍 1 0 64太^ ^ 之紅光,6. 8微米的換極週期可將波長 # /不未之基頻光倍頻為波長532奈米之紅光,4 7 a乎μ 將波綱奈米之基頻光倍頻為波長=
ί1換二ί用Ϊ斂釩酸蝴:YV〇4)作為增益晶體光 、義”換極週期可為1 3 · 3微米、6 8料半盥d PI 670 5夺米之乂 !長1341奈米之基頻光倍頻為波長 ^ ^ ^ ^ ^ *5382^/ ^ # ^ *1〇64 ^ ^ 可將波長914夺平之\哼:2光’ 4. 1微米的換極週期 另外,可將增益晶體光纖或倍頻 |光 拋光與鍍膜等後處理以招士…+ Μ日日體先纖施以研磨、 纖可經由於兩:需之晶體光纖1益晶體光 頻晶體光纖再加以鍍膜形,或疋結合倍 型晶體光纖雷射之增益晶體光= = = 於微 合,其接合方式可為機械式、 曰:光纖需加以結 而增益晶體光纖與倍頻晶體光纖的折 1233248 五、發明說明(7) (::二TzL其3到模態匹配,亦即,“者的歸-化嘴* C 〇 malized frequency, V)iH^ a 土, 匕頻率 列關係式: J相專,兩者半徑均需符合下 率,=空1為晶盤光纖的折射 本發明之製造=係二為:二先… 源’可產生極高的溫度梯度,;:::::光束做為熱 徑小於十微米之晶體光纖。◎的:至可長 7:、,且使用晶體光纖來作為增益”,可提以 以限5二揭露如上所述'然其並非用 精神和範圍内,當可作:二::::在不脫離本發明之 專利保護範圍須視太 人潤飾,因此本發明之 為準。 員視本說明書所附之申請專利範圍所界定者 第12頁 1233248 圖式簡單說明 第1圖為本發明實施例之微型晶體光纖雷射陣列示意 圖;及 第2圖為本發明實施例的倍頻晶體光纖之製造流程 圖。 【圖式符號說明】 110 111 120 121 130 步驟2 1 0 步驟2 2 0 步驟2 3 0 晶柱 步驟2 4 0 半導體雷射陣列 半導體雷射 、 固定座 增益晶體光纖 倍頻晶體光纖 提供種晶柱 將雷射光束聚焦於種晶柱以形成熔融區 挾持種晶柱的一端並往固定方向拉伸此種 提供一對電極於晶體光纖的兩側,此對電 極係根據外加電場週期持續換極,並配合拉伸種晶柱的移 動速度以形成換極週期
第13頁

Claims (1)

1233248 六、申請專利範圍 1. 一種微型 一半 一增 光;及 一倍 頻晶體光 所需波長 2 ·如申請專 該增益晶 3 ·如申請專 該增益晶 學薄膜。 4 ·如申請專 該增益晶 和摻鈥釩 5 ·如申請專 該倍頻晶 族群其中 6 ·如申請專 該半導體 7 ·如申請專 該增益晶 中之一接 8 ·如申請專 晶體光纖雷射,其包含有·· 導體雷射,係用以提供一激發光; 益晶體光纖,係係接收該激發光而產生—基頻 頻晶體光纖’係耦合於該增益晶體光纖, 纖具有一極化反轉週期,以將該基頻光倍頻: 之一倍頻光。 只成 利靶圍第1項所述之微型晶體光纖雷射, 體光纖係兩端艘上光學薄膜。 利範圍第1項所述之微型晶體光纖雷射,其中 體光纖係結合該倍頻晶體光纖再於兩端鍍上光 利範圍第1項所述之微型晶體光纖雷射,其中 體光纖之材料係選自摻歛釔鋁柘榴石(Nd: γag) 酸紀(Nd: YVO4)所組成的族群其中之一。 利範圍第1項所述之微型晶體光纖雷射,其中 體光纖之材料係選自鈮酸鋰和鈕酸鋰所組成的 * 〇 利範圍第1項所述之微型晶體光纖雷射,其中 雷=之波長係為8 08奈米與8 85奈米其中之、一。 利範圍第1項所述之微型晶體光纖雷射,其中 $光纖係以機械式、熔接式和高溫擴散接合其 合方式接合於該倍頻晶體光纖。 利範圍第1項所述之微型晶體光纖雷射,其中
第14頁 1233248 ”'申請專利範圍 1亥增益晶體光纖與該 9·如申請專利範圍第i項;;員+、曰曰體光纖的歸一化頻率相同。 §亥倍頻晶體光纖係、述之微型晶體光纖雷射,其 含: 雷射如熱提拉法來形成,其步驟包 提供一種晶杈, 將一雷射光束录 為該倍頻晶體光纖的原料; 挾持一種晶柱的二二=種晶,以形成一炫融區; 以抽細該種晶桎之二並往固定方向拉伸該種晶桎, 設置-對電極;=以形成該倍頻晶體光纖;及 外加電場週期持續換:1纖:兩側,該對電極係根據 迷度以形成-換;=;配合該種晶柱的-拉伸移動 反轉週期。 功,使該倍頻晶體光纖產生一極化 :專利範圍第9項所述之微型晶體光纖雷射,直中 11 二°週期(Λ )係為該外加電場種;主 拉伸移動速度(Vc)乘積的二分之一。)…亥種曰曰柱的 一種微型晶體光纖雷射陣列,其包含有: 複數個半導體雷射,係用以提供複數個激發光; 、複數個增益晶體光纖,係係接收該激發光而產生 複數個基頻光;及 複數個倍頻晶體光纖,係耦合於該增益晶體光 纖母一该倍頻晶體光纖具有一極化反轉週期,以將 複數個該基頻光倍頻成所需波長之複數個倍頻光。 1 2 ·如申請專利範圍第丨丨項所述之微型晶體光纖雷射陣 列’其中該增益晶體光纖係兩端鍍上光學薄膜。
第15頁 1233248 六、申請專利範圍 1 3 ·如申睛專利範圍第1 1項所述之微型晶體光纖雷射陣 列,其中該增益晶體光纖係結合該倍頻晶體光纖再於 兩端鍵上光學薄膜。 1 4·如申請專利範圍第丨丨項所述之微型晶體光纖雷射陣 歹1J ’其中該增益晶體光纖之材料係選自摻鈥釔鋁柘榴 石(N d : Y A G)和摻歛飢酸纪(N d : Y V 04)所組成的族群其中 之一° 15 ·如申請專利範圍第11項所述之微型晶體光纖雷射陣 歹,J,其中該倍頻晶體光纖之材料係選自鈮酸鋰和鈕酸 鐘所組成的族群其中之/。 16 ·如申請專利範圍第11項所述之微型晶體光纖雷射陣 列,其中該半導體雷射之波長係為808奈米與885奈米 其中之一。 μ 1 7 ·如申請專利範圍第11項所述之微型晶體光纖雷射陣 列,其中該增益晶體光纖係以機械式、熔接式和高溫 擴散接合其中之一接合方式接合於該倍頻晶體光纖。 18.如申請專利範圍第11項所述之微型晶體光纖雷射陣 列’其中該增益晶體光纖與該倍頻晶體光纖的歸一化 頻率相同。 1 9 ·如申請專利範圍第丨1項所述之微型晶體光纖雷射陣 列,其中複數個該倍頻光係包含紅、綠、藍三原色 光。 2 0 ·如申請專利範圍第1 1項所述之微型晶體光纖雷射,其 中該倍頻晶體光纖係以雷射加熱提拉法來形成,其步
1233248 六 申請專利範圍 驟包含·· 以作為該倍頻晶體光纖的原料; 挾持—種晶柱的一端廿允阳〜士人乂 ^融區, 柱,以抽細該種J之t Μ方向拉伸該種晶 纖;及 曰曰柱之该熔融區以形成該倍頻晶體光 栌: f Φ對電極於晶體光纖的兩側,該對f*朽& 根據外加電場週期持續換極 T電極係 伸移動速度以形成—換極週期ϋ =曰曰柱的-拉 生一極化反轉週期。 使忒么頻晶體光纖產 21·如申請專利範圍第20項 中該換極週期(Λ)係為該外力U;曰f光纖雷射,其 的拉伸移動速度(Vc)乘積二與該種晶枉 22.7種倍頻晶體光纖之製造方法T2二雷 來形成一倍頻晶體光纖,其步驟包人雷射加熱提拉法 提供一種晶柱,以作為 將-雷射光束聚焦於該種纖的原料; 挾持一種晶柱的一端並往固 1成—熔融區; 柱,以抽細該種晶柱之該炫 σ拉伸該種晶 纖;及 4融區以形成該倍頻晶體光 設置一對電極於該倍頻晶體光喻^ 極係根據外加電場週期持續換先纖的兩側,該對電 ^伸移動速度以形成-:極i期並:=該種晶柱的 、哉產生一極化反轉週期。 ^ 使该倍頻晶體光 1233248 六、申請專利範圍 2 3.如申請專利範圍第2 2項所述之倍頻晶體光纖之製造方 法,其中該換極週期(Λ )係為該外加電場週期(T)與該 種晶柱的拉伸移動速度(V c )乘積的二分之一。 2 4.如申請專利範圍第2 2項所述之倍頻晶體光纖之製造方 法,其中該晶體光纖之材料係選自鈮酸鋰和鈕酸鋰所 組成的族群其中之一。
第18頁
TW093119817A 2004-06-30 2004-06-30 Method of making micro crystal optical fiber laser and frequency multiplier crystal optical fiber TWI233248B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW093119817A TWI233248B (en) 2004-06-30 2004-06-30 Method of making micro crystal optical fiber laser and frequency multiplier crystal optical fiber
US10/976,838 US7630415B2 (en) 2004-06-30 2004-11-01 Micro crystal fiber lasers and method of making frequency-doubling crystal fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093119817A TWI233248B (en) 2004-06-30 2004-06-30 Method of making micro crystal optical fiber laser and frequency multiplier crystal optical fiber

Publications (2)

Publication Number Publication Date
TWI233248B true TWI233248B (en) 2005-05-21
TW200601651A TW200601651A (en) 2006-01-01

Family

ID=35513870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093119817A TWI233248B (en) 2004-06-30 2004-06-30 Method of making micro crystal optical fiber laser and frequency multiplier crystal optical fiber

Country Status (2)

Country Link
US (1) US7630415B2 (zh)
TW (1) TWI233248B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE419559T1 (de) * 2005-10-21 2009-01-15 Advanced Mask Technology Ct Gmbh Verfahren zur reinigung der oberfläche einer photomaske
WO2008092097A2 (en) * 2007-01-26 2008-07-31 Shasta Crystals, Inc. Multi-beam optical afterheater for laser heated pedstal growth
TWI384165B (zh) 2009-12-02 2013-02-01 Univ Nat Taiwan 晶體光纖白光光源及其色溫調控方法
TWI477833B (zh) * 2012-09-14 2015-03-21 Univ Nat Taiwan Double fiber crystal fiber and its making method
US11646549B2 (en) 2014-08-27 2023-05-09 Nuburu, Inc. Multi kW class blue laser system
CN104767113A (zh) * 2015-04-24 2015-07-08 南京中科神光科技有限公司 一种结构紧凑的高功率全固态激光器
CN111512507A (zh) * 2017-11-01 2020-08-07 努布鲁有限公司 多千瓦级的蓝色激光系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037181A (en) * 1988-04-25 1991-08-06 The Board Of Trustees Of The Leland Stanford Junior University Claddings for single crystal optical fibers and devices and methods and apparatus for making such claddings
US5039456A (en) * 1990-03-23 1991-08-13 Amp Incorporated Method of molding an optical simulator
US5062117A (en) * 1990-07-11 1991-10-29 Amoco Corporation Tailored laser system
US5123026A (en) * 1990-11-02 1992-06-16 Massachusetts Institute Of Technology Frequency-doubled, diode-pumped ytterbium laser
US5420876A (en) * 1994-06-02 1995-05-30 Spectra-Physics Laserplane, Inc. Gadolinium vanadate laser
US5909306A (en) * 1996-02-23 1999-06-01 President And Fellows Of Harvard College Solid-state spectrally-pure linearly-polarized pulsed fiber amplifier laser system useful for ultraviolet radiation generation
US5740190A (en) * 1996-05-23 1998-04-14 Schwartz Electro-Optics, Inc. Three-color coherent light system

Also Published As

Publication number Publication date
US7630415B2 (en) 2009-12-08
TW200601651A (en) 2006-01-01
US20060002433A1 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US5355247A (en) Method using a monolithic crystalline material for producing radiation by quasi-phase-matching, diffusion bonded monolithic crystalline material for quasi-phase-matching, and method for fabricating same
Xiong et al. A solar actuator based on hydrogen-bonded azopolymers for electricity generation
Wu et al. Recent advances on molecular crystalline luminescent materials for optical waveguides
TWI233248B (en) Method of making micro crystal optical fiber laser and frequency multiplier crystal optical fiber
CN101821665A (zh) 铁电极板晶畴反转的方法及其应用
CN104880887A (zh) 近化学计量比低掺杂Mg:PPLN全光波长转换器制作方法
CN102983489A (zh) 一种基于光纤激光器做非线性差频而产生的中红外激光源
CN105591275B (zh) 基于MgO:PPLN晶畴占空比可控的电场调谐光参量振荡器
Zhao et al. How to harvest efficient laser from solar light
CN107394575A (zh) 激光器的倍频装置
Mizuuchi et al. Continuous-wave ultraviolet generation at 354nm in a periodically poled MgO: LiNbO3 by frequency tripling of a diode end-pumped Nd: GdVO4 microlaser
Lu et al. Second harmonic generation and self-frequency doubling performance in Nd: GdCa4O (BO3) 3 crystal
CN207474912U (zh) 激光器的倍频装置
JP2004295088A (ja) 波長変換素子
Dong et al. Efficient laser oscillation of Yb: Y3Al5O12 single crystal grown by temperature gradient technique
CN109375448A (zh) 一种基于频率上转换技术的偏振控制器及其工作方法
CN101459317A (zh) 一种波导结构的倍频器及其制作方法
CN106207717B (zh) 一种基于光学差频效应的多束太赫兹波辐射源
CN107623247A (zh) 一种光纤激光倍频器
CN102109730A (zh) 一种非线性晶体倍频器件
Guo et al. Prospects of obtaining terawatt class infrared pulses using standard optical parametric amplification
Dong et al. A crystalline-orientation self-selected linearly polarized Yb: Y3Al5O12 microchip laser
Chen et al. Controlling laser emission by selecting crystal orientation
RU2640603C1 (ru) Способ получения конвертера поляризации
Huang et al. A novel solid solution LiGa (S1–xSex) 2 for generating coherent ultrafast mid-IR sources

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees