TWI232967B - Small mode-field fiber lens - Google Patents

Small mode-field fiber lens Download PDF

Info

Publication number
TWI232967B
TWI232967B TW92137553A TW92137553A TWI232967B TW I232967 B TWI232967 B TW I232967B TW 92137553 A TW92137553 A TW 92137553A TW 92137553 A TW92137553 A TW 92137553A TW I232967 B TWI232967 B TW I232967B
Authority
TW
Taiwan
Prior art keywords
lens
fiber
refractive index
hyperbolic
mode
Prior art date
Application number
TW92137553A
Other languages
Chinese (zh)
Other versions
TW200513701A (en
Inventor
Venkata Adiseshaia Bhagavatula
John Himmelreich
Nagaraja Shashidhar
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW200513701A publication Critical patent/TW200513701A/en
Application granted granted Critical
Publication of TWI232967B publication Critical patent/TWI232967B/en

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

A fiber lens includes a graded-index lens, a single-mode fiber disposed at a first end of the graded-index lens, and a refractive lens having a hyperbolic or near-hyperbolic shape disposed at a second end of the graded-index lens to focus a beam from the single-mode fiber to a diffraction-limited spot.

Description

1232967 五、發明說明(1) 一、 本發明所屬技術領域 與^本發明一般係關於光學裝置以耦合在光學元件間的光 學信號。更明確地,本發明係關於光纖透鏡以耦合光 件間的訊號。 凡 二、 先前技術 ^ 各種方法已使用於光學通訊中以耦合光學元件例如光 纖’録射二極體和半導體光放大器間之光學訊號。一種方 含使用光纖透鏡,其為具有透鏡放置於尾瓣光纖—端 ^ ί件式裝置。光線能夠通過透鏡或尾瓣光纖進入或離門 兩鏡。光纖透鏡能夠將尾瓣光纖發出之光線聚焦為; 不過先、^之枯一4點/及在選擇工作距離處為所需要之強度。 分佈以Λ 限於非常小的點尺寸以達成所需要強度 分佈。對η: η距離θ同時控制點大小以及強度 〇微+同日士 ^ / μ用,人們需要得到模場直徑小至2· 5至3 至光i ί,上述 體或介電質波導…^ 其具有小模場直^子犯/句產生聚焦點之光纖透鏡的需求 分佈。挺…以及寬廣範圍工作距離内為所需要強度 三、 發明内容 二項位=?率鏡第其包括-只陡度折射率 或接近雙曲線形狀之折射透鏡/於—端部斤=具有雙曲線 %陡度折射率透鏡第二端 第5頁 12329671232967 V. Description of the invention (1) 1. The technical field to which the present invention belongs and the present invention generally relate to optical devices for coupling optical signals between optical elements. More specifically, the present invention relates to a fiber lens to couple signals between optical elements. Where, the prior art ^ Various methods have been used in optical communications to couple optical elements such as optical fibers' recording and emitting optical signals between a diode and a semiconductor optical amplifier. One method uses a fiber optic lens, which is a piece of equipment having a lens placed on the tail lobe fiber-end. Light can enter or leave the door through the lens or tail lobe fiber. The fiber lens can focus the light emitted by the tail lobe fiber to; however, the first and last points are 4 points / and the required intensity is selected at the working distance. The distribution is limited to very small spot sizes with Λ to achieve the desired intensity distribution. For η: η distance θ simultaneously control the size and intensity of the point 〇 micro + the same day ^ / μ, people need to get the mode field diameter as small as 2.5 · 3 to light i ί, the above bulk or dielectric waveguide ... ^ its Demand distribution of fiber optic lenses with small mode field straight offenses / sentences that produce focal points. Tight… and the required intensity over a wide working distance. III. Summary of the invention Binomial position = rate lens. It includes-a refractive lens with a steep refractive index or a near hyperbolic shape. % Steepness refractive index lens second end page 5 1232967

=光纖u光線“為有限繞射之光點。 及透方面,本發明係關於光纖透鏡,其包含單模光纖以 ii;:!單模錢端部處,其中在由透鏡端部發出光束 腰部邛處核%直徑為小於10微米以及透鏡端部至光束 巨離與在光束腰部處模場直徑的比值為大於5。 描^ 方面,本發明係關於製造光纖透鏡之方法,其包含 所+ 2果光纖至陡度折射率光纖,切斷陡度折射率光纖至 7 =要長度,以及將陡度折射率光纖端部圓形化曲 或接近雙曲線形狀。 1又萌綠 另一方面,本發明係關於製造光纖透鏡之方法,該方 包含拚接單模光纖至陡度折射率光纖,切斷陡度折射率光 纖至所需要長度,將無心蕊光纖拼接至陡度折射率光纖切 斷無心蕊光纖至所需要長度,以及將無心蕊光纖之端部圓 形化為雙曲線或接近雙曲線形狀。 本發明其他特性以及優點將隨同下列附圖更加詳細說 明於下列詳細說明中。 、" 四、實施方式 本發明將針對一些實施例詳細加以說明,其顯示於附 圖中。在下列說明中,多個特定說明將提供完全了解本發 明。熟知此技術者了解本發明能夠並不需要這些特定★羊細 說明而加以實施。在其他情況下,人們所熟知之處理過程 及/或特性並不詳細地加以說明以避免並不需要模糊本發 明。參考附圖以及下列詳細說明將較佳地了解本發明特性 及優點。= Optical fiber u ray "is a point of limited diffraction. In the aspect of transmission, the present invention relates to a fiber lens, which includes a single-mode fiber at the end of a single-mode optical fiber, where the waist of the beam is emitted from the end of the lens The core nuclei diameter is less than 10 microns and the ratio of the lens end to the beam huge distance to the mode field diameter at the beam waist is greater than 5. In aspects, the present invention relates to a method for manufacturing a fiber optic lens, which includes the + 2 If the optical fiber reaches the steep refractive index fiber, cut the steep refractive index fiber to 7 = required length, and round the end of the steep refractive index fiber to a curved or near hyperbolic shape. The invention relates to a method for manufacturing an optical fiber lens. The method includes splicing a single-mode fiber to a steep-index fiber, cutting the steep-index fiber to a required length, and splicing a coreless fiber to a steep-index fiber. Core fiber to the required length, and round the end of the coreless core fiber into a hyperbola or near hyperbola shape. Other characteristics and advantages of the present invention will be described in more detail in the following detailed description along with the following drawings Fourth, the embodiments The present invention will be described in detail for some embodiments, which are shown in the drawings. In the following description, a number of specific descriptions will provide a complete understanding of the present invention. Those skilled in the art who understand the present invention can These specific instructions are not required for implementation. In other cases, well-known processes and / or characteristics are not described in detail to avoid obscuring the invention. Refer to the drawings and the following detailed description The characteristics and advantages of the present invention will be better understood.

1232967 五、發明說明(3) 本發明實施例提供光纖透盆心 依應用情況在所需要距離處聚焦為^且犯°將^光纖發出光線 合以產生i久ί”鏡使用折射透鏡以及陡度折射率組 物線形狀將;=束施例中,折射率透鏡具有撤 =例中,折射透鏡具有接近雙曲線形狀先將^ 光广、藉由控制_透鏡之多模參數以及折 内而^古乂,肊夠達成小模場直徑例如在2至5微米範圍 Γ里高斯強度分佈°更進—步,在15一操作波 ^下肊夠達成大至25至40微米之長工作距離,同時保持小 MFD以及高斯強度分佈。 圖1A顯示出本發明之光纖透鏡1〇〇。光纖透鏡1〇〇包含 陡度折射率(GRIN) 102,折射透鏡1〇4位於GRIN透鏡1〇2 —端 ,以及單模尾瓣光纖1 〇 6位於G R I N -光纖透鏡1 〇 2另外一端。 GRIN透鏡102具有心蕊1〇8,其具有或不具有包層11〇界限。 GR I N透鏡1 〇 2之心蕊1 〇 8優先地具有折射率分佈,其朝著光 纖透鏡1 0 0光學中心軸以方形定律或雙曲線分佈徑向地增 加。在一項實施例中,折射透鏡1 〇4為具有雙曲線表面丨工2 之雙曲線透鏡。雙曲線透鏡1 〇 4具有心蕊11 4,其具有或不 有包層11 6界限。理論上心蕊11 4應該具有均勻的折射率, 但是其較為容易藉由拋光GRIN透鏡102端部成為雙曲線表 面112,其中心蕊114具有折射率分佈,其朝向光纖透鏡1〇〇 光學中心軸徑向地提高。 雙曲線透鏡104分佈公式為:1232967 V. Description of the invention (3) The embodiment of the present invention provides the optical fiber through the focus at the required distance according to the application situation and focus on ^ and combine the light emitted by ^ fiber to create a long-term mirror using a refractive lens and steepness The shape of the index line of the refractive index group will be; = In the beam embodiment, the refractive lens has a retraction = In the example, the refractive lens has a near hyperbolic shape. First, it will be broad, by controlling the multi-mode parameters of the lens, and folding. In the past, it is enough to achieve small mode field diameters, such as in the range of 2 to 5 microns, and the Gaussian intensity distribution is one step further. At 15 one operation wave, it is sufficient to achieve long working distances of up to 25 to 40 microns. Maintain a small MFD and Gaussian intensity distribution. Figure 1A shows the fiber optic lens 100 of the present invention. The fiber optic lens 100 includes a steep refractive index (GRIN) 102, and the refractive lens 104 is located at the 102-end of the GRIN lens. And the single-mode tail lobe fiber 10 is located at the other end of the GRIN-fiber lens 1 02. The GRIN lens 102 has a core 108 with or without a cladding 11o limit. The core of the GR IN lens 1 〇2 1 08 has a refractive index profile preferentially, which The optical central axis of the fiber lens 100 increases radially with a square law or a hyperbolic distribution. In one embodiment, the refractive lens 104 is a hyperbolic lens with a hyperbolic surface 2 and a hyperbolic lens 1. The hyperbolic lens 1 〇 4 has a core 11 4 with or without a cladding 11 6 boundary. In theory the core 11 4 should have a uniform refractive index, but it is easier to become a hyperbolic surface 112 by polishing the end of the GRIN lens 102, which The central core 114 has a refractive index distribution, which increases radially toward the optical center axis of the fiber lens 100. The distribution formula of the hyperbolic lens 104 is:

第7頁 1232967 五、發明說明(4) - u2 / a2 - v2 / b2 = 1 (la) 、圖1B是上述公式曲線圖。在該曲線圖中,雙曲線透鏡 1 0 4為u - v座標系統上雙曲線之一支,雙曲線一支之頂點位 於u軸之(a,0)處。雙曲線一支之焦點在(c,〇)声其中c以 下列公式表示: c = (aHb2 )0·5 (lb) 雙曲線一支包含於兩條漸近線内,其以下列公式表示· bu 土 av =〇 (lc) ^ ·Page 7 1232967 V. Explanation of the invention (4)-u2 / a2-v2 / b2 = 1 (la), Figure 1B is a graph of the above formula. In the graph, the hyperbolic lens 104 is a branch of the hyperbola on the u-v coordinate system, and the vertex of the hyperbola is located at (a, 0) of the u axis. The focal point of a hyperbola is (c, 0), where c is expressed by the following formula: c = (aHb2) 0 · 5 (lb) A hyperbola is included in two asymptote lines, which is expressed by the following formula: bu Soil av = 〇 (lc) ^

漸近線斜率為+ b/a以及-b/a。漸近線相交原點(〇 〇)以形 成楔形,其頂角為α,其以下列公式表示: 乂 adtairKb/a) (Id) 依據Edwards等人文獻,理想雙曲線分佈精確地將入射 球面波轉變為平面波,在公式(la)至(ld)中a 以下列公 式表示: a2 = [n2/(ni+n2)]2r22 (2a) b2 = [ (- n2 ) / (+ n2) ] r22 ( 2 b) 其中n!為曲線圖透鏡心蕊之折射率,n2為圍繞著雙曲線透 鏡心淡介質折射率,以及r*2為雙曲線透鏡端部處之曲率半The asymptotic slope is + b / a and -b / a. The asymptote intersects the origin (〇〇) to form a wedge shape, and its apex angle is α, which is expressed by the following formula: 乂 adtairKb / a) (Id) According to Edwards et al., The ideal hyperbolic distribution accurately transforms the incident spherical wave It is a plane wave. In the formulas (la) to (ld), a is expressed by the following formula: a2 = [n2 / (ni + n2)] 2r22 (2a) b2 = [(-n2) / (+ n2)] r22 (2 b) where n! is the refractive index of the lens core of the graph, n2 is the refractive index of the light medium surrounding the hyperbolic lens, and r * 2 is the half of the curvature at the end of the hyperbolic lens

裎。(Edwards, Christopher A., Presby, Herman M., 以及Dragone Corrado· "Ideal Microlenses for Laser t〇 Fiber Coupling , Journal of Lightwave Technology ,Vol 11,Νο·2, (1993):352.)。具有雙曲線分佈,在顯 示於圖1B中平面(1)及(2)處模場半徑為相等的,以及在平 面(2)處曲率半徑為無限大,即在平面(2)處光束波前為平take off clothes. (Edwards, Christopher A., Presby, Herman M., and Dragone Corrado " Ideal Microlenses for Laser to Fiber Coupling, Journal of Lightwave Technology, Vol 11, No. 2, (1993): 352.). With hyperbolic distribution, the mode field radii are equal at planes (1) and (2) shown in Figure 1B, and the curvature radius is infinite at plane (2), that is, the wavefront of the beam at plane (2) Weiping

第8頁 1232967 五、發明說明(5) 面性。 c〇參考=Α:Λ瓣光纖106能夠為任何單模光纖,例如為 )尸㈣8#光纖,,或特定單模光纖例如為保持偏極(ΡΜ 女。毛瓣光纖106當由端部觀看時能夠為圓形對稱的或 八有/、他形狀例如為方形或橢圓形。GRIN透鏡1〇2優先地 連接至尾瓣光纖1G6。對於可靠性以及長期穩HGrin透 鏡104能夠直接地形成於GRIN透鏡丨〇2上或形成於連接至 GRIN透鏡102之無心蕊間隔器桿件上。如圖κ所示,雙曲線 透鏡104亦能夠連接至GRIN透鏡1〇2。如圖lc所示,雙曲線 透鏡104亦能夠連接至無心蕊間隔器桿件12〇,該桿件連接 至GRIN透鏡102。由於折射透鏡以及間隔桿件之最終尺寸 通常相當小,優先地GR IN光纖或間隔器桿件之較長長度連 接至第一尾瓣光纖以及在折射透鏡成形於端部上之前加以 切斷或切斷為所需要長度。(無心蕊間隔器桿件亦能夠放 置於GRIN透鏡102與尾瓣光纖丨〇6之間。)雙曲線透鏡104能 夠藉由將一段光纖成形圓錐形/楔形而形成,其具有頂角( 在圖1 B中為α )。例如,光纖能夠成形為圓錐形/楔形,其使 用漸變器切割處理過程(對稱)或雷射微機器加工以及拋光 形成。曲率能夠在形成圓錐形/楔形端部處形成以產生所 需要分佈。雖然並不顯示於附圖中,GR I Ν透鏡及/或單模尾 瓣光纖能夠逐漸變化。尾瓣光纖整體直徑能夠小於或實質 地等於GRIN透鏡整體直徑。 GRIN透鏡102以及雙曲線透鏡1 04產生小模場直徑(MFD )聚焦光束,良好的波前特性,及長的工作距離。在一項實Page 8 1232967 V. Description of the invention (5) Generality. c〇reference = Α: Λ lobe fiber 106 can be any single-mode fiber, for example, corpse 8 # fiber, or a specific single-mode fiber, for example, to maintain polarization (PM female. Hairloin fiber 106 when viewed from the end) It can be circular symmetrical or octave, and its shape is, for example, square or oval. The GRIN lens 102 is preferentially connected to the tail lobe fiber 1G6. For reliability and long-term stability, the HGrin lens 104 can be directly formed on the GRIN lens丨 〇2 or formed on the centerless spacer rod connected to the GRIN lens 102. As shown in Figure κ, the hyperbolic lens 104 can also be connected to the GRIN lens 102. As shown in Figure lc, the hyperbolic lens 104 can also be connected to the centerless spacer element 12, which is connected to the GRIN lens 102. Since the final dimensions of the refractive lens and spacer element are usually quite small, it is preferred that the GR IN fiber or spacer element be longer The length is connected to the first tail lobe fiber and is cut or cut to the required length before the refractive lens is formed on the end. (The coreless spacer member can also be placed on the GRIN lens 102 and the tail lobe fiber. 〇〇6 Between.) Hyperbola The mirror 104 can be formed by forming a section of a fiber into a conical / wedge shape, which has a vertex angle (α in FIG. 1B). For example, the optical fiber can be shaped into a conical / wedge shape, which uses a tapered cutting process (symmetrical ) Or laser micromachining and polishing. Curvature can be formed at the conical / wedge-shaped end to produce the desired distribution. Although not shown in the drawings, GR IN lens and / or single-mode tail lobe fiber It can be gradually changed. The overall diameter of the tail lobe fiber can be less than or substantially equal to the overall diameter of the GRIN lens. The GRIN lens 102 and the hyperbolic lens 104 produce a small mode field diameter (MFD) focused beam, good wavefront characteristics, and long work Distance

第9頁 1232967 五、發明說明(6)Page 9 1232967 V. Description of the invention (6)

施例中,下列屬性為需要的··在光束腰部處模場直徑(mfd) 為t於10微米,優先地在2至5微米範圍内,具有合理高斯強 度刀佈’工作距離為大於5微米,優先地在2 〇至⑼微米範圍 内,透鏡端部至光束腰部距離與光束腰部處模場直徑之比 值為大於5,以及操作波長在250至2〇〇〇nm範圍内之透鏡至 透鏡之耗合效率為大於65%。雙曲線透鏡1〇4以及GRIN透鏡 1 0 2兩者對達成小模場直徑以及長工作距離為重要的。例 如假如亚不使用GRIN透鏡1〇2,在雙曲線透鏡1〇4端部處光 點大小受限於單模尾瓣光纖丨〇6之MFD,將限制可利用工作 距離為相當小之數值。例如在丨5 5 〇 nm操作波長下最實際單 模光纖之模場直徑在1 〇 —丨2微米範圍内。對於具有丨〇微米 MFD以及38微米發散角度之單模光纖,需要3微米聚焦MF]), 假如只使用雙曲線透鏡最長工作距離受限為丨4微米。 為了更進一步顯示出使用雙曲線透鏡1〇4以及GRIN透 鏡102重要性,參考圖2A,其顯示在雙曲線透鏡端部處之曲 率半徑為光纖透鏡工作距離之函數,光纖透鏡具有雙曲線 透鏡位於單模尾瓣光纖之端部處而並不包含⑽丨N透鏡。附 圖顯示該光纖透鏡具有良好的波前特性。圖2 B顯示出在雔In the embodiment, the following attributes are required ... The mode field diameter (mfd) at the waist of the beam is t at 10 microns, preferably in the range of 2 to 5 microns, with a reasonable Gaussian strength. The cutting cloth 'working distance is greater than 5 microns , Preferably in the range of 20 to ⑼ micrometers, the ratio of the distance from the lens end to the beam waist to the mode field diameter at the beam waist is greater than 5, and the lens-to-lens operating wavelength range is 250 to 2000 nm Consumption efficiency is greater than 65%. Both the hyperbolic lens 104 and the GRIN lens 102 are important to achieve a small mode field diameter and a long working distance. For example, if the GRIN lens 102 is not used, the size of the light spot at the end of the hyperbolic lens 104 is limited to the MFD of the single-mode tail lobe fiber 〇06, which will limit the available working distance to a relatively small value. For example, the mode field diameter of the most practical single-mode fiber at an operating wavelength of 550 nm is in the range of 10-2 microns. For a single-mode fiber with a MFD of 0 μm and a divergence angle of 38 μm, a 3 μm focusing MF is required]). If only a hyperbolic lens is used, the maximum working distance is limited to 4 μm. In order to further show the importance of using hyperbolic lens 104 and GRIN lens 102, refer to FIG. 2A, which shows that the radius of curvature at the end of the hyperbolic lens is a function of the working distance of the fiber lens. Single-mode tail-lobe fibers do not include ⑽ 丨 N lenses at the ends. The attached figure shows that this fiber lens has good wavefront characteristics. Figure 2B shows

曲線透鏡端部處MFD變化為圖2A所示範例之工作距離的函" 數。該附圖顯示聚焦MFD在2· 0-3· 5微米範圍内,在雔曲= 透鏡端部處MFD必需大於1〇微米以達成工作距離為二於2〇 微米。除非GRIN透鏡放置於雙曲線透鏡與單模尾瓣之 間,使用一般單模光纖將無法達成工作距離遠大於2 〇微 因為在雙曲線透鏡端部處MFD將並不受限於置指ρ J I 又丨队π早模尾瓣光纖The MFD change at the end of the curved lens is a function of the working distance of the example shown in FIG. 2A. The figure shows that the focused MFD is in the range of 2.0-3.5 micrometers, and the MFD must be greater than 10 micrometers at the end of the curvature = lens to achieve a working distance of two to 20 micrometers. Unless the GRIN lens is placed between the hyperbolic lens and the single-mode tail lobe, ordinary single-mode optical fibers will not be able to achieve a working distance much greater than 20 micrometers because the MFD at the end of the hyperbolic lens will not be limited to the index ρ JI And π early-mode taillobe fibers

1232967 五、發明說明(7) 之MFD。 圖3顯示光束300傳播通過平面u),(2),(3),以及(4) 。平面(1)包含光學裝置302之末端表面。平面(2)與光纖 透鏡304端部相合。平面(3)與在雙曲線透鏡30 6與陡度折 射率透鏡3 0 8間的界面相合。平面(4 )包含單模尾瓣光纖 310的末端表面。假定光學裝置3〇2 iMFI)等於2w〇以及位 於距離光纖透鏡3 0 4端部距離d處。在該情況下,需要設計 光纖透鏡3 0 4使得在操作波長8下在離光纖透鏡3 0 4端部距 離d處光纖透鏡3〇4聚焦光點大小儘可能接近2wG。在GRIN 透鏡308端部處光束特性以及雙曲線透鏡3〇6特性決定出聚 焦光束之光束大小特性。在一項實施例中,設計光纖透鏡 304處理過程包含(1)計算曲率半徑以及光纖透鏡3〇4端部 處所需要模場以產生聚焦光點大小,(2)使用計算出曲率半 徑決定出雙曲線透鏡3 〇 6分佈,以及(3 ))使用計算出模場以 及尾瓣光纖3 1 〇模場決定出GR I N透鏡參數。下列說明實施 該處理過程之可能的方式。 對於步驟(1 ),在平面(2 )處即在光纖透鏡3 〇 4端部處模 场半徑(w〗)以及曲率半徑(r2)能使用Gaussian光束傳播已 知的公式決定出。例如E d w a r d s等人對w2及r2提出下列式 子: w2=w〇[l + ( λά)2/( ttw0)2]0·5 (2a) r2 = ( π / λ )2 (w〇w2 )2/d (2b) 對於步驟(2),由公式(2a)及(2b)以及公式(la)-(id) 付到曲率半徑(r2)能夠使用來決定雙曲線透鏡3 〇 6分佈。1232967 V. MFD of invention description (7). Figure 3 shows the light beam 300 propagating through the planes u), (2), (3), and (4). The plane (1) includes the end surface of the optical device 302. The plane (2) coincides with the end of the fiber lens 304. The plane (3) coincides with the interface between the hyperbolic lens 306 and the steep refractive index lens 308. Plane (4) contains the end surface of single-mode taillobe fiber 310. It is assumed that the optical device 30 (iMFI) is equal to 2w0 and is located at a distance d from the end of the fiber lens 300. In this case, it is necessary to design the fiber lens 304 so that the focal point size of the fiber lens 304 at the distance d from the end of the fiber lens 300 at the operating wavelength 8 is as close to 2wG as possible. The beam characteristics at the end of the GRIN lens 308 and the 306 characteristics of the hyperbolic lens determine the beam size characteristics of the focused beam. In one embodiment, the process of designing the fiber lens 304 includes (1) calculating the radius of curvature and the required mode field at the end of the fiber lens 304 to generate the focal spot size, and (2) using the calculated radius of curvature to determine the double The distribution of the curve lens 306, and (3)) use the calculated mode field and the tail lobe fiber 3 10 mode field to determine the GR IN lens parameters. The following describes possible ways to implement this process. For step (1), the mode field radius (w) and the curvature radius (r2) at the plane (2), that is, at the end of the fiber lens 304, can be determined using the known formula for Gaussian beam propagation. For example, Edwards and others proposed the following formulas for w2 and r2: w2 = w〇 [l + (λά) 2 / (ttw0) 2] 0 · 5 (2a) r2 = (π / λ) 2 (w〇w2) 2 / d (2b) For step (2), the radius of curvature (r2) given by formulas (2a) and (2b) and formulas (la)-(id) can be used to determine the hyperbolic lens 306 distribution.

第11頁 1232967Page 11 1232967

對於步驟(3),GRIN透鏡308在平面(3)處模場半徑為 w、3以及曲率半徑為5之光束轉變為在平面(4)處模場半徑 為W4以及曲率半徑為心之光束。作為最佳設計,%需要儘 能接近單模尾瓣光纖31〇之模場半徑%。達成該最佳設 计之一種方法為選擇特別單模尾瓣光纖使得'等於可利用 GRiy透鏡308之%。可加以變化地,能夠選擇GRIN透鏡3〇8 之麥數使得%儘可能接近特定Wp值。在該情況下,標準單 模光纖例如為Corning SMF — 28光纖能夠使用作為尾瓣光纖 。(^IN透鏡參數包含心蕊直徑,外徑(包層直徑),折射率, 心蕊與包層間之折射率差值,以及GRIN透鏡之長度。在丄 項實施例中,GR I N透鏡心蕊直徑在5 〇至5 0 〇微米範圍内,以 及外徑在6 0至1 0 0 0微米範圍内。拼接至光學通訊系統中與 所使用光纖相匹配之高矽石組成份中相對折射率差值優^ 地在0· 5至3%範圍内。 炎 、對於雙曲線透鏡情況,其中rs = 〇〇,即在平面(3 )處光束 為平面波前,以及ws = W2, GRIN透鏡30 8長度簡單化為四分之 一間距。在該情況下,模場半徑%及^與⑶丨N透鏡參數相關 ,其關係如下·· w3 · w4 = λ / (冗 n g) ( 3 a ) 其中 g=(2 △YVa (3b) 其中g為聚焦參數,a為GRIN透鏡之心蕊半徑,以及△為grin 透鏡包層與心爲間之相對折射率差值。四分之一間$巨之公 式如下所示·· L/4 = ( 7Γ · a)/[2 · (2 △ju] (3c) 其中△ = (<一n22)/(2 · Πι2) (3d) 其中L為間距,r為01?〇透鏡心蕊之折射率,% gGRIN透鏡 1232967For step (3), the GRIN lens 308 converts a light beam with a mode field radius w, 3 and a curvature radius of 5 at the plane (3) into a light beam with a mode field radius W4 and a curvature radius at the plane (4). As an optimal design,% needs to be as close as possible to the mode field radius% of single mode tail lobe fiber 31. One way to achieve this optimal design is to choose a special single-mode tail-lobe fiber such that it is equal to '308% of the available GRiy lens. Alternatively, the number of wheats of the GRIN lens 308 can be selected so that% is as close to a specific Wp value as possible. In this case, a standard single-mode fiber such as a Corning SMF-28 fiber can be used as the tail lobe fiber. (^ IN lens parameters include core diameter, outer diameter (cladding diameter), refractive index, refractive index difference between core and cladding, and GRIN lens length. In the embodiment described above, the GR IN lens core The diameter is in the range of 500 to 500 microns, and the outer diameter is in the range of 60 to 1000 microns. Spliced to the relative refractive index difference in the high silica component matching the optical fiber used in the optical communication system It is optimally in the range of 0.5 to 3%. Yan, for the case of hyperbolic lenses, where rs = 〇〇, that is, the beam is a plane wavefront at plane (3), and ws = W2, GRIN lens 30 8 is simple in length In this case, the mode field radius% and ^ are related to the ⑶ 丨 N lens parameters, and their relationship is as follows: · w3 · w4 = λ / (redundant ng) (3 a) where g = ( 2 △ YVa (3b) where g is the focus parameter, a is the core radius of the GRIN lens, and △ is the relative refractive index difference between the cladding and the core of the grin lens. L · 4 = (7Γ · a) / [2 · (2 △ ju) (3c) where △ = (< 一 n22) / (2 · Πι2) (3d) where L is between Distance, r is the refractive index of the lens core,% gGRIN lens 1232967

包層之折射率。 對於非四分之一間距GRIN透鏡,高斯光束轉變能夠藉 由Emkey專人發展出ABCD矩陣處理法計算(Emkey,wiiiiam L· and Jack, Curtis A·,Analysis and Evaluation ofRefractive index of the cladding. For non-quarter-pitch GRIN lenses, Gaussian beam transitions can be calculated by Emkey's expert developed the ABCD matrix processing method (Emkey, wiiiiam L. and Jack, Curtis A., Analysis and Evaluation of

Grades-Index Fiber Lenses" Journal of LightwaveGrades-Index Fiber Lenses " Journal of Lightwave

Technology, V〇l· LT-5, No· 9, (1987): 1156-1164)。 該方法使用複雜光束參數’’ q ”,其定義如下: l/q(z)= l/r(z) - i λ/( 7Γ w1 2(z)n) (4a)Technology, Vol. LT-5, No. 9, (1987): 1156-1164). This method uses a complex beam parameter ‘’ q ”, which is defined as follows: l / q (z) = l / r (z)-i λ / (7Γ w1 2 (z) n) (4a)

其中r為高斯光束之曲率半徑,w為模場半徑,λ為自由空間 波長,以及η為折射率。q(z)由含有單模尾瓣光纖31 〇端部 表面之平面(4)轉變至含有光纖透鏡3〇4最終光束腰部單模 尾瓣光纖3 1 0端部表面之平面(1 ),其以下列式子表示: q1i::(Aq4 + B) / (Cq4 + D) (4b) 其中屮及1分別為平面(1 )及(4 )處之複數光束參數。 項目A,B,C,D為與平面(4)至平面(1)光線參數相關之 光束矩陣元素以及由下列式子得到: ^ A Bn 〜C DJ =从丨M2M3M4 (5a)Where r is the curvature radius of the Gaussian beam, w is the mode field radius, λ is the free-space wavelength, and η is the refractive index. q (z) is changed from the plane (4) containing the end surface of the single-mode tail lobe fiber 31 ° to the plane (1) of the end surface of the single-mode tail lobe fiber 30 1 containing the final beam waist of the fiber lens 30, which It is expressed by the following formula: q1i: :( Aq4 + B) / (Cq4 + D) (4b) where 屮 and 1 are the complex beam parameters at planes (1) and (4), respectively. Items A, B, C, and D are the beam matrix elements related to the light parameters of the plane (4) to plane (1) and are obtained by the following formulas: ^ A Bn ~ C DJ = from M2M3M4 (5a)

其中為平面(1)與平面(2 )間光線參數之轉變以及表示如 下:Among them, the transformation and expression of the light parameters between the plane (1) and the plane (2) are as follows:

第13頁 1 〇 1 1 (5b) 2 其中z為相對於雙曲線透鏡端部之最終光束腰部。M2為在 雙曲線透鏡中光線參數轉變以及表示如下: 1232967 五、發明說明(10) r 1 〇 ^ M2 = L-(n2-n!)/!^ ni/n2 J (5c)Page 13 1 〇 1 1 (5b) 2 where z is the final beam waist relative to the end of the hyperbolic lens. M2 is the light parameter transition in the hyperbolic lens and is expressed as follows: 1232967 V. Description of the invention (10) r 1 〇 ^ M2 = L- (n2-n!) /! ^ Ni / n2 J (5c)

Mg為G R I N透鏡中光線參數之轉變以及表示如下· ,cos(gL) sin(gL)/gl M3= [-gsin(gL) cos(gL) J (5c) 其中g為GRIN透鏡長度為L之公式(3b)所示以及折射率分佈 為: n’(r) = n(l-g2r2)〇.5 (5d) 其中r為距離透鏡中心軸之徑向位置。牝是光線參數由折 射率為ηι介質轉變為平面(4)處^以及表示如下· Γ 1 0 1 ’ · Μ4= I 0 ^/n j (5e) GR I N透鏡之聚焦茶數g以及長度乙能夠加以調整使得在平面 (4),處模u場半徑W4加以轉變儘可能地接近光束通過grin透 鏡後之單模尾瓣光纖的模場半徑%。 、雙曲線透鏡將準直光束聚焦i有限繞射之光點,但是 無法將非準直光束聚焦至有限繞射光點,因為其無法使所 有光線之光束路徑在一點為相等的。對於具有四分之一間 距之GRIN透鏡,在GRIN透鏡輸出面處之光束為準直的。因 而假如雙曲線透鏡接續四分之一間距之GRIN透鏡,由 尾瓣光纖發出光束將聚焦為有限繞射之光點。對於不具有 四分之一間距之GRIN透鏡,在GRIN透鏡端部處之輸 將f散或會聚,其決定於GRIN透鏡之長度是否短於或長於 四分之一間距。因而,(^⑽透鏡優先地設計為或接近:分 1232967 五、發明說明(11) 之一間距。人們了解存在一些應用為具有非四分之一間距 之GRIN透鏡。對於這些應用,我們提供接近雙曲線透鏡,其 能夠聚焦非準直光束為有限繞射之光點。 、 底下表1顯示出輸出光束之曲率半徑(R)及MFD為GRIN 透f長度(z)之函數。在計算中所使用參數為··心蕊半徑二 相對折射率差值八二0.01,操作波長λ= 1 550ηιη,以 早核尾瓣光纖之模場半徑丨〇. 6微米。 表1 ζ(毫米) 0.15 16 17 18 19 21 22 23 24 25 26 27 0.2776 MFD(微米) 9. 544436065 9.880469672 1 0. 1 9 672 1 03 10.49111006 10. 76181305 11. 00723608 11·22599466 11.41689802 11.57893731 11.7112765 11.81324573 11.88433631 11. 92419729 11. 9334793 R(毫米) 0.276522 0.302607 0.333614 0.370933 0.416623 0.473827 0.547572 0.646393 0.786001 0.99881 1.364093 2.140502 4.933849 472. 7168Mg is the transformation of the light parameters in the GRIN lens and is expressed as follows, cos (gL) sin (gL) / gl M3 = [-gsin (gL) cos (gL) J (5c) where g is the formula for the length of the GRIN lens L (3b) and the refractive index profile are: n '(r) = n (l-g2r2) 0.5 (5d) where r is the radial position from the central axis of the lens.牝 is the transformation of the light parameter from the refractive index medium to the plane (4) ^ and is expressed as follows: Γ 1 0 1 '· Μ4 = I 0 ^ / nj (5e) GR IN lens focus tea number g and length B can It is adjusted so that in plane (4), the mode u field radius W4 is transformed as close as possible to the mode field radius% of the single-mode tail lobe fiber after the beam passes through the grin lens. The hyperbolic lens focuses the collimated beam on the spot of limited diffraction, but it cannot focus the non-collimated beam on the spot of limited diffraction because it cannot make the beam paths of all rays equal at one point. For a GRIN lens with a quarter pitch, the beam at the output surface of the GRIN lens is collimated. Therefore, if a hyperbolic lens is connected to a quarter pitch GRIN lens, the light beam emitted by the tail lobe fiber will be focused to a point of limited diffraction. For GRIN lenses without a quarter pitch, the f at the end of the GRIN lens will diverge or converge, depending on whether the length of the GRIN lens is shorter or longer than a quarter pitch. Therefore, the lens is preferentially designed to be close to: minute 1232967 V. One of the pitches of invention description (11). It is known that there are some applications for GRIN lenses with non-quarter pitch. For these applications, we provide close Hyperbolic lens, which can focus non-collimated light beams to the point of limited diffraction. Table 1 below shows the radius of curvature (R) and MFD of the output beam as a function of the length (z) of the GRIN transmission f. The parameters used are: · the radii of the heart core, the relative refractive index difference of 82, 0.01, the operating wavelength λ = 1 550 ηη, and the mode field radius of the early core tail lobe fiber 丨 0.6 microns. Table 1 ζ (mm) 0.15 16 17 18 19 21 22 23 24 25 26 27 0.2776 MFD (micron) 9. 544436065 9.880469672 1 0. 1 9 672 1 03 10.49111006 10. 76181305 11. 00723608 11.22599466 11.41689802 11.57893731 11.7112765 11.81324573 11.88433631 11. 92419729 11. 9334793 R (mm ) 0.276522 0.302607 0.333614 0.370933 0.416623 0.473827 0.547572 0.646393 0.786001 0.99881 1.364093 2.140502 4.933849 472. 7168

第15頁 1232967 0· 28 0· 29 0· 30 0· 31 0· 32 0. 33 0· 34 0· 35 0· 36 0· 37 0· 38 0· 39 〇· 4 五、發明說明(⑵ 11·93263319 -16· 3388 11. 90960273 -3. 07433 11.85521866 -1.69397 11. 76974837 -1·16665 11. 65361566 -0.88767 11. 50740347 -0.71467 11. 33185804 -0.59666 11.12789463 -0.51087 10. 89660521 -0.44559 10. 63926875 -0.39422 10.3573647 -0.35272 10. 05259072 -0. 31854 9.726885718 -0.28996 、,對於表1所顯示設計,陡度折射率之間距大約為1 π 〇微 米1或1 · 11毫米)。使用公式(3 C ),四分之一間距大約為2 7 7 • 6 U米(或〇 · 2 7 7 6毫米)。對於接近四分之一間距之GR〗N透 鏡長度,R為非常大。對於GRIN透鏡長度低於四分之一間距 ,R為發散。例如,對於GRIN透鏡長度為26〇微米,R大約為 2· 14毫米。對於GRIN透鏡長度大於四分之一間距透 鏡,R為會聚的。例如,對於GRIN透鏡長度為29〇微米,R大約 為-3. 07毫米。對於R為會聚或發散之⑶^透鏡長度具有 改正係數之改良雙曲線形狀的接近雙曲線形狀為需要的以 達成有限繞射聚焦光點,該改正係數將補償光束曲率。 接近雙曲線透鏡分佈能夠藉由計算光學與物理路徑長Page 15 1232967 0 · 28 0 · 29 0 · 30 0 · 31 0 · 32 0. 33 0 · 34 0 · 35 0 · 36 0 · 37 0 · 38 0 · 39 〇 · 4 V. Description of the invention (⑵ 11 93233319 -16 3388 11. 90960273 -3. 07433 11.85521866 -1.69397 11. 76974837 -1 · 16665 11. 65361566 -0.88767 11. 50740347 -0.71467 11. 33185804 -0.59666 11.12789463 -0.51087 10. 89660521 -0.44559 10. 63926875- 0.39422 10.3573647 -0.35272 10. 05259072 -0. 31854 9.726885718 -0.28996 (for the design shown in Table 1, the distance between the steep refractive indices is approximately 1 π um 1 or 1.11 mm). Using the formula (3 C), the quarter pitch is approximately 2 7 7 • 6 U meters (or 0.27 7 6 mm). For GR lens lengths close to a quarter of the distance, N is very large. For GRIN lens lengths below a quarter pitch, R is the divergence. For example, for a GRIN lens length of 26 μm, R is approximately 2.14 mm. For GRIN lens lengths greater than a quarter pitch lens, R is convergent. For example, for a GRIN lens length of 29 microns, R is approximately -3.07 mm. The approximate hyperbolic shape of the modified hyperbolic shape where R is a converging or diverging lens length with a correction coefficient is needed to achieve a limited diffractive focused spot, and the correction coefficient will compensate the beam curvature. Near hyperbolic lens distribution can be calculated by optical and physical path length

1232967 五、發明說明(13) 度k化決定出具有合理精確度,其需要對雙曲線分佈作變 化以補彳員光束曲率。圖4 A顯示出平面光束波前4 〇 〇以及發 散光束波前402,假如GRIN透鏡長度為或接近四分之一間距 將產生該平面光束波前,假如GRIN透鏡長度短於四分之一 間距將產生發散光束波前。與平面光束波前40 0之光學路 徑比較,發散光束波前402之光學路徑減小偏離光學中心軸 。光學路徑長度差值LQpt (r )為離光學中心軸徑向距離之 函數,其能夠使用下列公式決定出: L〇pt t ( r ) ( 1-cos φ) (6a)1232967 V. Description of the invention (13) The degree k is determined to have reasonable accuracy, which needs to change the hyperbolic distribution to compensate for the curvature of the beam of the member. Figure 4 A shows the plane beam wavefront 400 and the divergent beam wavefront 402. If the GRIN lens length is at or near a quarter pitch, the plane beam wavefront will be generated. If the GRIN lens length is shorter than a quarter pitch A divergent beam wavefront will be generated. Compared with the optical path of the plane beam wavefront 400, the optical path of the divergent beam wavefront 402 decreases from the optical center axis. The optical path length difference LQpt (r) is a function of the radial distance from the optical center axis, which can be determined using the following formula: L〇pt t (r) (1-cos φ) (6a)

其中 P rsirr1 (r/R) (6b) 物理路徑長度差值Lp(r)以下列式子表示:Where P rsirr1 (r / R) (6b) The difference in physical path length Lp (r) is expressed by the following formula:

Lp ( r) = Lopt (r)/(n-l) (6c)Lp (r) = Lopt (r) / (n-l) (6c)

ϊ:11為透鏡材料之折射率。在類似的形式中,GRIN透鏡I 間距之接近雙曲線形狀即會聚光束波前截 離。紅5亥情況下’光學路徑長度之差值需要提高為 中:t距離之函數。圖4β顯示對雙曲線形狀作 束:二:達成接近雙曲線形狀4〇8,其能夠將發散夫 來波刚聚焦為有限繞射之光點。ϊ: 11 is the refractive index of the lens material. In a similar form, the near-hyperbolic shape of the GRIN lens I pitch is the wavefront interception of the focused beam. In the case of Red 5 ', the difference in the optical path length needs to be increased as a function of the medium: t distance. Figure 4β shows that the shape of the hyperbola is bundled. Second, it is close to the hyperbola shape 408, which can focus the divergent wave just to the point of limited diffraction.

米之^ 鏡長度為2QG微米以及曲率半徑為473. 8德 雙曲唆::η離光學中心軸徑向位置函數關係之偏離 雙曲線形狀的光學路徑長度列出於表2中。 表2 Γ (微米)L。# 2 0.004228The length of the mirror is 2QG microns and the radius of curvature is 473.8. Hyperbolic 唆: η Deviation from the radial position function of the optical center axis Hyperbolic optical path lengths are listed in Table 2. Table 2 Γ (microns) L. # 2 0.004228

1232967 五、發明說明(14) 4 6 8 10 12 14 16 18 20 22 0· 016913 °· 038054 0.067652 0.105704 °·152212 °· 207173 °· 270587 0.342453 0.42277 °· 511536 物理路梭長度差值由光學路徑長度除以(n — 丨)計筲 二』為透鏡材料之折射率。如表2所示,對於大的曲率半 位,、光學中心軸小距離之雙曲線形狀的改變為相當 不=於小的曲率半徑,偏離光學中心軸之偏差變交大 :述所顯示計算係顯示出決定接近雙曲線形狀 :::的:r吏用近似透鏡設計模擬對接近雙曲線形= 具洚5〒本《明,冑需要時使用於光纖透鏡中之每—grin 間距不同。因而,依據本發明能夠使用 N透鏡以使用於各種應用中。由於毛 胚折射率为佈亚不需要改變,製造毛胚處理過 GRI N透鏡處理過程可加以簡化。因而能 "^ 作為不同模轉變之應用。毛胚優先地抽目同的毛胚 以作為不同的應用,以及所形成 拉至不同的直徑 处蜆犯夠切斷為不同1232967 V. Description of the invention (14) 4 6 8 10 12 14 16 18 20 22 0 · 016913 ° · 038054 0.067652 0.105704 ° · 152212 ° · 207173 ° · 270587 0.342453 0.42277 ° · 511536 The difference between the physical shuttle length and the optical path length Divided by (n — 丨), the second refractive index is the refractive index of the lens material. As shown in Table 2, for a large half-curvature, the change in the shape of the hyperbola with a small distance from the optical center axis is quite not equal to = a small radius of curvature, and the deviation from the optical center axis becomes large: the calculations shown above show that Determine the approximate hyperbolic shape :::: r Use approximate lens design simulation to approximate the hyperbolic shape = 洚 5〒 This book shows that each -grin spacing used in fiber optic lenses when needed is different. Thus, N lenses can be used in accordance with the present invention for use in various applications. Since the refractive index of the germ germ does not need to be changed, the process of manufacturing the germ germ treated GRI N lens can be simplified. Therefore, it can be used as an application of different mode transformations. The hair embryos are preferentially drawn from the same hair embryos for different applications, and formed to different diameters.

1232967 --- 八^,以付合不同應用之規格。GR1Ν參數例如GR1Ν透鏡四 間距之GR I Ν透鏡參數可使用先前所說明處理步驟決 四八f本發明中,接近雙曲線透鏡去除GRIN透鏡必需為 & :之間距以達成有限繞射光點之限制。接近雙曲線形 =效地結合雙曲線透鏡以及改正殘餘曲率之球面透鏡的 工力月6 。 ,一項非限制性之範例中,使用Corning SMF-28光纖 乍為單模尾瓣光纖。尾瓣光纖拼接至GRIN透鏡之一端,以 及接近雙曲線透鏡形成於GRIN透鏡另外一端。雙曲線透鏡 端部與拼接間之距離大約為275微米。GRIN透鏡心蕊直徑 為5 〇 Μ米以及外徑為丨2 5微米。gr I n透鏡心蕊與包層間之 ,對折射率差值為1 %。圖5顯示遠場強度分佈曲線圖為該 範例遠場發散角度之函數。在丨^^微米處達成特性,以及 光纖透鏡遠場全寬度一半最大值(FWHM)發散角度約為2〇度 。曲線圖顯示強度為高斯分佈。 本發明光纖透鏡一項應用為在光纖與半導體光學放大 器(S 0 A)或其他波導間之訊號|禺合。這些應用之一般規格 包含:MFD < 3· 0微米,至光束腰部距離為大於丨〇微米,折回 損耗> 4 5 d B,以及強固透鏡形狀以防止元件在組裝過程中破 裂。作為S 0 A波導應用,光纖透鏡必需將尾瓣光纖模場轉變 以與S0A波導模場相匹配。目前考慮情況下s〇a裝置數目以 及波導具有正常之MFD。在1550nm下S0A之MFD在2· 5-3. 8 微米範圍内。該數值相對應於遠場全寬度一半最大值發散 角度高達18-22度。在大約13.5%(l/e2)強度值下遠場發散1232967 --- Eight ^ to meet the specifications of different applications. GR1N parameters such as GR1N lens with four pitches of GR IN lens parameters can use the previously described processing steps. In the present invention, the close hyperbolic lens to remove the GRIN lens must be &: spacing to achieve the limit of limited diffraction light points. . Close to hyperbola = the labor force of combining a hyperbolic lens and a spherical lens to correct the residual curvature 6. In a non-limiting example, the use of Corning SMF-28 fiber is a single-mode taillobe fiber. The tail lobe fiber is spliced to one end of the GRIN lens, and close to the hyperbolic lens is formed on the other end of the GRIN lens. The distance between the end of the hyperbolic lens and the stitching is approximately 275 microns. The GRIN lens has a core diameter of 50 μm and an outer diameter of 25 μm. The difference between the refractive index of the gr I n lens core and the cladding is 1%. Figure 5 shows the far-field intensity profile as a function of the far-field divergence angle of this example. The characteristics are achieved at ^^ μm, and the divergence angle of the half-maximum value (FWHM) of the full field width of the fiber lens is about 20 degrees. The graph shows that the intensity is Gaussian. One application of the optical fiber lens of the present invention is the coupling of signals between optical fibers and semiconductor optical amplifiers (S 0 A) or other waveguides. The general specifications for these applications include: MFD < 3.0 microns, distance to the beam waist greater than 10 microns, foldback loss > 4 5 d B, and strong lens shape to prevent components from cracking during assembly. For S 0 A waveguide applications, fiber optic lenses must transform the tail lobe fiber mode field to match the S 0A waveguide mode field. The number of soa devices under consideration and the waveguide have normal MFD are currently considered. The MFD of SOA at 1550nm is in the range of 2.5-3.8 microns. This value corresponds to a maximum divergence angle of up to 18-22 degrees at half the full width of the far field. Far-field divergence at approximately 13.5% (l / e2) intensity value

第19頁 1232967 五、發明說明(16) --- 一半角度以下列式子表示:Q - 乂1、π'、 (7) 其中又為光線之波長以及Wg為光束模場半徨。為2%。 對SOA組裝處理過程以及光纖透鏡所需要特性具有1影 響之另一項屬性為S0A具有角度之小刻面。為了減^向^ 反射,SOA小刻面形成角度大約為丨5度。具有一個角度之小 刻面對小刻面邊緣與透鏡端部間之間隙為合理的為^常重 =的。否則光纖透鏡對準S0A以最佳輕合時,光纖透鏡接觸 SpA小刻面之可能性將提高以及使其破壞。目前在^⑼· 紅作波長下MFD在2· 5-3· 8微米範圍内大部份可利用光纖透 鏡具有工作距離為小至5 —1〇微米。因而將工作距 大於20微米為有益的以改善其屬性以及減小組裝過程 中破壞SOA之可能性。同時s〇A對向後反射十分靈敏。假如 工作距離相當大,則少部份由光纖透鏡端部之向後反射將 到綱。此將改善S0A之性能及穩定性。…射將 一 SOA應^用另外一項特性為強度分佈以及光纖透鏡聚焦 2線之波前特性。波前特性應該與SOA及尾瓣光纖間之模 f強度分佈相匹配,其兩者尺寸,強度分佈以及相之間儘可 月b地接近。此表示經由光纖透鏡由尾瓣光纖發出聚焦光線 j尺寸在2. 5-3. 8微米範圍内以及儘可能為高斯分佈。目 刖可利用光纖透鏡在較大MF])達成該特性,但是在較小MFI) 了並不佳。此導致較高耦合損耗以及使SOA性能惡化。改 善該性能為有益的。 另外一項屬性為光纖透鏡之強固性。例如假如光纖透 鏡没計使得JL且亡也 八八有非吊小的以及跪弱的端部,在包含配製Page 19 1232967 V. Description of the invention (16) --- The half angle is expressed by the following formula: Q-乂 1, π ', (7) where is the wavelength of the light and Wg is the beam mode field half chirp. Is 2%. Another attribute that has an effect on the SOA assembly process and the characteristics required for fiber optic lenses is the small facet of SOA with an angle. In order to reduce the reflection from ^ to ^, the angle of formation of the facet of the SOA is approximately 5 degrees. The gap between the small facet with an angle and the edge of the small facet and the end of the lens is reasonable. Otherwise, when the fiber lens is aligned with SOA for optimal lightening, the possibility of the fiber lens contacting the small facet of SpA will be increased and destroyed. At present, most of the available MFDs in the range of 2 · 5-3 · 8 microns at ^ ⑼ · red operating wavelengths have working distances as small as 5-10 microns. Therefore, working distances greater than 20 microns are beneficial to improve their properties and reduce the possibility of damaging SOA during assembly. At the same time, SOA is very sensitive to backward reflection. If the working distance is relatively large, a small part of the back reflection from the end of the fiber lens will reach the outline. This will improve the performance and stability of SOA. … Shooting a SOA should use another characteristic for the intensity distribution and the wavefront characteristics of the two lines focused by the fiber lens. The wavefront characteristics should match the mode f intensity distribution between the SOA and the tail lobe fiber, and their size, intensity distribution, and phase should be as close as possible to each other. This means that the focused light emitted by the tail lobe fiber via the fiber lens is j-sized in the range of 2. 5-3. 8 microns and as Gaussian as possible. The objective is to use fiber optic lenses to achieve this characteristic at larger MF]), but not so good at smaller MFI). This results in higher coupling losses and worsens SOA performance. It is beneficial to improve this performance. Another property is the robustness of fiber optic lenses. For example, if the fiber optic lens is not designed to make JL and die, there are non-hanging small and weak ends, including the preparation

1232967 五、發明說明(17) 媿鏡以組裝至s〇 A包裝内之各種處理步驟過程中,透鏡 纖端能惡V實際上強固並不脆弱之光 邛將為有用的屬性。另外一項有用的屬性為透鏡設計 处理過程為穩定的以及對處理過程具有較大誤差。例如 2透鏡端部曲率半徑為10微米,曲率半徑非常小的變化 等產生1 0%變化以及顯著地改變聚焦特性。在25 半徑設計中相同的丨微米變化並不會相當使性 化。在本發明中,部份這些問題將得到解決及改^陡此心 本發明光纖透鏡另外一項應用為光纖與雷射二極體間 耦合。使用作為傳送雷射之雷射二極體具有高達4〇度 通場發散角度,其在155〇nm波長下對應MFDg〇 8微米。雷 射光線在X及y方向之長寬比在丨至4之間。透鏡腳越相匹 配,耦合效率越高。在本發明中光纖透鏡通常加以齒輪連 5 ί向裝置移動,使其長寬比接近1。至光束腰部距離大於 〇,米為需要的,因為其將使透鏡在組裝過程中避免受損 。該應用之光纖透鏡優先特性為如下:在丨550㈣操作波長 下MFD&lt;3. 0微米或發散角度大於22度,折回損耗&gt;45dB,至光 束腰部距離&gt;10微米,及透鏡至透鏡耦合效率為大於9〇%。 本發明光纖透鏡另外一項應用為通過光纖以及感測哭 間訊號搞合、。不像上述應用,其中不只光點尺寸同時強 刀佈X及相波剞為差相關,感測器應用需要控制光點大小 以及功率大小在某—特定範圍。作為該應用,小於3_5 光大小以及工作距離高達5〇_6〇微米將有益於低成本之、 組件。 1232967 、發明說明(18) 本發明光纖透鏡提供一項或多項優點。光纖透&amp; 使光學裝置間之訊號耦合。與漸變透鏡比較,在光纖透鏡° 端部處形成之雙曲線透鏡或接近雙曲線透鏡機械方 % 固的以及較不容易受損以及性能產生惡化。⑽”透^ 芩數以及雙曲線或接近雙曲線透鏡之形狀能以 ;=FD以及合理的高斯強度圖案以及長工作距^ 鏡將改正非準直光ί之、;ί::繞射光點。接近雙曲線透 限繞射光點。束之波則曲率’其能夠使光束聚焦為有 雖然本發明已對數個每 施例之改變,變化,以及同等例加以說明,該這些實 申請專利範圍包含所有這 3屬於本發明範圍内。下列 於本發明精神以及範圍:文交,變化,以及同等物,其屬 1232967 圖式簡單說明 ~ 五、附圖簡單說明 本發明藉由非限制用範例列,下列附圖列舉出,附圖中 相同的參考數字表示相同的元件,以及 第一圖A為本發明光纖透鏡實施例示意圖。 第一圖B為雙曲線透轉之幾何示意圖。 第一圖C顯示出光纖透鏡,其具有無心蕊間隔器桿件放 置於GRIN透鏡與折射率透鏡之間。 第二圖A為雙曲線透鏡端部處曲率半徑曲線圖為工作 距離之函數,該情況中雙曲線透鏡放置於單模尾瓣光纖端 部處。 、 第二圖B顯示出雙曲線透鏡端部處模場直徑變化為第 —圖A所顯示释例工作距離之函數。 苐二圖為光線傳播通過本發明光纖透鏡之示意圖。 第四圖A為平面光束波前以及發散光束波前之幾何表 示圖。 第四圖B為對雙曲線形狀作變化以形成接近雙曲線透 鏡之不意圖 第五圖為本發明實施例光纖透鏡遠場強度分佈之曲線 圖為遠場發散角度之函數關係。 / 附圖元件數字符號說明: 光纖透鏡100;陡度折射率透鏡102;折射性透鏡1〇4 ;尾瓣光纖1 0 6 ;心蕊1 0 8 ;包層11 〇 ;雙曲線表面11 2 、、 蕊114;包層116;平面118;光束300;光學裝置3〇21 纖透鏡304;雙曲線透鏡306;陡度折射率读於 卞巡鏡3 0 8 ;尾瓣1232967 V. Description of the invention (17) During the various processing steps of assembling the lens into the package of SOA, the fiber end of the lens can actually strengthen the light, which is not fragile. It will be a useful attribute. Another useful property is that the lens design process is stable and has a large error in the process. For example, the curvature radius of the lens end is 10 micrometers, a very small change in the radius of curvature, etc. produces a 10% change and significantly changes the focusing characteristics. The same micron variation in a 25-radius design is not quite performance-intensive. In the present invention, some of these problems will be solved and improved. Another application of the optical fiber lens of the present invention is the coupling between the optical fiber and the laser diode. Laser diodes used as transmission lasers have a pass-field divergence angle of up to 40 degrees, which corresponds to MFDg 0.8 microns at a wavelength of 1550 nm. The aspect ratio of the laser rays in the X and y directions is between 4 and 4. The more matching the lens feet, the higher the coupling efficiency. In the present invention, the optical fiber lens is usually moved to the device by gears 5 so that its aspect ratio approaches 1. The distance to the waist of the beam is greater than 0. Meters are needed because they will prevent damage to the lens during assembly. The preferred characteristics of fiber optic lenses for this application are as follows: MFD <3.0 micron or divergence angle greater than 22 degrees, foldback loss &gt; 45dB, beam waist distance &gt; 10 micron, and lens-to-lens coupling efficiency at 550 ° Is more than 90%. Another application of the optical fiber lens of the present invention is to combine signals through optical fibers and sensing signals. Unlike the above applications, where not only the spot size is also strong, the knife cloth X and the phase wave are differentially related. Sensor applications need to control the spot size and power to a certain specific range. For this application, light sizes smaller than 3-5 and working distances as high as 50-60 microns will benefit low-cost components. 1232967, description of the invention (18) The fiber optic lens of the present invention provides one or more advantages. Fiber Optic &amp; Coupling signals between optical devices. Compared with the graded lens, the hyperbolic lens formed at the end of the fiber lens or near the hyperbolic lens is mechanically solid and less susceptible to damage and performance degradation. The “透” number and the shape of the hyperbolic or near-hyperbolic lens can be changed; = FD and a reasonable Gaussian intensity pattern and a long working distance ^ The mirror will correct the non-collimated light; ί :: diffracted light spot. It is close to the hyperbolic transmission limit diffraction light point. The wave of the beam has a curvature 'which can focus the light beam. Although the present invention has been described for several changes, variations, and equivalent examples of each embodiment, the scope of these actual patent applications includes all These 3 belong to the scope of the present invention. The following are within the spirit and scope of the present invention: text, changes, and equivalents, which belong to 1232967. A brief description of the drawings ~ V. The drawings briefly illustrate the present invention through non-limiting examples. The following The drawings enumerate that the same reference numerals in the drawings indicate the same components, and the first diagram A is a schematic diagram of an embodiment of the optical fiber lens of the present invention. The first diagram B is a geometric diagram of hyperbolic transmission. The first diagram C shows A fiber optic lens with a coreless spacer is placed between the GRIN lens and the refractive index lens. The second graph A is the curve of the curvature radius at the end of the hyperbolic lens as a function of working distance. In this case, the hyperbolic lens is placed at the end of the single-mode tail lobe fiber. The second graph B shows that the change in the mode field diameter at the end of the hyperbolic lens is a function of the working distance of the example shown in Fig. A. 苐 二The figure is a schematic diagram of light propagating through the optical fiber lens of the present invention. The fourth figure A is a geometric representation of the wavefront of a planar beam and the wavefront of a divergent beam. The fourth figure B is a variation of the shape of a hyperbola to form a hyperbolic lens. It is intended that the fifth figure is a graph of the far-field intensity distribution of the optical fiber lens according to the embodiment of the present invention as a function of the far-field divergence angle. 〇4; tail lobe fiber 106; heart core 108; cladding 11 〇; hyperbolic surface 112, core 114; cladding 116; plane 118; light beam 300; optical device 3021 fiber lens 304; Hyperbolic lens 306; steep index of refraction read in 卞 inspection mirror 3 0 8; tail lobe

1232967 圖式簡單說明 光纖310;平面光束波前400;發散光束波前402;光轴 404;雙曲線形狀40 6;接近雙曲線形狀4 08。1232967 Simple illustration of the optical fiber 310; plane wavefront 400; divergent beam wavefront 402; optical axis 404; hyperbolic shape 40 6; near hyperbolic shape 4 08.

Claims (1)

1232967 六、申請專利範圍 1· 一種光纖透鏡,其包含: 陡度折射率透鏡· 陡度折射率第-端部處;以及 折射率第二端部處於陡度 2準==:;::射項之之二透鏡,其中…形狀將 聚焦為有限繞射之光點補仏先束曲率以及使非準直光束 4 ^ ^ ttin ^(^t fs^ ^# ^ ^ 透鏡,其中間隔_放 6為=二ΪΓ:]範圍第1項之光纖透鏡,其中光點模場直徑 圍第6項之光纖透…光點之模場直 =::;5:範米圍。第6項之光纖透…光纖透鏡之1 9作專利範圍第6項之光纖魏,中光纖透鏡之卫 作距離在20至60微米範圍内。 冑透鏡之工 10.依據巾§t專利範圍第6項之光纖透鏡,其巾折射性光纖 第25頁 1232967 六 申請專利範圍 透鏡端部至光束腰部之距 為大於5。 一九束腰°卩處模場直徑之比值 11.依據申請專利範圍第6項 透鏡心蕊直徑在50至500微米範圍内。中陡度折射率 1 2.依據申請專利範圍第6項 透鏡外徑在60至1〇〇〇微米範圍内、’。、兄’&quot;中陡度折射率 1 3.依據申請專利範圍第丨項之光纖透鏡,其 透鏡之相對折射率差值在(35至3%範圍内。&amp;度折射率 1 4依據申請專利範圍第i項之光纖透 作波長在250至200〇niM|圍内。 T光義透鏡刼 15· —種光纖透鏡,其包含.· 單模光纖;以及 透鏡放置於單模光纖之端部處·, 其中由透鏡端部發出光束 1 〇微米以及透鏡端部至光束 直徑之比值為大於5。 之光束腰部處模場直徑為小於 腰部之距離與光束腰部處模場 1 6 ·依據申請專利範圍第丨5項之光纖透鏡,其中透鏡由雔 線或接近雙曲線透鏡所構成,該透鏡放置於於陡度折又 透鏡之端部處。 千 H·依據申請專利範圍第16項之光纖透鏡,其中間隔器放 於雙曲線或接近雙曲線透鏡與陡度折射率透鏡之間。 18· 種製造光纖透鏡之方法,其包含: 拼接單模光纖至陡度折射率光纖; 切斷陡度折射率光纖為所需要長度;1232967 VI. Patent application scope 1. A fiber optic lens including: a steepness refractive index lens at the first end of the steepness refractive index; and a second end of the refractive index at the steepness 2 quasi ==:; :: Item 2 of the lens, in which the shape will focus on the point of finite diffraction to compensate for the first beam curvature and make the non-collimated beam 4 ^ ^ ttin ^ (^ t fs ^ ^ # ^ ^ lens, where the interval _ put 6 == 2ΪΓ:] The fiber lens of the first item in the range, in which the mode field diameter of the light spot is around the fiber transmission of the sixth item ... The mode field of the light spot is straight = ::; 5: Fan Mi Wai. The fiber transmission of the sixth item is … 19 of the fiber optic lens is used as the optical fiber in item 6 of the patent scope, and the protective distance of the medium fiber optic lens is in the range of 20 to 60 microns. Refractive optical fiber, page 25, 1232967 Six patent applications. The distance between the lens end and the beam waist is greater than 5. 19. The ratio of the mode field diameter at nine beam waists ° 11. According to the patent application scope, the lens core diameter In the range of 50 to 500 microns. Refractive index of medium steepness 1 2. According to the scope of patent application No. 6 lens outer diameter In the range of 60 to 1000 micrometers, the refractive index of '., Brother' &quot; medium steepness &quot; 1 3. According to the fiber optic lens of the patent application scope, the relative refractive index difference of the lens is between (35 to 3 Within the range of%. &Amp; Degree of refractive index 1 4 According to the scope of application patent scope, the optical fiber transmission wavelength is within the range of 250 to 200 nm. T optical sense lens 刼 15 · — a kind of fiber lens, which includes. · Single mode Optical fiber; and the lens is placed at the end of the single-mode fiber, where the light beam emitted by the lens end is 10 microns and the ratio of the lens end to the beam diameter is greater than 5. The mode field diameter at the waist of the beam is less than the waist distance Mode field at the waist of the beam 16 · According to the fiber optic lens according to item 5 of the scope of the patent application, the lens is composed of a chirped or near hyperbolic lens, and the lens is placed at the end of the steep-fold lens. H. The fiber optic lens according to item 16 of the scope of the patent application, wherein the spacer is placed between a hyperbolic or near hyperbolic lens and a steep refractive index lens. 18. A method for manufacturing a fiber optic lens, which includes: splicing a single-mode optical fiber to Steep-index fiber; Cut the steep-index fiber to the required length; 第26頁 1232967 申請專利範圍 一 將陡度折射率朵總#立 H㈣形化為雙曲線或接近雙曲線形 六 狀 1 9,依據申請專利範圍第丨8項 立 陡度折射率光纖端部圓形 方法,^甲更進—步包含在 圓锆拟七蜘π * 化之丽將陡度折射率先蟠士 0錐形或楔形,其頂角由雙曲午先義成形為 20. -種製造光纖透鏡之方法、、泉二漸八近線界疋出。 拼接單模光纖至陡度折射率^二.3. 切斷陡度折射率光纖為所需异’ 拼接無心蕊光纖至陡度折射率 切斷無心蕊光纖為所需要長度;以及 將無心蕊光纖圓形化為雙曲線或接近雙曲線形狀。Page 26 1232967 Application for patent scope 1 The shape of the steep refractive index duo #H H shape into a hyperbola or close to a hyperbolic hexagon 1 9, according to the patent application scope 丨 8 vertical gradient refractive index fiber end circle Shape method, ^ 甲 更 进 —steps included in the round zirconium quasi-seven spider π * the beauty of the gradient will be steeper refractive index 0 cone or wedge shape, its apex angle is formed from the hyperbolic apriori to 20. The method of fiber optic lens, springs out gradually. Splice single-mode fiber to steep refractive index ^ 2. 3. Cut the steep-index fiber to the required refractive index. Rounded into a hyperbola or near hyperbola shape. 第27頁Page 27
TW92137553A 2002-12-31 2003-12-29 Small mode-field fiber lens TWI232967B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US43732802P 2002-12-31 2002-12-31

Publications (2)

Publication Number Publication Date
TW200513701A TW200513701A (en) 2005-04-16
TWI232967B true TWI232967B (en) 2005-05-21

Family

ID=36480761

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92137553A TWI232967B (en) 2002-12-31 2003-12-29 Small mode-field fiber lens

Country Status (2)

Country Link
CN (1) CN100360967C (en)
TW (1) TWI232967B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625106B (en) * 2008-07-11 2011-10-12 财团法人车辆研究测试中心 Light-emitting diode optical fiber coupling system and manufacturing method thereof
CN103163600B (en) * 2011-12-15 2016-03-09 鸿富锦精密工业(深圳)有限公司 Optical coupler module and preparation method thereof
CN103454730A (en) * 2013-09-26 2013-12-18 深圳朗光科技有限公司 Optical fiber collimator
CN104382548A (en) * 2014-12-04 2015-03-04 南京沃福曼医疗科技有限公司 Miniature side-light-emitting imaging probe
US10226838B2 (en) * 2015-04-03 2019-03-12 Kabushiki Kaisha Toshiba Laser light irradiation apparatus and laser peening treatment method
CN105974525A (en) * 2016-07-28 2016-09-28 福建福晶科技股份有限公司 Optical fiber collimator using cone-shaped lens
CN107991737B (en) * 2017-12-11 2020-06-02 中国电子科技集团公司第四十六研究所 Manufacturing method of single-polarization optical fiber micro-lens applied to semiconductor light-emitting device
CN108363144B (en) * 2018-05-09 2020-12-29 上海飞博激光科技有限公司 High-power optical fiber circulator based on curved surface optical fiber end cap
JP2020085954A (en) * 2018-11-16 2020-06-04 東洋製罐グループホールディングス株式会社 Connection structure of optical fiber having lens, and setting method of curvature radius of end surface in optical fiber having lens
CN109701162B (en) * 2018-12-13 2021-02-12 西北核技术研究所 Construction method of local focusing device for internal field intensity of effect object in irradiation cavity
CN110707514A (en) * 2019-09-18 2020-01-17 珠海市杰威光电科技有限公司 Module capable of replacing beam expanding optical fiber and preparation method thereof
CN111025483B (en) * 2019-12-26 2022-03-01 苏州阿格斯医疗技术有限公司 Preparation method of fiber lens and fiber lens
CN111025466A (en) * 2019-12-27 2020-04-17 桂林电子科技大学 Multi-focus diffraction lens based on optical fiber
CN112363254A (en) * 2020-12-11 2021-02-12 苏州伽蓝致远电子科技股份有限公司 Novel lens array and production method
CN114469333B (en) * 2021-07-05 2024-02-20 深圳市中科融光医疗科技有限公司 Ablation catheter, laser ablation system and intravascular laser plaque ablation method
CN114469337B (en) * 2021-07-05 2024-06-04 深圳市中科融光医疗科技有限公司 Ablation catheter assembly, laser ablation system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE86759T1 (en) * 1984-03-02 1993-03-15 Siemens Ag COUPLING ARRANGEMENT FOR COUPLING AN OPTICAL WAVE GUIDE TO A SEMICONDUCTOR LASER AND METHOD FOR MANUFACTURING SUCH AN ARRANGEMENT.
FR2718854B1 (en) * 1994-04-13 1996-07-12 France Telecom Method for preparing an optical fiber for coupling with a phototransducer and optical system thus obtained.
US5751871A (en) * 1996-01-05 1998-05-12 Ceram Optec Industries, Inc. Method for coupling of semiconductor lasers into optical fibers
JP2000304965A (en) * 1999-04-19 2000-11-02 Namiki Precision Jewel Co Ltd Optical fiber with end lens
JP2002196181A (en) * 2000-12-25 2002-07-10 Nippon Sheet Glass Co Ltd Optical fiber attached with lens function and its manufacturing method

Also Published As

Publication number Publication date
TW200513701A (en) 2005-04-16
CN100360967C (en) 2008-01-09
CN1781041A (en) 2006-05-31

Similar Documents

Publication Publication Date Title
TWI232967B (en) Small mode-field fiber lens
US7099535B2 (en) Small mode-field fiber lens
TWI252338B (en) Beam bending apparatus and method of manufacture
TWI230812B (en) Beam altering fiber lens device and method of manufacture
CN103728696B (en) A kind of 1 �� N fiber coupler
JPH02163708A (en) Mode field changer and optical apparatus
US10725244B2 (en) Optical fiber with cladding-embedded light-converging structure for lateral optical coupling
TW200411241A (en) Symmetric, bi-aspheric lens for use in optical fiber collimator assemblies
TW200411215A (en) Symmetric, bi-aspheric lens for use in transmissive and reflective optical fiber components
TW200527022A (en) Fiber lens with multimode pigtail
CN108490546B (en) Optical waveguide mode converter for improving optical waveguide transmission characteristics
CN106291821B (en) Hollow-core photonic crystal fiber coupler
TWI234016B (en) Lensed fiber having small form factor and method of making the same
JP5711832B1 (en) Optical connector and manufacturing method thereof
Shiraishi et al. A micro light-beam spot-size converter using a hemicylindrical GRIN-slab tip with high-index contrast
JP2005519341A (en) Biconic lens for optical fiber and manufacturing method thereof
JP3755771B2 (en) Optical fiber with lens
Demagh et al. Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre
Van Laere et al. Compact focusing grating couplers between optical fibers and silicon-on-insulator photonic wire waveguides
Liu et al. Coupling efficiency of laser diode to GRIN fiber by aspherical lens
CA3023878C (en) Optical fiber with cladding-embedded light-converging structure for lateral optical coupling
Tottori et al. Improved return loss of fan-in/fan-out device for circular core array multi-core fiber using free space optics
Liu et al. New Scheme of Microlens Fiber Array for High Coupling Efficiency in Si-Photonics Module
US10670807B2 (en) Lens assembly for optical fiber coupling to target and associated methods
WO2015081758A1 (en) A high-power optical fiber head, collimator, isolator and frequency combiner

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees