TWI232291B - Resonance sensor and fabrication method thereof - Google Patents

Resonance sensor and fabrication method thereof Download PDF

Info

Publication number
TWI232291B
TWI232291B TW92137619A TW92137619A TWI232291B TW I232291 B TWI232291 B TW I232291B TW 92137619 A TW92137619 A TW 92137619A TW 92137619 A TW92137619 A TW 92137619A TW I232291 B TWI232291 B TW I232291B
Authority
TW
Taiwan
Prior art keywords
patent application
scope
resonance sensor
item
resonator
Prior art date
Application number
TW92137619A
Other languages
Chinese (zh)
Other versions
TW200521412A (en
Inventor
Tai-Kang Shing
I-Cheng Chen
Shin-Horng Pan
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW92137619A priority Critical patent/TWI232291B/en
Application granted granted Critical
Publication of TWI232291B publication Critical patent/TWI232291B/en
Publication of TW200521412A publication Critical patent/TW200521412A/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

A resonance sensor and fabrication method thereof. The resonance sensor comprises a resonator and a sensing layer of a plurality of nanowires coupled thereto, whereby an analyte is sensed via absorption or reaction mechanisms on the nanowires. The fabrication method of the resonance sensor comprises providing a resonator with a substrate, forming a layer of nanowires on the substrate, and defining a predetermined area of the layer by lithography to form a sensing layer.

Description

12322911232291

發明所屬之技術領域 ,古ίϊϋ係有關於一種共振感測器與其製作方法,且特 別有-種以奈米線材作為感測層之共振感測器與其製 先前技術 可分為許多類型,如壓阻 ’其中共振方式具有高敏 物理性感測器依據感測原理 式、電容式、壓電式、共振式等 感度及高精確度等優點。In the technical field to which the invention belongs, ancient technology relates to a resonance sensor and a manufacturing method thereof, and in particular-a resonance sensor using nanowires as a sensing layer and its previous technology can be divided into many types, such as pressure The resistance method has the advantages of high-sensitivity physical sensor based on sensing principle type, capacitive type, piezoelectric type, resonance type and other high sensitivity.

在氣體感測技術方面,傳統上使用丨R或評光譜、質譜 儀、電化學和觸媒等方式,然而都有耗時、體積大、交互 敏感性及選擇性等問題。近年來共振方式逐漸取代傳統的 氣體感測方式,而成為氣體感測技術的主流,可達到成本 低廉、偵測準確、快速等目標。 共振感測有多種實施方式,但最常用的乃是聲波共振 方式。乃是在壓電基材上塗佈感測層,當氣體分子吸附於 感測層表面時,造成相對質量增加,導致產生聲波頻率改 變。藉由此聲波頻率改變量與感測層所吸附的質量成一定 比例的原理,可進行氣體成分與組成的感測。In terms of gas sensing technology, traditional methods such as R or spectrometry, mass spectrometer, electrochemistry, and catalyst have been used. However, they all have problems such as time consuming, large volume, interactive sensitivity and selectivity. In recent years, the resonance method has gradually replaced the traditional gas sensing method, and has become the mainstream of gas sensing technology, which can achieve the goals of low cost, accurate detection, and fast. There are various implementations of resonance sensing, but the most commonly used method is acoustic resonance. The sensing layer is coated on the piezoelectric substrate. When gas molecules are adsorbed on the surface of the sensing layer, the relative mass is increased, resulting in a change in the frequency of the acoustic wave. Based on the principle that the amount of change in acoustic frequency is proportional to the mass absorbed by the sensing layer, gas composition and composition can be sensed.

利用聲波共振為感測原理的感測元件通常採用壓電聲 波元件’其主要分為兩大類:石英晶體微平衡(QuartzThe sensing elements that use acoustic resonance as the sensing principle usually use piezoelectric acoustic wave elements, which are mainly divided into two categories: quartz crystal microbalance (Quartz

Crystal Microbalance,QCM)及表面聲波(SurfaceCrystal Microbalance (QCM) and Surface Acoustic Wave (Surface

Acoustic Wave, SAW)元件。QCM已廣為應用,其優點為 線性度佳且對溫度較不敏感,但其最大缺點為操作頻率過Acoustic Wave (SAW) element. QCM has been widely used, its advantages are good linearity and less temperature sensitivity, but its biggest disadvantage is that the operating frequency is too high.

0178-A20201TWF(N1);P05920070TW;renee.p t d 1232291 五、發明說明(3) 採用延遲線的方式。當波傳遞時,表面聲波與感測層發生 反應而對波傳遞特性產生擾動而造成如波速及衰減改變。 因為當表面聲波在壓電材料中傳播時會同時產生機械變形 及電位能改變且互相麵合。因此當表面波與感測層反應時 會導致波速及衰減改變。聲波與感測層會產生機械性麵 合’例如質量負載(Mass-loading)乃是表面質量改變造成 表面波位移量改變。如果是因為表面波引起之表面感測層 之變形,則是彈性或黏彈性(ViSCOelastic)效應。而^ 的效應則包含表面波電場與傳導性薄膜中帶電荷源作 用的聲光(acoustoelectric)特性。 理論上,表面聲波元件可以藉由感測層的選擇來偵測 任何氣體。但是實際上所能偵測濃度及界線靈敏度存在極 限值跟所採用之感測層有相當大之關係、。此感 ;用高分子㈣,其成本低廉、製作簡單是其優點,作是 環境影響而變質劣化造成特性不易掌握及可靠度問 此造成控制回路不易搭配,而使得總體製作成本 奈米線材由於其超高表面 高效觸媒與各種氣體檢測等領 機氧化鋅奈米線材可以比傳統 能,但是偵測方式卻必須採用 化且昂貴。 積/體積比之特性,因此在 ,有相當潛力。目前利用無 向分子材料具有更好之性 紅外線偵測設備,不易微小 綜合上述,共振感測元件為咸 如何提出一新穎的感測層,以改^ 測技術的新興主流, 局分子感測層容易變 而 質0178-A20201TWF (N1); P05920070TW; renee.p t d 1232291 V. Description of the invention (3) The delay line method is adopted. When the wave is transmitted, the surface acoustic wave reacts with the sensing layer to disturb the wave transmission characteristics and cause changes such as wave speed and attenuation. Because when the surface acoustic wave propagates in the piezoelectric material, mechanical deformation and potential energy change occur at the same time and they face each other. Therefore, when the surface wave reacts with the sensing layer, the wave velocity and attenuation will change. The acoustic wave and the sensing layer will produce a mechanical surface. For example, mass-loading is the change in surface wave displacement caused by the change in surface quality. If the deformation of the surface sensing layer is caused by a surface wave, it is an elastic or viscoelastic (ViSCOelastic) effect. The effect of ^ includes the acousto-optic characteristics of the surface wave electric field and the charge source in the conductive film. Theoretically, a surface acoustic wave element can detect any gas through the selection of a sensing layer. However, in fact, the limit values of the detectable concentration and boundary sensitivity have a considerable relationship with the sensing layer used. This feeling; the use of high molecular weight, its low cost, simple production is its advantages, as the environmental impact of deterioration and deterioration caused by the characteristics are not easy to grasp and reliability. This makes the control circuit difficult to match, making the overall production cost Ultra-high surface efficient catalysts and various gas detection devices such as zinc oxide nanowires can be more energy efficient than traditional ones, but the detection method must be adopted and expensive. The volume / volume ratio characteristic, therefore, has considerable potential in. At present, the use of non-directional molecular materials has better infrared detection equipment, and it is not easy to synthesize the above. How to propose a novel sensing layer for the resonance sensing element to change the emerging mainstream of detection technology, local molecular sensing layer Easy to change

12322911232291

且選擇性差的缺點 黑占〇 乃為現階段共振感測技術發展的重 發明内容 t鑑於此’本發明目的即在於解決習知共振感測元件 巧^子感測層容易變質劣化的問題,並提供一具高表面 、南感度的感測層,以提升共振感測元件的感測性能。 、I _為達上述目的,本發明提出將奈米線材應用於共振感 測疋件的方式,一方面以奈米線材取代高分子材料,除可 避免變質劣化,同時可藉由奈米結構之高深寬比來大幅增 力ϋ吸附及脫附能力而達提高共振感測元件的感測感度與選 擇性的目的。另一方面開發奈米線材在共振感測元件上的 應用’與採用紅外線偵測相較具有低生產成本、敏感度高 及偵測方式簡單等優點。 〜 、 本發明提出一種共振感測器,其包括一共振子以及一 感測層耦接於上述共振子,其中該感測層係由複數個奈米 線材所組成’藉由該等奈米線材對一待測物的吸附及反應 等功能,使該共振感測器得以感測出上述待測物。 依據本發明之共振感測器,該共振子可為一聲波共振 元件’如為一表面聲波共振元件。 本發明之共振感測器,如為一表面聲波共振元件,其 進一步包括一壓電基底,以及一交叉指狀電極轉換器 (interdigital transducer,IDT)形成於該壓電基板 上。 &And the disadvantage of poor selectivity, black accounted for 0, is the re-invention of the current development of resonance sensing technology. In view of this, the purpose of the present invention is to solve the problem that the conventional resonance sensing element and the sub-sensing layer are easily deteriorated. Provide a high-surface, south-sensitivity sensing layer to enhance the sensing performance of the resonance sensing element. In order to achieve the above purpose, the present invention proposes a method for applying nanowires to resonance sensing parts. On the one hand, nanowires are used to replace polymer materials, in addition to avoiding deterioration and degradation, and at the same time, the high depth of the nanostructure The aspect ratio greatly enhances the adsorption and desorption capabilities to increase the sensing sensitivity and selectivity of the resonance sensing element. On the other hand, the development of the application of nano-wires on resonance sensing elements has the advantages of low production cost, high sensitivity, and simple detection method compared with the use of infrared detection. The present invention proposes a resonance sensor, which includes a resonator and a sensing layer coupled to the resonator. The sensing layer is composed of a plurality of nanowires. The functions of adsorption and reaction to a test object enable the resonance sensor to detect the test object. According to the resonance sensor of the present invention, the resonator may be an acoustic wave resonance element ', such as a surface acoustic wave resonance element. The resonance sensor of the present invention, if it is a surface acoustic wave resonance element, further includes a piezoelectric substrate, and an interdigital transducer (IDT) is formed on the piezoelectric substrate. &

圖式簡單説明 第1圖係習知表面聲波感測器的示意圖。 第2A與2B圖分別顯示以紅外光漸弱全反射技術量測氧 化鋅奈米線吸附與脫附性質的結果。 第3圖顯立示本發明以表面聲波元件作為共振子之共振 感測器的不思圖。 第4圖顯示本發明對奈米線材定義出特殊形狀及定 位 第5圖顯示本發明實施例的製作流程。 第6圖顯示實施例之表面聲波共^感測器 符號説明 習知技藝 1〜習知表面聲波感測器; 2〜壓電性基板, 31、32〜父叉指狀電極轉換器; 4〜感測層。 本發明 2〜壓電性基板; 3 1、3 2〜交叉指狀電極轉換器; 5〜奈米線材, 1 0〜共振感測器。Brief description of the drawings Figure 1 is a schematic diagram of a conventional surface acoustic wave sensor. Figures 2A and 2B show the results of measuring the adsorption and desorption properties of zinc oxide nanowires using the infrared light fading total reflection technique, respectively. Fig. 3 is a perspective view of a resonance sensor using a surface acoustic wave element as a resonator according to the present invention. Figure 4 shows the special shape and positioning of nanowires according to the present invention. Figure 5 shows the manufacturing process of the embodiment of the present invention. FIG. 6 shows the surface acoustic wave common sensor symbol description of the embodiment. Conventional technique 1 ~ conventional surface acoustic wave sensor; 2 ~ piezoelectric substrate, 31, 32 ~ parent interdigital electrode converter; 4 ~ Sensing layer. In the present invention, 2 to piezoelectric substrates, 3 1, 3 2 to interdigital electrode converters, 5 to nanometer wires, and 10 to resonance sensors.

第13頁Page 13

Claims (1)

1232291 六、申請專利範圍 1 · 一種共振感測器,包括: 一共振子;以及 一感測層耦接於上述共振子,其中該感測層係由複數 個奈米線材所組成,藉由該等奈米線材對一待測物的吸附 或反應,使該共振感測器發生變化得以感測出上述待測 物。 2 ·如申請專利範圍第1項所述之共振感測器,其中該 共振子為聲波共振元件。 3. 如申請專利範圍第2項所述之共振感測器,其中該 共振子為表面聲波共振元件。 4. 如申請專利範圍第2項所述之共振感測器,其中該 共振子進一步包括一壓電基底,以及一交叉指狀電極轉換 器(interdigital transducer)形成於該壓電基板上。 5. 如申請專利範圍第4項所述之共振感測器,其中該 壓電基底為石英、鈮酸鋰或钽酸鋰。 6. 如申請專利範圍第2項所述之共振感測器,其中該 共振子包括一壓電薄膜製作於一半導體基底上,以及一交 叉指狀電極轉換器形成於該壓電薄膜上。 7. 如申請專利範圍第6項所述之共振感測器,其中該 半導體基底為矽或砷化鎵。 8. 如申請專利範圍第2項所述之共振感測器,其中該 共振子為石英共振器元件。 9. 如申請專利範圍第2項所述之共振感測器,其中該 共振子為體波共振元件。1232291 VI. Scope of patent application1. A resonance sensor comprising: a resonator; and a sensing layer coupled to the resonator, wherein the sensing layer is composed of a plurality of nanowires, and The adsorption or reaction of the nanowire to a test object makes the resonance sensor change to detect the test object. 2. The resonance sensor according to item 1 of the scope of patent application, wherein the resonator is an acoustic wave resonance element. 3. The resonance sensor according to item 2 of the scope of patent application, wherein the resonator is a surface acoustic wave resonance element. 4. The resonance sensor according to item 2 of the scope of the patent application, wherein the resonator further comprises a piezoelectric substrate, and an interdigital transducer is formed on the piezoelectric substrate. 5. The resonance sensor according to item 4 of the patent application, wherein the piezoelectric substrate is quartz, lithium niobate, or lithium tantalate. 6. The resonance sensor according to item 2 of the scope of patent application, wherein the resonator includes a piezoelectric thin film fabricated on a semiconductor substrate, and an interdigitated electrode transducer is formed on the piezoelectric thin film. 7. The resonance sensor according to item 6 of the patent application, wherein the semiconductor substrate is silicon or gallium arsenide. 8. The resonance sensor according to item 2 of the scope of patent application, wherein the resonator is a quartz resonator element. 9. The resonance sensor according to item 2 of the scope of patent application, wherein the resonator is a body wave resonance element. 0178-A20201TWF(Nl);P05920070TW;renee.ptd 第14頁 1232291 ^---- 六、申請專利範圍 1 0 ·如申請專利範圍第1項 。 專奈米線材係由氧化物所形成。 益其中該 1」.如申請專利範圍第β所述之共振感 專奈米線材係由氧化鋅所形成。 其中該 12.如申請專利範圍第!項所述之共振感測器 =括-無線接收及/或無線發射裝置,使其-步 測器之用。 F两逼测感 包括 1 3· —種共振感測器的製作方法 提供一共振子,其具有一基底; 其由複數個奈米線材 形成一奈米線材層於上述基底, 所組成;以及 、以微影方式定義上述奈米線材層成一預定區域,以作 感測層之用,藉由該感測層對一待測物的吸附,使該共振 感測器得以感測出上述待測物。 1 4·如申請專利範圍第1 3項所述之共振感測器的製作 方法’其中該共振子為聲波共振元件。 1 5 ·如申請專利範圍第丨4項所述之共振感測器的製作 方法,其中該共振子為表面聲波共振元件。 1 6 ·如申請專利範圍第1 5項所述之共振感測器的製作 方法,其中該共振子進一步包括一壓電基底,以及一交叉 指狀電極轉換器形成於該壓電基板上。 1 7 ·如申請專利範圍第1 6項所述之共振感測器的製作 方法,其中該壓電基底為石英、鈮酸鋰或钽酸鋰。 1 8 ·如申請專利範圍第14項所述之共振感測器的製作0178-A20201TWF (Nl); P05920070TW; renee.ptd Page 14 1232291 ^ ---- 6. Scope of patent application 1 0 · As for item 1 of the scope of patent application. Special nanowires are formed from oxides. The "1". Resonant nanowires as described in the scope of the patent application β are made of zinc oxide. Among which 12. As the scope of patent application! The resonance sensor described in the item = includes a wireless receiving and / or wireless transmitting device, which makes it a step detector. F two-pronged sensing includes a 3 ·· method for manufacturing a resonance sensor, which provides a resonator having a substrate, which is composed of a plurality of nanowires forming a nanowire layer on the above substrate, and, The lithographic method is used to define the nanowire layer into a predetermined area for use as a sensing layer. The adsorption of the sensing layer on a test object enables the resonance sensor to detect the test object. . 14. The manufacturing method of the resonance sensor according to item 13 of the scope of patent application, wherein the resonator is an acoustic wave resonance element. 1 5 · The manufacturing method of the resonance sensor according to item 4 of the patent application scope, wherein the resonator is a surface acoustic wave resonance element. [16] The method for manufacturing a resonance sensor according to item 15 of the scope of patent application, wherein the resonator further includes a piezoelectric substrate, and an interdigital electrode converter is formed on the piezoelectric substrate. 17 · The manufacturing method of the resonance sensor according to item 16 of the scope of patent application, wherein the piezoelectric substrate is quartz, lithium niobate or lithium tantalate. 1 8 · Manufacture of resonance sensor as described in item 14 of the scope of patent application 0178-A20201TWF(Nl);P05920070TW;renee.ptd 第15頁 1232291 六、申請專利範圍 _ 方去,其中該共振子包 一 上,以及-交叉指狀電極轉換=膜製作於一半導體基底 方法,立中該半導8 f所述之共振感測器的製作 /、甲涊牛導體基底為矽或砷化 2 0 ·如申請專利範圍楚1 4 、 方法,直中該丘振+ A + 述之共振感測器的製作 八甲涊,、搌子為石英共振器元件。 方丰2 圍第14項所述之共振感測器的製作 方法’其中該共振子為體波共振元件。 ^作 22·如巾請專利範圍第13項所述之共振感測器 / ,其中該奈米線材係由氧化物所形成。 23·如申請專利範圍第13項所述之共振感測器的製 方法’其中該奈米線材係由氧化鋅所形成。 、24·如申請專利範圍第丨3項所述之共振感測器的製 方法,進一步包括一無線接收及/或無線發射裴置, 可作為遙測感測器之用。 一0178-A20201TWF (Nl); P05920070TW; renee.ptd Page 15 1232291 Sixth, the scope of patent application _ Fang Qu, where the resonator package is on top, and-cross-finger electrode conversion = film made on a semiconductor substrate method, stand The manufacturing of the resonance sensor described in the semiconductor 8 f /, the base of the yak conductor is silicon or arsenide 2 0. If the scope of the patent application is Chu 14, the method is described in Qiu Zhen + A + The production of the resonance sensor is Hagaraki, and the iron is a quartz resonator element. The method of manufacturing the resonance sensor according to item 14 of Fang Feng 2 ’, wherein the resonator is a body wave resonance element. Operation 22. The resonance sensor described in item 13 of the patent scope, wherein the nanowire is formed of an oxide. 23. The manufacturing method of the resonance sensor according to item 13 of the scope of the patent application, wherein the nanowire is formed of zinc oxide. 24. The manufacturing method of the resonance sensor as described in item 3 of the patent application scope, further comprising a wireless receiving and / or wireless transmitting device, which can be used as a remote sensing sensor. One
TW92137619A 2003-12-31 2003-12-31 Resonance sensor and fabrication method thereof TWI232291B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92137619A TWI232291B (en) 2003-12-31 2003-12-31 Resonance sensor and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92137619A TWI232291B (en) 2003-12-31 2003-12-31 Resonance sensor and fabrication method thereof

Publications (2)

Publication Number Publication Date
TWI232291B true TWI232291B (en) 2005-05-11
TW200521412A TW200521412A (en) 2005-07-01

Family

ID=36319990

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92137619A TWI232291B (en) 2003-12-31 2003-12-31 Resonance sensor and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI232291B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008070669A2 (en) * 2006-12-05 2008-06-12 Miradia Inc. Method and apparatus for mems oscillator
CN111446329A (en) * 2020-03-20 2020-07-24 苏州巧云信息科技有限公司 Novel infrared detector and preparation method thereof

Also Published As

Publication number Publication date
TW200521412A (en) 2005-07-01

Similar Documents

Publication Publication Date Title
Le et al. A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure
Xu et al. Implementation of guiding layers of surface acoustic wave devices: A review
Drafts Acoustic wave technology sensors
Kumar et al. The potential of acoustic wave devices for gas sensing applications
Xuan et al. A film bulk acoustic resonator oscillator based humidity sensor with graphene oxide as the sensitive layer
CN106153718B (en) A kind of piezoelectric crystal gas transducer with double working modes
Pohanka Quartz crystal microbalance (QCM) sensing materials in biosensors development
CN109506808B (en) SAW temperature sensor with monotone and linear output characteristics and design method thereof
CN101726538A (en) Surface acoustic wave gas sensor and manufacturing method thereof
Lu et al. High performance SnO 2/MoS 2-based surface acoustic wave humidity sensor with good linearity
Bu et al. High transparency flexible sensor for pressure and proximity sensing
Aslam et al. Advances in the surface acoustic wave sensors for industrial applications: Potentials, challenges, and future directions: A review
Dong et al. Highly sensitive and fast-response humidity sensor based on saw resonator and mos 2 for human activity detection
Pang et al. Specific sensing mechanism investigation of surface acoustic wave humidity sensors coated with uniform graphene oxide membrane
CN101634643B (en) Surface acoustic wave sensor
TWI232291B (en) Resonance sensor and fabrication method thereof
Singh et al. Room temperature operating formaldehyde sensor based on n-type ZnO functionalized surface acoustic wave resonator
Pang et al. Selective detection of CO 2 and H 2 O dual analytes through decoupling surface density and shear modulus based on single SAW resonator
Jahanshahi et al. Designing a non-invasive surface acoustic resonator for ultra-high sensitive ethanol detection for an on-the-spot health monitoring system
Yang et al. Study on the sensitivity of diaphragm-type SAW pressure sensor
Damasceno et al. Recent improvements on surface acoustic wave sensors based on graphenic nanomaterials
Hekiem et al. Performance analysis of VOCs detection using polyisobutylene and chitosan overlayed on QCM sensor
US20040244466A1 (en) Ammonia gas sensor and its manufacturing method
CN117741526A (en) Surface acoustic wave magnetic field sensor based on magnetic berg seeds
Asri et al. Finite element analysis of silicon nanowire array based SAW gas sensor

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent