TWI232291B - Resonance sensor and fabrication method thereof - Google Patents
Resonance sensor and fabrication method thereof Download PDFInfo
- Publication number
- TWI232291B TWI232291B TW92137619A TW92137619A TWI232291B TW I232291 B TWI232291 B TW I232291B TW 92137619 A TW92137619 A TW 92137619A TW 92137619 A TW92137619 A TW 92137619A TW I232291 B TWI232291 B TW I232291B
- Authority
- TW
- Taiwan
- Prior art keywords
- patent application
- scope
- resonance sensor
- item
- resonator
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000002070 nanowire Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 238000010897 surface acoustic wave method Methods 0.000 claims description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- 239000010453 quartz Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 238000001179 sorption measurement Methods 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims 4
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims 2
- 229910052710 silicon Inorganic materials 0.000 claims 2
- 239000010703 silicon Substances 0.000 claims 2
- 239000010409 thin film Substances 0.000 claims 2
- 239000011787 zinc oxide Substances 0.000 claims 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 239000010408 film Substances 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 239000012491 analyte Substances 0.000 abstract 1
- 238000001459 lithography Methods 0.000 abstract 1
- 230000007246 mechanism Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 3
- 238000003380 quartz crystal microbalance Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
12322911232291
發明所屬之技術領域 ,古ίϊϋ係有關於一種共振感測器與其製作方法,且特 別有-種以奈米線材作為感測層之共振感測器與其製 先前技術 可分為許多類型,如壓阻 ’其中共振方式具有高敏 物理性感測器依據感測原理 式、電容式、壓電式、共振式等 感度及高精確度等優點。In the technical field to which the invention belongs, ancient technology relates to a resonance sensor and a manufacturing method thereof, and in particular-a resonance sensor using nanowires as a sensing layer and its previous technology can be divided into many types, such as pressure The resistance method has the advantages of high-sensitivity physical sensor based on sensing principle type, capacitive type, piezoelectric type, resonance type and other high sensitivity.
在氣體感測技術方面,傳統上使用丨R或評光譜、質譜 儀、電化學和觸媒等方式,然而都有耗時、體積大、交互 敏感性及選擇性等問題。近年來共振方式逐漸取代傳統的 氣體感測方式,而成為氣體感測技術的主流,可達到成本 低廉、偵測準確、快速等目標。 共振感測有多種實施方式,但最常用的乃是聲波共振 方式。乃是在壓電基材上塗佈感測層,當氣體分子吸附於 感測層表面時,造成相對質量增加,導致產生聲波頻率改 變。藉由此聲波頻率改變量與感測層所吸附的質量成一定 比例的原理,可進行氣體成分與組成的感測。In terms of gas sensing technology, traditional methods such as R or spectrometry, mass spectrometer, electrochemistry, and catalyst have been used. However, they all have problems such as time consuming, large volume, interactive sensitivity and selectivity. In recent years, the resonance method has gradually replaced the traditional gas sensing method, and has become the mainstream of gas sensing technology, which can achieve the goals of low cost, accurate detection, and fast. There are various implementations of resonance sensing, but the most commonly used method is acoustic resonance. The sensing layer is coated on the piezoelectric substrate. When gas molecules are adsorbed on the surface of the sensing layer, the relative mass is increased, resulting in a change in the frequency of the acoustic wave. Based on the principle that the amount of change in acoustic frequency is proportional to the mass absorbed by the sensing layer, gas composition and composition can be sensed.
利用聲波共振為感測原理的感測元件通常採用壓電聲 波元件’其主要分為兩大類:石英晶體微平衡(QuartzThe sensing elements that use acoustic resonance as the sensing principle usually use piezoelectric acoustic wave elements, which are mainly divided into two categories: quartz crystal microbalance (Quartz
Crystal Microbalance,QCM)及表面聲波(SurfaceCrystal Microbalance (QCM) and Surface Acoustic Wave (Surface
Acoustic Wave, SAW)元件。QCM已廣為應用,其優點為 線性度佳且對溫度較不敏感,但其最大缺點為操作頻率過Acoustic Wave (SAW) element. QCM has been widely used, its advantages are good linearity and less temperature sensitivity, but its biggest disadvantage is that the operating frequency is too high.
0178-A20201TWF(N1);P05920070TW;renee.p t d 1232291 五、發明說明(3) 採用延遲線的方式。當波傳遞時,表面聲波與感測層發生 反應而對波傳遞特性產生擾動而造成如波速及衰減改變。 因為當表面聲波在壓電材料中傳播時會同時產生機械變形 及電位能改變且互相麵合。因此當表面波與感測層反應時 會導致波速及衰減改變。聲波與感測層會產生機械性麵 合’例如質量負載(Mass-loading)乃是表面質量改變造成 表面波位移量改變。如果是因為表面波引起之表面感測層 之變形,則是彈性或黏彈性(ViSCOelastic)效應。而^ 的效應則包含表面波電場與傳導性薄膜中帶電荷源作 用的聲光(acoustoelectric)特性。 理論上,表面聲波元件可以藉由感測層的選擇來偵測 任何氣體。但是實際上所能偵測濃度及界線靈敏度存在極 限值跟所採用之感測層有相當大之關係、。此感 ;用高分子㈣,其成本低廉、製作簡單是其優點,作是 環境影響而變質劣化造成特性不易掌握及可靠度問 此造成控制回路不易搭配,而使得總體製作成本 奈米線材由於其超高表面 高效觸媒與各種氣體檢測等領 機氧化鋅奈米線材可以比傳統 能,但是偵測方式卻必須採用 化且昂貴。 積/體積比之特性,因此在 ,有相當潛力。目前利用無 向分子材料具有更好之性 紅外線偵測設備,不易微小 綜合上述,共振感測元件為咸 如何提出一新穎的感測層,以改^ 測技術的新興主流, 局分子感測層容易變 而 質0178-A20201TWF (N1); P05920070TW; renee.p t d 1232291 V. Description of the invention (3) The delay line method is adopted. When the wave is transmitted, the surface acoustic wave reacts with the sensing layer to disturb the wave transmission characteristics and cause changes such as wave speed and attenuation. Because when the surface acoustic wave propagates in the piezoelectric material, mechanical deformation and potential energy change occur at the same time and they face each other. Therefore, when the surface wave reacts with the sensing layer, the wave velocity and attenuation will change. The acoustic wave and the sensing layer will produce a mechanical surface. For example, mass-loading is the change in surface wave displacement caused by the change in surface quality. If the deformation of the surface sensing layer is caused by a surface wave, it is an elastic or viscoelastic (ViSCOelastic) effect. The effect of ^ includes the acousto-optic characteristics of the surface wave electric field and the charge source in the conductive film. Theoretically, a surface acoustic wave element can detect any gas through the selection of a sensing layer. However, in fact, the limit values of the detectable concentration and boundary sensitivity have a considerable relationship with the sensing layer used. This feeling; the use of high molecular weight, its low cost, simple production is its advantages, as the environmental impact of deterioration and deterioration caused by the characteristics are not easy to grasp and reliability. This makes the control circuit difficult to match, making the overall production cost Ultra-high surface efficient catalysts and various gas detection devices such as zinc oxide nanowires can be more energy efficient than traditional ones, but the detection method must be adopted and expensive. The volume / volume ratio characteristic, therefore, has considerable potential in. At present, the use of non-directional molecular materials has better infrared detection equipment, and it is not easy to synthesize the above. How to propose a novel sensing layer for the resonance sensing element to change the emerging mainstream of detection technology, local molecular sensing layer Easy to change
12322911232291
且選擇性差的缺點 黑占〇 乃為現階段共振感測技術發展的重 發明内容 t鑑於此’本發明目的即在於解決習知共振感測元件 巧^子感測層容易變質劣化的問題,並提供一具高表面 、南感度的感測層,以提升共振感測元件的感測性能。 、I _為達上述目的,本發明提出將奈米線材應用於共振感 測疋件的方式,一方面以奈米線材取代高分子材料,除可 避免變質劣化,同時可藉由奈米結構之高深寬比來大幅增 力ϋ吸附及脫附能力而達提高共振感測元件的感測感度與選 擇性的目的。另一方面開發奈米線材在共振感測元件上的 應用’與採用紅外線偵測相較具有低生產成本、敏感度高 及偵測方式簡單等優點。 〜 、 本發明提出一種共振感測器,其包括一共振子以及一 感測層耦接於上述共振子,其中該感測層係由複數個奈米 線材所組成’藉由該等奈米線材對一待測物的吸附及反應 等功能,使該共振感測器得以感測出上述待測物。 依據本發明之共振感測器,該共振子可為一聲波共振 元件’如為一表面聲波共振元件。 本發明之共振感測器,如為一表面聲波共振元件,其 進一步包括一壓電基底,以及一交叉指狀電極轉換器 (interdigital transducer,IDT)形成於該壓電基板 上。 &And the disadvantage of poor selectivity, black accounted for 0, is the re-invention of the current development of resonance sensing technology. In view of this, the purpose of the present invention is to solve the problem that the conventional resonance sensing element and the sub-sensing layer are easily deteriorated. Provide a high-surface, south-sensitivity sensing layer to enhance the sensing performance of the resonance sensing element. In order to achieve the above purpose, the present invention proposes a method for applying nanowires to resonance sensing parts. On the one hand, nanowires are used to replace polymer materials, in addition to avoiding deterioration and degradation, and at the same time, the high depth of the nanostructure The aspect ratio greatly enhances the adsorption and desorption capabilities to increase the sensing sensitivity and selectivity of the resonance sensing element. On the other hand, the development of the application of nano-wires on resonance sensing elements has the advantages of low production cost, high sensitivity, and simple detection method compared with the use of infrared detection. The present invention proposes a resonance sensor, which includes a resonator and a sensing layer coupled to the resonator. The sensing layer is composed of a plurality of nanowires. The functions of adsorption and reaction to a test object enable the resonance sensor to detect the test object. According to the resonance sensor of the present invention, the resonator may be an acoustic wave resonance element ', such as a surface acoustic wave resonance element. The resonance sensor of the present invention, if it is a surface acoustic wave resonance element, further includes a piezoelectric substrate, and an interdigital transducer (IDT) is formed on the piezoelectric substrate. &
圖式簡單説明 第1圖係習知表面聲波感測器的示意圖。 第2A與2B圖分別顯示以紅外光漸弱全反射技術量測氧 化鋅奈米線吸附與脫附性質的結果。 第3圖顯立示本發明以表面聲波元件作為共振子之共振 感測器的不思圖。 第4圖顯示本發明對奈米線材定義出特殊形狀及定 位 第5圖顯示本發明實施例的製作流程。 第6圖顯示實施例之表面聲波共^感測器 符號説明 習知技藝 1〜習知表面聲波感測器; 2〜壓電性基板, 31、32〜父叉指狀電極轉換器; 4〜感測層。 本發明 2〜壓電性基板; 3 1、3 2〜交叉指狀電極轉換器; 5〜奈米線材, 1 0〜共振感測器。Brief description of the drawings Figure 1 is a schematic diagram of a conventional surface acoustic wave sensor. Figures 2A and 2B show the results of measuring the adsorption and desorption properties of zinc oxide nanowires using the infrared light fading total reflection technique, respectively. Fig. 3 is a perspective view of a resonance sensor using a surface acoustic wave element as a resonator according to the present invention. Figure 4 shows the special shape and positioning of nanowires according to the present invention. Figure 5 shows the manufacturing process of the embodiment of the present invention. FIG. 6 shows the surface acoustic wave common sensor symbol description of the embodiment. Conventional technique 1 ~ conventional surface acoustic wave sensor; 2 ~ piezoelectric substrate, 31, 32 ~ parent interdigital electrode converter; 4 ~ Sensing layer. In the present invention, 2 to piezoelectric substrates, 3 1, 3 2 to interdigital electrode converters, 5 to nanometer wires, and 10 to resonance sensors.
第13頁Page 13
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92137619A TWI232291B (en) | 2003-12-31 | 2003-12-31 | Resonance sensor and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92137619A TWI232291B (en) | 2003-12-31 | 2003-12-31 | Resonance sensor and fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI232291B true TWI232291B (en) | 2005-05-11 |
TW200521412A TW200521412A (en) | 2005-07-01 |
Family
ID=36319990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92137619A TWI232291B (en) | 2003-12-31 | 2003-12-31 | Resonance sensor and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI232291B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008070669A2 (en) * | 2006-12-05 | 2008-06-12 | Miradia Inc. | Method and apparatus for mems oscillator |
CN111446329A (en) * | 2020-03-20 | 2020-07-24 | 苏州巧云信息科技有限公司 | Novel infrared detector and preparation method thereof |
-
2003
- 2003-12-31 TW TW92137619A patent/TWI232291B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200521412A (en) | 2005-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Le et al. | A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure | |
Xu et al. | Implementation of guiding layers of surface acoustic wave devices: A review | |
Drafts | Acoustic wave technology sensors | |
Kumar et al. | The potential of acoustic wave devices for gas sensing applications | |
Xuan et al. | A film bulk acoustic resonator oscillator based humidity sensor with graphene oxide as the sensitive layer | |
CN106153718B (en) | A kind of piezoelectric crystal gas transducer with double working modes | |
Pohanka | Quartz crystal microbalance (QCM) sensing materials in biosensors development | |
CN109506808B (en) | SAW temperature sensor with monotone and linear output characteristics and design method thereof | |
CN101726538A (en) | Surface acoustic wave gas sensor and manufacturing method thereof | |
Lu et al. | High performance SnO 2/MoS 2-based surface acoustic wave humidity sensor with good linearity | |
Bu et al. | High transparency flexible sensor for pressure and proximity sensing | |
Aslam et al. | Advances in the surface acoustic wave sensors for industrial applications: Potentials, challenges, and future directions: A review | |
Dong et al. | Highly sensitive and fast-response humidity sensor based on saw resonator and mos 2 for human activity detection | |
Pang et al. | Specific sensing mechanism investigation of surface acoustic wave humidity sensors coated with uniform graphene oxide membrane | |
CN101634643B (en) | Surface acoustic wave sensor | |
TWI232291B (en) | Resonance sensor and fabrication method thereof | |
Singh et al. | Room temperature operating formaldehyde sensor based on n-type ZnO functionalized surface acoustic wave resonator | |
Pang et al. | Selective detection of CO 2 and H 2 O dual analytes through decoupling surface density and shear modulus based on single SAW resonator | |
Jahanshahi et al. | Designing a non-invasive surface acoustic resonator for ultra-high sensitive ethanol detection for an on-the-spot health monitoring system | |
Yang et al. | Study on the sensitivity of diaphragm-type SAW pressure sensor | |
Damasceno et al. | Recent improvements on surface acoustic wave sensors based on graphenic nanomaterials | |
Hekiem et al. | Performance analysis of VOCs detection using polyisobutylene and chitosan overlayed on QCM sensor | |
US20040244466A1 (en) | Ammonia gas sensor and its manufacturing method | |
CN117741526A (en) | Surface acoustic wave magnetic field sensor based on magnetic berg seeds | |
Asri et al. | Finite element analysis of silicon nanowire array based SAW gas sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |