TWI231057B - Method of fabricating gallium nitride-based light emitting device and structure thereof - Google Patents

Method of fabricating gallium nitride-based light emitting device and structure thereof Download PDF

Info

Publication number
TWI231057B
TWI231057B TW93116916A TW93116916A TWI231057B TW I231057 B TWI231057 B TW I231057B TW 93116916 A TW93116916 A TW 93116916A TW 93116916 A TW93116916 A TW 93116916A TW I231057 B TWI231057 B TW I231057B
Authority
TW
Taiwan
Prior art keywords
gallium nitride
semiconductor layer
conductive substrate
item
scope
Prior art date
Application number
TW93116916A
Other languages
Chinese (zh)
Other versions
TW200541101A (en
Inventor
Chen-Fu Chu
Chao-Chen Cheng
Original Assignee
Highlink Thecnhology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Highlink Thecnhology Corp filed Critical Highlink Thecnhology Corp
Priority to TW93116916A priority Critical patent/TWI231057B/en
Application granted granted Critical
Publication of TWI231057B publication Critical patent/TWI231057B/en
Publication of TW200541101A publication Critical patent/TW200541101A/en

Links

Abstract

A gallium nitride-based (GaN-based) diode formed on a sapphire substrate is first transferred to a conductive substrate, and the sapphire substrate is removed, wherein the conductive substrate is connected with a p-type GaN-based layer of the GaN-based diode. Then, an insulating bump is formed on a n-type GaN-based layer of the GaN-based diode, and a n-type electrode is next fabricated onto the n-type GaN-based layer to cover the insulating bump entirely and contact the n-type GaN-based layer simultaneously.

Description

1231057 玖、發明說明 【發明所屬之技術領域】 本發明是有關於一種氮化鎵系發光元件之製造方法 與結構’且特別是一種可提高發光亮度,以及具有靜電 放電防護之氮化鎵系發光元件的製作方法與結構。 【先前技術】 發光二極體(Light Emitting Diode ; LED)元件因具有 生產成本低、結構簡單、低耗電、體積小以及安裝容易 之優勢,而大量運用於照明光源以及顯示器技術中。其 中 又以類屬氮化錄系(Gallium Nitride-based ; GaN-based)的發光元件,例如氮化鎵(GaN)藍光發光二極 體’在近幾年的發光元件市場中,甚受重視。 一般的氮化鎵系發光元件之製作,係參照第1圖所 顯不的氮化鎵系發光元件結構,基板丨〇〇之上的氮化鎵 系二極體,依序包含有η型氮化鎵系半導體層102、主 動層104以及ρ型氮化鎵系半導體層1〇6,其中基板ι〇〇 的材質大多選用藍寶石(sapphire),以形成結晶品質良好 的氮*化鎵系薄膜。然而,由於藍寶石係為一絕緣材料, 因此’使得元件中的陽極電極11 2與陰極電極11 4須製 作於藍育石基板1〇〇的同一面上,而導致電流12〇傳送 時谷易於陰極附近發生電流擁擠(current crowding)的 效應’使操作電阻增加,以致降低了光輸出的效率。 另外’由於陽極電極112係為不透光的金屬材質, 1231057 因此’會阻擋陽極電極丨丨2下方位置之氮化鎵系二極體 的光輸出,然而,氮化鎵系二極體内之電流丨2〇的分佈 情形,係僅以陽極電極丨丨2下方的位置最為緻密,而逐 漸朝向陽極電極i 12兩側之位置分散,越為遠離陽極電 極11 2的區域,即呈現電流密度越小的情形,所能提供 之發光強度亦逐漸較低。故元件之發光區域,應以陽極 電極11 2的下方出現最高之發光強度,但卻受限於陽極 電極112的遮蔽,而無法將發光有效地輸出,且越遠離 陽極電極112,元件發光之衰減情形亦更為明顯。如此, 將使元件實際之光輸出強度的提升受到限制。 除此之外,由於藍寶石的絕緣性質,亦無法對元件 製作時產生於元件内的靜電累積,提供有效的導通釋 放,因此極容易導致靜電放電(Electr〇_StaUe Discharge ; ESD)的問題發生,而對元件造成損壞。 【發明内容】 本發明之目的之一是在提供一種氮化鎵系發光元件之 .製作方法與結構,不但可以改善元件内的電流分散情形,以 提升發光二極體的發光強度與光輸出效率,更使發光元件具 有靜電防護之效用,進而同時提高元件的亮度呈現與產品/良 率。 根據本發明之上述目的,提出一種氮化鎵系發光元件之 製作方法與結構。依照本發明之方法係為在一基材上形成至 9氮化叙系發光一極體,其中,氮化鎵系發光二極體内包 1231057 含有第一電性氮化鎵系半導體層、發光主動層以及第二電性 氮化鎵系半導體層,而基材一般係選用藍寶石,以獲得結晶 品質良好之氮化鎵系半導體層。接著,結合一導電基板於氮 化鎵系發光二極體之上,然後,將基材移除,以完整暴露出 氮化鎵系發光二極體之第一電性氮化鎵系半導體層。 在基材移除之後,再形成一絕緣區塊於第一電性氮化鎵 系半導體層之表面位置,接著,形成第一電極於第一電性氮 化鎵系半導體層之上方,使完整包覆絕緣區塊,並與第一電 性氮化鎵糸半導體層相接觸。 其中上述之導電基板的材質係例如選用石夕(Si)、銅 (Cu)、導電金屬或金屬合金,以供第二電極可直接製作於導 電基板之底侧,使元件内之電流分散形成垂直向分佈,而減 少電μ擁擠的現象,並有效提高元件内之電流分散效率,進 而增加元件的光輸出效率。 同時’對於一些在製程進行中產生於元件内的靜電累積 蓋’更可藉由導電基板而予以導通釋放,以有效避免靜電放 電的問題發生。 另外’上述之絕緣區塊的形成,係可利用一絕緣材料, 以製作一絕緣凸塊於第一電性氮化鎵系半導體層之上,或者 是利用離子佈值方式,對第一電性氮化鎵系半導體層之表面 #为區域’進行絕緣物質之植入,以形成一絕緣區域於第一 電性氮化鎵系半導體層之中。 除此之外,若導電基板係選用如矽或砷化鎵等半導體材 質時’更可在導電基板中形成一第一電性區域,使導電基板 !231〇57 内部產生一 p/n型接合界面,然後再利用金屬拉線,將第一 電性氮化鎵系半導體層與導電基板中的第一電性區域予以 電性連接。如此,將使製作完成之氮化鎵系發光元件,形成 如同齊納二極體之結構態,而具有靜電放電之防護效果。 根據上述本發明之發光元件的製作方式,係於第一電極 與氮化鎵系結構的接觸位置之間,設置一絕緣區塊,以使電 流無法直接由第一電極的正下方位置,開始分散傳送,而是 由絕緣區塊側邊的位置開始,以同時朝向外側以及内側逐漸 分散的方式,向導電基板端進行傳送。如此,可減少元件内 電流之分佈密度差異,以呈現較佳的電流密度均勻性,進而 提升元件整體之發光強度。 因此,應用本發明之發光元件的製作方法,除了可提升 發光元件内部的電流分散效率,以及降低電流分佈之密度差 異性,以同時提升發光元件之光輸出效率與發光強度,進而 獲得高亮度品質的發光元件。另外更可有效提升元件之靜電 放電防護之成效,以降低元件受損的機率,進而增加發光二 極體製作之產品良率與可靠度。 【實施方式】 本發明係k供一種氮化鎵系(GaN-based)發光元件之製 作方法與結構,利用轉移基板之技術,將製作於藍寶石基材 上的氮化鎵系發光二極體,移轉至導電基板上,以提升元件 内的電流分散效果,以及提供元件良好之電導通作用,而降 低元件内的靜電累積量。同時,於電極與二極體結構之接觸 1231057 位置,設置一絕緣區域,以控制元件内之電流分佈情形,進 而有效提高元件之光輸出強度。以下將以實施例對本發明之 方法加以詳細說明。 實施例1 本發明揭露了一種II化鎵(GaN)發光元件之製作方法 與結構。依序參照第2A〜2C圖,第2A〜2C圖係為依照本發 明第一實施例之一種氮化鎵發光元件製作方法的流程剖面 示意圖。 在第2A圖中,首先於藍寶石基材200上製作一氮i化鎵 二極體結構’係為分別依序形成一 η型氣化鎵半導體層 202 ’ 一具有多層量子井(Multi-Quantum Well)結構之發光主 動層204,以及一 p型氮化鎵半導體層206於藍寶石基材2〇〇 之上。接著,在p型氮化鎵半導體層206之上,形成一透明 導電層208,以提供電流分散(current Sprea(iing)之作用,透 明導電層208的材質則例如可為銦錫氧化物(Indium_Tin1231057 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to a method and structure for manufacturing a gallium nitride-based light-emitting element ', and particularly to a gallium nitride-based light emitting device capable of improving light emission brightness and having electrostatic discharge protection. Manufacturing method and structure of components. [Prior technology] Light Emitting Diode (LED) elements are widely used in lighting sources and display technologies due to their advantages such as low production cost, simple structure, low power consumption, small size, and easy installation. Among them, Gallium Nitride-based (GaN-based) light-emitting devices, such as gallium nitride (GaN) blue light-emitting diodes, have received much attention in the light-emitting device market in recent years. The fabrication of general GaN-based light-emitting elements is based on the structure of the GaN-based light-emitting elements shown in Fig. 1. The GaN-based diodes on the substrate, in sequence, contain n-type nitrogen. The gallium-based semiconductor layer 102, the active layer 104, and the p-type gallium nitride-based semiconductor layer 106 are sapphire, and the substrate ιOO is mostly made of sapphire to form a gallium nitride-based thin film with good crystal quality. However, because sapphire is an insulating material, the anode electrode 11 2 and the cathode electrode 114 of the element must be made on the same side of the blue yusite substrate 100, and the valley is easy to be cathode when current 120 is transmitted. The effect of current crowding occurring nearby causes the operating resistance to increase, thereby reducing the efficiency of light output. In addition, 'Because the anode electrode 112 is an opaque metal material, 1231057' will block the light output of the gallium nitride based diode at the lower position of the anode electrode 2; however, the The distribution of the current 丨 20 is only the most dense at the position below the anode electrode 丨 丨 2, and gradually dispersed toward the positions on both sides of the anode electrode i 12. The farther away from the anode electrode 11 2, the more current density appears. In small cases, the luminous intensity that can be provided is gradually lower. Therefore, the light emitting area of the element should have the highest luminous intensity appearing below the anode electrode 112, but it is limited by the shielding of the anode electrode 112, and the luminescence cannot be output effectively, and the farther away from the anode electrode 112, the light emission attenuation of the element The situation is more obvious. In this way, the improvement of the actual light output intensity of the device will be limited. In addition, due to the insulating nature of sapphire, it is not possible to provide effective conduction release of the static electricity generated in the component during the production of the component, so it is very easy to cause the problem of electrostatic discharge (Electr0_StaUe Discharge; ESD), Damage to the components. [Summary of the Invention] One of the objectives of the present invention is to provide a manufacturing method and structure of a gallium nitride light-emitting device, which can not only improve the current dispersion in the device, but also improve the light-emitting intensity and light output efficiency of the light-emitting diode. In addition, the light-emitting element has the effect of electrostatic protection, thereby improving the brightness presentation and product / yield of the element at the same time. According to the above object of the present invention, a manufacturing method and structure of a gallium nitride based light emitting device are proposed. The method according to the present invention is to form a 9-nitride-based light-emitting monopole on a substrate, wherein the gallium nitride-based light-emitting diode body 1231057 contains a first electrical gallium nitride-based semiconductor layer and emits light. Layer and the second electrical gallium nitride-based semiconductor layer, and the substrate is generally selected from sapphire to obtain a gallium nitride-based semiconductor layer with good crystal quality. Then, a conductive substrate is combined on the gallium nitride based light emitting diode, and then the substrate is removed to completely expose the first electrical gallium nitride based semiconductor layer of the gallium nitride based light emitting diode. After the substrate is removed, an insulating block is formed on the surface of the first electrical gallium nitride semiconductor layer, and then a first electrode is formed over the first electrical gallium nitride semiconductor layer to complete The insulating block is covered and is in contact with the first electrical gallium nitride semiconductor layer. The material of the above-mentioned conductive substrate is, for example, stone (Si), copper (Cu), conductive metal, or metal alloy, so that the second electrode can be directly fabricated on the bottom side of the conductive substrate, so that the current in the element is dispersed to form a vertical To reduce the phenomenon of electrical congestion, and effectively improve the current dispersion efficiency in the device, thereby increasing the light output efficiency of the device. At the same time, “for some static electricity accumulation caps generated in the device during the process”, the conductive substrate can be used to conduct and release, so as to effectively avoid the problem of electrostatic discharge. In addition, the formation of the above-mentioned insulating block can be achieved by using an insulating material to make an insulating bump on the first electrical gallium nitride-based semiconductor layer, or by using an ion distribution method for the first electrical property. The surface # of the gallium nitride-based semiconductor layer is an area for implanting an insulating substance to form an insulating region in the first electrical gallium nitride-based semiconductor layer. In addition, if the conductive substrate is made of a semiconductor material such as silicon or gallium arsenide, a first electrical region can be formed in the conductive substrate, so that the conductive substrate has a p / n-type junction. Interface, and then using a metal wire to electrically connect the first electrical gallium nitride-based semiconductor layer to the first electrical region in the conductive substrate. In this way, the completed gallium nitride-based light-emitting element will have a structural state like a zener diode, and have a protective effect of electrostatic discharge. According to the manufacturing method of the light-emitting element of the present invention, an insulating block is provided between the first electrode and the contact position of the gallium nitride-based structure, so that the current cannot be directly dispersed from the position directly below the first electrode and starts to be dispersed. The transfer starts from the position of the side of the insulating block and gradually spreads toward the outside and the inside at the same time to the conductive substrate. In this way, the difference in current distribution density in the device can be reduced, so as to present better uniformity of the current density, thereby improving the luminous intensity of the entire device. Therefore, in addition to the method for manufacturing the light-emitting element of the present invention, in addition to improving the current dispersion efficiency inside the light-emitting element and reducing the density difference of the current distribution, the light output efficiency and light-emitting intensity of the light-emitting element can be improved at the same time, thereby obtaining high brightness quality Light-emitting element. In addition, it can effectively improve the effectiveness of electrostatic discharge protection of components to reduce the probability of component damage, thereby increasing the yield and reliability of products made by light-emitting diodes. [Embodiment] The present invention provides a method and structure for manufacturing a gallium nitride-based (GaN-based) light-emitting element. Using a technology of transferring a substrate, a gallium nitride-based light-emitting diode fabricated on a sapphire substrate is used. Transfer to the conductive substrate to improve the current dispersion effect in the device, and to provide a good electrical conduction effect of the device, thereby reducing the amount of static electricity accumulated in the device. At the same time, an insulation area is set at the position where the electrode contacts the diode structure 1231057 to control the current distribution in the element, thereby effectively improving the light output intensity of the element. Hereinafter, the method of the present invention will be described in detail with examples. Embodiment 1 The present invention discloses a manufacturing method and structure of a gallium (II) nitride light emitting device. Figures 2A to 2C are sequentially referred to. Figures 2A to 2C are schematic cross-sectional views of a method for manufacturing a gallium nitride light-emitting device according to the first embodiment of the present invention. In FIG. 2A, a gallium nitride nitride structure is first fabricated on a sapphire substrate 200 to sequentially form an n-type gallium nitride semiconductor layer 202 ′. A multi-quantum well ) Structure of a light emitting active layer 204 and a p-type gallium nitride semiconductor layer 206 on a sapphire substrate 2000. Next, a transparent conductive layer 208 is formed on the p-type gallium nitride semiconductor layer 206 to provide a current spreading effect. The material of the transparent conductive layer 208 may be, for example, indium tin oxide (Indium_Tin).

Oxide ; ITO)或銦鋅氧化物(indium-Zinc Oxide ; IZO)。 然後,結合一導電基板210於透明導電層208之上。其 中導電基板210的材質例如可為碎(si)、銅(Cu)、坤化錄 (GaAs)、其他導電金屬或金屬合金。 接著,參照第2B圖,將藍寶石基材200移除,以完整 暴露出η型氮化鎵半導體層202,即形成一具有導電基板210 的氮化鎵發光二極體結構。其中,移除藍寶石基材200的方 法可採用雷射剝離(laser lift 〇ff)或研磨技術。 1231057 於藍寶石基# 200移除之後,係參照第2C圖,製作一 絕緣凸塊211於n型氮化鎵半導體層202之上,絕緣凸塊 叫的材質例如可為二氧切(Si〇2)。接著,製作陰極電極 212 ’使陰極電極212含'敕4# π α 212凡整包覆絕緣凸塊211,而形成於η 型氮化鎵半導體層202 > μ 甘rb Λ3 Λ4, 一 丁子菔層202之上,其中,絕緣凸塊211係用以部 分隔離陰極電極212與η型氮化鎵半導體層2〇2之電性。另 外,再製作陽極電極214於導電基板21〇的下表面上。 在第2C圖中,由於導電基板21〇之導電性質,故可將 陽極電極214直接製作在導電基21〇之下方,因而使元件 内的電"iL 220之傳送,形成垂直向分佈,如此,可避免電流 擁擠的現象產生,進而提高元件的光輸出效率。 另外,藉由絕緣凸塊211的設置,使電流22〇無法直接 由陰極電極212的正下方位置,開始分散傳送,而是由包覆 絕緣凸塊211側邊的陰極電極212之下方開始,以同時朝向 外部以及内部逐漸分散的方式,向下方傳送。如此,可減少 電流220之分佈密度,由陰極電極212之下方,逐漸向外側 遞減的範圍,因而有效降低電流220於元件内之分佈密度差 異,相較於習知結構(如第1圖所示),將呈現較佳的電流密 度均勻性’進而提升元件整體之發光強度。同時,本實施例 之結構亦可降低電流密度最大之區域出現於電極2 1 2正下 方,而導致元件中強度最強的發光卻被電極2丨2所阻擋之現 象,以更增加元件之光輸出強度。 除此之外,對於一些在製程進行中產生於元件内的靜電 累積量’更可藉由具導電特性之導電基板210而獲得導通釋 1231057 :’以有效避免靜電放電的問題發生,達到靜電放電之防 邊’進而降低元件受損的機率。 若導電基板210非選用導電性佳之金屬材質,而是選用 +導體材料,例如選时切㈣作為導電基板21〇。則 更可於導電基板210中形成一 p型〜型之接合界面,以達, 成同樣之靜電防護效果,如第3圖所示。 在第3圖中,除了由n型氮化鎵半導體層2〇2、主動層 204、p型氮化鎵半導體層206以及透明導電層2〇8所構成 的發光一極體結構,還有陰極電極212與陽極電極川,另鲁 外’導電基板210則為一半導體材質,例如矽或砷化鎵。其 中,若半導體材質的導電基板21〇係屬於p型半導體特性 時,則於導電基板210中製作一 n型區域215,例如使用離 子佈值(iorMmplantati〇n)的方式,使導電基板21〇内形成一 p型/η型之接合界面,並利用一金屬拉線2丨7,電性連接〇 型氮化鎵半導體層202與η型區域215,以產生一齊納二極 體(Zener-diode)之結構態。如此,將有助於避免靜電放電對 發光元件造成傷害,達到靜電防護之目的。 _ 實施例2 本發明揭露了另一種氮化鎵發光元件之製作方法與結 構。依序參照第4A〜4C圖,第4A〜4C圖係為依照本發明第 二實施例之一種氮化鎵發光元件製作方法的流程剖面示音 圖。 在第4A圖中,如同第一實施例,首先係分別依序形成 12 1231057 一 η型氮化鎵半導體層402,一具有多層量子井結構之發光 主動層404 ’以及一 ρ型氮化鎵半導體層406於藍寶石基材 4〇〇之上。接著’在ρ型氮化鎵半導體層406之上,形成一 透明導電層4 0 8 ’以提供電流分散之作用。然後,結合一導 電基板410於透明導電層408之上。其中,導電基板41〇 的材為同樣例如可為石夕、銅、珅化鎵、其他導電金屬或金屬 合金。 接著,參照第4Β圖,將藍寶石基材4〇〇移除,以完整 暴露出η型氮化鎵半導體層4〇2。其中,移除藍寶石基材4〇〇 的法則例如採用雷射制離或研磨技術。然後,於η型氮化 鎵半導體層402之中,形成一絕緣區域411,例如使用離子 佈值的方法’植入氧分子(〇2)於區域411中,使η型氮化錄 半導體層4〇2中的區域41丨成為絕緣態。 再參"、、第4C圖,分別製作陰極電極412肖陽極電極 其中’陰極電極412係位於絕緣區域4ιι的上方,而 陽極電極4丨4則位於於導電基板21〇的下表面上。 在第4C圖中,元件内的電流㈣之傳送,亦如同第一 卜::成:垂直向之分佈,而有效避免電流擁擠的現 象產生進而楗尚7C件的光輸出效率。 另外’藉由絕緣區域411的形成,提供如同第 中,絕緣凸塊所具有的隔離 實 無法直接由陰極電極412的…用因而使電流420 是由絕緩Μ川 下方位置’開始分散傳送,而 疋甶絕緣區域4 11側邊沾乂 m 训透的位置開始,以同時朝 部逐漸分散的方式,向 ^卜相及内 下方傳达。如此,不僅可減少電流 13 1231057 420之分佈密度,由陰極電極412之正下方,逐漸向外側遞 減的範圍,而有效降低電流42〇於元件内之分佈密度差異, 以呈現杈㈣電流密度均自性,並且,可&低電流密度最大 之區域出現於電極412正下方,而導致元件中強度最強的發 光被電極4 12所阻擋之缺點,以進而提升元件整體之發光強 度。 根據上述本發明之實施例可知,應用本發明之氮化鎵發 光元件的製作方法,可將原本的絕緣性基板,轉換為導電基 板,以同時提高元件内電流傳遞分散的效率,並降低靜電放 電的危害產生,進而提升氮化鎵元件的光輸出效率以及元件 製造的產品良率。 另外,本發明更在電極與氮化鎵半導體層之接觸位置 上,設置一絕緣區域,以控制元件内之電流分佈情形,使降 低電流分佈密度之差異性,而有效提高元件内部整體之電流 分佈密度,進而增加元件之發光強度。故利用本發明之方 法,不僅可大幅提升發光元件之亮度呈現,亦能同時維持元 件的產品良率與可靠度。 本發明不只侷限於使用在氮化鎵發光元件的技術上,其 他所有屬於氮化鎵系發光二極體元件之製作,例如氮化銦鎵 (InGaN)發光二極體或氮化鋁鎵(A1GaN)紫外光發光二極 體,亦可藉由本發明之方法製作,而大幅提升產品的特性。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍 内,當可作各種之更動與修飾,因此本發明之保護範圍當視 1231057 後附之巾請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述特徵、方法、目的及優點能更明顯易 懂,配合所附圖式,加以說明如下: 第1圖係為習知的I化鎵系發光元件結構示意圖; 第2A〜2C圖係為依照本發明第—實施例之—種氮化嫁 發光元件製作方法的流程剖面示意圖; 一第3圖係為依照本發明第一實施例之另一種氣化録發 光元件結構示意圖;以及 第4A〜4C圖係為依照本發明第二實施例之―種乱化録 發光凡件製作方法的流程剖面示意圖。 【元件代表符號簡單說明】 1 00 .基板 102、106 :氮化鎵系半導體層 104、204、404 :主動層 112、114、212、214、412、414:電極 120、220、420 :電流 200、400 :藍寶石基材 202、206、402、406 :氮化鎵半導體層 208、408 ··透明導電層 210、410 :導電基板 211 :絕緣凸塊 15 1231057 2 1 5、411 :區域 2 17 :拉線Oxide; ITO) or indium-zinc oxide (IZO). Then, a conductive substrate 210 is combined on the transparent conductive layer 208. The material of the conductive substrate 210 may be si, copper, CuAs, other conductive metals, or metal alloys. Next, referring to FIG. 2B, the sapphire substrate 200 is removed to completely expose the n-type gallium nitride semiconductor layer 202, that is, a gallium nitride light emitting diode structure having a conductive substrate 210 is formed. Among them, the method for removing the sapphire substrate 200 may be laser lift off or grinding technology. 1231057 After the sapphire-based # 200 is removed, referring to FIG. 2C, an insulating bump 211 is fabricated on the n-type gallium nitride semiconductor layer 202. The material of the insulating bump may be, for example, dioxy cut (Si〇2 ). Next, a cathode electrode 212 is formed so that the cathode electrode 212 contains 敕 4 # π α 212 where the insulating bump 211 is entirely coated, and is formed on the n-type gallium nitride semiconductor layer 202 > μ grb Λ3 Λ4, a dizi Above the layer 202, the insulating bump 211 is used to partially isolate the electrical properties of the cathode electrode 212 and the n-type gallium nitride semiconductor layer 202. In addition, an anode electrode 214 is fabricated on the lower surface of the conductive substrate 21o. In Figure 2C, due to the conductive nature of the conductive substrate 21o, the anode electrode 214 can be made directly below the conductive substrate 21o, so that the electricity " iL 220 in the element is transmitted and formed vertically distributed, so , Can avoid the phenomenon of current crowding, thereby improving the light output efficiency of the device. In addition, due to the arrangement of the insulating bump 211, the current 22o cannot be transmitted directly from the position directly below the cathode electrode 212, and it starts from below the cathode electrode 212 covering the side of the insulating bump 211. At the same time, it spreads towards the outside and inside, and transmits downward. In this way, the distribution density of the current 220 can be reduced, and the range gradually decreases from below the cathode electrode 212 to the outside. Therefore, the difference in the distribution density of the current 220 in the element is effectively reduced, compared with the conventional structure (as shown in FIG. 1). ), It will show better uniformity of current density, and then improve the luminous intensity of the whole device. At the same time, the structure of this embodiment can also reduce the phenomenon that the region with the highest current density appears directly below the electrode 2 1 2, which results in the strongest light emission in the element being blocked by the electrode 2 丨 2 to further increase the light output of the element strength. In addition, for some of the accumulated static electricity generated in the component during the process, 'conductivity release 1231057 can be obtained through the conductive substrate 210 with conductive characteristics:' to effectively avoid the problem of electrostatic discharge and achieve electrostatic discharge Protecting against edges' reduces the chance of component damage. If the conductive substrate 210 is not selected from a conductive metal material, but a + conductive material is selected, for example, when the conductive substrate 210 is selected, the conductive substrate 21 is selected. Then, a p-type ~ type bonding interface can be formed in the conductive substrate 210 to achieve the same electrostatic protection effect, as shown in FIG. 3. In Fig. 3, in addition to a light-emitting monopolar structure composed of an n-type gallium nitride semiconductor layer 202, an active layer 204, a p-type gallium nitride semiconductor layer 206, and a transparent conductive layer 208, there is also a cathode. The electrode 212 and the anode electrode channel, and the outer conductive substrate 210 are made of a semiconductor material, such as silicon or gallium arsenide. Wherein, if the conductive substrate 21o of semiconductor material has p-type semiconductor characteristics, an n-type region 215 is made in the conductive substrate 210. For example, an ion cloth value (iorMmplantation) is used to make the conductive substrate 21〇 A p-type / n-type bonding interface is formed, and a metal pull wire 2 丨 7 is used to electrically connect the 0-type gallium nitride semiconductor layer 202 and the n-type region 215 to generate a Zener-diode The structural state. In this way, it will help to prevent the electrostatic discharge from causing damage to the light-emitting element and achieve the purpose of electrostatic protection. _ Embodiment 2 The present invention discloses another manufacturing method and structure of a gallium nitride light emitting device. Reference is made to Figures 4A to 4C in sequence, and Figures 4A to 4C are flow chart audio diagrams of a method for manufacturing a gallium nitride light emitting device according to a second embodiment of the present invention. In FIG. 4A, as in the first embodiment, 12 1231057, an n-type gallium nitride semiconductor layer 402, a light-emitting active layer 404 'having a multilayer quantum well structure, and a p-type gallium nitride semiconductor are sequentially formed first, respectively. A layer 406 is on the sapphire substrate 400. Next, on top of the p-type gallium nitride semiconductor layer 406, a transparent conductive layer 408 'is formed to provide the effect of current dispersion. Then, a conductive substrate 410 is bonded on the transparent conductive layer 408. Among them, the material of the conductive substrate 41 can be Shi Xi, copper, gallium halide, other conductive metals, or metal alloys. Next, referring to FIG. 4B, the sapphire substrate 400 is removed to completely expose the n-type gallium nitride semiconductor layer 402. Among them, the rule for removing the sapphire substrate 400 is, for example, laser ionization or grinding technology. Then, an insulating region 411 is formed in the n-type gallium nitride semiconductor layer 402. For example, an oxygen molecule (0 2) is implanted into the region 411 using an ion distribution method, so that the n-type nitride semiconductor layer 4 is implanted. The region 41 丨 in 〇2 is insulated. Referring again to FIG. 4 and FIG. 4C, the cathode electrode 412 and the anode electrode are separately produced. The 'cathode electrode 412 is located above the insulating region 4m, and the anode electrode 4 丨 4 is located on the lower surface of the conductive substrate 21o. In Figure 4C, the transmission of the current in the element is also the same as the first one. It is distributed vertically, which effectively avoids the phenomenon of current congestion and thus the light output efficiency of 7C components. In addition, 'the formation of the insulating region 411 provides the isolation provided by the insulating bumps as in the first step, which cannot be directly transmitted by the cathode electrode 412 ... so that the current 420 is transmitted from the position below the retardation Mgawa', and疋 甶 Insulation area 4 11 Starts at the position where 乂 m training penetrates, and spreads to the sides and the inner and lower sides in a manner that gradually spreads toward the part at the same time. In this way, not only the distribution density of the current 13 1231057 420 can be reduced, but the area gradually decreases from directly below the cathode electrode 412 to the outside, and the difference in the distribution density of the current 42 within the element can be effectively reduced to show that the current density is all In addition, the region with the lowest possible current density appears directly below the electrode 412, which causes the shortcoming that the strongest light emission in the element is blocked by the electrode 4 12 to further increase the luminous intensity of the entire element. According to the above embodiments of the present invention, it can be known that by applying the manufacturing method of the gallium nitride light emitting device of the present invention, the original insulating substrate can be converted into a conductive substrate, so as to improve the efficiency of current transfer and dispersion in the device and reduce electrostatic discharge. Hazards, which in turn improve the light output efficiency of GaN devices and the product yield of device manufacturing. In addition, the present invention further provides an insulating region at the contact position between the electrode and the gallium nitride semiconductor layer to control the current distribution in the device, reduce the difference in current distribution density, and effectively improve the overall current distribution inside the device. Density, which in turn increases the luminous intensity of the device. Therefore, by using the method of the present invention, not only the brightness presentation of the light-emitting element can be greatly improved, but also the product yield and reliability of the element can be maintained at the same time. The present invention is not limited to the technology used in gallium nitride light-emitting elements. All other gallium nitride-based light-emitting diode elements are manufactured, such as indium gallium nitride (InGaN) light-emitting diodes or aluminum gallium nitride (A1GaN). ) Ultraviolet light-emitting diodes can also be produced by the method of the present invention, which greatly improves the characteristics of the product. Although the present invention has been disclosed as above by way of example, it is not intended to limit the present invention. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be determined by the scope of patent attached to 1231057. [Brief description of the drawings] In order to make the above-mentioned features, methods, objects, and advantages of the present invention more comprehensible, in conjunction with the accompanying drawings, the description is as follows: FIG. 1 is a conventional structure of a gallium-based light-emitting device Schematic diagrams; Figures 2A to 2C are schematic cross-sectional views of a method of manufacturing a nitrided light-emitting device according to the first embodiment of the present invention; and Figure 3 is another gasification record according to the first embodiment of the present invention A schematic view of the structure of a light-emitting element; and FIGS. 4A to 4C are schematic cross-sectional views showing a flow of a method for making a randomized light-emitting component according to a second embodiment of the present invention. [Simple description of element representative symbols] 1 00. Substrates 102, 106: GaN-based semiconductor layers 104, 204, 404: Active layers 112, 114, 212, 214, 412, 414: Electrodes 120, 220, 420: Current 200 , 400: sapphire substrate 202, 206, 402, 406: gallium nitride semiconductor layer 208, 408 · transparent conductive layer 210, 410: conductive substrate 211: insulating bump 15 1231057 2 1 5, 411: area 2 17: Pull line

1616

Claims (1)

1231057 拾、申請專利範圍 ^ 一種氮化鎵系(GaN-based)發光元件之製作方法,炱 少包含: 形成至少一氮化鎵系發光二極體於一基材上; 結合一導電基板於該氮化鎵系發光二極體之上; 移除該基材,以完整暴露出該氮化鎵系發光二極體之/ 第一電性氮化鎵系半導體層; 形成一絕緣區塊於該氮化鎵系發光二極體之該第/電 性氮化鎵系半導體層之表面位置;以及 形成一第一電極於該氮化鎵系發光二極體之該第/電 性敗化鎵系半導體層之上方,且該第一電極係完整包覆該絕 緣區塊,並與該第一電性氮化鎵系半導體層相接觸。 2 ·如申請專利範圍第1項所述之製作方法,其中該氮 化鎵系發光二極體内至少包含一第二電性氮化鎵系半導體 層、一發光主動層以及該第一電性氮化鎵系半導體層。 3_如申請專利範圍第2項所述之製作方法,其中該第 二電性氮化鎵系半導體層係為一 p型氮化鎵系結構。 4·如申請專利範圍第丨項所述之製作方法,其中該基 材係為一藍寶石(sapphire)材質。 17 1231057 5·如申請專利範圍第1項所述之製作方法,其中該導 電基板之材質係為矽(Si)、銅(Cu)、砷化鎵(GaAs)、導電金 屬或金屬合金。 6·如申請專利範圍第1項所述之製作方法,其中該絕 緣區塊之形成係為形成一絕緣凸塊於該氮化鎵系發光二極 體之該第一電性氮化鎵系半導體層之上,或是形成一絕緣區 域於該氮化鎵系發光二極體之該第一電性氮化鎵系半導體 層之中。 7·如申請專利範圍第6項所述之製作方法,其中該絕 緣凸塊係由一絕緣材料所形成。 8·如申請專利範圍第7項所述之製作方法,其中該絕 緣材料係為二氧化矽(Si〇2)。1231057 Patent application scope ^ A method for manufacturing a GaN-based light-emitting device, which at least includes: forming at least one GaN-based light-emitting diode on a substrate; combining a conductive substrate on the substrate Over the gallium nitride based light emitting diode; removing the substrate to completely expose the / first electrical gallium nitride based semiconductor layer of the gallium nitride based light emitting diode; forming an insulating block on the A surface position of the / electrically gallium nitride based semiconductor layer of the gallium nitride light emitting diode; and forming a first electrode on the / electrically degraded gallium based light emitting diode Above the semiconductor layer, the first electrode system completely covers the insulating block, and is in contact with the first electrical gallium nitride-based semiconductor layer. 2. The manufacturing method according to item 1 of the scope of the patent application, wherein the gallium nitride based light emitting diode body includes at least a second electrical gallium nitride based semiconductor layer, a light emitting active layer, and the first electrical property. GaN-based semiconductor layer. 3_ The manufacturing method according to item 2 of the scope of the patent application, wherein the second electrical gallium nitride-based semiconductor layer is a p-type gallium nitride-based structure. 4. The manufacturing method as described in item 丨 of the patent application scope, wherein the substrate is a sapphire material. 17 1231057 5. The manufacturing method described in item 1 of the scope of patent application, wherein the material of the conductive substrate is silicon (Si), copper (Cu), gallium arsenide (GaAs), conductive metal or metal alloy. 6. The manufacturing method as described in item 1 of the scope of patent application, wherein the formation of the insulating block is to form an insulating bump on the first electrical gallium nitride semiconductor of the gallium nitride light emitting diode. Layer, or an insulating region is formed in the first electrical gallium nitride-based semiconductor layer of the gallium nitride-based light emitting diode. 7. The manufacturing method according to item 6 of the scope of patent application, wherein the insulating bump is formed of an insulating material. 8. The manufacturing method according to item 7 of the scope of patent application, wherein the insulating material is silicon dioxide (SiO2). 9·如申請專利範圍第6項所述之製作方法,盆中兮 ==係使用一離子佈值技術,以對該氮化鎵系發 ;體之該第一電性氮化鎵系半導體層,植入至少一絕緣 方法,更包含: ,使該導電基板 10.如申請專利範圍第^項所述之製作 形成—第一電性區域於該導電基板之中 内形成一 P/n型接合界面;以及 18 1231057 利用至少一金屬拉線,電性連接該氮化鎵系發光二極體 之該第一電性氮化鎵系半導體層與該導電基板之該第一電 性區域。 11 · 一種氮化鎵系(GaN-based)發光元件之結構,至少包 含: 一導電基板; P型氮化鎵系半導體層,位於該導電基板之一表面 上; 一主動層’位於該第一電性氮化鎵系半導體層之上; 一 η型氮化鎵系半導體層,位於該主動層之上; 一絕緣區塊,位於該η型氮化鎵系半導體層之表面; 一陰極電極,位於該η型氮化鎵系半導體層之上方,其 中,該陰極電極係完整包覆該絕緣區,且與該η型氮化鎵系 半導體層相接觸;以及 一陽極電極,位於該導電基板之另一表面上。 12.如申請專利範圍第丨丨項所述之結構,其中該導電 基板之材質係為矽(Si)、銅(Cu)、砷化鎵(GaAs)、導電金屬 或金屬合金。 13 ·如申睛專利範圍第11項所述之結構,其中該絕緣 區塊之形成係為形成一絕緣凸塊於該n型氮化鎵系半導體 層之上,或是形成一絕緣區域於該11型氮化鎵系半導體層之 19 1231057 中。 14·如申請專利範圍第 凸塊係由一絕緣材料所形成 15·如申請專利範圍第 材料係為二氧化矽(Si〇2)。 1 3項所述之結構,其中該絕緣 〇 14項所述之結構,其中該絕緣 、16·如巾請專利範圍第13 j員所述之結構,其中該絕緣 區域之形成係使用一離子佈值技術,以對該n型氮化鎵系半 導體層,植入至少一絕緣物質。 1 7·如申請專利範圍第丨1項所述之結構,其中該導電 基板與該p型氮化鎵系半導體層之間,更包含一透明導電 層0 1 8·如申請專利範圍第丨丨項所述之結構,更包含:一 η 型區域,位於該導電基板之中,以使該導電基板 内具有一 ρ/η型接合界面;以及 至少一金屬拉線,用以電性連接該η型氮化鎵系半導體 層以及該導電基板之該η型區域。 209. The manufacturing method as described in item 6 of the scope of the patent application, == using an ionic layout technology to generate the gallium nitride system; the first electrical gallium nitride semiconductor layer Implanting at least one insulating method, further comprising: making the conductive substrate 10. The first electrical region forms a P / n-type junction in the conductive substrate within the conductive substrate. Interface; and 18 1231057 electrically connect the first electrical gallium nitride-based semiconductor layer of the gallium nitride-based light-emitting diode to the first electrical region of the conductive substrate by using at least one metal wire. 11 · A structure of a GaN-based light-emitting element, comprising at least: a conductive substrate; a P-type GaN-based semiconductor layer on a surface of the conductive substrate; an active layer 'on the first On the electrical gallium nitride-based semiconductor layer; an n-type gallium nitride-based semiconductor layer on the active layer; an insulating block on the surface of the n-type gallium nitride-based semiconductor layer; a cathode electrode, Located above the n-type gallium nitride-based semiconductor layer, wherein the cathode electrode system completely covers the insulation region and is in contact with the n-type gallium nitride-based semiconductor layer; and an anode electrode is located on the conductive substrate On another surface. 12. The structure according to item 丨 丨 in the scope of patent application, wherein the material of the conductive substrate is silicon (Si), copper (Cu), gallium arsenide (GaAs), a conductive metal, or a metal alloy. 13 · The structure as described in item 11 of the Shenjing patent scope, wherein the insulating block is formed by forming an insulating bump on the n-type gallium nitride semiconductor layer or forming an insulating region on the No. 19 1231057 of a type 11 gallium nitride-based semiconductor layer. 14. As the scope of the patent application, the bump is formed of an insulating material. 15. As the scope of the patent application, the material is silicon dioxide (SiO2). 13. The structure described in item 3, wherein the insulation is described in item 14. The structure described in item 14, wherein the insulation is described in the 13th member of the patent scope, wherein the formation of the insulating area is made of an ion cloth. In order to implant the n-type GaN-based semiconductor layer, at least one insulating substance is implanted. 1 7 · The structure described in item 1 of the scope of patent application, wherein the conductive substrate and the p-type gallium nitride-based semiconductor layer further include a transparent conductive layer 0 1 8 · As in the scope of patent application 丨 丨The structure described in the item further includes: an n-type region located in the conductive substrate so that the conductive substrate has a ρ / η-type bonding interface; and at least one metal wire for electrically connecting the η And a n-type region of the conductive substrate. 20
TW93116916A 2004-06-11 2004-06-11 Method of fabricating gallium nitride-based light emitting device and structure thereof TWI231057B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93116916A TWI231057B (en) 2004-06-11 2004-06-11 Method of fabricating gallium nitride-based light emitting device and structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93116916A TWI231057B (en) 2004-06-11 2004-06-11 Method of fabricating gallium nitride-based light emitting device and structure thereof

Publications (2)

Publication Number Publication Date
TWI231057B true TWI231057B (en) 2005-04-11
TW200541101A TW200541101A (en) 2005-12-16

Family

ID=36086376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93116916A TWI231057B (en) 2004-06-11 2004-06-11 Method of fabricating gallium nitride-based light emitting device and structure thereof

Country Status (1)

Country Link
TW (1) TWI231057B (en)

Also Published As

Publication number Publication date
TW200541101A (en) 2005-12-16

Similar Documents

Publication Publication Date Title
KR101007128B1 (en) Light emitting device and method for fabricating the same
US9786814B2 (en) Ultraviolet light emitting device
CN104241483B (en) Luminescent device
KR20100094243A (en) Light emitting device and method for fabricating the same
WO2009089671A1 (en) Led package structure having the led and method for fabricating the led
JP2016092414A (en) Light emitting element and lighting system
CN106165128A (en) Light-emitting component and illuminator
US20110220945A1 (en) Light emitting device and light emitting device package having the same
TW201214771A (en) Light emitting device, light emitting device package, and lighting device
JP2014060294A (en) Led element and manufacturing method of the same
JP2013034010A (en) Vertical light-emitting device
TW201312792A (en) Light emitting diode structure and method for manufacturing the same
US10177274B2 (en) Red light emitting diode and lighting device
US8574936B2 (en) Semiconductor light emitting device and method for manufacturing the same
JP6878406B2 (en) Light emitting element and light emitting element package containing it
KR101239852B1 (en) GaN compound semiconductor light emitting element
KR101646261B1 (en) Light emitting device and method for fabricating the same
US10186647B2 (en) Light-emitting device
KR20100063650A (en) Semiconductor light emitting device and manufacturing method thereof
TWI231057B (en) Method of fabricating gallium nitride-based light emitting device and structure thereof
KR101154666B1 (en) Vertical Type Light Emitting Device And Fabricating Method Thereof
KR20110127936A (en) Semiconductor light emitting device
CN104868031B (en) A kind of luminescent device
CN105449069B (en) A kind of flip LED chips structure and its manufacturing method
KR102042540B1 (en) Light emitting device and light emitting device package