TWI230979B - Method of making transparent conductive oxide ohmic contact electrode on GaN - Google Patents

Method of making transparent conductive oxide ohmic contact electrode on GaN Download PDF

Info

Publication number
TWI230979B
TWI230979B TW92136073A TW92136073A TWI230979B TW I230979 B TWI230979 B TW I230979B TW 92136073 A TW92136073 A TW 92136073A TW 92136073 A TW92136073 A TW 92136073A TW I230979 B TWI230979 B TW I230979B
Authority
TW
Taiwan
Prior art keywords
gan
transparent conductive
ohmic contact
film
contact electrode
Prior art date
Application number
TW92136073A
Other languages
Chinese (zh)
Other versions
TW200522167A (en
Inventor
Lung-Han Peng
Han-Min Wu
Sung-Li Wang
Jia-Wei Jang
Jin-Yi Lin
Original Assignee
Tekcore Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekcore Co Ltd filed Critical Tekcore Co Ltd
Priority to TW92136073A priority Critical patent/TWI230979B/en
Application granted granted Critical
Publication of TWI230979B publication Critical patent/TWI230979B/en
Publication of TW200522167A publication Critical patent/TW200522167A/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

A method of making transparent conductive oxide ohmic contact electrode on GaN is provided, which includes forming a transparent conductive film on a GaN film; using an ion diffusion method to form a transparent conductive hetero-junction with opposite electric characteristic on the surface of the GaN film; and then building a metallic thick layer on the transparent conductive hetero-junction for the subsequent wire bonding process, so as to form an ohmic contact electrode to improve the Fermi energy level of hetero-junction by using the tunnel effect of electron and hole from the aforementioned ion diffusion method.

Description

12309791230979

五、發明說明(1) 【發明所屬之技術領域】 本發明係一種導電氧化膜歐姆電極的製作方法,特別 係關於一種以離子擴散方式形成一導電氧化膜歐姆電極於 氮化鎵膜層上。 ' 【先前技術】 氮化鎵(GaN )系列材料,在紫外光波段與藍綠光波 段具有直接能隙(direct bandgap,Eg),因此可以作為高 效率之白光與可見光源。目前已商品化的產品有藍、綠、 务、外光與白光發光一極體(White Light-Emitting DiodeV. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates to a method for manufacturing an ohmic electrode of a conductive oxide film, and more particularly to a method of forming an ohmic electrode of a conductive oxide film on a gallium nitride film layer by ion diffusion. '' [Previous technology] Gallium nitride (GaN) series materials have direct bandgap (Eg) in the ultraviolet and blue-green light bands, so they can be used as high-efficiency white and visible light sources. Currently commercialized products include blue, green, white, white and light emitting diodes (White Light-Emitting Diode).

)’以及藍务、光波段之雷射二極體(Laser Diode,LD)。 由於氮化鎵系列材料之能階與電子親合力(electr〇I1 affinity /)的值相當南’以氣化錄為例,Eg = 3.4 eV、 % = 2· 9 eV。因此在形成金屬接觸電極時,尤其是在p型氮 化鎵(p_GaN )要形成歐姆接觸電極時,必須利用具備高功’ 函數(work function Φπι)之金屬,如鎳 Ni (φιη = 5·15 eV) 、金Au ( Φιη = 5· 1 eV)、鈀Pd ( Φπι = 5· 12 eV)、鉑Pt ( (Dm=: 5 · 6 5 e V )、釘R u、银I r專,以利電洞由金屬電極經由電洞 注射(hole injection)至p型氮化鎵。習知中,如日亞化學 公司 Nichia chemical Industries, Ltd.之美國專利 5563422 (10/8/1996)所揭露,乃利用Ni/Au/p - GaN 做為 p-GaN之接觸電極,並經過一高過4〇〇。c的退火處理製程, 以形成透明導電膜。另一公開技術,如日本豐田合成) 'And Laser Diode (LD) in Lanwu and light bands. Because the values of the energy level and electron affinity of the gallium nitride series materials are quite south ’, taking gasification records as examples, Eg = 3.4 eV,% = 2 · 9 eV. Therefore, when forming a metal contact electrode, especially when forming p-type gallium nitride (p_GaN) as an ohmic contact electrode, it is necessary to use a metal having a high work 'function (work function Φπι), such as nickel Ni (φιη = 5 · 15 eV), Au Au (Φιη = 5.1 eV), Palladium Pd (Φπι = 5.12 eV), Platinum Pt ((Dm =: 5 · 6 5 e V), Na Ru, Ag I r, The hole is made from a metal electrode through a hole injection to p-type gallium nitride. Conventionally, as disclosed in US Patent No. 5,562,422 (10/8/1996) of Nichia Chemical Industries, Ltd., Ni / Au / p-GaN is used as the contact electrode of p-GaN, and undergoes an annealing treatment process higher than 400 ° C to form a transparent conductive film. Another disclosed technology, such as Japan's Toyota Synthetic

Toyoda Gosei Co·, Ltd 之美國專利 6620 643 ( 9/6/20 03 ) 所揭露,乃利用Au/Co/p-GaN做為p-GaN之接觸電極。Toyoda Gosei Co., Ltd.'s US patent 6620 643 (9/6/20 03) discloses that Au / Co / p-GaN is used as the contact electrode of p-GaN.

第6頁 1230979 五、發明說明(2) 至於經過退火處理製程後的高功函數金屬之所以能形 成p-GaN歐姆接觸的機制,依據H· w. Jang et al.,, Mechanism for ohmic contact formation of oxidizedPage 6 1230979 V. Description of the invention (2) As for the mechanism of the high work function metal that can form p-GaN ohmic contact after the annealing process, according to H. W. Jang et al., Mechanism for ohmic contact formation of oxidized

Ni/Au on p-type GaN,丨 Journal of Applied Physics vol· 94, No· 3, pp· 1748-1752 (August 1, 2003)所述 ,目前的了解是在高溫氧化過程中,以Au/Ni/GaN介面為例 ,高溫導致Ni外擴散而於GaN表面形成p型透明導電膜NiO/ Au/GaN。而在介面處’不僅有鎵((ja)融於^的現象發生( 舉例而言’ 4 0 9 ° C時,低熔點的G a原子在Au當中之融解度 為1 3%),而且介面處剩餘的Ga原子尚會與〇反應,形成氧⑩ 化鎵(GhO3)。而進一步的了解,是介面處之Ga原子的融 解與氧化’所造成表面態(interface state)的改變。根 據J.L. Lee et al·, Applied Physics Letters vol. 74, 2289 ( 1 999 )等人之研究,不僅(1)在介面處形成Ga缺位( vacancy) ’專效形成受體(accept〇r)於p_GaN介面處, 因此可於p-GaN表面提供額外的電洞濃度。同時依據α·According to Ni / Au on p-type GaN, Journal of Applied Physics vol. 94, No. 3, pp. 1748-1752 (August 1, 2003), the current understanding is that in the high temperature oxidation process, Au / Ni The / GaN interface is taken as an example. A high temperature causes Ni to diffuse outside and forms a p-type transparent conductive film NiO / Au / GaN on the GaN surface. At the interface, not only does the phenomenon of gallium ((ja) melting into ^ occur (for example, at 49 ° C, the melting point of Ga atom of low melting point in Au is 13%), but also the interface The remaining Ga atoms will still react with 0 to form gallium oxide (GhO3). Further understanding is the change of the interface state caused by the melting and oxidation of Ga atoms at the interface. According to JL Lee et al., Applied Physics Letters vol. 74, 2289 (1 999) and others, not only (1) the formation of Ga vacancy at the interface 'specific formation of acceptor (acceptor) at the p_GaN interface Therefore, it can provide additional hole concentration on the surface of p-GaN. At the same time according to α ·

Motayed et al· ’’High-transparency Ni/Au bilayer contacts to n-type GaN,’丨 Journal of applied physics vol. 92, no· 9, pp· 5218—5227 (N〇vember i, 2〇〇2)所 述’也可獲知(2)降低表面功函數(w〇rk functi〇n Φπι)的 目的。而且’上述由於GaN表面態改變所獲得之功 效’可以改善GaN表面之費米能階的位置,有利於與N i 0形 成歐姆接觸電極。 然而’經由H. W· Jang et al. "Transparent ohmicMotayed et al. '' High-transparency Ni / Au bilayer contacts to n-type GaN, '丨 Journal of applied physics vol. 92, no. 9, pp. 5218-5227 (November i, 2000) The 'can also know (2) the purpose of reducing the surface work function (work functión Φπι). Moreover, "the above-mentioned effect obtained by changing the surface state of GaN" can improve the position of the Fermi level of the GaN surface, which is advantageous for forming an ohmic contact electrode with Ni 0. However ’via H. W. Jang et al. &Quot; Transparent ohmic

1230979 五、發明說明(3) contacts of oxidized Ru and I r on p-type GaN,丨丨 Applied physics Letters vol· 93, no· 9, pp. 5416-5418 (May 1,2003 )研究指出:Ni/Au/GaN形成之電極的熱 穩定性欠佳。舉例而言,經過5 0 0 °C退火24小時後,Ni/Au 之電阻會增加高達840倍。此外,由於Au在可見光波段有強 烈吸收,對於發藍綠光之發光二極體(L i g h t - E m i 11 i n g Di ode,LED )的製作,必須採用超薄的金(Au)膜(厚度5〜 1 Onm)作為透明導電層。因此目前p-GaN歐姆接觸電極技術 的發展,將是朝向使用非金電極(non-Au electrode)為 主。 近期公開的技術有(1 ) n : ITO/Au/Ni/p-GaN (S. Υ· Kim et al·,丨’Effect of an indium-tin-oxide over 1 ayer on transparent Ni/Au ohmic contact on p-type GaN," Applied Physics Letters, vol. 82, No. 1, pp· 6卜63, (Jan. 6, 2003)。 (2) A1 :ZnO/Ni/p-GaN (J. 0· Song et al·, "Highly low resistance and transparent Ni/ZnO ohmic contacts to p-type GaN,,f Applied Physics Letters vol· 83, No· 3, pp· 479-481 (July 21, 2003) 〇 上述技術主要分別使用以下透明氧化膜堆疊,與p-GaN形成 歐姆接觸電極:ITO (60nm) / Au(3nm) / Ni(2nm) / p-GaN (退火於5 0 0 °C);與AZO( 450nm) / Ni(5nm) / p-GaN (退火於550 ° C)。 上述這兩項技術的共通點,乃是採用具有高功函數(φ m1230979 V. Description of the invention (3) contacts of oxidized Ru and Ir on p-type GaN, 丨 丨 Applied Physics Letters vol · 93, no · 9, pp. 5416-5418 (May 1, 2003). Au / GaN formed electrodes have poor thermal stability. For example, after annealing at 500 ° C for 24 hours, the resistance of Ni / Au will increase up to 840 times. In addition, because Au has strong absorption in the visible light band, for the production of light-emitting diodes (Light-E mi 11 ing Diode, LED) with blue and green light, an ultra-thin gold (Au) film (thickness 5 ~ 1 Onm) as a transparent conductive layer. Therefore, the current development of p-GaN ohmic contact electrode technology will be directed towards the use of non-Au electrodes. Recently published technologies are (1) n: ITO / Au / Ni / p-GaN (S. Υ · Kim et al ·, 丨 Effect of an indium-tin-oxide over 1 ayer on transparent Ni / Au ohmic contact on p-type GaN, " Applied Physics Letters, vol. 82, No. 1, pp · 6 and 63, (Jan. 6, 2003). (2) A1: ZnO / Ni / p-GaN (J. 0 · Song et al., &Quot; Highly low resistance and transparent Ni / ZnO ohmic contacts to p-type GaN ,, f Applied Physics Letters vol. 83, No. 3, pp. 479-481 (July 21, 2003) 〇The above technology The following transparent oxide film stacks are mainly used to form ohmic contact electrodes with p-GaN: ITO (60nm) / Au (3nm) / Ni (2nm) / p-GaN (annealed at 500 ° C); and AZO (450nm ) / Ni (5nm) / p-GaN (annealed at 550 ° C). The common feature of these two technologies is the use of a high work function (φ m

第8頁 1230979Page 8 1230979

> 4 eV)的η型透明導電氧化膜,如Sn :In2〇3 (IT〇) ''I · ZnO (AZO),並與具有相近功函數之口型透明導電氧化· ΝίΟ(Φπι =5 eV)前後疊合,以作為與具有高電子親合力的 半導體(如GaN)形成一歐姆接觸。此種功函數技術工裎 (work function engineering)觀念,即利用兩種功函數接 近之η/p型透明氧化膜,以與寬能隙材料(如GaN)形成歐姆> 4 eV) n-type transparent conductive oxide film, such as Sn: In2〇3 (IT〇) '' I · ZnO (AZO), and a mouth-shaped transparent conductive oxide with a similar work function · ΝίΟ (Φπι = 5 eV) are stacked back and forth to form an ohmic contact with a semiconductor (such as GaN) having a high electron affinity. This kind of work function engineering concept uses a η / p-type transparent oxide film with two work functions close to each other to form an ohm with a wide bandgap material such as GaN.

而採用上述氧化銦錫(ιτο )、摻雜鋁的氧化鋅(AZ〇 )與氧化鎳(Ni〇)堆疊,形成p — GaN歐姆電極的二大限制 ’則是在於(1) ΙΤ0、ΑΖ0與NiO之功函數之差異達0.3〜〇 5 eV,(2) ΙΤΟ、ΑΖ0、NiO之吸收能隙值在3· 6eV左右,與GaN 相距不遠。(1 )會造成在GaN發光二極體元件之順向操作電 壓上升卜5V ;而(2)則會導致這兩種氧化膜堆疊時,造成在 束外光波長之穿透率降低’因而降低在此短波長之外部使 用效率(external efficiency)。 舉例而言:a :IT0 (250nm)/Ni(10nm)/p-GaN與b : Au (5nm)/Ni(10nm)在350nm之穿透率下降至〜55%。其a證明 詳·· R.-H· Horng et al·,"Low - resistance and high- transparency Ni/ITO ohmic contacts to p-type GaN, nThe two limitations of using the above-mentioned indium tin oxide (ιτο), aluminum-doped zinc oxide (AZ〇) and nickel oxide (Ni〇) to form a p-GaN ohmic electrode are (1) ITO, AZO, and The difference in work function of NiO is 0.3 ~ 05 eV. (2) The absorption energy gap of ITO, AZ0, NiO is about 3.6 eV, which is not far from GaN. (1) will cause the forward operating voltage of the GaN light-emitting diode element to increase by 5V; and (2) will cause the two kinds of oxide films to be stacked, resulting in a reduction in the transmittance of the light wavelength outside the beam and thus a decrease External efficiency at this short wavelength. For example: the transmittance of a: IT0 (250nm) / Ni (10nm) / p-GaN and b: Au (5nm) / Ni (10nm) at 350nm drops to ~ 55%. Its a proof is detailed .. R.-H. Horng et al., &Quot; Low-resistance and high- transparency Ni / ITO ohmic contacts to p-type GaN, n

Applied Physics Letters, vol. 79, no· 18, pp· 2925-2927 (Oct 29,20 0 1 )。1)證明詳:J.K. Ho et al·, "Low resistance ohmic contact to p-type GaN, 1 丨 Applied Physics Letters vol· 74, no. 9, pp· 1275-1277 (Applied Physics Letters, vol. 79, no. 18, pp. 2925-2927 (Oct 29, 20 01). 1) Detailed proof: J.K. Ho et al ·, " Low resistance ohmic contact to p-type GaN, 1 丨 Applied Physics Letters vol · 74, no. 9, pp · 1275-1277 (

March 1, 1999).March 1, 1999).

第9頁 1230979 五、發明說明(5) 【發明内容】 美是,本發明之主要目的在於解決上述 ,,失存在,其主要目的係為求解決現;ί 失’ 數(ΙΤ〇、ΑΖ0)與NiO/GaN差距過大,不利 =之 另一目的係解決氧化膜在紫外光波段( 壓知作; 收問題。 、反仗〈36〇nm)之吸 為達上述之目的,係於氮化鎵膜層上 ,再利用離子擴散方式於此導電透明膜,透明膜 透明導ΐ = ί : 層表層,以及,於此 程打線=面鋪設一金屬厚膜,以作為後序製 洞之ίί/ 述之離子擴散方式利用電子、ί 【實i=,使該異質介面形成—歐姆接觸電極。 明^有關本發明之詳細内容及技術說明’現配合圖式說 請參閱下表,係所之透明導電氧化膜功函數: 能隙信 p . G a2 〇3 S n : I n2 03 A 1 : Ζ η 0 n i 0Page 9 1230979 V. Description of the invention (5) [Summary of the invention] The beauty is that the main purpose of the present invention is to solve the above-mentioned problems, the main purpose of which is to solve the problem; ‚Lost number (ΙΤ〇, AZ0) The gap with NiO / GaN is too large, which is disadvantageous. The other purpose is to solve the problem of the absorption of the oxide film in the ultraviolet light band (the pressure is known; the anti-reflection) is to achieve the above purpose, which is based on gallium nitride. On the film layer, an ion diffusion method is used for the conductive transparent film. The transparent film is transparent and transparent. Ί: layer surface layer, and in this process, a thick metal film is laid on the surface to serve as a subsequent hole making method. The ion diffusion method uses electrons and ions to make the heterogeneous interface form an ohmic contact electrode. ^ Details and technical descriptions of the present invention are shown in the following table. Please refer to the following table for the schematic diagram. This is the work function of the transparent conductive oxide film: Gap2 〇3 S n: I n2 03 A 1: Zn η 0 ni 0

月b 隙值Eg (eV) 4. 9 3· 6 1N1U 功函數 Φιη (eV) 5· 〇 4 ? · 4 _ 4· ’ 4·5 5·0 * r 5 ί中列出幾種可以濺鍍法噴出之具有高功函數、斑 同此隙值之η-型導電氧化, =刀山數與 N i 〇 )導雷4仆喊士私 、龙與常用之P型氧化鎳(Month b gap value Eg (eV) 4. 9 3 · 6 1N1U work function Φιη (eV) 5 · 〇4? · 4 _ 4 · '4 · 5 5 · 0 * r 5 The η-type conductive oxidation with high work function and the same gap value sprayed by the method, = the number of blades and N i 〇) Lightning guide 4 servants, dragons and commonly used P-type nickel oxide (

」导電氧化膜比較。我們注意到氧 C 具有與Ni〇相同的功函數( 孔化紅(Ga2〇3),除了 、^m_beV)之外,其能隙值Eg ="Comparison of conductive oxide films. We noticed that oxygen C has the same work function as NiO (pore red (Ga203), except for ^ m_beV), and its energy gap value Eg =

第10頁 1230979 五、發明說明(6) 4. 9:V ’也是上述導電氧化膜當中最高 短到約250nm波段之發光二極體。 應用到波長可 藉此,我們在本發明中揭露一種形成歐姆 技術。為方便說明,請參閱『第】 ^ -和之 ^^^11t® 〇 E,b2 膜2 0,本發明主要步驟與技術特點為·· 面一)且先Λ備:氮,鎵膜層10 ’再於該氮化鎵膜層u表 =成一,、有咼功函數之導電透明膜20。其中該高功 ,透明導電膜20係選自氧化錄(μ)、氧化銦(μ )、氧化鋁(A lz 〇3 )或由其組合所形成。 ^ (b)利用離子擴散方式於此導電透明膜20,以形成電 氣特性相反之透明導電異質介面2丨於氮化鎵膜層丨〇表層,· 以具有相同功函數之n + /p透明導電透明膜2〇形成一異質介 面2 1於氮化鎵膜層1 〇表面。‘中該離子擴散方^係可選用 離子佈植或高溫雜質擴散;而,該離子擴散方式之灕子係 可為p型摻雜之鋅(Zn)、鎳(Ni)、鈷(c〇)、鈹(Be )、鎂(Mg )、鈣(Ca )、鳃(Sr )、鋇(Ba )、銀(AgPage 10 1230979 V. Description of the invention (6) 4. 9: V ′ is also a light-emitting diode with a wavelength as short as about 250 nm in the above conductive oxide film. By applying this to wavelengths, we have disclosed an ohmic formation technique in the present invention. For the convenience of explanation, please refer to [the first] ^-和 之 ^^^ 11t® 〇E, b2 film 20, the main steps and technical features of the present invention are as follows: face 1) and first prepare: nitrogen, gallium film layer 10 'Then the gallium nitride film layer u = a conductive transparent film 20 with a work function. The high-power, transparent conductive film 20 is selected from the group consisting of oxide (μ), indium oxide (μ), aluminum oxide (Alz 0 3), or a combination thereof. ^ (b) Ion diffusion is applied to the conductive transparent film 20 to form a transparent conductive heterogeneous interface with opposite electrical characteristics 2 on the gallium nitride film layer 丨 the surface layer, n + / p transparent conductive with the same work function The transparent film 20 forms a hetero interface 21 on the surface of the gallium nitride film layer 10. 'The ion diffusion method ^ can choose ion implantation or high temperature impurity diffusion; and the Li ion system of the ion diffusion method can be p-type doped zinc (Zn), nickel (Ni), cobalt (c) , Beryllium (Be), magnesium (Mg), calcium (Ca), gills (Sr), barium (Ba), silver (Ag

第11頁 1230979 五、發明說明(Ό 儘管此穿隧n + /p或p + /n形成接合面(junCfi〇n)之 概念,早在1 960年代即被用於製造如矽Si、鍺Ge、砷化鎵 GaAs之歐姆接觸電極(詳:L N.Holonyak Jr. etal. Gallium Arsenide tunnel diodes" proceedings of the IRE νο1·48 , pp 1405 - 1409 (1960)(詳:1Page 11 1230979 V. Description of the invention (Ό Although the concept of tunneling n + / p or p + / n to form a junction (junCfi〇n), it was used in the manufacture of silicon Si, germanium Ge, etc. as early as the 1960s. 2. Gallium arsenide GaAs ohmic contact electrode (Details: L N. Holonyak Jr. etal. Gallium Arsenide tunnel diodes " proceedings of the IRE νο 1.48, pp 1405-1409 (1960) (Details: 1

Easaki , New phenomenan in narrow Germanium p-n junctions.nphys. Rev. voll〇9 , pp 603 - 604 (1958) ),並於1 990年代應用於砷化鎵雷射二極體(GaAs LD)技 術(洋· J.J. Wierer etal· ’’Buried twine contact junction AlGaAs-GaAs-InAs quantum well heterostructure lasers with oxide - defined lateral currents丨丨,Appl· phys· Lett· vo 171· pp2286-2288,(1997) ),以及於200 1年應用於氮化鎵發光二極體(GaN LED)技 術(詳·Τ· Takeuchi etal·1’GaN-based light emitting diodes with tunnel junctions” Jpn J.Appl phys vol 40 ,PP.L861-L863(2001))。但是對於GaN LED 技術,穿隧電 極目月僅限於n + /p半導體同質介面 (homo - junction ), 而’利用透明導電氧化膜形成穿隧異質介面(hetero-junct ion ) 技術 ,則經 過發明 人長時 間研究 而於本 發明專 利之首先揭露。 現就其本發明之功效以下述之實施例表示: 實施例'—: 在一具有η型GaN結構中,首先利用光致電化學陽極氧 化,將η型GaN表面部分氧化,以形成具有矽Si摻雜之氧化Easaki, New phenomenan in narrow Germanium pn junctions.nphys. Rev. voll〇9, pp 603-604 (1958)), and applied to the gallium arsenide laser diode (GaAs LD) technology (foreign · JJ Wierer etal · `` Buried twine contact junction AlGaAs-GaAs-InAs quantum well heterostructure lasers with oxide-defined lateral currents 丨 丨, Appl.phys · Let · vo 171 · pp2286-2288, (1997)), and at 200 1 Applied to GaN LED technology (Details · T · Takeuchi etal · 1'GaN-based light emitting diodes with tunnel junctions ", Jpn J. Appl phys vol 40, PP.L861-L863 (2001 )). However, for GaN LED technology, the tunneling electrode is limited to the n + / p semiconductor homo-junction, and the 'hetero-junct ion' technology using a transparent conductive oxide film, After a long period of research by the inventors, it was first disclosed in the patent of the present invention. The effect of the present invention is shown by the following examples: Example '—: In a GaN structure with n-type, photoelectronization is first used Anodic oxidation, partial oxidation of n-GaN surface to form silicon-doped oxide

第12頁 1230979 五、發明說明(8) 鎵(Ga2 03 )。經由適當相變溫度之退火處理,可以獲得 G a2 03不同的相位,其X光繞射照相(X 一 r a y d i f f r a c t i ο η , XRD),可以獲知在樣品表面生成結晶態之Ga2〇3 (請參閱 『第2圖』所示)。經由X光電子譜形(x-ray photoelectron emission spectroscopy,XPS)之斷層掃描 分析,發現除了表面有生成Ga2 03之外,另外於GaN介面處形 成一厚度約20nm之漸變層(graded layer)GaON,(請參 閱『第3圖』所示)。俾藉此漸變層將可以使用離子佈植 (ion implantation)或雜質擴散(d if fusion)技術,可以改 變此介面處之電氣特性及表面功函數。(此漸變層的形成乃 是可穿隧介面形成之重要技術,詳細應用如下列實施例二 與實施例三。) 實施例二: 在一具有η型InGaN/GaN結構中,利用光致電化學陽極 氧化,將η型I nGaN表面部分氧化,以形成一具有銦I n、石夕 Si摻雜之η型Ga^3,以及形成一GaON漸變層於GaN介面處。 該GagO3陽極氧化之生長速率與電解液的pH關係如『第4圖』 所示。當上述用於製作一具有金屬氧化半導體(metal oxide semiconductor,M0S)結構之二極體時,請參閱『第 5圖』所示,該表面Ga2 03厚度為40、20、l〇nm時,二極體導 通電性隨GaO3厚度變小時,電性將由蕭基位壘接觸( Schottky barrier contact)轉變成為歐姆接觸。Page 12 1230979 V. Description of the invention (8) Gallium (Ga2 03). After annealing at an appropriate phase transition temperature, different phases of Ga 2 03 can be obtained, and its X-ray diffraction photography (X-raydiffracti ο η, XRD) can be known to generate crystalline Ga2 03 on the sample surface (see " (See Figure 2). Through tomographic analysis of x-ray photoelectron emission spectroscopy (XPS), it was found that in addition to the formation of Ga2 03 on the surface, a graded layer GaON with a thickness of about 20 nm was formed at the GaN interface, ( (See "Figure 3").俾 The gradient layer can use ion implantation or impurity diffusion (d if fusion) technology, which can change the electrical characteristics and surface work function of this interface. (The formation of this graded layer is an important technique for forming a tunnelable interface, and the detailed application is as follows in Example 2 and Example 3.) Example 2 In a η-type InGaN / GaN structure, a photoelectrochemical anode is used Oxidizing to partially oxidize the n-type I nGaN surface to form an n-type Ga ^ 3 with indium I n and Si Si doping, and forming a GaON graded layer at the GaN interface. The relationship between the growth rate of the GagO3 anodization and the pH of the electrolyte is shown in [Figure 4]. When the above is used to fabricate a diode with a metal oxide semiconductor (MOS) structure, please refer to "Figure 5". When the thickness of the surface Ga2 03 is 40, 20, 10 nm, With the decrease of GaO3 thickness, the electrical conductivity of the polar body will change from a Schottky barrier contact to an ohmic contact.

1230979 五、發明說明(9) 實施例三: 在一具有η型I n G a N / G a N結構中,利用光致電化學陽極 乳化’將η型InGaN表面部分氧化,以形成具有η型之 (InGa)2 03 (IG0)以及GaON漸變層於GaN介面處。並利用鎳Ni 、鋅Zn等p-型摻雜來改變本質為^型透明導電膜之電阻率。 以具有環型電氣傳輸線(circular· transmission line)圖 樣於I G 0上時,其傳輸線寬度((j a p w丨d t h )不同所獲得之電 ,-電壓圖形(I-V)如『第6圖』所示,而電阻率測量結果如 『第7圖』所示。由『第7圖』結果比較得知,當本質為〇型 之IG0經過Ni、Zn摻雜,其片電阻率(心)由原本之〇〇486 Ω - cm2 上升至〇·28 Ω-cm2 及 3·331 Q-cm2 。 惟上述僅為本發明之較佳實施例而已,並非用來限定 ΐΐΐΐϊί範圍。即凡依本發明申請專利範圍所做的均 4變化與修飾,皆為本發明專利範圍所涵蓋。1230979 V. Description of the invention (9) Example 3: In a structure with η-type I n G a N / G a N structure, the surface of η-type InGaN is partially oxidized by photoelectrochemical anode emulsification to form a η-type (InGa) 2 03 (IG0) and the GaON graded layer are at the GaN interface. And p-type doping such as nickel Ni, zinc Zn is used to change the resistivity of the ^ -type transparent conductive film. When a circular transmission line pattern on IG 0 is used, the transmission line width ((japw 丨 dth)) is different. The voltage obtained (-) is as shown in "Figure 6", and The resistivity measurement results are shown in [Figure 7]. From the comparison of [Figure 7], it is known that when IG0, which is essentially type 0, is doped with Ni and Zn, its sheet resistivity (heart) is changed from the original value 486 Ω-cm2 increased to 0.28 Ω-cm2 and 3.331 Q-cm2. However, the above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention. All changes and modifications are covered by the patent scope of the present invention.

第14頁 1230979 圖式簡單說明 【圖式簡單說明】 第1圖,係本發明之氮化鎵導電電極示意圖。 第2圖,係實施例一之X光光繞射照相示意圖。 第3圖,係實施例一GaN介面處示意圖。 第4圖,係實施例二之生長速率與p Η值關係圖。 第5圖,係實施例二之二極體導通穿隧電流-電壓關係圖。 第6圖,係實施例三之I G0傳輸線不同寬度(Gap)之導通電 流-電壓(I-V)關係圖。 第7圖,係實施例三之I G0電阻率與傳輸線寬度(Gap )關係 圖。 【圖式之標號說明】 氮化鎵膜層1 0 導電透明膜2 0 異質介面21 金屬厚膜30Page 14 1230979 Brief description of the drawings [Simplified description of the drawings] Figure 1 is a schematic view of the gallium nitride conductive electrode of the present invention. FIG. 2 is a schematic diagram of an X-ray diffraction photograph of Embodiment 1. FIG. FIG. 3 is a schematic diagram of a GaN interface according to the first embodiment. Fig. 4 is a graph showing the relationship between the growth rate and pΗ value in the second embodiment. FIG. 5 is a relationship diagram of diode conduction tunneling current-voltage in the second embodiment. Fig. 6 is a relation diagram of the conducting current-voltage (I-V) of the I G0 transmission line with different widths (Gap) in the third embodiment. Fig. 7 is a graph showing the relationship between I G0 resistivity and transmission line width (Gap) in the third embodiment. [Explanation of reference numerals] GaN film layer 1 0 conductive transparent film 2 0 heterogeneous interface 21 metal thick film 30

第15頁Page 15

Claims (1)

1230979 六、申請專利範圍 子係可為P型摻雜之鋅(Zn )、鎳(Ni )、鈷(Co )、鈹 (Be)、鎮(Mg)、辦(Ca)、鹤(Sr)、鋇(Ba)、銀 (Ag ) 〇 6、 如申請專利範圍第1項所述之「氮化鎵透明導電氧 化膜歐姆電極的製作方法」,其中,該金屬厚膜係選自鈦 (Ti )、鋁(A1 )、鎳(Ni )、金(Au )之一氧化膜所形 成。 7、 如申請專利範圍第1項所述之「氮化鎵透明導電氧 化膜歐姆電極的製作方法」,其中,該金屬厚膜係為鈦( Ti )、鋁(A1 )、鎳(Ni )、金(Au )之組合。1230979 6. The scope of patent application can be P-doped zinc (Zn), nickel (Ni), cobalt (Co), beryllium (Be), town (Mg), office (Ca), crane (Sr), Barium (Ba), silver (Ag) 〇6, "The manufacturing method of GaN transparent conductive oxide film ohmic electrode" as described in item 1 of the scope of patent application, wherein the thick metal film is selected from titanium (Ti) Formed of an oxide film of aluminum, aluminum (A1), nickel (Ni), and gold (Au). 7. The method for manufacturing a gallium nitride transparent conductive oxide film ohmic electrode as described in item 1 of the scope of the patent application, wherein the thick metal film is titanium (Ti), aluminum (A1), nickel (Ni), Gold (Au) combination. 第17頁Page 17
TW92136073A 2003-12-19 2003-12-19 Method of making transparent conductive oxide ohmic contact electrode on GaN TWI230979B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92136073A TWI230979B (en) 2003-12-19 2003-12-19 Method of making transparent conductive oxide ohmic contact electrode on GaN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92136073A TWI230979B (en) 2003-12-19 2003-12-19 Method of making transparent conductive oxide ohmic contact electrode on GaN

Publications (2)

Publication Number Publication Date
TWI230979B true TWI230979B (en) 2005-04-11
TW200522167A TW200522167A (en) 2005-07-01

Family

ID=36086336

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92136073A TWI230979B (en) 2003-12-19 2003-12-19 Method of making transparent conductive oxide ohmic contact electrode on GaN

Country Status (1)

Country Link
TW (1) TWI230979B (en)

Also Published As

Publication number Publication date
TW200522167A (en) 2005-07-01

Similar Documents

Publication Publication Date Title
CN100585888C (en) III-nitride-based top emission type light emitting device and method of manufacturing the same
CN100563033C (en) III A nitride semiconductor devices with Low ESR ohmic contact
JP2008103674A (en) Multilayer reflection film electrode and compound semiconductor light emitting device with same
JP2009521814A (en) Group III nitride light emitting device
KR20040096207A (en) Metal thin film and the produce method for development of ohmic contact using Ni-based solid solution for high-quality optical devices related to GaN
CN101960603A (en) High-performance heterostructure light emitting devices and methods
JP2005136415A (en) III-V GaN BASED COMPOUND SEMICONDUCTOR AND p-TYPE ELECTRODE APPLIED THERETO
EP1511091A2 (en) Nitride-based light emitting device, and method of manufacturing the same
JP2013065889A (en) Top emit type nitride-based light emitting element
TW200417065A (en) Semiconductor light emitting device
TWI224877B (en) Gallium nitride series light-emitting diode structure and its manufacturing method
TWI589041B (en) Inorganic light emitting memory and method for producing the same
EP1580817A2 (en) GaN-based compound semiconductor light emitting device and method of fabricating the same
US11764333B2 (en) P-ohmic contact structure and light emitting device using the same
KR100751632B1 (en) Light emitting device
Chen et al. High-performance GaN-based LEDs with AZO/ITO thin films as transparent contact layers
TWI230979B (en) Method of making transparent conductive oxide ohmic contact electrode on GaN
US7022597B2 (en) Method for manufacturing gallium nitride based transparent conductive oxidized film ohmic electrodes
US20040248335A1 (en) Electrode structures for p-type nitride semiconductores and methods of making same
JPH10308533A (en) Galium-nitride-based compound semiconductor light emitting element, its manufacture and light emitting element
US11387378B2 (en) P-ohmic contact structure and photodetector using the same
KR20060007948A (en) Top emitting light emitting device and method of manufacturing thereof
JP2008288249A (en) Method of forming transparent conductive oxide film ohm electrode on nitride gallium film
CN100345314C (en) Method for manufacturing gallium nitride transparent conductive oxide film ohmic electrode
CN210040240U (en) Light emitting diode

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees