TWI227665B - Non-invasive determination of vascular mechanical properties - Google Patents

Non-invasive determination of vascular mechanical properties Download PDF

Info

Publication number
TWI227665B
TWI227665B TW92116494A TW92116494A TWI227665B TW I227665 B TWI227665 B TW I227665B TW 92116494 A TW92116494 A TW 92116494A TW 92116494 A TW92116494 A TW 92116494A TW I227665 B TWI227665 B TW I227665B
Authority
TW
Taiwan
Prior art keywords
vascular
blood
blood vessel
image
pressure
Prior art date
Application number
TW92116494A
Other languages
Chinese (zh)
Other versions
TW200500041A (en
Inventor
Yio-Wha Shau
Chung-Li Wang
Fon-Jou Hsieh
King-Jen Chang
Tzu-Yu Hsiao
Original Assignee
Yio-Wha Shau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yio-Wha Shau filed Critical Yio-Wha Shau
Priority to TW92116494A priority Critical patent/TWI227665B/en
Publication of TW200500041A publication Critical patent/TW200500041A/en
Application granted granted Critical
Publication of TWI227665B publication Critical patent/TWI227665B/en

Links

Abstract

A non-invasive method and simple apparatus for the assessment of the dynamic mechanical properties, such as stiffness, stress-strain hysteresis of the peripheral arteries is demonstrated. Clinical ultrasound B-mode and M-mode imaging are used to record the morphology and motion of peripheral vessel, and the local palpating blood pressure waveform is recorded simultaneously via external input module. Using specific ultrasound probe/pressure sensor holder and semi-automatic image-based edge-detection technique, the stress-strain loading curves of the blood vessel and the intima-media layer can be extracted. The apparatus can also examine the change of peripheral vessel mechanical properties while change the cuff pressure upstream or instantaneous pharmacological treatments. The nonlinear Young s module and the energy dissipation ratio resulted from the parametric analysis are early indicators for atherosclerosis and circulatory vascular diseases.

Description

12276651227665

五、發明說明(1) 【發明所屬之技術領域】 本創作係關於一種人體 檢測方法,結合血管超音波 型,以特殊自動化之影像分 性,包括動脈血管硬度、動 便的分析工具,協助心血管 動脈血管材質特性的非侵襲性 一維影像及血壓脈動同步波 析技術,特別對於血管機械特 態黏彈性質,提供一套安全方 疾病之臨床診斷。 【先前技術】 人體血管為一種複合的黏彈軟體組織,動脈血 體循環系統中扮演著重要的角色,動脈硬化、心血 及周邊循裱相關疾病引起之血管機械性質變化對於臨== 理學或診斷都很重要。血管之機械性質,例如順應性 (compliance)、硬度(stiffness)等’可提供 g 學 ,人員對於血管疾病預防及治療之參考。現有偵測人體血 官機械特性的方法往往不夠精確或是過於侵入性,而血管V. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates to a human body detection method, combined with vascular ultrasound, with special automated image differentiation, including arterial blood vessel hardness and stool analysis tools to assist the heart Non-invasive one-dimensional imaging of blood vessel arterial blood vessel characteristics and blood pressure pulsation synchronous wave analysis technology, especially for viscoelastic properties of vascular mechanical idiosyncrasy, provide a set of clinical diagnosis of safe side diseases. [Previous technology] Human blood vessels are a complex viscoelastic soft tissue, which plays an important role in the arterial blood circulation system. Changes in the mechanical properties of blood vessels caused by arteriosclerosis, heart blood, and peripheral circulation-related diseases are very important for clinical and diagnostic purposes. important. The mechanical properties of blood vessels, such as compliance, stiffness, etc., can provide g-sciences, and personnel's reference for the prevention and treatment of vascular diseases. Existing methods for detecting the mechanical properties of human blood vessels are often not accurate or invasive, and blood vessels

黏彈性質(Viscoeiasticity)又常被曲解,所以未能推S 應用於臨床診斷。 貝 ,杜又默中,脈波波述、ruise wave Vel〇city)常被用 來畜作血管機械性質的間接指標,由於血管管徑、厚产 硬度也會隨著年齡、疾病改變,並無一定的規則,所以月 波波速受限於定性的分析。直接的血管機械性質量測常 受测血管取出或暴露出來’而量测環境條她 雙使所仔的血管硬度比實際值高很多。以侵入式動脈導Viscoeiasticity is often misinterpreted, so S cannot be applied to clinical diagnosis. In Bei, Du Youmo, pulse wave and ruin wave Velocity are often used as indirect indicators of vascular mechanical properties in animals, because the diameter and thickness of blood vessels also change with age and disease. Rules, so the moon wave speed is limited by qualitative analysis. Direct measurement of vascular mechanical quality is often performed by taking out or exposing the measured blood vessels, and measuring the environmental strips makes the vascular stiffness of the child much higher than the actual value. Invasive arterial conduction

.1227665 五、發明說明(2) 管量測血壓與管徑雖然較為準確,但是如非重症病人實行 上有困難,所以在臨床比對上推展非常的困難。 ^ 近年來醫用超音波影像診斷技術不斷提升,藉由其非 侵入式、安全且方便之優點,在人體組織病變形態診視、 外科$術輔助、心臟壁面運動及血液循環相關疾病之檢測 有顯著的實用價值。Arndt等人[” The diameter of intact carotid artery in man and its change with pulse pressure丨丨,Pflugers Archiv 301;230-240, 1968]首先將超音波應用於人體血管特性的研究,藉由單 一脈衝式超音波探頭,觀測頸動脈(comm〇n Carotid Artery ; CCA )血管管徑與血管管壁脈動,再利用上臂 (Brachial Artery,BA)血壓脈壓差就可估算頸動脈的硬 度(=最大脈壓差/管徑脈動量)。Hokanson及 | Mozersky [丨,A phase-locked echo tracking system for recording arterial diameter changes in vivo丨丨, Journal of Applied Physiology, 32;728-733, 1972]將 訊號相位鎖定在血管管徑(phase-locked echo-tracking device),可動態偵測人體動脈血管細微脈動。但是由 於血管掃描線定位不明且血壓與血管組織影像無法同步偵 測,在實際應用上仍有缺點。S t a d 1 e r等人[n C 〇 m p a r i s ο η of B-mode, and echo-tracking methods for measurement of arterial distension waveform", Ultrasound in Medicine and Biology, 23;879-887,.1227665 V. Description of the invention (2) Although the measurement of blood pressure and tube diameter is more accurate, it is difficult for non-critical patients to implement it, so it is very difficult to carry out clinical comparison. ^ In recent years, medical ultrasound imaging diagnostic technology has been continuously improved. With its non-invasive, safe and convenient advantages, it has significant detection in the diagnosis of human tissue lesions, surgical assistance, heart wall motion and blood circulation-related diseases. Practical value. Arndt et al. ["The diameter of intact carotid artery in man and its change with pulse pressure 丨 丨, Pflugers Archiv 301; 230-240, 1968] first applied ultrasound to the study of the characteristics of human blood vessels. Acoustic probe, observing the diameter of the carotid artery (CCA) and the pulsation of the vessel wall, and then using the upper arm (Brachial Artery, BA) blood pressure and pulse pressure difference to estimate the stiffness of the carotid artery (= maximum pulse pressure difference / Tube diameter pulsation). Hokanson and | Mozersky [丨, A phase-locked echo tracking system for recording arterial diameter changes in vivo 丨, Journal of Applied Physiology, 32; 728-733, 1972] locked the signal phase to the blood vessel The phase-locked echo-tracking device can dynamically detect the minute pulsations of human arterial blood vessels. However, due to the unknown positioning of blood vessel scan lines and the simultaneous detection of blood pressure and blood vessel tissue images, there are still shortcomings in practical applications. Stad 1 er et al. [N C 〇mparis ο η of B-mode, and echo-tracking methods for measurement of arterial distension waveform ", Ultrasound in Medicine and Biology, 23; 879-887,

m\m \

1227665 五、發明說明(3) _ 式動採用^合Λ超/終模式、M—模式分別取得企 套敢佳化的血管特性同步分析模式,減小人ΐί 由 在舒張 管受力 回復, 殘留能 可能因 而改變 會影響 的機械 態的特 血壓的 值大小 於動脈企管管壁為多層纖維 ^收縮壓作用下呈現非線性的特性。Λ械是? :::灸所產生的型變並未隨著作用力的消失而 分的能量殘留於管壁nhysteresis 管變質…纖維組成比例 。 —& 土厚度而不同,因年齡或心血管疾病 刭血管分支、漸縮的幾何特性、黏彈性質,也 I·生併!機械性質的表現。我們可以說,血管管壁 性。稃入★沾f 參數來代表,需要考量血管動 改變也又合不^同,^官實驗也證實血管的應變率隨著 ^ ^ 所以人體血管的硬度也會隨著血壓 在平均血壓值左右會有明顯的斜率改變。 病改ί於型也會受到年齡“管疾 、息1w ’血反轉移函數也會改變。所以週 芦斑^ ^ —特性分析必須動態同步地取得同位置的血管血 = 徑隨時間的變化。π惜的是,至今在文獻上 二:二早且非侵入式的方法可提供正確血壓及血管動態 受化。Tardy 等人[” Ν〇η—estimate 〇f 七“ 第9頁 ‘1227665 五、發明說明(4) mechanical properties of peripheral arteries from ultrasonic and photoplethy-smographic measurements", Clinical Physics and Physiological Measurements, 12;39-54,1991] 同步量測指尖血壓波型 及手臂的血管管徑脈動,完全忽略週邊血管的黏彈性質, 以顯現非線性的應力與應變關係。Β ο η n e f 〇 u s [n D e v i c e and method for measuring the elasticity of an artery by ultrasonic echography", US Patent 5411028, 1995]提出以超音波回音量測血管動脈的裝置, 其原理以回音的Μ -模式取得血管管徑脈動,另取得同步超 音波都卜勒的血流訊號,利用風箱(w i n d k e s s e 1)理論模式 之數學參數從血流波型推算血壓脈動。由於血壓與血流間 之物理參數受到許多個體、生理差異、疾病的影響,所以 對臨床應用上不夠準確。唯有實際量測同步、同位置血 管脈動與血壓脈動才能真正解決此問題。 我們以動態彈性係數結合血管黏彈能量耗損來顯示血 管疾病程度或血管材質的改變。血管黏彈特性顯然是血 液循%疾病惡化的重要指標。因此,我們發展超音波同 籲 步血壓與血管管徑實驗量測系統,藉由影像處理技術,取麵 得同時間的管徑與血壓資料,進而建立血壓、血管管徑與 管壁組織應變量之動態特性參數。本發明之初步技術論文 發表於"Non-invasive Assessment of the1227665 V. Description of the invention (3) The _ type adopts the ^ combined Λ super / final mode and the M-mode to obtain the optimized vascular characteristics synchronous analysis mode, which reduces the human recovery from the force in the diastolic tube. It is possible to change the value of the mechanical blood pressure that affects the mechanical state. The value of the blood pressure is non-linear under the action of systolic blood pressure. What is Λmachine? ::: The type change produced by moxibustion does not follow the disappearance of the force of the work. The energy remaining in the tube wall is nhysteresis. The tube is deteriorated ... The fiber composition ratio. —The thickness of the soil varies, due to age or cardiovascular disease 刭 branching of blood vessels, shrinking geometric characteristics, viscoelastic properties, and also the performance of mechanical properties. We can say that the wall of the blood vessel. The f parameter is used to represent it. It is necessary to consider the changes in vascular dynamics. ^ Official experiments have also confirmed that the strain rate of blood vessels changes with ^ ^ so the hardness of human blood vessels will also change with blood pressure around the average blood pressure value. There is a noticeable change in slope. The disease change will also be affected by the age, "pipe disease, interest 1w 'blood anti-transfer function will also change. Therefore, Zhou Luban ^ ^-characteristic analysis must dynamically obtain blood vessels at the same location in synchronization = diameter changes with time. It is a pity that so far in the literature two: two early and non-invasive methods can provide correct blood pressure and vascular dynamics. Tardy et al ["Ν〇η—estimate 〇f VII" p. 9 '1227665 V. Description of the Invention (4) Mechanical properties of peripheral arteries from ultrasonic and photoplethy-smographic measurements ", Clinical Physics and Physiological Measurements, 12; 39-54, 1991] Simultaneously measure the blood pressure wave pattern of the fingertip and the pulsation of the blood vessel diameter of the arm, completely Ignore the viscoelastic properties of peripheral blood vessels to show a non-linear relationship between stress and strain. Β ο η nef 〇us [n Dvice and method for measuring the elasticity of an artery by ultrasonic echography ", US Patent 5411028, 1995] Ultrasonic echo volume measuring device for vascular arteries. Its principle is to obtain vascular diameter pulsations in the echoed M-mode. Synchronized ultrasound Doppler's blood flow signal uses the mathematical parameters of the windkesse 1 theoretical model to estimate blood pressure pulsations from the blood flow pattern. Because the physical parameters between blood pressure and blood flow are subject to many individual, physiological differences, and disease Influence, so it is not accurate enough for clinical application. Only the actual measurement synchronization, co-location vascular pulsation and blood pressure pulsation can really solve this problem. We use dynamic elastic coefficient combined with vascular viscoelastic energy loss to show the degree of vascular disease or vascular material. Changes. Viscoelastic properties of blood vessels are obviously an important indicator of blood circulation deterioration. Therefore, we developed an ultrasonic measurement system for the measurement of blood pressure and blood vessel diameter. With image processing technology, the diameter of the blood vessels at the same time can be obtained. And blood pressure data to establish dynamic characteristics of blood pressure, vascular diameter, and wall tissue strain. The preliminary technical paper of the present invention was published in " Non-invasive Assessment of the

Viscoelasticity of Peripheral Arteries, UltrasoundViscoelasticity of Peripheral Arteries, Ultrasound

12276651227665

in Medicine and Biology, 2 5 ( 9 ):1 377- 1 388 ( 1 999 )11 ^ 而臨床相關性之初期研究則可見於”邵耀華,非侵入式動 脈血管黏彈特性之檢測,國立台灣大學工程學刊79期,科 技新知,PP. 1 - 1 0 ( 200 0 )”。在已發表之論文中,雖然系 $校正之技術與影像分析之部分技術已揭露,但是在血管 管壁自動化灰階處理、血管管壁各層之灰階準位閥值之選 取關鍵技術未曾發表,所以國際學術在應用上仍無法趕上 本研究團隊的進展。在本創作中,我們修改了實施的方 法與步驟,使得臨床應用的準確性與系統穩定性提高,並 且提供自動化的偵測技術。非侵入式診斷技術因容易得 到病士的配合,可以迅速與臨床技術結合,應用在糖尿 病、高血壓等循環疾病診斷上。 【發明内容】 本創作之目的在提供一種簡便正確的同步紀錄血壓盥 ^管脈動的方法,透過特殊影像處理技術,對血管機械動 悲特性,順應性(compliance)、管徑應變(arterial strain)、杨氏係數(Y〇ung’s m〇duius)及能量消散率 (energy dissipation ratio,EDr),等進行非侵襲性檢 測。另外,本方法也可以提供動脈血管内中層組織 (jntima-media layers)的動態機械性質,對初期動脈血 管硬化提供重要參考依據。 【實施方式】in Medicine and Biology, 2 5 (9): 1 377- 1 388 (1 999) 11 ^ The initial study of clinical relevance can be found in "Shao Yaohua, Non-invasive Arterial Viscoelasticity Testing, National Taiwan University Engineering Journal 79, New Knowledge of Science and Technology, PP. 1-10 (200 0). In the published papers, although some techniques of $ correction and image analysis have been revealed, the key techniques for the selection of automatic grayscale processing of the vascular wall and the selection of threshold levels for the grayscale of each layer of the vascular wall have not been published. Therefore, the application of international scholarship still cannot keep up with the progress of this research team. In this creation, we have modified the implementation methods and procedures to improve the accuracy and system stability of clinical applications, and provide automated detection technology. Non-invasive diagnostic technology is easy to get the cooperation of patients, and can be quickly combined with clinical technology and applied to the diagnosis of circulating diseases such as diabetes and hypertension. [Summary of the Invention] The purpose of this creation is to provide a simple and accurate method for synchronously recording blood pressure and pulsation of blood vessels. Through special image processing technology, the vascular mechanical dynamic characteristics, compliance, and arterial strain , Young's coefficient (Young's m0duius) and energy dissipation ratio (EDr), etc. for non-invasive detection. In addition, this method can also provide the dynamic mechanical properties of arterial vascular inner layer tissue (jntima-media layers), providing an important reference for the initial arterial vascular sclerosis. [Embodiment]

第11頁 1227665 五 發明說明(6) 步驟本創作之目的、所需提供的硬體與軟體分析 1告門一隔固Λ爽具^超音波探頭及一脈壓壓力計組合,以適 ::果用手Λ適厂當的鬆緊帶固定兩綠 者身i 計與超音波感測探頭,放在受測 2Ϊ4ΓΓ都會影響血壓訊號1法記錄到週期 =:ί 因此夾具的穩定性非常",而且夾具: 則輕壓^ 刮傷受測者脆弱的皮膚。脈壓壓力計 2赶Λ體Λ脈壓壓力計訊號以適#的放大電路處理,輸入 等附屬生理訊號頻道管= 像;“ ί二己錄數個心跳週期的β-模式血管影 (如εκΛ /Λ Μ—模式顯示;打開外接的訊號 唬)將訊號電壓顯示於影像螢幕上;將所得含 ϊ ;:=^模式…像記錄輸出到電 對應步顯Λ血:」^ :明顯愈好’但是要避免訊號過高而飽吏二上^Page 1227665 Five invention descriptions (6) Steps The purpose of this creation, the hardware and software analysis required to provide a door, a partition Λ cool tool ^ ultrasonic probe and a pulse pressure gauge combination, suitable for :: If you use the appropriate elastic band of the factory to fix the two green body i meter and the ultrasonic sensor probe, placing it on the test 2Ϊ4ΓΓ will affect the blood pressure signal 1 method to record the period =: Therefore the stability of the fixture is very ", and Fixture: Then gently press ^ to scratch the subject's fragile skin. The pulse pressure manometer 2 catches the Λ body. The pulse pressure manometer signal is processed with a suitable amplifier circuit, input and other auxiliary physiological signals. Channel tube = image; "ί has recorded β-mode vascular shadows of several heartbeat cycles (such as εκΛ / Λ Μ—mode display; turn on the external signal bluff) display the signal voltage on the image screen; display the resulting signal containing ϊ;: = ^ mode ... output the record to the corresponding step display Λ blood: `` ^: the better the better '' But you should avoid the signal being too high and full.

像擔 m分析方法擷取血管脈動波型與血壓波型;視今 值。尺度按tb例尺調整血f管徑值與脈動以 量下長的限制。錢小管壁脈動 u壁的反射效率或強度不會受到血管移動或个The image analysis method was used to capture the vascular pulsation waveform and blood pressure waveform; The scale adjusts the blood f-tube diameter value and the pulsation according to the tb case rule to limit the length. Qian Tubular wall pulsation U wall reflection efficiency or intensity will not be affected by blood vessel movement or individual

五、發明說明(7) 3 : : Γ二☆超音波从-模式的灰階影像中,★由滑气於 大的部位,以直所^像後,(1)計鼻灰階梯度最 ⑺建立血管管:值為建議的自動化灰階值。 Plot),以士 M 土灰^值4位線圖譜(Contour 型,將此其目辟A分析自動選取與血壓波型最相近的波 ^將此官壁脈動波型介面灰階閥值之鈐+ ^ v / Α 當指棹所找it 動波型。文獻中以最大梯度 佳,需要人工:Γ: = ;:受到影像的解析度影響效果不 病血管硬化之情況或^波處理,=應用到老年人或糖尿 階閥值約在捸^ ΐ b般本創作所用的最佳管壁介面灰 佳的灰階閥值對f::: i 2°之内’所以分別找到自動化最 值内插管ΐ。_最佳灰階閥 吕土 Μ镇式脈動,可以找到瞢辟 脈動的波型。0為血管脈動 ::者二間 的;號操取速度來決定,一般都很高(1。"】二波另 方時間‘“壓波的波型也可以利用影像邊緣 偵d的方式取仔。Α壓值方面則f要做進 壓、舒張壓數值校正。此砗岛厭、士別扣人M J叹拖 A時Η卜供妙# ^ 此打血壓波型與血管管徑脈動波型 在π間上仍广存在一固定的系統性的時間偏差量。 t利用Μ-模式超音波影像以影像分析方法,特別針 管内中層組織厚度(:[111;1随1以:^1:1141^6^,1^),擷取 5亥組織尽度因應金壓變化的時域波型。血管内膜 (intima)組織到中間層(media)的組織在血壓的 與血壓波型較為相似,而外層(advantitia)組織因為肌 1227665 五、發明說明(8) 肉層的作用使得黏彈特性增加。因此利用波型相關性分析 搭配灰階梯度變化可以更準確地分出内中層組織之介面, 定義其厚度。 5. 量測該周邊血管的收縮壓與輸張壓;以一般氣壓式血 壓計量測血壓,將前項血壓波型校正到對應的C u f f血壓 值。在頸動脈部位,由於一般血壓計阻斷血流會造成危 險,可以由手臂動脈、橈骨動脈血壓值依照離心臟的距離 線性推算。 6. 同步取得周邊血管的血壓與管徑脈動波型資料(應力-應變)分析; (a )計算管徑應變、血壓與管徑應變的負載曲線, (b)以負載曲線計算動態血管楊氏係數及能量消散率 (EDR),提供血管材質的參數供診斷之用。 7. 同步取得周邊血管的血壓與管壁厚度(IMT)變化波型 資料(應力-應變)分析; (a ) 計算血壓與管壁I MT組織應變的負載曲線, (b ) 以負載曲線計算動態血管I Μ T組織之揚氏係數及能量 消散率(IMT-EDR)。V. Description of the invention (7) 3:: Γ 二 ☆ In the gray-scale image of the ultrasonic from-mode, ★ from the air to the large part, after the image is straight, (1) the nose gray gradient is the most ⑺ Build Vascular Tube: Values are suggested for automated grayscale values. Plot), E.M. Earth ash value 4-bit line atlas (Contour type, analysis and analysis of A and B automatically select the wave most similar to the blood pressure wave shape ^ this official wall pulse wave interface gray level threshold value 钤+ ^ v / Α when it refers to the moving wave pattern of 棹. The maximum gradient in the literature is good, and it needs artificial: Γ: =;: The effect is affected by the resolution of the image. It does not affect the condition of vascular sclerosis or ^ wave processing. To the elderly or the diabetic threshold threshold is about 捸 ^ ΐ b. The best gray wall threshold value pair f ::: i within 2 ° of the best pipe wall interface used in the creation of this book, so find the automatic maximum value interpolation. Tube ΐ._Best gray-scale valve Lu Tu M town pulsation, you can find the wave shape of the ripping pulsation. 0 is the vascular pulsation :: the two between; the number of operations to determine the speed is generally high (1. "】 The other time of the second wave "The wave shape of the pressure wave can also be obtained by using the edge detection method of the image. For the value of A pressure, the value of f and pressure must be corrected. Human MJ sighs A 时 卜卜 妙妙 # ^ This blood pressure wave pattern and vascular diameter pulse wave pattern still exist in a fixed systemic range between π The amount of deviation between t. Using the M-mode ultrasonic image to analyze the image, especially the thickness of the middle layer tissue in the needle tube (: [111; 1 with 1 to: ^ 1: 1141 ^ 6 ^, 1 ^) Try to respond to the time-domain wave pattern of the change in gold pressure. The tissue of the intima (media) to the media (media) is similar to the blood pressure in the blood pressure, while the tissue of the advantitia is because of the muscle 1227665 V. Description of the invention (8) The role of the flesh layer increases the viscoelastic properties. Therefore, the correlative analysis of the wave pattern and the change in the gray gradient can be used to more accurately identify the interface of the inner and middle tissues and define its thickness. 5. Measure the contraction of the peripheral blood vessels Pressure and infusion pressure; measure blood pressure with a general barometric blood pressure measurement, and correct the blood pressure waveform of the previous paragraph to the corresponding C uff blood pressure value. In the carotid artery, because the blood pressure is blocked by a general sphygmomanometer, it can be dangerous by the arm The arterial and radial arterial blood pressure values are linearly calculated according to the distance from the heart. 6. Simultaneously obtain the peripheral blood pressure and tube diameter pulsation waveform data (stress-strain) analysis; (a) Calculate tube diameter strain, blood pressure and tube diameter strain Load curve, (b) Calculate dynamic vascular Young's coefficient and energy dissipation rate (EDR) with load curve, and provide parameters of blood vessel material for diagnosis. 7. Simultaneously obtain blood pressure and peripheral wall thickness (IMT) change wave of peripheral blood vessels. Type data (stress-strain) analysis; (a) Calculate load curve of blood pressure and tube wall I MT tissue strain, (b) Calculate Young's coefficient and energy dissipation rate (IMT-EDR) of dynamic blood vessel MT tissue by load curve ).

第14頁 1227665 圖式簡單說明 【圖示之簡單說明】 圖式說明: 第1圖 繪示本創作量測系統之組合示意圖。 第2圖 繪示本創作超音波B-模式、M-模式與血壓波型 影像同步分析。 第3圖 繪示影像擷取與分析流程圖 第4圖 (a) 同步血壓與血管脈動波型圖例(b) 血管受 血壓脈動作用之負載圖 第5圖 繪示(a)血管管壁B-模式、M-模式圖形,以影像 量測血管内中層組織厚度,I MT (b )同步隨血壓脈動之血 管IMT時間變化圖 【圖示代號說明】 2........................... 超音波影像掃瞄系統 4.................... 超音波外接電壓訊號的輸入端 6...................................超音波探測頭 8.................................... 脈壓壓力計 10................................壓克力固定夾具 14....................................... 鬆緊帶Page 14 1227665 Schematic description [Simplified description of the diagram] Schematic description: Figure 1 shows the combined schematic diagram of the creative measurement system. Figure 2 shows the synchronous analysis of the B-mode, M-mode, and blood pressure wave images of the author. Figure 3 shows the flow chart of image acquisition and analysis. Figure 4 (a) Synchronized blood pressure and pulsation pattern of blood vessels. (B) Load diagram of blood vessels receiving blood pressure pulses. Figure 5 shows (a) blood vessel wall B- Mode, M-mode graphics, the thickness of the inner layer of blood vessels is measured with images, and IMT (b) is a time-varying graph of blood vessel IMT with blood pressure pulsation [illustration of symbol code] 2 ........... Ultrasonic image scanning system 4 ..................................................................................................... Terminal 6 ........... Ultrasonic probe 8 ........ ............ Pulse pressure manometer 10 ....... ............... Acrylic Fixture 14 ............. .......... elastic band

第15頁 1227665 圖式簡單說明 18···· 2 2··. 2 4··. 2 8··. 3 0··. 3 4··. 3 6··. 3 8··. 4 6··.Page 15 1227665 Illustration of the diagram 18 ... 2 2 2 2 4 2 3 8 2 3 4 3 3 6 4 3 6 4 6 · ..

'······固定壓力計之螺絲 • * · · · 超音波凝膠偶合劑 •脈壓壓力計訊號放大電路 • ··血管M-模式之脈動影像 ···..·.....脈壓訊號影像 • · · ·...........電腦平台 ······.....影像擷取裝置 • ·:····血管B-模式之影像 ^管影像邊緣偵測技術流程 【餐明之詳細說明】 纪錚=利用超音波系統結合觸診壓力計提供-個同少 =錄血壓與血管脈動的方法,透過特殊的影像處理, 襲性地建立血管管徑與内中層組織(I ^ ^ 七—_ « 11ΜΠ隨血壓脈動之應 ^應雙曲線。局部性的周邊血管機械動態特性,係 數(Young s modulus)及能量消散率(加打 二Ti。,間等參數對初期動脈血管硬化之 I床0斷拾供重要的參考依據。 么 侵襲性,對於血管老化、 刖0为析工具屬於# 血管疾病診斷很有幫助。&石化、糖尿病及高血壓等心 依照本創作實施例的非侵 示意圖彼示於圖一。_如θ 乂 g栈械特性檢測系統 叙/、備B-模式二維影像與以-模式 1227665'····· Screws for fixing the pressure gauge • * · · · Ultrasonic gel coupler • Pulse pressure gauge signal amplification circuit · · · Pulse image of blood vessel M-mode ... ..Pulse pressure image • ··· .......... Computer platform ····· ..... Image capture device ··: ... Image ^ tube image edge detection technology flow [detailed description of the meal] Ji Ji = using the ultrasound system combined with palpation pressure gauge to provide-a common method = recording blood pressure and vascular pulse, through special image processing, aggressively Establish the vascular diameter and the inner middle layer tissue (I ^ ^ VII — _ 11 Π should respond to the blood pressure pulse hyperbolic curve. Local peripheral vascular mechanical dynamic characteristics, Young s modulus) and energy dissipation rate (plus dozen Ti, and other parameters provide an important reference for the early diagnosis of arterial vascular sclerosis. It is very invasive, which is helpful for vascular aging, and is a useful tool for diagnosis of vascular disease. &Amp; Petrochemical, diabetes The non-aggressive schematic diagram according to the embodiment of the present invention and hypertension is shown in Figure 1. _ 如 θ乂 g stacking machine characteristic detection system narrative / ready B-mode two-dimensional image and I-mode 1227665

動態影 的輸入 脈廢壓 置於人 勢,壓 適當的 固定夹 隔開( 度不一 夾具1 隙時’ 大量反 像之超音波影像掃 4顯示功能3n ,在搭配外接電壓訊號 種探測元件以壓克力夹具1 〇固定 =動脈i 2之上。㈣者一般以平躺口二,敌 卿“固定在周邊動脈肢體便以 υπ音波探頭6與脈壓壓力計8以適4力 I力计8可以調整深度並以螺 2沐The input pressure of the dynamic shadow is placed on the human potential, separated by appropriate fixing clips (when there is a gap of 1 degree, the ultrasonic image of a large number of inverse images is scanned with 4 display functions 3n), and it is used with an external voltage signal type detection element to Acrylic clamp 1 〇 fixed = arteries i 2. The person usually lays flat on the mouth 2. Di Qing's "fixed to the limbs of peripheral arteries with υπsonic probe 6 and pulse pressure manometer 8 to 4 force I force meter 8 You can adjust the depth and use 2 screws

超音波探頭6與皮膚“的接觸面間固二於 曰產生強烈的音波阻抗差異,使得超音U; 阻抗 其間添加凝膠2 2作為偶合劑,以ϋ 脈壓壓力計8訊號需以適當的放大電路2 外接的訊號頻道4 (例如EKG,A-LINE等附屬生理气,逢 道),進入㈣皮影像系統2。在超音波二維影::頻 定通過血官直徑之掃瞄線2 6,血管Μ-模式之脈動2 4There is a strong difference in acoustic impedance between the contact surface of the ultrasonic probe 6 and the skin, which makes the ultrasonic U; the impedance is added with gel 2 2 as a coupling agent, and the pulse pressure gauge 8 signal needs to be appropriately Amplifying circuit 2 The external signal channel 4 (such as EKG, A-LINE, and other auxiliary physiological qi, every channel) enters the skin imaging system 2. In the two-dimensional ultrasound of ultrasound :: Frequency scan through the scanning line 2 of the blood diameter 6. Pulse of vascular M-mode 2 4

脈壓訊唬3 0可同時顯示於螢幕3 2。將所得含 8病 跳週期的血管掃瞄影像資料以影像擷取裝置3 6固心 腦m辟广此超音波組織影像中同步紀錄了:管到仿’ 置、e B !脈動2 8、以及相對應的血壓波型3 〇 傳統的方法將單一超音波的回音輸出與壓力計訊號 對同步處理陣列式的超音波掃瞄資料有相當的困難。^ , ' °放Pulse pressure bluff 3 0 can be displayed on the screen 3 2 at the same time. The obtained blood vessel scan image data with 8 disease-beating cycles was recorded in the ultrasound capture image by the image capture device 36, the heart and brain m, and the ultrasound tissue image was recorded simultaneously: tube to imitation position, e B! Pulse 2 8 and Corresponding blood pressure wave pattern 30. The traditional method of synchronizing the echo output of a single ultrasonic wave and the pressure gauge signal to synchronize the processing of array-type ultrasonic scan data is quite difficult. ^, '° put

第17頁 1227665 圖式簡單說明 大電路2 4之放大倍率應使螢幕3 2影像上血壓波型3 0 愈明顯愈好’但是要避免訊號過高而飽和或傷害超音波電 子硬體。Page 17 1227665 Brief description of the diagram The magnification of the large circuit 2 4 should make the blood pressure waveform 3 0 on the screen 3 2 the more obvious the better. However, avoid excessive signal saturation and damage to the ultrasound electronic hardware.

圖二揭示在電腦平台3 4上所處理的血管B-模式3 8 及跨過血管直徑之M-模式脈動波型影像4 〇與同步血壓波 型4 2,資料處理模組首先要設定影像掃描深度刻度4 4 所代表之比例尺’由滑鼠指標標定B—模式超音波影像中之 血管位置與血管内徑值。血壓波型4 2之數位化可由一 般固疋閥值進行曲線邊緣债測處理’不會有人為因素的影 響。而血壓的最大(收縮壓)值與最小(舒張壓)值需 由習知的血,計(〇scillometric sphygm〇man〇meter)在 名邛位血|里取。頸動脈之血壓值由於一般血壓計阻斷 血流會造成危險,我們可以由手臂動脈、橈骨動脈血壓值 依照離心臟的距離以線性比例推算。要從超音波血管以一 模式灰階影像中擷取血管管壁的脈動波型,需先由滑鼠指 標圈選血管管壁區域(R0I ) 4 5的影像後,以血管影像 邊緣彳貞測技術4 6加以分析。Figure 2 reveals the blood vessel B-mode 3 8 and the M-mode pulsation waveform image 4 〇 and synchronized blood pressure waveform 4 2 processed on the computer platform 34. The data processing module must first set the image scan The scale bar represented by the depth scale 4 4 is used to mark the position of the blood vessel and the diameter of the blood vessel in the B-mode ultrasound image by the mouse pointer. The digitization of the blood pressure wave pattern 4 2 can be processed by curve edge debt measurement with a general fixed threshold value, and will not be affected by human factors. The maximum (systolic blood pressure) and minimum (diastolic blood pressure) values of blood pressure need to be taken from the known blood, and the metering (〇scillometric sphygm manometer) is taken in the name blood. The carotid blood pressure value is dangerous because the blood flow is blocked by a general sphygmomanometer. We can calculate the blood pressure value of the arm arteries and radial arteries according to the distance from the heart in a linear proportion. To capture the pulsation pattern of the vessel wall from the ultrasonic gray-scale image in a mode, first select the image of the vessel wall area (R0I) 4 5 by the mouse pointer, and then measure the edge of the vessel image. Techniques 4 and 6 are analyzed.

由於超音波Μ -影像模式座標軸為時間座標,該區域 梯度最大的位置(聲阻抗變化最大的位置)會 ΤίίΠ管壁,若以習知最大梯度之位置擷取血管管壁 :動:喪:位移:的解析度,無法達到功能需求。圖三 顯不本創作影像邊緣谓測技術之工作流Since the coordinate axis of the ultrasonic M-image mode is time, the position with the largest gradient (the position with the largest change in acoustic impedance) in this region will be the tube wall. If the tube wall is taken at the position with the largest known gradient: motion: mourning: displacement : The resolution cannot meet the functional requirements. Figure 3 shows the workflow of the edge detection technology of this creative image

1227665 圖式簡單說明 5 0可加上需要的影像濾波處理5 2,先將血壓波型4 2 數位化5 4 ’設定影像比例尺5 6,選取血管的管壁區域 為R〇I (Region Of Interest) 5 8,尋找管徑區域内之影1227665 Simple illustration of the diagram 5 0 can be added with the required image filtering 5 2, first digitize the blood pressure waveform 4 2 5 4 'set the image scale 5 6, select the wall area of the blood vessel as R〇I (Region Of Interest ) 5 8, find the shadow in the pipe diameter area

像灰階最大梯度的位置6 〇。本創作以最大梯度所對應 之灰階值為自動化建議閥值,若以2 56灰階,值(8-bit)爲 例,最佳的灰階閥值約在建議灰階值± 2 〇之内。利用最佳 灰階閥值為搜尋的目標沿著時間軸以線性内差邊緣偵測法 尋找血管管壁脈動時間變化曲線6 2 ,可以自動找到代表 性的管壁位移波型。藉由血管上下管壁之脈動位置差異 量’可以得到管徑的脈動波型,另以血管二維影像之管徑 變化修正其脈動數值。另一方面,以管壁灰階等位線的 波型相關性分析,分出内中層組織之介面,定義丨之介 面受血壓作用之脈動波型。 ;| 在某些部位血管因受周邊組織壓迫而成橢圓形厂 超音波疋義血管直徑的掃晦線,需要先由模.旦彡j 測,圓之長軸(A)與短軸(B)、計算等效管£:里 ED tSQRT (AB )。受橢圓形血管截面的影響,若况’ 式所:得的管徑值小於等效管徑,修管脈動量= 所取付之數值小,應按相對比例縮小。匕 影像 由於超音波在顯示 同,因此血壓波型與血 一固定的糸統性的時間 外接訊號與組織·影孤所需的時間不 管管徑脈動波型在時間上仍然^在 偏差量,需要進行同步修正^ 4。The position of the maximum gradient like gray scale is 60. In this creation, the gray level value corresponding to the maximum gradient is an automated recommended threshold value. If 2 56 gray level value (8-bit) is taken as an example, the optimal gray level threshold value is approximately within the recommended gray level value ± 2 〇 Inside. Using the best gray-level threshold value to search for the time-varying curve of vascular wall pulsation along the time axis using the linear internal difference edge detection method 62, a representative wall displacement waveform can be automatically found. The pulsation wave shape of the tube diameter can be obtained by the pulsation position difference amount of the upper and lower tube walls of the blood vessel, and the pulsation value is corrected by the change of the tube diameter of the two-dimensional image of the blood vessel. On the other hand, the wave pattern correlation analysis of the gray-scale isoline of the pipe wall is used to separate the interface of the inner and middle tissues and define the pulsating wave pattern of the interface affected by blood pressure. ; | In some parts of the blood vessel is compressed by the surrounding tissue to form an oval factory ultrasonic sense blood vessel. The scan line of the diameter of the obscured blood vessel needs to be measured by the mold. Once measured, the long axis (A) and the short axis (B) of the circle ), Calculate the equivalent tube £: ED tSQRT (AB). Affected by the cross-section of the oval blood vessel, if the condition is obtained: the obtained tube diameter value is smaller than the equivalent tube diameter, and the tube repair pulsation amount = the value paid is small, and it should be reduced in relative proportions. Due to the fact that the ultrasound image is displayed the same, the blood pressure wave pattern and blood have a fixed, unified time. The external signal and the time required by the tissue and shadow orphan are still different in time regardless of the diameter of the pulse wave pattern. Perform synchronization correction ^ 4.

第19頁 1227665Page 19 1227665

2 乂此日令間差異量需以高頻脈動的假體校正,一般約0 〇 2 秒。由血管管徑脈動的血壓負載應力應變關係可 冲异血管軟組織之機械特性5 6(包括動態金管楊 圖式簡單說明 1哉ΐ彈能量消散率f。m由血管IMT管壁厚度的血壓、 負載應力應變關係可以計算IMT軟組縳之機榛 5 8 (包括動態血管楊氏係數、黏彈能,消散率等广。 = [a)顯示在年輕人動脈同步取得的血壓波型 二對I官徑脈動波型8 〇。兩者非常相似。將血壓值盥 ,應之血管管徑脈動繪成圖形(圖四(b)),金壓丄、 i而Π脈動比例(應變)曲線之斜率8 2隨著血壓㈣ ;大二變錢示動態金管揚氏係數,: 下降之負載路徑“不V所包圍的面積8? •:質ί!於1動力行為之能量’長期的作用是造成血 ,線包二的原因。/斤以以無因次的比例,將負載曲 ’禪能量、、HF除以血壓上昇負載曲線下的面積定義為黏 可gy DissipatiGnRati。;猶),疆 刚血!管壁損耗能量…比,-旦 篇上累積ί;::,會造f材質的改變,就像是-條橡皮丨 此εμ愈大時Λ量Λ容易_變硬、彈不動,甚至斷碎。因 人約在5%以下々。丁血官官壁會累積愈多的能量。一般正常 12276652 乂 The amount of difference between the seasonal orders needs to be corrected with high-frequency pulsating prosthesis, which is usually about 0.02 seconds. The blood pressure load stress-strain relationship pulsated by the diameter of the blood vessel can be different from the mechanical characteristics of the soft tissue of the blood vessel 5 6 (including the dynamic golden tube diagram to briefly explain 1 shot energy dissipation rate f. M is the blood pressure of the blood vessel IMT tube wall thickness, load The stress-strain relationship can be calculated by the IMT soft group binding machine 5 8 (including dynamic vascular Young's coefficient, viscoelastic energy, dissipation rate, etc.). = (A) shows the blood pressure wave pattern obtained in the arteries of young people. The pulsation wave pattern is 8 〇. The two are very similar. The blood pressure value and the pulsation of the blood vessel diameter are plotted as a figure (Figure 4 (b)). The slope of the pulsation ratio (strain) curve is 丄, i and Π. 2 With the blood pressure ㈣; sophomore changes the money to show the dynamic Young's coefficient of the golden tube :: The falling load path "doesn't the area surrounded by V 8? •: Quality: the energy of 1 dynamic behavior 'long-term effect is to cause blood, The reason for the second line of the package. / Jin The dimension under the load curve of the load curve 'Zen energy, HF divided by the blood pressure rise load curve is defined as sticky gy DissipatiGnRati in a dimensionless ratio; Jue), Jiang Gang blood! Tube Wall loss energy ... than,-once accumulated in the article; :::, will The change in the material of the f is like a rubber strip. When the εμ is larger, the Λ amount Λ is easy to harden, bounce, or even break. Because people are below 5%, the wall of Dingxuanguan will accumulate more More energy. Generally normal 1227665

圖式簡單說明 另一方面,由於動脈為一強韌之彈性血管,其管壁可 分為三層,最内層為内膜(intima),由一單層之鱗狀表 皮(内皮’ e n d 〇 t h e 1 i u m )所組成,附在含彈性纖維和膠 原纖維的彈性結締組織膜上。中層為中膜(m e d i a ),由 %繞在血管周圍的平滑肌纖維及彈性、结缔組織所組成。最 外層為外膜(adventitia)是由不規則排列之彈性纖維及 膠原纖維結締組織所構成。隨著年齡增加,血管壁組織的 成分作用也會改變。一般而言,年紀愈大日才血管中的膠 原纖維增多而彈性纖維減少,使得血管的彈性降低,材質 變硬’當一些慢性疾病發生時,更會逐漸地加逮這些過 程,使血管的情形惡化,造成管壁硬化、血壓增高及末稍 循環不良等問題。 、由於超曰波影像(圖五(a))可以看到,血管中g 液的回音很小呈現黑色,在灰管内中層 media)與血管外層(advantitia)間 2 2 (intima- 界,利用超音.模式影像也可4:=2梯度邊 擷取血管内中層組織厚度時間變化波 ^刀析方法, 時間變化波型96 (圖五⑻)。如同圖r與同步血壓的 以管壁IMT應變的血壓負載曲線,可二=b) 一樣,建立 揚氏係數,以及血管IMT組織之黏彈^ =血官1MT之動態 EDR)。 平月匕里、肩散率(IMT -The diagram simply illustrates that on the other hand, because the artery is a strong elastic blood vessel, its wall can be divided into three layers, the innermost layer is the intima (intima), and a single layer of the squamous epidermis (endothelium 'end 〇the 1 ium), attached to an elastic connective tissue membrane containing elastic fibers and collagen fibers. The middle layer is the middle membrane (me d i a), which is composed of smooth muscle fibers and elastic and connective tissue around the blood vessels. The outermost layer is adventitia, which consists of irregularly arranged elastic fibers and collagen fiber connective tissue. With increasing age, the component effects of the vascular wall tissue also change. Generally speaking, the collagen fibers in the blood vessels increase and the elastic fibers decrease in the older age. The elasticity of the blood vessels decreases and the material becomes harder. When some chronic diseases occur, these processes will be gradually arrested to make the blood vessels Deterioration, causing problems such as tube wall sclerosis, increased blood pressure, and poor terminal circulation. Due to the ultra-wave image (Figure 5 (a)), it can be seen that the echo of the g fluid in the blood vessels is very small and black, in the middle and middle layers of the gray tube and the outer layer (advantitia) of the 2 2 (intima- boundary). The mode image can also capture the time-varying wave of the thickness of the middle layer of the blood vessel with a 4: = 2 gradient analysis method. The time-varying wave pattern is 96 (Figure 5). As shown in Figure r and the synchronous blood pressure, the IMT strain of the tube wall is used. The blood pressure load curve can be the same as that of b = b) to establish the Young's coefficient and the viscoelasticity of the vascular IMT tissue ^ = the dynamic EDR of the blood officer 1MT). Flat moon dagger, shoulder loose rate (IMT-

Claims (1)

^/665 Α申請專利範圍 〜種非斤 ^ 含下列步驟文襲性血管機械黏彈特性的檢測方法 ◎提供〜+ 少包 間隔隔p[ *失具將超音波探頭及-壓力計电人, ◎Λνν:適當的鬆緊帶固定於人體血管口之&固定 型;°卩位血管的收縮壓與輸張壓以_體表; ◎將觸% θ、 夜 音波系统,Ά力計訊號以適當的放大電路處理,連拉 與相對庫的f管的二維影像、血管直徑脈動(Μ接超 ◎將罄墓壓波型同步顯示於螢幕; 如心) 至電腦平台中含數個心跳週期血管變化的影像記錄傳輪 ◎以旦《你、 中層紐/刀析方法擷取同步之血管脈動波型、管# ◎且^之厚度變形量與血壓波型; B壁内 I:,掃描深度的刻度訂定影像比例尺度; 调整血管等效管徑值與等效脈動值; 蜱叱一自動化影像處理,將同步同位置取得的血壓鱼故 、交形貧料.,計算血管管徑與管壁内中層組織(inti^官徑 media thickness; IMT)之應、力—應變關係曲線、八a 動態楊氏係數及能量消斂率(:edr)。 刀析其 2 ·如申請專利範圍第1項所述之非侵襲性血管機械黏彈特 性的檢測方法,以彈性端帶將夾具(超音波探頭與壓力計) 固定於受測者血管上。^ / 665 Α Patent application scope ~ Kind of non-jin ^ Including the following steps Detection method of culturally invasive visco-elastic properties of blood vessels ◎ Provide ~ + less packet interval p [* Loss of equipment will be ultrasonic probe and-pressure gauge electrician, ◎ Λνν: an appropriate elastic band fixed to the vascular mouth of the human & fixed type; the systolic pressure and infusion pressure of the blood vessel at the 以 position should be _ body surface; ◎ touch the% θ, nocturnal wave system, and the dynamometer signal to the appropriate Enlarged circuit processing, two-dimensional image of the f tube connected to the relative library, pulsation of the diameter of the blood vessel (M is connected to the ◎ and the tomb pressure wave pattern is displayed on the screen simultaneously; such as heart) The computer platform contains several heartbeat cycles of blood vessel changes The image recording transfer wheel ◎ Use the method "Did you, the middle-level button / knife analysis to capture the synchronized vascular pulse wave pattern, tube # ◎ and ^ thickness deformation amount and blood pressure wave pattern; B wall I :, scale of scanning depth Set the image scale scale; adjust the vascular equivalent tube diameter value and equivalent pulsation value; ticks an automatic image processing, will synchronize the blood pressure fish and cross-shaped lean material obtained at the same location, calculate the vascular tube diameter and the tube wall Middle-level organization media thickness; IMT) should the force - strain curve, the Young's modulus and eight a dynamic convergence rate of energy dissipation (: edr). Knife analysis 2 · As described in the first patent application scope of the non-invasive vascular mechanical viscoelasticity detection method, the clamp (ultrasonic probe and pressure gauge) is fixed to the blood vessel of the subject with an elastic end band. 第22頁 1227665 六、申請專利範圍 — 3 ·如申請專利範圍第1項所述之非侵襲性血管機械黏彈特 性的檢測方法,以自動化影像處理方式將血管管徑脈動與 觸診血壓變化同步分析。 4 ·如申請專利範圍第3項所述之非侵襲性血管機械黏彈特 性的檢測方法,自動的血管邊緣影像搜尋,採最大灰階梯 度所對應之最佳灰階閥值,以固定灰階閥值之影像内插 法,追蹤血管壁邊緣隨時間的移動,並以灰階等位圖提供 自動化的管徑脈動波型。 5.如申請專利範圍第1項所述之非侵襲性血管機械黏彈特 性的檢測方法,以血管管壁之應力-應變關係(負載曲線) 所衍生的機械性質參數,如硬度、動態楊氏係數及能量消 散率(EDR),以及各數值沿著管壁各層之變化。 6 ·如申請專利範圍第1項所述之非侵襲性血管機械黏彈特 性的檢測方法,以管壁内中層組織(IMT)之應力-應變關係 (負載曲線)所衍生的機械性質參數,如硬度(intima-media stiffness)、動態楊氏係數及能量消散率(intima-med i a EDR)等0Page 22, 1227665 VI. Scope of patent application — 3 · As described in the first patent application scope of the non-invasive vascular mechanical viscoelastic characteristics detection method, automatic image processing to synchronize blood vessel diameter pulsation with palpation blood pressure changes analysis. 4 · The non-invasive detection method of mechanical viscoelasticity of vascular machinery as described in item 3 of the scope of patent application, automatic blood vessel edge image search, adopting the best gray level threshold corresponding to the maximum gray level to fix the gray level Threshold image interpolation method tracks the movement of blood vessel wall edges over time, and provides an automatic pipe diameter pulsation wave pattern with a grayscale isomap. 5. The method for detecting non-invasive vascular mechanical viscoelastic properties as described in item 1 of the scope of patent application, mechanical property parameters derived from the stress-strain relationship (load curve) of the vascular wall, such as hardness, dynamic Young's The coefficient and energy dissipation rate (EDR), and the changes of each value along the layers of the pipe wall. 6 · The method for detecting non-invasive vascular mechanical viscoelastic properties as described in item 1 of the scope of the patent application. Mechanical property parameters derived from the stress-strain relationship (load curve) of the inner layer tissue (IMT) in the tube wall, such as Intima-media stiffness, dynamic Young's coefficient, and energy dissipation rate (intima-med ia EDR), etc. 0 第23頁Page 23
TW92116494A 2003-06-18 2003-06-18 Non-invasive determination of vascular mechanical properties TWI227665B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92116494A TWI227665B (en) 2003-06-18 2003-06-18 Non-invasive determination of vascular mechanical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92116494A TWI227665B (en) 2003-06-18 2003-06-18 Non-invasive determination of vascular mechanical properties

Publications (2)

Publication Number Publication Date
TW200500041A TW200500041A (en) 2005-01-01
TWI227665B true TWI227665B (en) 2005-02-11

Family

ID=35667101

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92116494A TWI227665B (en) 2003-06-18 2003-06-18 Non-invasive determination of vascular mechanical properties

Country Status (1)

Country Link
TW (1) TWI227665B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796317B (en) * 2018-02-14 2023-03-21 洋華光電股份有限公司 Microvascular detection device and method

Also Published As

Publication number Publication date
TW200500041A (en) 2005-01-01

Similar Documents

Publication Publication Date Title
Feng et al. Determination of wave speed and wave separation in the arteries using diameter and velocity
Chung et al. Non-invasive continuous blood pressure monitoring: a review of current applications
Arrebola-Moreno et al. Noninvasive assessment of endothelial function in clinical practice
Lewis et al. Measurement of volume flow in the human common femoral artery using a duplex ultrasound system
Lehmann et al. Validation and reproducibility of pressure-corrected aortic distensibility measurements using pulse-wave-velocity Doppler ultrasound
McLaughlin et al. Piezoelectric sensor determination of arterial pulse wave velocity
Nabeel et al. Bi-modal arterial compliance probe for calibration-free cuffless blood pressure estimation
Asmar et al. Non-invasive evaluation of arterial abnormalities in hypertensive patients
Segers et al. Limitations and pitfalls of non-invasive measurement of arterial pressure wave reflections and pulse wave velocity
JP2003501194A (en) Apparatus and method for assessing cardiovascular function
Arnett et al. Variability in ultrasonic measurements of arterial stiffness in the Atherosclerosis Risk in Communities study
Shau et al. Noninvasive assessment of the viscoelasticity of peripheral arteries
Wang et al. Quantitative comparison of the performance of piezoresistive, piezoelectric, acceleration, and optical pulse wave sensors
US20070004982A1 (en) Apparatus and method for early detection of cardiovascular disease using vascular imaging
Jensen‐Urstad et al. A methodological study of arterial wall function using ultrasound technique
Studinger et al. Measurement of aortic arch distension wave with the echo-track technique
JP2015016268A (en) Measuring analytical method for pulse diagnosis in oriental medicine, measuring analytical system for the same, and simple and portable measuring analytical device for pulse diagnosis using artificial-intelligence
Zakrzewski et al. Arterial blood pressure estimation using ultrasound: Clinical results on healthy volunteers and a medicated hypertensive volunteer
JP2006519045A (en) Blood pressure microsensor and measuring instrument using the blood pressure microsensor
Pereira et al. Pulse pressure waveform estimation using distension profiling with contactless optical probe
TWI227665B (en) Non-invasive determination of vascular mechanical properties
CN109480802B (en) Blood pressure parameter estimation system and method based on waveform analysis technology
Foran et al. Pseudo-hypertension and arterial stiffness: a review
Al-Jumaily et al. Brachial artery waveforms for automatic blood pressure measurement
JP5727380B2 (en) Method for measuring the local stiffness index of the wall of a conductive artery and corresponding apparatus

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent