TW589772B - Method for coating laser diode facet - Google Patents

Method for coating laser diode facet Download PDF

Info

Publication number
TW589772B
TW589772B TW92106638A TW92106638A TW589772B TW 589772 B TW589772 B TW 589772B TW 92106638 A TW92106638 A TW 92106638A TW 92106638 A TW92106638 A TW 92106638A TW 589772 B TW589772 B TW 589772B
Authority
TW
Taiwan
Prior art keywords
laser diode
coating
mirror
wafer
resonance
Prior art date
Application number
TW92106638A
Other languages
Chinese (zh)
Other versions
TW200419863A (en
Inventor
Ting-Pi Yeh
Ho-Lin Chang
Shiun-Yi Li
Original Assignee
Union Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Optronics Corp filed Critical Union Optronics Corp
Priority to TW92106638A priority Critical patent/TW589772B/en
Application granted granted Critical
Publication of TW589772B publication Critical patent/TW589772B/en
Publication of TW200419863A publication Critical patent/TW200419863A/en

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

A method for coating laser diode facet comprising the following steps: inserting a spacer between adjacent laser-diode chips, wherein each laser-diode chip has a first electrode surface, a second electrode surface, a first resonance facet covering on a waveguide wire, a second resonance facet, and a length of the resonance, and the spacer has a first surface and a second surface, the first surface having trench crisscrossed with the waveguide wire on both ends to expose partial the waveguide wire, and the first surface of the spacer coupling to the first electrode surface of the laser-diode chip, the second surface coupling to the second electrode surface of the laser-diode chip; coating upon the first resonance facet of the laser-diode chip; and then coating upon the second resonance facet of the laser-diode chip.

Description

0)589772 玫、發明說明 發明所屬之技術領域 本發明係關於雷射二極體共振 有關於藉由改變間隔棒或雷射二 振鏡面鍍膜不均勻的現象之方法 先前技術 (發明·纖明:發衡屬之技術領域、先崎術、崎、實財式關賴單說明) 鏡面鍍膜之方法,特別是 核體晶片形狀、以避免共0) 589772 Description of the invention The technical field to which the invention belongs The present invention relates to a method of laser diode resonance related to the phenomenon of uneven coating of the mirror surface by changing the spacer rod or the laser two-vibration mirror. The technical field of Fa Heng, Sakisaki, Saki, and real money-type reliance instructions) Mirror coating method, especially the shape of the core wafer to avoid common

的薄膜,可保護雷射二極體共振乂…或是其他材 化,並且可改變共振鏡面的反射:面:操作過程中不致 性。如圖1 a所示,習知於共振鏡面棱昇田射-極體的 二極體晶片1〇排列整齊,相鄭〜鎪膜的方法是將雷 第-共振鏡面“a及第二共振二的電極面12相貼,露 振鏡面“a上,最外兩側的晶l4b’將薄膜鍍在第-使薄膜鍍在雷射二極體晶片間隔棒或爽具保護’ 鏡面Ua,再翻轉至第二共振鏡=I面12上。鍍完第一共 的鍍膜。 思l4b,並完成第二鏡面i 由於雷射二極體晶片寬度约 在1〇〇微米左右,既小且輕, 百微米之間,而厚度約 列時參差不齊,凸起來的晶晶片間的摩擦力造成排 成鏡面不均性,影響雷射二極髀蔽相鄰的晶片,鍍膜時造 術中’如圖1 b所示,可於排列特陵。目此’於習知技 射二極體晶片1 0間放置寬庋小乂 一極體晶片1 0時,在雷 的間隔棒16,用以隔開相鄰的J、雷射二極體共振腔長度 來,第—共振鏡面14a便不會两射一極體晶片10,如此一 互相遮蔽的情況,但第二 ' 6 - 589772The thin film can protect the laser diode's resonance 材 ... or other materials, and can change the reflection of the resonant mirror: surface: insensitive during operation. As shown in Fig. 1a, the diode wafer 10, which is known from the resonance mirror edge Asada field-polar body, is arranged in order. The electrode surface 12 is close to the exposed mirror surface "a, and the outermost crystals 14b 'are plated on the first-so that the film is plated on the laser diode wafer spacer or cooler to protect the' mirror Ua, and then inverted To the second resonance mirror = I plane 12. The first total coating is plated. Think l4b, and complete the second mirror i. Because the width of the laser diode wafer is about 100 micrometers, it is small and light, between 100 micrometers, and uneven when the thickness of the column is about, between the raised crystal wafers The frictional force caused by the mirror surface unevenness affects the laser diode to shield adjacent wafers. During the coating process, as shown in Figure 1b, it can be arranged in a special shape. At this point, when a wide-angle small-diode wafer 10 is placed between 10 diode wafers of the conventional technique, the lightning spacer 16 is used to separate the adjacent J and laser diode resonances. In terms of cavity length, the first-resonance mirror surface 14a will not shoot two polar wafers 10 in such a way that they shield each other, but the second '6-589772

共振鏡面14b和間隔棒16排在同一平面,仍會有參差不齊 的情況而必須重新排列。The resonance mirror surface 14b and the spacer rod 16 are arranged on the same plane, and there may still be unevenness, and they must be rearranged.

美國專利號碼6 1 2 5 5 3 0,為一用於將排列完成的晶片滾 壓整齊之冶具。此冶具於滾壓雷射二極體晶片的共振鏡面 後,易造成共振面的傷害或是污染。在美國專利號碼 5,9 1 1,8 3 0及6,0 2 6,5 5 7中,分別揭露使用在鏡面鍍模時夾 持雷射二極體晶片之夾具,並同時在雷射二極體晶片間放 置寬度小於二極體雷射晶片共振腔長度的間隔棒。以上所 述之專利都需製作精密且車工複雜的夾具,且夾具的體積 不但龐大,更佔據可鍍膜空間,因而降低雷射二極體鏡面 鍍膜的產能。 發明内容 鑒於上述發明背景中,習知雷射二極體鏡面鍍膜所產生 之諸多缺點,本發明提供一種雷射二極體鏡面鍍膜的方法 ,用以克服習用技術所衍生的問題。U.S. Patent No. 6 1 2 5 5 3 0 is a tool for rolling and neatly arranging wafers. This tool is easy to cause damage or pollution to the resonance surface after rolling the resonance mirror surface of the laser diode wafer. U.S. Patent Nos. 5,9 1 1,8 3 0 and 6,0 2 6,5 5 7 respectively disclose the use of a clamp for holding a laser diode wafer during mirror plating, and simultaneously Spacer rods with a width smaller than the cavity length of the diode laser wafer are placed between the polar body wafers. All the patents mentioned above need to make precise and complicated jigs. The size of the jigs is not only huge, but also occupies the coating space, thus reducing the production capacity of laser diode mirror coating. SUMMARY OF THE INVENTION In view of the many shortcomings of conventional laser diode mirror coating in the above background of the invention, the present invention provides a method of laser diode mirror coating to overcome the problems derived from conventional techniques.

本發明主要用於雷射二極體共振鏡面鍍膜,藉由改變間 隔棒或雷射二極體晶片形狀,可避免鍍膜不均勻的情況, 且不須使用精密複雜且體積龐大的夾具,可節省生產成本 。此外,本發明更揭示了一種製造具溝槽的雷射二極體晶 片及間隔棒之方法。 根據以上所述之目的,本發明提供一種雷射二極體晶片 共振鏡面鍍膜之方法,其步驟為使用一間隔棒隔開相鄰排 列的雷射二極體晶片,其中,雷射二極體晶片具有一第一 電極面、一第二電極面、一第一共振鏡面、一第二共振鏡 (2)The invention is mainly used for laser diode resonance mirror coating. By changing the shape of the spacer rod or the laser diode wafer, the coating can be prevented from being uneven, and it is not necessary to use a sophisticated and bulky fixture, which can save Cost of production. In addition, the present invention further discloses a method for manufacturing a grooved laser diode wafer and a spacer rod. According to the above-mentioned purpose, the present invention provides a method for coating a laser diode wafer with a resonant mirror surface. The step is to use a spacer rod to separate adjacent laser diode wafers, wherein the laser diodes The wafer has a first electrode surface, a second electrode surface, a first resonance mirror surface, and a second resonance mirror (2)

面 隔 直 的 接 實 描 本 於 片 2 4 時 第 電 的 鏡 米 於 超 及共振腔長度’且第一電極面覆蓋於一波導線上,門 棒具有一第一台面及一第二台面,第一台面與波導線垂 万向的兩端各具一溝槽,且間隔棒的第一台面貼 J锫射 極體晶片的第一電極面,第二台面貼向雷射二極體晶片 第二電極面。鍍膜於雷射二極體晶片第一共振鏡面上, 著鍍膜於該第二共振鏡面上。 施方式 本發明的一些實施例將詳細描述如下。然而,除了詳細 述外本發明還可以廣泛地施行在其他的實施例中,且 發明的範圍應不受限定於專利範圍之所請内容。 圖2為本發明之第一較佳實施例,間隔棒2 0的寬度2 1等 雷射二極體晶片25共振腔長度,厚度22和雷射二極體晶 25相㊂’長度大於雷射二極體晶片25。間隔棒20具有第 口面 及第一台面23b,且第一台面23a的兩端有溝槽 ’如此間隔棒2〇有兩個不同寬度的台面。鏡面鍍膜排列 ’相鄰雷射一.pi 杜姐晶片2 5間放置間隔棒2 〇 ,且間隔棒的 口面23a貼向雷射二極體晶片25具有波導線28的第一 極面29a’間隔棒的第二台面2讣則貼向雷射二極體晶片 第二電極面, 如此間隔棒的溝槽2 4對著波導線2 8的 面端’以避务泰ή 、、尤两射二極體共振鏡面被遮蔽。 其中上述又間隔棒溝槽24的深度26及寬度27皆大於5微 ,而較佳的溝槽深度於〜2〇微米之間,而溝槽寬度則 30^0微米之間1隔棒2〇的厚度大於娜*,但是不 出田射一極體晶片厚度100微米,較佳的厚度是跟雷射 (3)The solid and straight description of the surface is shown in Figure 2. At the time of the sheet 2 4, the mirror mirror is at least the length of the cavity and the first electrode surface covers a waveguide line. The gate rod has a first table surface and a second table surface. A mesa is provided with a groove at both ends of the vertical direction of the waveguide line, and the first mesa of the spacer rod is attached to the first electrode face of the J 锫 emitter wafer, and the second mesa is attached to the second of the laser diode wafer. Electrode surface. The film is coated on the first resonance mirror surface of the laser diode wafer, and the film is coated on the second resonance mirror surface. Embodiments Some embodiments of the present invention will be described in detail as follows. However, in addition to the detailed description, the present invention can be widely implemented in other embodiments, and the scope of the invention should not be limited to what is claimed in the patent scope. FIG. 2 is a first preferred embodiment of the present invention. The width of the spacer rod 20 is equal to the length of the resonant cavity 25 of the laser diode wafer 25, and the thickness 22 and the length of the laser diode 25 are longer than the laser. Diode wafer 25. The spacer rod 20 has a mouth surface and a first table surface 23b, and grooves are formed at both ends of the first table surface 23a. Thus, the spacer rod 20 has two table surfaces of different widths. Mirror coating arrangement 'Neighboring laser I. pi Du sister wafers 25 are placed with spacer rods 20, and the mouth surface 23a of the spacer rod is attached to the laser diode wafer 25 with the first pole surface 29a of the waveguide 28' The second mesa 2 of the spacer rod is attached to the second electrode surface of the laser diode wafer, so that the groove 2 4 of the spacer rod faces the end of the waveguide line 2 8 to avoid high prices, especially Diode resonance mirror is blocked. The depth 26 and width 27 of the above-mentioned spacer rod groove 24 are both greater than 5 micrometers, and the preferred groove depth is between ~ 20 micrometers, and the groove width is between 30 and 0 micrometers. The thickness is greater than Na *, but the thickness of a polar wafer that does not come out of the field is 100 microns, and the preferred thickness is with laser (3)

二極體晶片厚度相同。間隔棒2 〇的材料可以是半導體晶片 、金屬、鐵氟龍、塑膠等易加工材料。 若使用半導體晶片作為製作間隔棒的材料,則如圖3 a 至3c所不之步驟。在半導體晶片底材3〇上形成一光阻層32 ,然後使用具圖案之光罩3 4以定義溝槽位置,接著進行溝 槽蝕刻步驟’最後去除光罩3 4及光阻層3 2。其中溝槽的寬 度3 6大於1 0微米,深度3 7大於5微米。溝槽蝕刻完成,將 晶片3 0研磨至與雷射二極體相似的厚度,並沿溝槽的中心 線3 8劈裂或切割,即完成間隔棒3 9的製作。 圖4為本發明之第二較佳實施例,間隔棒4 〇的寬度4丨等 於雷射二極體晶片共振腔長度,厚度4 2和雷射二極體晶片 相當,長度大於雷射二極體晶片。間隔棒截面的四個角落 具有溝槽4 4。間隔棒溝槽4 4的深度4 6及寬度4 7大於5微米 ,而較佳的溝槽深度4 6於1 〇〜2 0微米之間,而溝槽寬度4 7 則於3 0〜5 0微米之間。間隔棒4 0的厚度大於7 〇微米,但是 不超出雷射二極體晶片厚度100微米,較佳的厚度是跟雷 射二極體晶片厚度相同。鏡面鐘膜排列時,相鄰雷射二極 體晶片45間放置此間隔棒40,如此間隔棒的溝槽44對著雷 射二極體波導線4 8的鏡面端,雷射二極體共振鏡面就不會 被遮蔽。 間隔棒的材料可以是半導体晶片、金屬、鐵氟龍、塑膠 等易加工材料。若使用半導体晶片作為製造間隔棒4〇的材 料,則可如圖5 a至5 e所示之步驟製作。在半導体晶片5 〇 上塗佈光阻51,以具溝槽圖案之第一光罩52對準,曝光並 589772Diode wafers are the same thickness. The material of the spacer bar 20 may be a semiconductor wafer, a metal, a Teflon, a plastic, and other easily processed materials. If a semiconductor wafer is used as the material for the spacer rod, the steps shown in Figs. 3a to 3c are not used. A photoresist layer 32 is formed on the semiconductor wafer substrate 30, and then a patterned photomask 34 is used to define the trench positions, and then a trench etching step is performed to finally remove the photomask 34 and photoresist layer 32. The width of the trench 36 is greater than 10 microns, and the depth 37 is greater than 5 microns. After the trench etching is completed, the wafer 30 is ground to a thickness similar to that of the laser diode, and split or cut along the center line 38 of the trench to complete the production of the spacer rod 39. FIG. 4 is a second preferred embodiment of the present invention. The width 4 of the spacer rod 40 is equal to the length of the laser diode resonator cavity. The thickness 42 is equivalent to the laser diode wafer, and the length is longer than the laser diode. Body wafer. The four corners of the cross section of the spacer have grooves 4 4. The depth 4 6 and width 4 7 of the spacer groove 4 4 are larger than 5 micrometers, and the preferred groove depth 4 6 is between 10 and 20 micrometers, and the groove width 4 7 is between 30 and 50. Between micrometers. The thickness of the spacer rod 40 is greater than 70 microns, but does not exceed the thickness of the laser diode wafer by 100 microns. The preferred thickness is the same as the thickness of the laser diode wafer. When the mirror is arranged, the spacer rod 40 is placed between the adjacent laser diode wafers 45. The groove 44 of the spacer rod faces the mirror end of the laser diode waveguide 4 8 and the laser diode resonates. The mirror will not be hidden. The material of the spacer rods can be easily processed materials such as semiconductor wafers, metals, Teflon, and plastics. If a semiconductor wafer is used as the material for manufacturing the spacer rod 40, it can be manufactured as shown in Figs. 5a to 5e. A photoresist 51 is coated on the semiconductor wafer 50, aligned with a first photomask 52 having a groove pattern, exposed and exposed 589772

(4) 顯影,以蝕刻方式製做第一面溝槽5 5 a。溝槽5 5 a間的間隔 等同雷射z極体曰曰片的寬度,其中溝槽的寬度5 6須大於i 〇 微米,深度57f大於5微米。第一面溝槽55a蚀刻完成後去 除光卩且5 2將曰曰片研磨至和雷射二極体相似的厚度,在晶 片第二面蜜佈光阻5 3 ’並以第二光罩5 4對準第一面的溝槽 5 5 b,在第一面曝光並顯影,以蝕刻方式製做第二面溝槽 55b。第二面溝槽55b蝕刻完成後去除光阻53,沿溝槽的中 心線5 9劈裂或切割,即完成間隔棒4 〇的製作。 圖6 a、圖6 b及圖6 c為本發明之第三較佳實施例。如圖6 & 、圖6 b中所示具不同形狀的間隔棒,其寬度可小於雷射二 極体晶片共振腔長度,但為避免鏡面鍍膜時,電極被薄膜 遮蓋,間隔棒的寬度和雷射二極体晶片共振腔長度差異不 可太大。或是如圖6 c所示,間隔棒6 〇的寬度6 2小於雷射二 極体晶片共振腔長度63,且僅間隔棒60的第一端面66a具 有溝槽64,其第二端面661)並無溝槽。於鏡面鍍膜排列時 ,相鄰雷射二極体晶片6丨間放置間隔棒6〇。間隔棒6〇的溝 槽6 4貼向雷射二極体晶片6丨具有波導線6 7的電極面6 8,如 此間隔棒60的溝槽64對著雷射二極体波導線67的鏡面端 ’雷射二極体晶片的兩個共振鏡面6 5 a及6 5 b就不會被遮蔽 〇 圖7a至圖7c用以說明製作具溝槽結構的雷射二極体晶 片。當雷射二極体晶片7 〇完成第一面的晶片製程,研磨第 二面並鍍上電極7 1後,將雷射二極体晶片7 〇第二面塗佈光 阻7 2 ’使用具溝槽圖案的光罩7 3進行曝光並顯影,然後以 -10- 589772(4) Develop and make the first groove 5 5 a by etching. The spacing between the grooves 5 5 a is equal to the width of the laser z-pole body. The width 56 of the grooves must be greater than i 0 μm, and the depth 57f is greater than 5 μm. After the first side trench 55a is etched, the photoresist is removed and the wafer is ground to a thickness similar to that of the laser diode. A honeycomb photoresist 5 3 ′ is placed on the second side of the wafer and a second photomask 5 is used. 4 Align the grooves 5 5 b on the first side, expose and develop on the first side, and make the second side groove 55 b by etching. After the second side trench 55b is etched, the photoresist 53 is removed, and splitting or cutting is performed along the center line 59 of the trench to complete the fabrication of the spacer 40. Figures 6a, 6b and 6c show a third preferred embodiment of the present invention. As shown in Figure 6 & 6b, the width of the spacer rods with different shapes can be smaller than the length of the cavity of the laser diode wafer. However, to avoid mirror coating, the electrodes are covered by a thin film. The length difference of the cavity of the laser diode wafer should not be too large. Or as shown in FIG. 6c, the width 62 of the spacer rod 60 is smaller than the length 63 of the laser diode resonator cavity, and only the first end surface 66a of the spacer rod 60 has a groove 64 and the second end surface 661) No grooves. When the mirror coating is arranged, a spacer rod 60 is placed between adjacent laser diode wafers 6 and 6. The groove 6 4 of the spacer rod 60 is attached to the laser diode wafer 6 丨 with the electrode surface 6 8 of the waveguide wire 6 7 so that the groove 64 of the spacer rod 60 faces the mirror surface of the laser diode waveguide 67 The two resonant mirror surfaces 6 5 a and 6 5 b of the end-end laser diode wafer will not be shielded. Figures 7a to 7c are used to illustrate the fabrication of a laser diode wafer with a trench structure. After the laser diode wafer 70 has completed the wafer process on the first side, the second surface is ground and the electrode 71 is plated, and then the laser diode wafer 70 is coated with a photoresist 7 2 on the second side. The groove pattern of the photomask 7 3 is exposed and developed, and then -10- 589772

(5) 蝕刻方式製做溝槽7 8,溝槽7 8的間隔等同雷射二極体晶片 的共振腔長度,溝槽的寬度74須大於10微米,深度75須大 於5微米。溝槽蝕刻完成後去除光阻72,最後沿溝槽的中 心線7 6劈裂。圖8為本發明之第四較佳實施方式,於鏡面 鍍膜排列時,相鄰雷射二極体晶片8 0的第一電極面和第二 極面對齊貼緊,雷射二極体晶片80的溝槽82對著相鄰雷射 二極体波導線8 4,如此雷射二極体共振鏡面就不會被遮蔽(5) Trenches 7 8 are made by etching. The spacing between the trenches 7 8 is equal to the length of the cavity of the laser diode wafer. The width 74 of the trench must be greater than 10 microns, and the depth 75 must be greater than 5 microns. After the trench etching is completed, the photoresist 72 is removed, and finally split along the center line 7 6 of the trench. FIG. 8 is a fourth preferred embodiment of the present invention. When the mirror coating is arranged, the first electrode surface and the second electrode surface of the adjacent laser diode wafer 80 are aligned and attached, and the laser diode wafer is aligned. The groove 82 of 80 faces the adjacent laser diode waveguide 8 4 so that the laser diode resonant mirror will not be shielded.

〇 根據以上所述,本發明藉由改變間隔棒或雷射二極體晶 片形狀,可避免鍍膜不均勻的情況發生且不須使用精密複 雜且體積龐大的夾具,可節省生產成本。此外,本發明更 揭示了 一種製造具溝槽的雷射二極體晶片及間隔棒之方 法0〇 According to the above, by changing the shape of the spacer rod or the laser diode wafer, the present invention can avoid the occurrence of non-uniform coating and does not require the use of precise and complicated jigs, which can save production costs. In addition, the present invention also discloses a method for manufacturing a laser diode wafer with a groove and a spacer rod.

以上僅為本發明之較佳實施例而已,並非用以限定本發 明之申請專利範圍;凡其它未脫離本發明所揭示之概念下 所完成之等效改變或修飾,均應包含在下述之申請專利範 圍内。 圖式簡單說明 圖1 a及圖1 b為習知的雷射二極體共振鏡面鍵膜方法。 圖2為本發明之第一較佳實施例。 圖3 a至圖3 c用以說明圖2所示之間隔棒的製作方法。 圖4為本發明之第二較佳實施例。 圖5 a至圖5 e用以說明圖4所示之間隔棒的製作方法。 圖6 a至圖6 c為本發明之第三較佳實施例。 589772The above are only preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention; all other equivalent changes or modifications made without departing from the concepts disclosed by the present invention should be included in the following applications Within the scope of the patent. Brief description of the drawings Figures 1a and 1b show the conventional method of laser diode resonant mirror key film. FIG. 2 is a first preferred embodiment of the present invention. 3a to 3c are used to explain the method for manufacturing the spacer rod shown in FIG. FIG. 4 is a second preferred embodiment of the present invention. 5a to 5e are used to explain the method for manufacturing the spacer rod shown in FIG. 6a to 6c show a third preferred embodiment of the present invention. 589772

(6) 圖7a至圖7c用以說明製作具 片。 圖8為本發明之第四較佳實施 主要部分之代表符號 1 0 雷射二極體晶片 12 電極面 1 4 共振鏡面 16 間隔棒 2 0 間隔棒 2 1間隔棒寬度 2 2 間隔棒厚度 23a第一台面 2 3 b第二台面 2 4 溝槽 2 5 雷射二極體晶片 26 溝槽深度 27 溝槽寬度 2 8 波導線 29a第一電極面 2 9 b弟二電極面 30底材 3 2 光阻 34 光罩 3 6 溝槽寬度 溝槽結構的雷射二極体晶 方式。 3 7 溝槽深度 3 8溝槽中心線 3 9 間隔棒 4 0間隔棒 鲁 4 1間隔棒寬度 42間隔棒厚度 44溝槽 4 5 雷射二極體晶片 46 溝槽深度 47溝槽寬度 4 8波導線 50底材 _ 5 1 光阻 52第一光罩 5 3 光阻 54 第二光罩 55溝槽 5 6 溝槽寬度 5 7 溝槽深度 5 9 溝槽中心線 -12- 589772 ⑺(6) Figures 7a to 7c are used to illustrate the production of a tool. FIG. 8 is a representative symbol of the main part of the fourth preferred embodiment of the present invention. 10 Laser diode wafer 12 Electrode surface 1 4 Resonant mirror surface 16 Spacer 2 0 Spacer 2 1 Spacer width 2 2 Spacer thickness 23a 1 mesa 2 3 b second mesa 2 4 groove 2 5 laser diode wafer 26 groove depth 27 groove width 2 8 wave conductor 29a first electrode surface 2 9 b second electrode surface 30 substrate 3 2 light Resistor 34 photomask 3 6 trench width laser structure with trench structure. 3 7 groove depth 3 8 groove center line 3 9 spacer rod 4 0 spacer rod 4 1 spacer rod width 42 spacer rod thickness 44 groove 4 5 laser diode wafer 46 groove depth 47 groove width 4 8 Wave conductor 50 substrate_ 5 1 photoresist 52 first photomask 5 3 photoresist 54 second photomask 55 groove 5 6 groove width 5 7 groove depth 5 9 groove centerline -12- 589772 ⑺

60 間 隔 棒 62 6 1 雷 射 二 極 體 晶 片 63 雷 射 二 極 体 晶 片 共振腔長度 65 共 振 鏡 面 73 66a 間 隔 棒 第 — 端 面 74 66b 間 隔 棒 第 二 端 面 75 67 波 導 線 76 68 電 極 面 78 70 雷 射 二 極 体 晶 片 80 7 1 電 極 82 72 光 阻 84 間隔棒寬度 光罩 溝槽寬度 溝槽深度 溝槽中心線 溝槽 φ 雷射二極体晶片 溝槽 波導線60 Spacer rod 62 6 1 Laser diode wafer 63 Laser diode wafer cavity length 65 Resonant mirror surface 73 66a Spacer rod first — end surface 74 66b Spacer rod second end surface 75 67 Wave conductor 76 68 Electrode surface 78 70 Lightning Laser Diode Wafer 80 7 1 Electrode 82 72 Photoresistor 84 Spacer Bar Width Mask Groove Width Groove Depth Groove Center Line Groove φ Laser Diode Wafer Waveguide Line

Claims (1)

589772 拾、申請專利範圍 1. 一種雷射二極體晶片共振鏡面鍍膜之方法,包含下列 步驟: 使用一間隔棒隔開相鄰排列的雷射二極體晶片,其 中該雷射二極體晶片具有一第一電極面、一第二電極 面、一第一共振鏡面、一第二共振鏡面及一共振腔長 度,且該第一電極面覆蓋於該雷射二極體晶片的一波 導線上,該間隔棒具有一第一台面及一第二台面,其 中該第一台面與該雷射二極體晶片之波導線垂直方 向的兩端各具一溝槽,且該第一台面貼向該雷射二極 體晶片的該第一電極面,該間隔棒的第二台面貼向該 雷射二極體晶片的第二電極面; 鍍膜於該第一共振鏡面上;以及 鍍膜於該第二共振鏡面上。 2. 如申請專利範圍第1項所述之雷射二極體晶片共振 鏡面鍍膜之方法,其中上述之間隔棒的寬度介於該共 振腔長度與小於該共振腔長度5 0微米之間。 3 .如申請專利範圍第1項所述之雷射二極體晶片共振 鏡面鍍膜之方法,其中上述之間隔棒插入兩相鄰的雷 射二極體晶片中時,該間隔棒的第一台面及第二台面 皆不超出該雷射二極體晶片的第一共振鏡面及第二 共振鏡面。 4.如申請專利範圍第1項所述之雷射二極體晶片共振 鏡面鍍膜之方法,其中上述之間隔棒的厚度介於7 0589772 Patent application scope 1. A method for coating a laser diode with a resonant mirror surface, comprising the following steps: using a spacer rod to separate adjacent laser diode wafers, wherein the laser diode wafers Having a first electrode surface, a second electrode surface, a first resonance mirror surface, a second resonance mirror surface, and a cavity length, and the first electrode surface covers a waveguide line of the laser diode wafer, The spacer has a first mesa and a second mesa, wherein the first mesa and the two ends of the laser diode wafer perpendicular to the waveguide line each have a groove, and the first mesa is attached to the mine. The first electrode surface of the emitting diode wafer, the second mesa surface of the spacer rod is attached to the second electrode surface of the laser diode wafer; coating on the first resonant mirror surface; and coating on the second resonance On the mirror. 2. The method for coating a laser diode resonance mirror as described in item 1 of the scope of the patent application, wherein the width of the spacer rod is between the length of the resonant cavity and 50 μm less than the length of the resonant cavity. 3. The method for coating the laser diode resonant mirror surface as described in item 1 of the scope of the patent application, wherein when the above-mentioned spacer rod is inserted into two adjacent laser diode wafers, the first surface of the spacer rod Neither the second mesa nor the first mesa exceeds the first and second resonant mirrors of the laser diode wafer. 4. The method of laser diode resonance mirror coating as described in item 1 of the scope of the patent application, wherein the thickness of the above-mentioned spacer rod is between 7 and 0. 589772 微米與超過該雷射二極體晶片的厚度1 Ο 0微米之間。 5 .如申請專利範圍第1項所述之雷射二極體晶片共振 鏡面鍍膜之方法,其中上述之間隔棒的厚度等於該雷 射二極體晶片的厚度。 6. 如申請專利範圍第1項所述之雷射二極體晶片共振 鏡面鍍膜之方法,其中上述之間隔棒是選自於由半導 體晶片、金屬、鐵氟龍、塑膠所組成族群中的一個材 料。 φ 7. 如申請專利範圍第1項所述之雷射二極體晶片共振 鏡面鍍膜之方法,其中上述之第一台面與該波導線垂 直方向的兩端更各別包含一溝槽。 8 .申請專利範圍第7項所述之雷射二極體晶片共振鏡 面鍍膜之方法,其中上述之溝槽距離該第一台面的深 度至少為5微米,較佳的深度介於1 0至2 0微米之間。 9.申請專利範圍第 7項所述之雷射二極體晶片共振鏡 面鍍膜之方法,其中上述之第一台面的寬度至少小於 φ 該共振腔長度1 0微米,較佳的宽度介於小於該共振 腔長度60至100微米之間。 1 0. —種雷射二極體晶片共振鏡面鍍膜之方法,包含下列 步驟: 排列複數片雷射二極體晶片,其中該雷射二極體晶 片具有一第一電極面、一第二電極面、一第一共振鏡 面及一第二共振鏡面,且該第一電極面覆蓋於該雷射 二極體晶片的一波導線,該第二電極面與該波導線垂589772 micrometers and 100 micrometers more than the thickness of the laser diode wafer. 5. The method for coating a laser diode resonance mirror as described in item 1 of the scope of the patent application, wherein the thickness of the spacer rod is equal to the thickness of the laser diode wafer. 6. The method for coating the laser diode resonance mirror as described in item 1 of the scope of the patent application, wherein the above-mentioned spacer rod is one selected from the group consisting of semiconductor wafer, metal, Teflon, and plastic. material. φ 7. The method for coating the laser diode resonance mirror surface as described in item 1 of the scope of the patent application, wherein the first mesa and the two ends in the vertical direction of the waveguide line each include a groove. 8. The method for coating the laser diode resonant mirror surface as described in item 7 of the scope of the patent application, wherein the depth of the groove from the first stage is at least 5 microns, and the preferred depth is between 10 and 2 Between 0 microns. 9. The method for coating a laser diode wafer with a resonant mirror as described in item 7 of the scope of the patent application, wherein the width of the first mesa is at least less than φ and the length of the resonant cavity is 10 micrometers, and the preferred width is less than The cavity length is between 60 and 100 microns. 1 0. A method for coating a laser diode with a resonant mirror surface, comprising the following steps: arranging a plurality of laser diode wafers, wherein the laser diode wafers have a first electrode surface and a second electrode Surface, a first resonant mirror surface, and a second resonant mirror surface, and the first electrode surface covers a waveguide line of the laser diode wafer, and the second electrode surface is perpendicular to the waveguide line 589772 直方向的兩端各具一溝槽,該雷射二極體晶片的第一 電極面貼向鄰近雷射二極體晶片的第二電極面, 鍍膜於該第一共振鏡面上;以及 鍍膜於該第二共振鏡面上。 1 1 .如申請專利範圍第1 0項所述之雷射二極體晶片共振 鏡面鍍膜之方法,其中上述之溝槽深度及寬度至少大 於5微米。 1 2 ·如申請專利範圍第1 0項所述之雷射二極體晶片共振 鏡面鍍膜之方法,其中上述之溝槽深度介於10至20 微米之間。 1 3 .如申請專利範圍第1 0項所述之雷射二極體晶片共振 鏡面鍍膜之方法,其中上述之第二電極面寬度介於小 於該雷射二極體晶片之共振腔長度60至100微米之 間。589772 There is a groove at each end in the straight direction, the first electrode surface of the laser diode wafer is adhered to the second electrode surface adjacent to the laser diode wafer, and the film is coated on the first resonance mirror surface; On the second resonance mirror surface. 1 1. The method of laser diode resonance mirror coating as described in item 10 of the scope of the patent application, wherein the depth and width of the above trenches are at least greater than 5 microns. 1 2. The method of laser diode resonance mirror coating as described in item 10 of the scope of patent application, wherein the groove depth is between 10 and 20 microns. 1 3. The method for coating a laser diode wafer with a resonant mirror as described in item 10 of the scope of the patent application, wherein the width of the second electrode surface is between 60 and less than the length of the resonant cavity of the laser diode wafer. Between 100 microns.
TW92106638A 2003-03-25 2003-03-25 Method for coating laser diode facet TW589772B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92106638A TW589772B (en) 2003-03-25 2003-03-25 Method for coating laser diode facet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92106638A TW589772B (en) 2003-03-25 2003-03-25 Method for coating laser diode facet

Publications (2)

Publication Number Publication Date
TW589772B true TW589772B (en) 2004-06-01
TW200419863A TW200419863A (en) 2004-10-01

Family

ID=34059126

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92106638A TW589772B (en) 2003-03-25 2003-03-25 Method for coating laser diode facet

Country Status (1)

Country Link
TW (1) TW589772B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113557642A (en) * 2019-03-18 2021-10-26 三菱电机株式会社 Method for manufacturing semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113557642A (en) * 2019-03-18 2021-10-26 三菱电机株式会社 Method for manufacturing semiconductor laser device
CN113557642B (en) * 2019-03-18 2024-02-13 三菱电机株式会社 Method for manufacturing semiconductor laser device

Also Published As

Publication number Publication date
TW200419863A (en) 2004-10-01

Similar Documents

Publication Publication Date Title
US6893575B2 (en) Mask and method of manufacturing the same, electro-luminescence device and method of manufacturing the same, and electronic instrument
JP3791584B2 (en) Surface emitting semiconductor laser and surface emitting semiconductor laser array
EP0800244B1 (en) Method of making III/V semiconductor lasers
KR20010053567A (en) Method for fabricating waveguide
JP2007148365A (en) Three-dimensional photonic crystal and functional device including the same
TW589772B (en) Method for coating laser diode facet
JPH08147625A (en) Thin-film magnetic head and its manufacture
GB2124024A (en) Semiconductor laser and manufacturing method therefor
US20050064090A1 (en) Method for coating on laser-diode facet
JPH0618737A (en) Production of optical waveguide
JPH02132844A (en) Division of compound semiconductor wafer
JPH0983081A (en) Fabrication of semiconductor laser element
JPH11195624A (en) Manufacture of semiconductor substrate with insulating film formed by using laser irradiation
JP2006286785A (en) Semiconductor light emitting device and its manufacturing method
TWI222253B (en) Semiconductor laser device capable of preventing a threshold current and an operating current from increasing and manufacturing method therefor
JP3411797B2 (en) Manufacturing method of semiconductor wave plate type polarization rotating element
JPH05315703A (en) Manufacture of semiconductor laser
JPH0444285A (en) Semiconductor light emitting element
JPH0897496A (en) Semiconductor laser and its manufacture
JP2005017761A (en) Optical waveguide and method for manufacturing optical waveguide
KR100238552B1 (en) Method for manufacturing laser diode
JPH08304670A (en) Optical module and its production
JP3467151B2 (en) Optical module
JPH08125278A (en) Manufacture of semiconductor laser device
CN114156232A (en) Silicon-based slit structure and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees