TW583412B - Optical lithography and method of inducing transmission in optical lithography preforms - Google Patents
Optical lithography and method of inducing transmission in optical lithography preforms Download PDFInfo
- Publication number
- TW583412B TW583412B TW090128549A TW90128549A TW583412B TW 583412 B TW583412 B TW 583412B TW 090128549 A TW090128549 A TW 090128549A TW 90128549 A TW90128549 A TW 90128549A TW 583412 B TW583412 B TW 583412B
- Authority
- TW
- Taiwan
- Prior art keywords
- fused silica
- silica glass
- patent application
- item
- scope
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 103
- 230000005540 biological transmission Effects 0.000 title claims description 44
- 238000000206 photolithography Methods 0.000 title claims description 5
- 230000001939 inductive effect Effects 0.000 title 1
- 239000005350 fused silica glass Substances 0.000 claims abstract description 135
- 230000003287 optical effect Effects 0.000 claims abstract description 73
- 230000005855 radiation Effects 0.000 claims abstract description 16
- 238000000233 ultraviolet lithography Methods 0.000 claims abstract description 6
- 239000011521 glass Substances 0.000 claims description 84
- 238000002834 transmittance Methods 0.000 claims description 67
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 53
- 238000010521 absorption reaction Methods 0.000 claims description 28
- 238000006303 photolysis reaction Methods 0.000 claims description 25
- 230000015843 photosynthesis, light reaction Effects 0.000 claims description 25
- 239000001257 hydrogen Substances 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 18
- 238000011049 filling Methods 0.000 claims description 15
- 239000004575 stone Substances 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 230000008021 deposition Effects 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- 230000002079 cooperative effect Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 1
- 239000000460 chlorine Substances 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 238000011109 contamination Methods 0.000 claims 1
- 230000001568 sexual effect Effects 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 239000006188 syrup Substances 0.000 claims 1
- 235000020357 syrup Nutrition 0.000 claims 1
- 238000001459 lithography Methods 0.000 abstract description 28
- 230000008569 process Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000001678 irradiating effect Effects 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000001237 Raman spectrum Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 229910020175 SiOH Inorganic materials 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000000276 deep-ultraviolet lithography Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000001782 photodegradation Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- ICSWLKDKQBNKAY-UHFFFAOYSA-N 1,1,3,3,5,5-hexamethyl-1,3,5-trisilinane Chemical compound C[Si]1(C)C[Si](C)(C)C[Si](C)(C)C1 ICSWLKDKQBNKAY-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 101100328518 Caenorhabditis elegans cnt-1 gene Proteins 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001595 contractor effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 210000000006 pectoral fin Anatomy 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70908—Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
- G03F7/70941—Stray fields and charges, e.g. stray light, scattered light, flare, transmission loss
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1415—Reactant delivery systems
- C03B19/1423—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1469—Means for changing or stabilising the shape or form of the shaped article or deposit
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/06—Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/14—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
- G02B13/143—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/21—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/36—Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/50—Multiple burner arrangements
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/20—Doped silica-based glasses containing non-metals other than boron or halide
- C03C2201/21—Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2203/00—Production processes
- C03C2203/50—After-treatment
- C03C2203/52—Heat-treatment
- C03C2203/54—Heat-treatment in a dopant containing atmosphere
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Optics & Photonics (AREA)
- Toxicology (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Atmospheric Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Glass Compositions (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
Description
583412 A7 B7 五、發明説明( 發明領域: 目前發明纽技絲投 平板印刷,_是__波錄· 法和光 光平板印刷系統,例如,使用波長細^=之2卜線的 外線平板印刷術系統。 域内的紫 發明背景: 經濟部中央標準局員工消費合作社印製 利用波長低於毫微米之料線的投射光平板刷 方法/系統,在達馳小的料尺寸方面μ辦好_。,言 種利用波長在193毫微賴域之料線財法/錢具有^ 力,可以改善含有較小零件尺寸之積體電路的製造;但是: 於200毫微米的紫外線在積體電路之大量製造上的商業使一 用和採納卻很緩慢。半導體工業對於低於2〇〇毫微米紫外 線的緩慢進展,一部分是由於缺乏可以很經濟地製造之高 品質光學效能的光平板印刷元件高純度熔融矽石玻璃。為 了將193¾微米區域的紫外線,例如ArF準分子雷射發射頻 譜,光平板印刷的好處應用在積體電路的製造上,我們必須 要有光平板印刷元件熔融矽石玻璃,以及具有有利的光學 特性,而且可以很經濟地製造並能配合使用低於2〇〇毫微米 之紫外線光子的光學元件。 我們需要透過光解(photolytically)以改善平板印刷 術光學元件熔融矽石玻璃之低於300毫微米的透射度。 我們需要透過光解導致熔融矽石玻璃之低於30〇毫微 米的透射度。 我們需要透過光解導致平板印刷術元件炫融石夕石玻璃 本紙張尺度適用中國國家標率(CMS ) A4規格(2丨〇><297公釐) 583412 A7 -----B1 五、發明説明(2 ) 之低於300毫微米的透射度,此玻璃含有非充滿氫,此沁是 在石夕石顆粒被熔解在一起而形成玻璃時被加入到此熔融矽 石玻璃中。 我們需要包含SiP種類熔融矽石玻璃的光解地感應之 低於300nm的透射度以及改善品質。 我們需要包含SiP種類以及H2含量低於2χ1〇17分子/立 方公分的熔融矽石玻璃光解地感應之低於3 〇 〇11111透射度以 及改善品質。 發明大要: 本發明包含深紫外線的平板印刷術方法。此深紫外光 平板印刷術方法包括:提供平板印刷術的紫外線又輻射源 以產生光子;提供光解改善透射的熔融矽石玻璃平板印刷 術光學元件;並且將所產生的平板印刷光子透過此光解改 善透射的熔融矽石破璃平板印刷術光學元件。此方法包括 使用這些光子來形成平板印刷術圖案,並且將此平板印刷 術圖案投射到對輻射敏感之平板印刷術的印刷介質上,以 形成平板印刷圖案。 經濟部中央榇準局〕同工消f合作祍印製 本發明進一步包括一種製造光學元件熔融矽石玻璃的 方法。此製造方法包括:提供低於3〇〇毫微米之内部透射度 為Τ(%/公分)的光學元件熔融矽石玻璃;並且使用低於3〇〇 毫微米的光子照射以光解照射此熔融矽石玻璃,以便提供 低於300毫微米之增加内部透射度為ΙΝ(%/公分)的光解改 善透射的熔融矽石玻璃,其中ΙΝ-Τ=△透射度(%/公分),而 △透射度-.07。 叫412 A7 —______B7 —__ 五、發明説明(s) 附圖簡要說明: 、第一圖(圖1)顯示根據本發明的紫外線平板印刷術方 法和系統。 第二圖(圖2)顯示根據本發明的紫外線平板印刷方法 和系統。 第三圖(圖3)顯示根據本發明的紫外線平板印刷方法 和系統。 第四圖(圖4)顯示根據本發明的紫外線平板印刷方法 和系統。 第五圖(圖5)顯示根據本發明平板印刷圖案方法。 第六圖(圖6)顯示根據本發明平板印刷圖案方法。 第七圖(圖7)顯示根據本發明平板印刷圖案方法。 第八圖(圖8)顯示根據本發明的平板印刷圖案方法。 第九圖(圖9)顯示根據本發明的平板印刷圖案方法。 第十圖(圖10)顯示根據本發明的方法,並且顯示本發 明的光學元件和預製件。 第十一圖(圖11)顯示根據本發明的方法。 第十二圖(圖12)顯示根據本發明的方法和系統。 麵濟部中夬標準局員工消費合作社印製 第十二圖(圖13)顯示根據本發明的方法和系統。 第十四圖(圖14)顯示根據本發明的方法。 第十五圖(圖15)顯示根據本發明的方法。 第十六圖(圖16)顯示根據本發明的方法。 第十七圖(圖17)是針對熔融矽石玻璃的兩個出值,在 193宅微米的透射度(%/公分)(y軸),相對於Na之陽離子雜 本紙張尺度賴中國國家標準(CNS)) 583412 A7 B7 五、發明説明(4) 鯉濟部中夬標準局員工消費合作社印製 質含量ppb的關係圖。 第十八圖(圖18)是所導致之215毫微米吸收/公分 [-log(T/TO)](y軸),相對於193毫微米之脈衝數(6mJ/cmV 脈衝)[時間(分鐘)](x軸)的關係圖。 第十九圖(圖19)是所導致之193毫微米吸收/公分 [-log(T/TO)](y軸),相對於193毫微/卡之脈衝數(6mJ/cm2/ 脈衝,重複速率為4〇〇Hz)[時間(秒)](x軸)的關係圖。 第二十圖(圖20)是所導致之193毫微米吸收/公分 [-l〇g(T/TO)](y軸),相對於照射到193毫微米準分子雷射 光之時間(秒)的關係圖。 第二十一圖A及B(圖21A-21B)是193毫微米之内部透射 度相對於炼融;ε夕石玻璃照射到Xe光源非相干照射之深度( 毫米)的關係圖。 第一十二圖(圖22)是193毫微米之内部透射度相對於 熔融矽石玻璃照射到水銀紫外線光源之深度(毫米)的關係 圖。 附圖元件符號說明: “輻射源20;光子22;遮罩24;印刷介質26;晶片27; 平板印刷方法/系統28;平板印刷光學元件30;遮罩圖案 32;平板印刷圖案34;準分子雷射36;熔融矽石玻璃光學 元件預製件40;光子照射42;小於300毫微米光線44;雷 射46;絲48;光學元倾融_石賴本體5(),·集成球體 52;反射表面54;熔融矽石玻璃56;矽石顆粒58;燃燒器 60;轉換地點62;燃燒爐64;燃燒器火焰折射率條紋 本紙中國國家榡 (請先閱讀背面之注意事項再填寫本頁} 訂 583412 A7 B7 經濟部中央標準局員工消費合作社印取 五、發明説明(f) 68 〇 詳細說明: 本發明包含紫外線平板印刷方法。如圖丨所示此方、去 包括:提供低於200毫微米A波長的輻射光源2〇以產生光子 22;並且提供光解改善透射的熔融矽石玻璃平板印刷元件 30。此方法包括將低於200毫微米的平板印刷光子22透過 此光解改善透射的熔融矽石玻璃平板印刷光學元件3〇。此 方法包括使用平板印刷光子22以形成平板印刷圖案,並且 減小此平板印刷圖案,以及將此平板印刷圖案投射到對輻 射敏感之平板印刷的印刷介質26上以形成印刷的平板印刷 圖案。如圖2所示,本發明的平板印刷方法/系統28優先地 利用多個光解改善透射的熔融矽石玻璃平板印刷光學元件 30。如圖3所示,此平板印刷方法/系統28可以包含大量之 光解改善透射的熔融矽石玻璃平板印刷光學元件3〇以處理 平板印刷術光子和平板印刷圖案,以便在晶片27的印刷介 質26上形成印刷的平板印刷圖案。圖5顯示在平板印刷術 遮罩24上的平板印刷圖案ic。如圖6所示,遮罩24和圖案1C 的透射特性,透過低於200毫微米的平板印刷光子形成了平 板印刷圖案1C。如圖7所示,此平板印刷圖案1C被減小,並 且被投射到晶片27上。同樣地,圖8中遮罩24的遮罩圖案32 也被減小,並且投射到圖9中對輻射敏感的平板印刷介質26 上以提供印刷的平板印刷圖案34。在優先實施例中,例如 圖4所示,提供輻射源2〇包括提供ArF準分子雷射36,並且提 供193毫微米的平板印刷光子。提供光解改善透射的熔融 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁)583412 A7 B7 V. Description of the invention (Field of invention: Currently invented lithography silk lithography, _is__wave recording method and light lithographic printing system, for example, outside line lithography using 2 fine lines = ^ = Background of the purple invention in the domain: The Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs printed a method / system for projecting light flat brushes using material lines with a wavelength below nanometers. The use of materials with a wavelength of 193 nanometers has the power to improve the manufacturing of integrated circuits with smaller part sizes; however: the mass production of integrated circuits with ultraviolet light at 200 nanometers Commercial use and adoption have been slow. The slow progress of the semiconductor industry for UV below 200 nanometers is partly due to the lack of high-quality optical lithographic printing elements with high-quality optical lithography that can be economically manufactured. Stone glass. In order to apply the advantages of ultraviolet lithography in the 193¾ micron region, such as the ArF excimer laser emission spectrum, to the manufacture of integrated circuits, we It requires optical lithographic printing elements, fused silica glass, and optical elements with favorable optical properties, which can be manufactured economically and can be used with UV photons below 200 nanometers. We need to be photolytically In order to improve the lithography optical element's transmission of fused silica glass below 300 nm. We need to pass photolysis to cause the transmission of fused silica glass below 30 nm. We need to cause lithography through photolysis Technical components Hyun Rong Shi Xi Shi glass This paper is scaled to the Chinese National Standard (CMS) A4 specification (2 丨 〇 > < 297 mm) 583412 A7 ----- B1 V. Low description of the invention (2) With a transmission of 300 nanometers, this glass contains non-filled hydrogen. This glass was added to the fused silica glass when the stone spar particles were melted together to form a glass. We need to include SiP fused silica glass Photolytically induced transmission below 300nm and improved quality. We need to include fused silica glass with SiP species and H2 content below 2x1017 molecules / cm3. Photolytically induced transmission of less than 30011111 and improved quality. Important points of the invention: The present invention includes a deep ultraviolet lithography method. The deep ultraviolet lithography method includes: providing lithography with ultraviolet and radiation A fused silica glass lithography optical element that provides photolysis to improve transmission; and passes the generated lithographic photons through this photolysis to improve fused silica glass lithography optical element. This method includes using These photons are used to form a lithography pattern, and this lithography pattern is projected onto a radiation-sensitive lithography printing medium to form a lithography pattern. Making the present invention further includes a method of manufacturing fused silica glass for an optical element. The manufacturing method includes: providing an optical element fused silica glass having an internal transmittance of T (% / cm) below 300 nm; and irradiating the fusion with photolysis using photon irradiation below 300 nm Silica glass in order to provide a fused silica glass with a photodegradation and improved transmission with an internal transmittance of ΙΝ (% / cm) below 300 nm, where ΙΝ-Τ = △ transmittance (% / cm), and △ Transmission -.07. Call 412 A7 —______ B7 —__ 5. Description of the invention (s) Brief description of the drawings: The first figure (Figure 1) shows the UV lithography method and system according to the present invention. The second figure (Figure 2) shows an ultraviolet lithography method and system according to the present invention. The third figure (Figure 3) shows an ultraviolet lithography method and system according to the present invention. The fourth figure (FIG. 4) shows an ultraviolet lithography method and system according to the present invention. The fifth figure (FIG. 5) shows a lithographic printing method according to the present invention. The sixth figure (FIG. 6) shows a lithographic printing method according to the present invention. The seventh figure (FIG. 7) shows a lithographic patterning method according to the present invention. The eighth figure (FIG. 8) shows a lithographic patterning method according to the present invention. The ninth figure (FIG. 9) shows a lithographic patterning method according to the present invention. The tenth figure (Figure 10) shows the method according to the invention and shows the optical elements and preforms of the invention. The eleventh figure (Figure 11) shows the method according to the invention. The twelfth figure (Figure 12) shows the method and system according to the invention. Printed by the Consumers' Cooperative of the Chungli Standards Bureau of the Ministry of Health Figure 12 (Figure 13) shows the method and system according to the present invention. Fourteenth figure (Figure 14) shows the method according to the invention. Figure 15 (Figure 15) shows the method according to the invention. The sixteenth figure (Figure 16) shows the method according to the invention. The seventeenth figure (Figure 17) is for the two output values of fused silica glass, the transmittance (% / cm) at 193 μm (y-axis), relative to the cation impurity paper size of Na depends on Chinese national standards (CNS)) 583412 A7 B7 V. Description of the invention (4) The relationship diagram of the mass content ppb printed by the Consumer Cooperatives of Zhongli Standard Bureau of the Ministry of Carpling. The eighteenth figure (Figure 18) is the resulting 215 nm absorption / cm [-log (T / TO)] (y-axis), relative to the number of pulses of 193 nm (6mJ / cmV pulse) [time (minutes )] (X-axis). Figure 19 (Figure 19) is the resulting 193 nm absorption / cm [-log (T / TO)] (y-axis), relative to the number of pulses (6mJ / cm2 / pulse, 193 nm / card, repeated) Rate (400 Hz) [time (seconds)] (x-axis). The twentieth graph (Figure 20) is the resulting 193 nm absorption / cm [-l0g (T / TO)] (y-axis) relative to the time (seconds) when the 193 nm excimer laser light was irradiated Diagram. The twenty-first figures A and B (Figures 21A-21B) are the relationship diagrams of the internal transmittance of 193 nm with respect to the melting and melting; the depth (in millimeters) of the non-coherent irradiation of the Xe light source by the epsilon glass. The twelfth figure (Figure 22) is a graph of the internal transmittance of 193 nm with respect to the depth (mm) of the fused silica glass irradiating the mercury ultraviolet light source. Description of the symbols of the drawings: "radiation source 20; photon 22; mask 24; printing medium 26; wafer 27; lithographic method / system 28; lithographic optical element 30; mask pattern 32; lithographic pattern 34; excimer Laser 36; fused silica glass optical element preform 40; photon irradiation 42; light less than 300 nm 44; laser 46; wire 48; optical element fusion_Shilai body 5 (), integrated sphere 52; reflection Surface 54; Fused Silica Glass 56; Silica Particles 58; Burner 60; Conversion Point 62; Burning Furnace 64; Burner Flame Refractive Index Stripe Paper China National (Please read the precautions on the back before filling this page) Order 583412 A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. 5. Description of the invention (f) 68 〇 Detailed description: The present invention includes a UV lithography method. As shown in Figure 丨 this side, including: providing less than 200 nm A-wavelength radiation source 20 to generate photons 22; and provide a fused silica glass lithographic element 30 with photolysis to improve transmission. This method includes passing lithographic photons 22 below 200 nanometers through this photolysis to improve transmission melting Silica glass plate Printing the optical element 30. This method includes using a lithographic photon 22 to form a lithographic pattern and reducing the lithographic pattern, and projecting the lithographic pattern onto a radiation-sensitive lithographic printing medium 26 to form a print As shown in FIG. 2, the lithographic method / system 28 of the present invention preferentially utilizes multiple photolysis to improve the transmission of fused silica glass lithographic optical elements 30. As shown in FIG. 3, this lithographic method / System 28 may contain a large number of fused silica glass lithographic optical elements 30 for photolytically improved transmission to process lithographic photons and lithographic patterns to form a printed lithographic pattern on the printing medium 26 of the wafer 27. Figure 5 The lithographic pattern ic shown on the lithographic mask 24. As shown in FIG. 6, the transmission characteristics of the mask 24 and the pattern 1C, through the lithographic photons below 200 nm, form the lithographic pattern 1C. As shown in Fig. 7, this lithographic pattern 1C is reduced and projected onto the wafer 27. Similarly, the mask pattern 32 of the mask 24 in Fig. 8 Also reduced, and projected onto radiation-sensitive lithographic media 26 in Figure 9 to provide a printed lithographic pattern 34. In a preferred embodiment, such as shown in Figure 4, providing a radiation source 20 includes providing an ArF standard Molecular laser 36, and provide 193 nm lithographic photons. Provide melting for photolysis to improve transmission. Paper size is applicable to China National Standard (CNS) A4 (210X 297 mm) (Please read the precautions on the back before filling (This page)
583412 A7 五、發明説明(t) 經濟部中央標準局負工消費合作社印製 矽石玻璃平板印刷光學元件30包括提供光解改善透射的熔 融矽石玻璃平板印刷光學元件預製件物體40,並且將此預 製件40形成平板印刷光學元件3〇。如圖10所示,熔融矽石 玻璃光學元件預製件40被成型為光學元件透鏡30。形成光 學元件30優先地包括,經由研磨和磨光將預製件成型以提 供元件30的光學形狀。元件3〇也可以加上塗層並安裝在外 殼中以便組合。圖10顯示預製件4〇的截面,優先地是碟形 圓柱體,及光學元件30的截面。在被成型為光學元件3〇之 前,此熔融矽石玻璃預製件物體4〇優先地根據本發明以進 行光解照射以便改善它的透射度。 提供光解改善透射的熔融矽石玻璃平板印刷光學元件 預製件物體40包括:提供低於2〇〇毫微米之未照射内部透射 度為T(%/公分)光學元件熔融矽石玻璃物體50;並且使用小 於3 0 0毫微米的光子照射而光解照射此熔融矽石玻璃以提 供低於200毫微米之增加内部透射度為ΙΝ(%/公分)之光解 改善透射性熔融矽石玻璃物體,其中ΙΝ—τ=△透射度(%/公 分),而△透射度-· 07。如圖11所示,此方法包括提供低於 200毫微米之未照射内部透射度為吖%/公分)的光學元件熔 融矽石玻璃物體50;並且使用小於3〇〇毫微米的光子照射42 以光解照射熔融矽石玻璃預製件5〇。將預製件5〇暴露於光 子照射注量一段時間,使得此預製件的内部透射度被增加 到改善的内部透射度IN,此内部透射度in比照射前之原始 預製件玻璃50的照射前原始内部透射度τ還大至少.〇7(〇/〇/ 公分)。如圖11所示,光解照射此熔融矽石玻璃包括提供小 本紙張尺度適财關家 ΓΟ (請先閲讀背面之注意事項再填寫本頁) ,11 583412 Μ Β7五、發明説明(勹) 經濟部中夬榡率馮員工消費合作、社印製 於300毫微米的光44投射至此熔融矽石玻璃上。圖12-13顯 示使用小於300毫微米光線44以光解照射預製件50的實施 例。熔融矽石玻璃預製件50的光解照射優先地包括:光學 地處理此小於300毫微米的光線。在圖12中,此小於3〇〇毫 微米照射光線之光學處理是將小於300毫微米之雷射46所 產生的同調雷射光束作光束展開。在優先實施例中,雷射 46是準分子雷射。在圖13中,由光源48所產生小於3〇〇毫微 米照射光線經由集成球體52,和集成球體52内部之小於3〇〇 毫微米光的反射表面54以作光學處理。 在本發明的優先實施例中,提供低於3〇〇毫微米之未照 射透射度為Τ (%/公分)的熔融矽石玻璃包括:提供摻雜非充 貫氳的融石夕石玻璃。優先地此氫是炫融石夕石玻璃固有的 ,而不是從外部,例如經由玻璃形成之後的滲透處理輸入到 此玻璃中。如圖14-15所示,提供可以取得未照射νυν之原 始熔融矽石玻璃預製件5〇的熔融矽石玻璃%包括:在氫的 存在下提供多個石夕石顆粒58,其中Η2被加入至炫融石夕石玻 璃56以及預製件50熔融矽石玻璃中。如圖14-;15所示,氫優 先地是在直接沉積的玻璃形成階段期間被加入到本發明的 鬲純度溶融矽石玻璃中。優先地此熔融矽石玻璃是由單一 步驟的火焰水解處理而製造出,在其中將形成矽石的供應 原料,例如含有高純度si的供應原料,例如SiCh或0MCTS( 環矽烷氧-八甲基環四矽烷氧)傳送到轉換位置62的燃燒器 60於含有熱量之直接沉積熔融矽石玻璃燃燒爐64内。此Si 供應原料在火焰水解轉換位置之燃燒器6〇的燃燒器火焰66583412 A7 V. Description of the invention (t) Silica glass lithographic printing optical element 30 printed by the Consumers Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs includes a fused silica glass lithographic printing optical element preform object 40 that provides photolysis to improve transmission, and This preform 40 forms a lithographic optical element 30. As shown in FIG. 10, a fused silica glass optical element preform 40 is formed into an optical element lens 30. Forming the optical element 30 preferably includes shaping the preform to provide the optical shape of the element 30 via grinding and polishing. Element 30 can also be coated and mounted in a housing for assembly. Fig. 10 shows a cross section of the preform 40, preferably a dish-shaped cylinder, and a cross section of the optical element 30. Prior to being molded into the optical element 30, this fused silica glass preform object 40 is preferentially subjected to photolysis irradiation in accordance with the present invention in order to improve its transmittance. Fused silica glass lithographic optical element preform object 40 providing photolysis improving transmission includes: providing an unirradiated internal transmittance of T (% / cm) optical element fused silica glass object 50 below 2000 nm; And use less than 300 nanometers photon irradiation and photolytically irradiate this fused silica glass to provide less than 200 nanometers with an increase in internal transmittance of 1N (% / cm). Photolysis improved fused silica glass object , Where IN_τ = Δtransmittance (% / cm), and Δtransmittance- · 07. As shown in FIG. 11, this method includes providing an optical element fused silica glass object 50 having an unirradiated internal transmittance of less than 200 nm (acr / cm); and irradiating 42 to photons with a photon of less than 300 nm Photolysis irradiates fused silica glass preform 50. The preform 50 is exposed to photon irradiation fluence for a period of time, so that the internal transmittance of the preform is increased to an improved internal transmittance IN, which is greater than that of the original preform glass 50 before irradiation. The internal transmittance τ is also at least .07 (〇 / 〇 / cm). As shown in Figure 11, photolysis of this fused silica glass includes the provision of a small paper size suitable for financial management ΓΟ (please read the precautions on the back before filling this page), 11 583412 Μ B7 V. Description of the invention (勹) The Ministry of Economic Affairs, led by Feng's employees, cooperated with the company to print light 44 printed on 300 nanometers onto this fused silica glass. Figures 12-13 show an embodiment using less than 300 nanometers of light 44 to photodissolve the preform 50. The photolytic exposure of the fused silica glass preform 50 preferably includes: optically processing this light of less than 300 nanometers. In FIG. 12, the optical treatment of the irradiation light smaller than 300 nm is to expand the homogeneous laser light beam generated by the laser light 46 smaller than 300 nm. In the preferred embodiment, the laser 46 is an excimer laser. In FIG. 13, less than 300 nanometers of illumination light generated by the light source 48 passes through the integrated sphere 52, and the reflective surface 54 of the internal light of the integrated sphere 52 is less than 300 nanometers for optical processing. In a preferred embodiment of the present invention, providing a fused silica glass having an unirradiated transmittance of T (% / cm) below 300 nm includes providing a fused stone glass that is doped with incomplete rhenium. Preferentially, this hydrogen is inherent to Xuan Rong Shi Xi Shi glass, rather than being input into the glass from the outside, for example, through an infiltration process after glass formation. As shown in Figure 14-15, providing the molten silica glass 50% of the original fused silica glass preform that can be irradiated with νυν% includes: providing a plurality of stone spar particles 58 in the presence of hydrogen, of which Η2 is added Into the fused fused stone glass 56 and the preform 50 into the fused silica glass. As shown in Figs. 14-; 15, hydrogen is preferably added to the ytterbium-purity fused silica glass of the present invention during the glass-forming phase of the direct deposition. Preferentially, this fused silica glass is produced by a single-step flame hydrolysis treatment, in which a supply material for forming silica, such as a supply material containing high-purity si, such as SiCh or 0MCTS (cyclosilyloxy-octamethyl (Cyclosilane) is transferred to the burner 60 in the transfer position 62 in a direct-deposited fused silica glass burner 64 containing heat. Burner flame 66 of this Si supply raw material in flame hydrolysis conversion position 60
木紙張尺度劍巾關家縣(⑽)八4祕(21()χ297公着) U (請先閱讀背面之注意事項再填寫本頁} 訂 .I I I 1二. 583412 A7 B7 五 、發明説明(g 中被轉換,燃燒器60被供給含氫的燃料,例如⑶4, h2,天然氣 ,和氧氣。如圖16所示,在直接沉積燃燒爐64中所產生的熔 解矽石玻璃56是未經照射之原始熔融矽石玻璃預製件5〇的 來源。預製件50是經由玻璃除去處理,例如切割和核心鑽孔 由較大的母玻璃物體中除去。然後,將預製件5〇光解照射以 提供光解改善透射的容融矽石玻璃平板印刷光學元件預製 件物體40,然後將此預製件物體4〇形成平板印刷光學元件 30。熔融矽石玻璃物體56的直接沉積形成,優先地包括在 氫的存在下將矽石顆粒58形成熔融矽石玻璃物體56,使得 所產生的熔融矽石玻璃56和預製件5〇都包含Sip原子團。 鯉濟部中央標準局員Η消費合作祍印製 形成在高純度熔解中的SiP原子團具有可用光解除去之低 於300毫微米的紫外線吸收。本發明的方法經由小於3〇〇毫 微米的光子照射將這些原子團轉變成較不吸收的玻璃種類 。如圖14所示,此直接沉積形成的熔融矽石玻璃%形成了 多層結構的折射指率條紋68,而如圖16所示,此方法包括了 抑制玻璃56中所形成之條紋的去除。玻璃中任何存在之條 紋的抑制是經由避免對此玻璃的熱機械加工,例如玻璃的 均勻化和模造而加以抑制。預製件別經過光解照射,而不 會干擾先别的玻璃結構。特別是,將玻璃均勻化來使得條 紋結構均勻,以及玻璃的機械熱加工/塑製都必須加以避免 而不加以使用。將玻璃預製件5〇光解照射包括將沒有被均 勻化、或熱加工/塑製的玻璃預製件5〇光解照射。提供含 有Si|M子團的溶财石玻璃56,優先地包括提供出含量< 2xl017克分子/立方公分的熔融矽石玻璃%。 本紙張尺度適财關家縣(CNS) M規格(训/⑼公發 583412 Α7 Β7 五、發明説明(Η ) 本發明進一步包含一種製造光學元件熔融矽石玻璃40 的方法。如圖11所示,此方法包括:提供光學元件熔融矽石 玻璃50,其低於300毫微米的未照射内部透率為τ(%/公分); 使用小於300毫微米的光子照射,將此熔融矽石玻璃利用低 於300毫微米之光解照射以提供光解改善透射的熔融矽石 玻璃40,提高内部透射度為ιν(%/公分),其中ΙΝ—τ=△透射 度(%/公分),而△透射度-.07。本發明也包括利用此光解 改善透射的熔融矽石玻璃40以操作波長$248毫微米的多 個光子,例如將圖10的玻璃40形成透鏡30,此透鏡3〇可以被 應用在圖4所示的平板印刷系統中。 提供低於300毫微米之未照射内部透射度為τ(%/公分) 的光學元件熔融矽石玻璃50,優先地包括提供低於3〇〇毫微 米之未照射透射度Τ不大於99· 92V公分的光學元件熔融矽 石玻璃50。將此玻璃50光解照射優先地可以提高低於3〇〇 毫微米透射度IN至少為99. 98%/公分。 經濟部中央標準局員工消费合作社印製 在優先實施例中,此方法包括將玻璃光解照射以增加 此玻璃的透射度,使得△透射度-· 09,更優先地使得△透 射度16。使用<300毫微米的光子照射以光解照射熔融 矽石玻璃50的方法,包括提供<300毫微米光線,並且將<3〇〇 毫微米的光線44投射在此熔融矽石玻璃上。如圖12-13所 示,此方法包括使用光學處理系統,例如光束展開器、或反 射集成球體以光學處理並引導此<300毫微米的光線。在實 施例中,此方法包括提供<300毫微米的雷射光源;提供<3〇〇 毫微米的雷射光束;展開此<300毫微米的雷射光束;並且將 本紙張尺度適用中國國家標準(CNS ) Μ規格(210X 297公釐) 13 583412 A7 B7 五、發明説明(丨0 ) 此展開的<300毫微米雷射光束投射在熔解矽石玻璃5〇上。 此Μ射光束可以疋連績的,例如從雷射產生,或者可以是 脈衝的,例如從準分子雷射產生。如圖13所示,本發明的實 施例包括一種方法:提供<300毫微米的非同調光源48,例如 放電燈泡;提供反射容器52;將熔融矽石玻璃50配置在反射 容器52中;並且將<300毫微米光線44投射在此反射容器内的 熔融矽石玻璃上。此反射容器52優先地是具有<300毫微米 紫外線之反射表面54的集成球體,此反射表面優先地將玻璃 50密封。 經濟部中央標準鈞員工消費合作社印裝 提供低於300毫微米之未照射透射度為τ(%/公分)之熔 解矽石玻璃的方法包括提供摻雜非充實氫的熔融矽石玻璃 50。此玻璃50所包含的氫優先地是玻璃所固有的,而不是經 由充實處理輸入到此玻璃中。提供低於3〇〇毫微米之透射度 為Τ(%/公分)的溶融;5夕石玻璃,優先地包括在氫的存在下提 供多個矽石顆粒58,其中Η2被加入到熔融矽石玻璃56中,如 圖14-15的直接沉積處理所示,其中出是在直接沉積的玻璃 形成階段被加入。此方法包括提供矽石先驅供應原料;將此 石夕石供應原料傳送到轉換位置燃燒器⑼;使用此轉換位置燃 燒器,將矽石供應原料轉換成多個矽石粉塵顆粒58;將這些 矽石粉塵顆粒沉積到玻璃物體56的受熱熔融矽石表面上,使 得矽石粉塵顆粒被熔解到受熱熔融矽石表面中,而氫分子被 加入到熔融矽石玻璃56中。使用此直接沉積處理,玻璃中的 氫是由轉換位置,其反應作用,燃料,以及傳送到燃燒器之供 應原料而產生。使用含有Η的燃料(例如H2,CH4),以及含氫 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X 297公發) 經濟部中央標準局員工消費合作社印製 583412 A7 B7 五、發明説明(丨丨) 的供應原料可以在娜織巾提供氫。扣雜在氫的存 ,下,直接沉積形成熔融矽石熔化物體優先地可以產生包含 夕個SiH*翻員的、溶融石夕石玻璃56。在低於咖毫微米的紫外 ^吸收,玻璃中的Sip種類具有光解可去除,其中的SiH*種 類可以經纟輯本發明_職觀雜稀吸收的麵 ^如圖14所示,本發明包括一種方法,其中直接沉積形成的 熔融矽石玻璃56含有形成的多層結構折射指率條紋68,並且 此方法還包括了抑制此形成條紋的去除,特別是在照射步驟 之前。抑制去除是經由避免此玻璃的均勻化以及避免此玻 璃的機械熱加工/塑製而達成。 提供低於300毫微米之未照射透射度為τ(%/公分)的熔 融石夕石玻璃,優先地包括提供沁含量< 2χ1〇ΐ8 Η2/立方公 分的熔融矽石玻璃。提供低於3〇〇毫微米之未照射透射度為 Τ(%/公分)的熔融矽石玻璃優先地包括提供含有均勻之^雜 質之熔融矽石玻璃,此雜質值在玻璃表面區域和玻璃内部, 最好都小於200ppb。本發明進一步包括一種方法,其中的提 供熔融矽石玻璃50是提供具有大尺寸D > 17公分,而厚度TH > 7公分的高純度熔融矽石玻璃組件;優先地是直徑>8英时, 而厚度為4英吋的碟狀物。高純度熔融矽石對紫外線具有高 度内部透射性,折射率高度均勻性,低的雙折射性,而且可以 被形成,成型,並磨光成光學元件。因為在現代的平板印刷 階躍器具中所使用的光源是準分子雷射,因此對脈衝,高能 量光線抵抗性也是使用期限之重要的參數。 存在熔融矽石玻璃中的不反應分子氫(¾)可以經由跟 本紙張尺度適用中國國家標率(CNS ) A4規格(X 297公釐) 12(請先閲讀背面之注意事項再填寫本頁)Wooden paper scale sword scarf Guanjia County (⑽) Eighty-four Secrets (21 () × 297) U (Please read the precautions on the back before filling out this page} Order. III 12 II. 583412 A7 B7 V. Description of the invention ( g is converted, and the burner 60 is supplied with hydrogen-containing fuels, such as CD4, h2, natural gas, and oxygen. As shown in FIG. 16, the fused silica glass 56 produced in the direct deposition combustion furnace 64 is unirradiated. Source of the original fused silica glass preform 50. The preform 50 is removed from larger mother glass objects by glass removal processes such as cutting and core drilling. Then, the preform 50 is photolyzed to provide Photolytically improved transmission-compatible fused silica glass lithographic optical element preform object 40, and then this preform object 40 is formed into lithographic optical element 30. Direct deposition of molten silica glass object 56 is formed, preferably included in hydrogen The silica particles 58 are formed into a fused silica glass object 56 in the presence of silicon, so that the produced fused silica glass 56 and the preform 50 both contain Sip atomic groups. Members of the Central Standards Bureau of the Ministry of Economic Affairs, Consumer Cooperation, Printing The SiP radicals in the degree of melting have ultraviolet absorption of less than 300 nanometers which can be removed by photolysis. The method of the present invention converts these radicals into less-absorbent glass species by photon irradiation of less than 300 nanometers. See Figure 14 As shown, the fused silica glass formed by this direct deposition forms a refractive index streak 68 of a multilayer structure, and as shown in FIG. 16, this method includes suppressing the removal of streaks formed in glass 56. Any presence in the glass The suppression of streaks is suppressed by avoiding the thermomechanical processing of this glass, such as homogenization and molding of the glass. Do not subject the preform to photolytic irradiation without disturbing other glass structures. In particular, make the glass uniform To make the stripe structure uniform, and the mechanical thermal processing / molding of the glass must be avoided and not used. 50 photolytic irradiation of the glass preform includes prefabricating the glass that has not been homogenized or thermally processed / molded. Piece 50 photolytic irradiation. Provides fused stone glass 56 containing Si | M sub-groups, preferably including a melting content < 2xl017 grams molecule / cubic centimeter. Silica glass%. This paper is suitable for Guancai County (CNS) M specifications (Training / ⑼ 公 发 583412 Α7 Β7) 5. Description of the invention (Η) The present invention further includes a method for manufacturing fused silica glass 40 of optical elements. As shown in FIG. 11, this method includes: providing an optical element fused silica glass 50 having an unirradiated internal transmittance of less than 300 nm τ (% / cm); irradiating with photons less than 300 nm, Fused silica glass uses fused silica glass with photolysis below 300 nm to provide photodegradation to improve the transmission of fused silica glass 40, which improves the internal transmittance to ιν (% / cm), where Ν—τ = △ transmittance (% / Cm), and △ transmittance -.07. The invention also includes the use of this photolysis to improve the transmission of fused silica glass 40 to operate multiple photons with a wavelength of $ 248 nanometers. For example, the glass 40 of FIG. 10 is formed into a lens 30. This lens 30 can be applied as shown in FIG. 4 Lithography system. Provides an optical element fused silica glass 50 having an unirradiated internal transmittance of τ (% / cm) below 300 nm, preferably including providing an unirradiated transmittance T of less than 300 nm of not more than 99.92V The optical element of the centimeter is fused silica glass 50. 98% / cm。 Prior to 50 photolytic irradiation of this glass can preferentially improve the transmittance IN of less than 300 nm at least 99.98% / cm. Printed by the Consumers' Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. In a preferred embodiment, this method includes photolysing the glass to increase the transmittance of the glass such that Δ transmittance-· 09, and more preferably △ transmittance 16. A method for photolytically irradiating fused silica glass 50 with < 300 nm photons, including providing < 300 nm light, and projecting < 300 nm light 44 on the fused silica glass . As shown in Figures 12-13, this method involves the use of an optical processing system, such as a beam expander, or a reflective integrated sphere to optically process and direct the < 300 nm light. In an embodiment, the method includes providing a laser light source of < 300 nm; providing a laser beam of < 300 nm; expanding the laser beam of < 300 nm; and adapting the paper size China National Standard (CNS) M specification (210X 297 mm) 13 583412 A7 B7 V. Description of the invention (丨 0) The expanded < 300 nm laser beam is projected on the fused silica glass 50. This M-ray beam may be successively generated, such as from a laser, or may be pulsed, such as from an excimer laser. As shown in FIG. 13, an embodiment of the present invention includes a method of: providing a <300 nm non-homogeneous light source 48, such as a discharge light bulb; providing a reflective container 52; arranging fused silica glass 50 in the reflective container 52; and ≪ 300 nm light 44 is projected onto the fused silica glass in this reflective container. This reflective container 52 is preferably an integrated sphere having a reflective surface 54 of < 300 nm ultraviolet, which preferably seals the glass 50. Printed by the Central Standard of the Ministry of Economic Affairs and Consumer Cooperatives. The method of providing fused silica glass with a non-irradiated transmittance of τ (% / cm) below 300 nm includes providing fused silica glass 50 doped with non-filled hydrogen. The hydrogen contained in this glass 50 is preferentially inherent to the glass, rather than being input into the glass through the enrichment process. Provides melting below 3,000 nanometers with a transmittance of T (% / cm); Mayanite glass, preferably including a plurality of silica particles 58 in the presence of hydrogen, of which Η2 is added to the fused silica In glass 56, as shown in the direct deposition process of FIGS. 14-15, out of which is added during the direct deposition glass formation stage. This method includes providing a precursor supply material of silica; transferring the supply material of the stone sieve to a conversion position burner; using the conversion position burner, converting the supply material of silica into a plurality of silica dust particles 58; Stone dust particles are deposited on the heated fused silica surface of the glass object 56 so that the silicon dust particles are melted into the heated fused silica surface, and hydrogen molecules are added to the fused silica glass 56. With this direct deposition process, the hydrogen in the glass is generated by the switching position, its reaction, the fuel, and the supply materials that are delivered to the burner. Use thorium-containing fuels (such as H2, CH4) and hydrogen-containing paper standards to comply with China National Standards for Standards (CNS) A4 (210X 297 issued) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 583412 A7 B7 V. Inventions Note (丨 丨) The supply of raw materials can provide hydrogen in Na Weaving. In the presence of hydrogen, direct deposition to form molten fused silica preferentially produces fused fused silica glass 56 containing SiH * flippers. At UV ^ absorption below ca nanometers, the Sip species in the glass have photolytic removal, and the SiH * species can be edited by the invention A method is included in which the fused silica glass 56 formed by direct deposition contains the refractive index fringes 68 of the multilayer structure formed, and the method further includes suppressing the removal of the formed fringes, especially before the irradiation step. Inhibition of removal is achieved by avoiding homogenization of the glass and avoiding mechanical thermal processing / plasticization of the glass. Fused silica glass with a non-irradiated transmittance of τ (% / cm) below 300 nm is provided, preferably including fused silica glass with a content of < 2x10ΐ8ΐ2 / cm3. The provision of fused silica glass with a non-irradiated transmittance of T (% / cm) below 300 nanometers preferentially includes the provision of fused silica glass containing uniform impurities, the impurity value being in the glass surface area and inside the glass It is best to be less than 200ppb. The present invention further includes a method in which the provision of fused silica glass 50 is to provide a high-purity fused silica glass component having a large size D > 17 cm and a thickness TH > 7 cm; preferably a diameter > 8 inches. At the same time, the dish is 4 inches thick. High-purity fused silica has high internal transmittance to ultraviolet light, highly uniform refractive index, low birefringence, and can be formed, molded, and polished into optical elements. Because the light source used in modern lithographic step appliances is excimer laser, the resistance to pulses and high-energy light is also an important parameter for the lifetime. The non-reactive molecular hydrogen (¾) existing in the fused silica glass can be adapted to the Chinese national standard (CNS) A4 specification (X 297 mm) according to the paper size 12 (Please read the precautions on the back before filling this page)
583412 A7 A7 _____ B7 五、發明説明((1 雷射輻射·成的觀h反應啸供含錄類而減小所 導致吸錄t謎錢麵在料財…魏,比方程式 1左邊的未成對電子種類要小很多。583412 A7 A7 _____ B7 V. Description of the invention ((1 Laser radiation · The observation of the reaction time and the content of the recording class is reduced and the resulting recording is not as good as the money. Wei, than the unpaired left of Equation 1 The electronics are much smaller.
=SiO + I/2H2 -)> =Si〇H 經濟部中央標準钓員工消費合作社印袋 A + 方程式i 因此一般來說,分子H2被視為高純度溶融石夕石中必要 的貫體。有幾個方式可以確定Hz被加入到玻璃中。一個簡 單但耗時的方法是使縣氣體將大塊玻璃高壓滲透充實。 此方法是相當費時的,因為它必須依娜_石之擴散常 數。對於貫際應用,透鏡毛胚尺寸的零件(直徑〉8英忖,厚 度大約為4射),在35G°C的溫度下,需要2282天來加載。 當加載溫度為800°C時,此時間被降低為68天。同時要注意 的是,當使用較高的加載溫度來滲透玻璃時,jj2會跟玻璃反 應而產生SiOH和SiH。如同底下將會證明的,此過程和反應 產物SiH可旎對此物質的透射特性不利。很清楚地,這不只 是相當耗時的處理,而且使用高溫高壓的沁氣體來滲透熔 融矽石玻璃亦對實際工業製造產生相當大的問題。 根據本發明,在高純度熔融矽石玻璃真正形成期間加 入H2為提供光學元件熔融矽石玻璃之優先方法,該玻璃具 有低於300毫微米之未照射内部透射度以及固有之非輸入 非充滿氫。本發明優先方法如圖14—15所示,利用直接沉積 火焰水解處理以製造含固有分子沁的高純度熔融矽石;此 刀子Hz在沉積和固化期間同時地加入到此熔融矽石玻璃中 以提供高純度熔融矽石玻璃,其中雷射損壞(形成顏色中心= SiO + I / 2H2-) > = Si〇H The central standard fisherman's consumer cooperative print bag A + Equation i of the Ministry of Economy Therefore, in general, the molecule H2 is regarded as a necessary permeate in high-purity molten stone. There are several ways to determine that Hz is added to glass. A simple but time-consuming method is to make the county gas infiltrate the glass under high pressure. This method is quite time consuming, because it must be based on the diffusion constant of Naaishi. For continuous applications, lens blank-sized parts (diameters> 8 inches and thickness about 4 shots) will require 2282 days to load at 35G ° C. When the loading temperature is 800 ° C, this time is reduced to 68 days. It should also be noted that when using a higher loading temperature to penetrate the glass, jj2 will react with the glass to produce SiOH and SiH. As will be demonstrated below, this process and reaction product SiH can be detrimental to the transmission characteristics of this material. Clearly, this is not only a time-consuming process, but also the use of high-temperature and high-pressure Qin gas to infiltrate fused silica glass has also caused considerable problems for actual industrial manufacturing. According to the present invention, the addition of H2 during the true formation of high-purity fused silica glass is a preferred method of providing fused silica glass for optical components. The glass has an unirradiated internal transmittance of less than 300 nm and an inherently non-input non-filled hydrogen. . The preferred method of the present invention is shown in Figs. 14-15. Direct deposition flame hydrolysis is used to produce high-purity fused silica containing intrinsic molecules Qin; this knife Hz is added to the fused silica glass simultaneously during deposition and solidification. Provides high-purity fused silica glass, where the laser is damaged (forms a color center
:SiH: SiH
13(請先閱讀背面之注意事項再填寫本頁)13 (Please read the notes on the back before filling this page)
14 14 583412 經濟部中央標準扃員工消費合作社印製 A7 B7 五、發明説明(β) )被降到最低,不需要玻璃之後處理,例如折射率均句化或 氫充滿,並且發生最少之SiH形成。 經由平衡性燃料(CH4, H2),氧化劑(〇2),和供應氣體( SiCk OMCTS環矽烷氧),我們可以讓高純度熔融矽石玻璃 中固有沁濃度從<1016克分子HVcc Si〇2達到1〇18克分子 Hz/cc Si〇2,這是利用Raman頻譜儀H2分子的伸展而測得。 我們已經觀察到在加載H2並且接著受熱的高純度溶融 矽石玻璃中Raman頻譜在2260 cnT1處的吸收特性與後續之 吸收尖波特性的大小相關。此頻譜位置接近在含也矽石的 光化(photolyzed)樣本中發現SiH振動(2280 cm-1)的地方 。我們相信,在2260 cm_1處的振動是由於跟η鍵結的SiH種 類(我們以SiH*來表示),此種類是經由H2跟石夕石的高溫反 應形成,而且此種類是可光化的先驅,可以產生Si E,中心 。吸收的降低被認為是由於E’跟Η的反應,也就是方程式c 中的成對重組而產生SiH。為了解釋吸收的降低,人們相信 SiH的吸收截面比SiH*要小很多。這些反應顯示在方程式 A和B中,其中有關初始吸收尖峰的先驅被表示成Sip。方 程式C寫在底下,顯示E’中心跟Η的反應而產生SiH種類:14 14 583412 Central Standard of the Ministry of Economic Affairs 印 Printed by employees' consumer cooperatives A7 B7 5. The invention description (β)) is minimized and no post-processing of glass is required, such as refractive index homogenization or hydrogen filling, and minimal SiH formation occurs . Through balanced fuel (CH4, H2), oxidant (〇2), and supply gas (SiCk OMCTS cyclosilaneoxy), we can make the inherent concentration of high-purity fused silica glass from < 1016 g HVcc Si〇2 It reached 1018 gram molecules Hz / cc SiO2, which was measured using the Raman spectrum analyzer H2 molecule extension. We have observed that the absorption characteristics of the Raman spectrum at 2260 cnT1 in high-purity molten silica loaded with H2 and then heated are related to the magnitude of the subsequent absorption spike characteristics. This spectral position is close to where SiH vibration (2280 cm-1) was found in photolyzed samples containing silica. We believe that the vibration at 2260 cm_1 is due to the SiH species (we are represented by SiH *) bonded to η, which is formed by the high temperature reaction of H2 with Shi Xishi, and this species is a precursor of photochemical , Can produce Si E, center. The decrease in absorption is thought to be due to the reaction of E 'with Η, that is, the SiH produced by the pairwise recombination in equation c. To explain the decrease in absorption, it is believed that the absorption cross-section of SiH is much smaller than that of SiH *. These reactions are shown in equations A and B, where the precursors regarding the initial absorption spikes are represented as Sip. Equation C is written at the bottom, showing the reaction of E ’center with Η to produce SiH species:
Si-0-Si + H2 + 熱-> SiH* + SiOH* 方程式(A) SiH* + hv -> [E’ + Η] 方程式(B) [E,+ H] -> SiH 方程式(C) 我們已經發現SiP存在的結果為熔融矽石玻璃的透射 度可以經由光解照射該玻璃而改善。我們發現含有SiH來種 類之炫融矽石玻璃的吸收最終會低於初始的吸收測量,也 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X 297公釐) 卜1 (請先閱讀背面之注意事項再填寫本頁)Si-0-Si + H2 + thermal- > SiH * + SiOH * equation (A) SiH * + hv-> [E '+ Η] equation (B) [E, + H]-> SiH equation ( C) We have found that the presence of SiP results in that the transmittance of fused silica glass can be improved by irradiating the glass with photolysis. We found that the absorption of the fused silica glass containing SiH will eventually be lower than the initial absorption measurement, and this paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm). 1 (Please read the back first (Notes to fill out this page)
583412 A7 B7 5 11 五 '發明説明(丨ψ) 經濟部中央標準局員工消費合作社印製 就是說,透過此照射處理,此玻璃變得更為透射性。在低於 200¾微米的短平板印刷波長例如193毫微米下,由於 種類的低能量尾部所造成的吸收可以經由光解照射,例如 使用強烈準分子光源的光解照射而改善。人們相信,氺 的吸收截面比SiH的大很多。 ’ SiH*的重要實際考量是對於193毫微米之初始透射度 的影響,以及去除Sip可以提供具有改善所感應透射的熔 融矽石玻璃。根據本發明,高純度的熔融矽石玻璃是由頻 縉光度計來測量,以提供高精準度的内部透射度測量。然 後將此玻璃照射到193毫微米的準分子雷射輻射,然後重新 在頻譜光度計中測量。此頻譜光度計的資料顯示,193毫微 米的透射度增加了 〇· 17%,這是SiP消失的結果。 根據本發明將熔融矽石玻璃光解地暴露於<3〇〇毫微米 的紫外線會導致玻璃在波長低於3〇〇毫微米的透射度增加 。準分子輻射和連續性紫外線光源在此處理中都顯示為有 效的。 根據本發明,在高克分子Η2的高溫環境條件下形成熔 融矽石玻璃的過程已經顯示出會在玻璃中形成Sip種類。 在一組特定的實驗或處理條件内,Sip的強度跟此玻璃的 最終H2克分子含量良好地相關。此種類被假定在高能量(> 6. 4eV)下會有電子轉變;也就是此低能量,長波長的尾部, 在193毫微米下會吸收。SiH*的光解作用經由裂開Si—H* 的鍵結而減小了它㈣度。矽和聽子的重新組合,產生 了相關的SiH種類,而與原始的木原子團不同。根據本發 (請先閲讀背面之注意事項再填寫本頁) 訂 16583412 A7 五、發明説明(\ 〇 經濟部中央標準局員工消资合作枝印^ 明,所產生的SiH種類具有比SiH*還小的吸收截面,因此此 麵的形賴193毫微米的透職不衫害的。透過事先 照射,經由光解過程將Sl_變成SlH為本發明處理過程以 增加低於300毫微米波長之透射度。 在個貝^例中,以工業製造的考量來看,對於大預製 件塊的照射(漫射騎)是糊絲顧器來制準分子雷 射光束以提供準分子簡。對於燈泡照射是姻夠大的反 射容器内部例如集成球體_部以容崎辦石光學元件 預製件零件以確定均勻的照射。 我們觀察到(圖17),玻璃中相當高的H2與相當低的193 毫微米透射相關。所顯示的是在m定雜質濃度下,兩種H2 值之貧料。在此情況巾,透射度是域用低功率照射光源 的頻譜光度計(Hitachi UV頻譜儀)來測量。 圖18顯示兩個熔融矽石玻璃所導致215毫微米吸收/公 分,相對於193毫微米照射之脈衝數的關係圖,其中一種玻 璃是由火焰水解處理而製造出,而另一種玻璃是使用充滿 咼壓沁/高溫的玻璃形成後處理製造出。當玻璃暴露於193 毫微米準分子雷射照射(6mj/cm2/脈衝)時,可以看到吸收 非常快速地增加(因為215中心在193毫微米下,會有顯著的 吸收。此測量作為193毫微米透射度改變的測量)。然後此 吸收會隨著時間降低到某個較低值。在高壓Hz/高温條件 下處理之玻璃的Raman頻譜顯示出存在特定氫鍵結種類之 吸收,此處稱為SiP(Si〇2 + H2 -> SiH* + HOSi)。此吸 收的強度與吸收波尖的值良好地相關,其建議這兩者之間 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X 297公釐) \C1 583412 A7 B7 五、發明説明(丨b ) 是相關聯的。如這裡所描述的,SiH*的存在說明了高純度 炼融矽石玻璃例如直接沉積的(;0171丨呢Inc〇rp〇rate(1 HPFSR 炼融矽石玻璃為相當低的透射度,因為沁含量被升高了。 中心的光解作用會造成它的減小,並且增加193毫微米的透 射度。此瞬變吸收與玻璃的處理有關,特別是高H2濃度和 某溫度之時間的處理條件。 圖19顯示玻璃所導致193毫微米吸收/公分,相對於脈 衝數的關係圖,此玻璃由直接沉積火焰水解製造出,並且也 使用193毫微米的光線照射一段短時間,但是使用低很多的 照射(<1 mJ/cm2/脈衝,重複速率為4〇〇Hz)。1 mJ/cm2/脈 衝和更少的照射量是本發明之平板印刷光學元件方法所預 期的。此圖顯示出,在較低注量下在大約8〇萬個脈衝之後, 此玻璃顯現出’’導致透射度”,也就是說所提供的熔融矽 石玻璃對照射變得更具透射性。此熔融矽石玻璃在2〇〇〇秒 的照射時間之後,在193毫微米更為透射性(負吸收)。 經濟部中央標準局員工消費合作社印製 圖20是對兩種不同H2含量的玻璃所作之193毫微米透 射度之測量(稱為内部透射度)結果。”初始”透射度是原始 熔融矽石玻璃被製成時,使用頻譜儀所測得的丨9 3亳微米透 射度。然後將此熔融矽石玻璃光解照射到一百萬個193毫 微米準分子雷射光的脈衝,其照射量為丨脈衝。” 最終π透射度是在處理之後,使用頻譜儀所測得熔融矽石玻 璃增加之193毫微米透射度。我們注意到,透射度增加〇. 12 到0.17%/公分。我們進一步觀察到,在較高出的樣本中,可 以測得較高的透射度增加。此—1〇g(17T〇)的零線顯示出, 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X 297公釐) 7,0 583412 A7 五 、發明説明(ΐΠ ) 8 將炫融石夕石玻璃光解照射改善了它低於細毫微米的透射 度(SiH* + hv -> [Si H])。 使用248 *微米的準分子照射來執行—_似的實驗 。對於此組實驗,使用15 mJ/cm2/脈衝的照射量為一百萬 個脈衝。根據雷射所導致的收縮作用,使用248毫微米照射 以激發大約需要193毫微米的1〇倍照射量才能達到相同的 效果。所得的結果建議,用於193毫微米和248毫微米照射 的照射條件是可比較的。在248照射之前和之後所測得之 193毫微米内部透射度結果顯示在表丨中。 表1 玻璃 之前的%Τ之後的%T改變IN-T= /公分T /公分IN △透射度 11801RM15,20 毫米 99.45 99. 62 0.17 11801{^15,89毫米· 99.40 99.56 0.16 119907RM7B,40 毫米 99.20 99.37 0.17 119907RM7B,55 毫来 99.19 99. 35 0.16 我們也注意到,在照射之後248毫微米的透射度也增加 了,如表2的資料所示。 (請先閱讀背面之注意事項再填寫本頁) f- 訂 經濟部中央標準局員工消費合作社印$1 本紙浪尺度適用中國國家榡準(CNS ) Μ規格(210Χ297公釐) 19583412 A7 B7 五、發明説明(ιδ) 表2 玻璃 之前的灯之後的%Τ改變IN-T= /公分τ 11801RM15,20 毫米 99.92 11801RM15,89 毫米 99.91 119907RM7B,40 毫米 99.91 119907RM7B,55 毫米 99.91 /公分IN △透射度 99. 99 0. 07 99.98 0.07 99.99 0.09 99.99 0.08 經濟部中央榡隼局員工消費合作、杜印鉍 一組不同H2含量的熔融矽石玻璃也暴露於在<300毫微 米紫外線範圍的燈泡所產生的非同調連續照射光源。H2 = 2.3 - 3. 2克分子/立方公分的玻璃在接受24小時的Xe燈 泡照射之後,此玻璃之透射度改變顯示在圖21中。我們觀 察到大約有0.15%的增加。 低蒸氣壓水銀燈的照射也被用來影響透射度的增加。 顯示在圖22中的資料再次顯示在24小時的照射之後,透射 度增加了大約0.2°/〇。 熟悉此技術的人將了解到,對於本發明可以有各種修 改和變化,但是都不脫離本發明的精神和範圍。因此,我們 可以說各種修改和變化於含蓋於本發明申請專利範圍以及 其同等物之範圍内。 (請先閱讀背面之注意事項再填寫本頁) 趣- 、1Τ ✓ 千 釐 公 9 2 ^ Ξ ^583412 A7 B7 5 11 5 'Invention description (丨 ψ) Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs That is, through this irradiation treatment, this glass becomes more transparent. At short lithographic wavelengths below 200¾ microns, such as 193 nm, the absorption due to the species' low-energy tail can be improved by photolytic irradiation, such as photolytic irradiation using a strong excimer light source. It is believed that the absorption cross section of plutonium is much larger than that of SiH. Important practical considerations for SiH * are the effect on the initial transmission of 193 nm, and the removal of Sip can provide fused silica glass with improved induced transmission. According to the present invention, high-purity fused silica glass is measured by a frequency spectrophotometer to provide highly accurate internal transmission measurement. This glass was then irradiated with 193 nm excimer laser radiation and measured again in a spectrophotometer. The data from this spectrophotometer show that the transmission of 193 nm has increased by 0.17%, which is the result of the disappearance of SiP. Photolytically exposing fused silica glass to ultraviolet light at <300 nm in accordance with the present invention results in an increase in the transmittance of the glass at wavelengths below 300 nm. Both excimer radiation and continuous UV light sources have been shown to be effective in this process. According to the present invention, the process of forming fused silica glass under high-temperature environmental conditions of high molecular weight europium 2 has been shown to form Sip species in glass. Within a particular set of experimental or processing conditions, the strength of Sip correlates well with the final H2 gram content of this glass. This species is assumed to have an electron transition at high energy (> 6.4 eV); that is, this low-energy, long-wavelength tail will absorb at 193 nm. The photolysis of SiH * reduces its degree by breaking Si—H * bonds. The recombination of silicon and listeners produces a related SiH species, which is different from the original wood atom group. According to this issue (please read the precautions on the back before filling out this page) Order 16587412 A7 V. Description of the invention (\ 〇 Employees' cooperation agreement of the Central Bureau of Standards of the Ministry of Economic Affairs ^ indicates that the type of SiH produced is more than SiH * Small absorption cross section, so the shape of this surface depends on 193 nanometers of transmissibility. Through prior irradiation, Sl_ is converted to SlH through photolysis process. This is the process of the present invention to increase the transmission below 300 nanometers. In this example, in terms of industrial manufacturing considerations, the irradiation of large prefabricated pieces (diffuse ride) is a baffle to produce excimer laser beams to provide excimer beams. For light bulb irradiation It is large enough inside a reflective container, such as an integrated sphere, to preform parts of the Rongqi stone to determine uniform illumination. We observed (Figure 17) that the relatively high H2 in the glass and the relatively low 193 nm Transmission correlation. Shown are two types of H2 values that are lean at a fixed impurity concentration. In this case, the transmittance is measured by a spectrum photometer (Hitachi UV spectrometer) with a low-power illumination source. Figure 18 display Graph of the relationship between the absorption of 215 nm / cm caused by each fused silica glass and the number of pulses of 193 nm exposure, one of which is made by flame hydrolysis treatment, and the other glass is filled with pressure / High temperature glass is formed after processing. When the glass is exposed to 193 nm excimer laser radiation (6mj / cm2 / pulse), the absorption can be seen to increase very rapidly (because the center of 215 is at 193 nm, there will be Significant absorption. This measurement is taken as a measure of change in transmission at 193 nm). This absorption then decreases to a lower value over time. The Raman spectrum of the glass treated at high pressure Hz / high temperature conditions shows the presence of specific hydrogen The absorption of the bond type is called SiP (Si〇2 + H2-> SiH * + HOSi). The intensity of this absorption is well related to the value of the absorption peak. Read the notes on the reverse side and fill in this page) This paper size applies to China National Standard (CNS) A4 (210X 297 mm) \ C1 583412 A7 B7 5. The description of the invention (丨 b) is related. As shown here Trace The presence of SiH * indicates that high-purity fused silica glass such as directly deposited (; 0171 丨? Inc.rporate (1 HPFSR fused silica glass has a relatively low transmittance, because the Qin content is increased The photolysis of the center will cause it to decrease, and increase the transmission of 193 nm. This transient absorption is related to the processing of glass, especially the processing conditions of high H2 concentration and a certain temperature time. Figure 19 shows Graph of 193 nm absorption / cm2 vs. pulses caused by glass, this glass is made by direct deposition flame hydrolysis, and also uses 193 nm light for a short period of time, but uses much lower irradiation (< 1 mJ / cm2 / pulse with a repetition rate of 400 Hz). 1 mJ / cm2 / pulse and less exposure are expected by the lithographic optical element method of the present invention. This figure shows that after about 800,000 pulses at a lower fluence, the glass appears to `` cause transmission, '' meaning that the provided fused silica glass becomes more transparent to irradiation. This fused silica glass is more transmissive (negative absorption) at 193 nm after an exposure time of 2000 seconds. Printed by the Consumer Cooperatives of the Central Bureau of Standards, Ministry of Economic Affairs Figure 20 is for two glasses with different H2 content The measurement of the 193 nanometer transmittance (called the internal transmittance) is made. The "initial" transmittance is the transmission measured using a spectrum analyzer when the original fused silica glass was made. One million pulses of 193 nm excimer laser light were irradiated with this molten silica glass by photolysis, and the amount of irradiation was 丨 pulse. "The final π transmission is measured after the processing, using a spectrometer to measure the molten silica. Glass increases transmission by 193 nm. We noticed that the transmittance increased by 0.12 to 0.17% / cm. We further observed that in higher samples, higher transmission increases can be measured. This —10g (17T〇) zero line shows that the paper size is applicable to the Chinese National Standard (CNS) A4 (210X 297 mm) 7,0 583412 A7 V. Description of the invention (ΐΠ) 8 Photolysis of Shi Xishi glass improves its transmittance below SiN * (SiH * + hv-> [Si H]). A 248 * micron excimer irradiation was used to perform a similar experiment. For this set of experiments, an exposure dose of 15 mJ / cm2 / pulse was used for one million pulses. According to the contraction effect caused by laser, using 248 nm irradiation to excite requires about 10 times the exposure of 193 nm to achieve the same effect. The results obtained suggest that the irradiation conditions used for 193 nm and 248 nm irradiation are comparable. The measured internal transmission of 193 nm before and after 248 irradiation is shown in Table 丨. Table 1% T change after% Τ before glass IN-T = / cm T / cm IN △ Transmittance 11801RM15,20 mm 99.45 99.62 0.17 11801 {^ 15,89 mm · 99.40 99.56 0.16 119907RM7B, 40 mm 99.20 99.37 0.17 119907RM7B, 55 millimeters 99.19 99. 35 0.16 We also noticed that the transmission of 248 nanometers also increased after irradiation, as shown in the data in Table 2. (Please read the notes on the back before filling out this page) f- Order $ 1 printed by the Consumers' Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs This paper applies the standard of China National Standards (CNS) M (210 × 297 mm) 19583412 A7 B7 V. Invention Description (ιδ) Table 2 %% change after lamp before glass IN-T = / cm τ 11801RM15, 20 mm 99.92 11801RM15, 89 mm 99.91 119907RM7B, 40 mm 99.91 119907RM7B, 55 mm 99.91 / cm IN △ Transmission 99. 99 0. 07 99.98 0.07 99.99 0.09 99.99 0.08 Consumption cooperation between employees of the Central Government Bureau of the Ministry of Economic Affairs and a group of fused silica glass with different H2 content of Du Yin Bi are also exposed to non-electricity generated by bulbs in the <300 nm ultraviolet range Coherent continuous illumination source. The change in transmittance of H2 = 2.3-3.2 mol / cm3 glass after 24 hours of Xe bulb exposure is shown in Figure 21. We observed an increase of about 0.15%. Irradiation of low vapor pressure mercury lamps has also been used to affect the increase in transmittance. The data shown in Figure 22 again shows that after 24 hours of irradiation, the transmittance increased by about 0.2 ° / 0. Those skilled in the art will appreciate that various modifications and changes can be made to the present invention without departing from the spirit and scope of the invention. Therefore, we can say that various modifications and changes are included in the scope of the patent application of the present invention and its equivalents. (Please read the notes on the back before filling out this page) Fun-、 1Τ ✓ Millimeters 9 2 ^ Ξ ^
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24468200P | 2000-10-31 | 2000-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW583412B true TW583412B (en) | 2004-04-11 |
Family
ID=22923711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW090128549A TW583412B (en) | 2000-10-31 | 2001-11-13 | Optical lithography and method of inducing transmission in optical lithography preforms |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1330665A1 (en) |
JP (1) | JP2004518274A (en) |
KR (1) | KR20030045156A (en) |
TW (1) | TW583412B (en) |
WO (1) | WO2002037144A1 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5161059A (en) * | 1987-09-21 | 1992-11-03 | Massachusetts Institute Of Technology | High-efficiency, multilevel, diffractive optical elements |
-
2001
- 2001-09-27 KR KR10-2003-7006017A patent/KR20030045156A/en not_active Application Discontinuation
- 2001-09-27 JP JP2002539846A patent/JP2004518274A/en not_active Withdrawn
- 2001-09-27 EP EP01979919A patent/EP1330665A1/en not_active Withdrawn
- 2001-09-27 WO PCT/US2001/042407 patent/WO2002037144A1/en not_active Application Discontinuation
- 2001-11-13 TW TW090128549A patent/TW583412B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2002037144A1 (en) | 2002-05-10 |
JP2004518274A (en) | 2004-06-17 |
EP1330665A1 (en) | 2003-07-30 |
KR20030045156A (en) | 2003-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW593191B (en) | Silica glass optical material for excimer laser and excimer lamp, and method for producing the same | |
TW507118B (en) | Photolithography methods and systems | |
TW318212B (en) | ||
US7923394B2 (en) | Titania-doped quartz glass for nanoimprint molds | |
KR101252229B1 (en) | Optical Component of Quartz Glass, Method for Producing the Optical Component, and Use Thereof | |
JP2859095B2 (en) | Synthetic quartz mask substrate for excimer laser lithography | |
TW583150B (en) | Quartz glass blank for an optical component, and manufacturing procedure and use thereof | |
EP1603843A2 (en) | Optical synthetic quartz glass and method for producing the same | |
TW580486B (en) | Preform for optical fiber and methods for manufacturing core glass and optical fiber | |
JP2001019465A (en) | Synthetic quartz glass member for excimer laser and its production | |
TW583412B (en) | Optical lithography and method of inducing transmission in optical lithography preforms | |
CN100389085C (en) | Synthetic quartz glass for optical member, projection exposure device, and projection exposure method | |
JP4437886B2 (en) | Quartz glass blank for optical members and use thereof | |
JP2006327916A (en) | Manufacturing device for quartz glass, and manufacturing method for quartz glass using the same device | |
JP3071362B2 (en) | Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same | |
TW508477B (en) | Exposure apparatus, semiconductor device and photomask | |
JP3531870B2 (en) | Synthetic quartz glass | |
TW593192B (en) | Fused silica with constant induced absorption | |
JPH11116248A (en) | Synthetic quartz glass member | |
US6915665B2 (en) | Method of inducing transmission in optical lithography preforms | |
JPH0912323A (en) | Quartz glass member suppressed from becoming dense due to irradiation of uv ray | |
JPH11292551A (en) | Production of synthetic quartz glass and synthetic quartz glass produced thereby | |
JP2566151B2 (en) | Method for manufacturing laser optical system base material | |
US20020042026A1 (en) | Optical lithography and a method of inducing transmission in optical lithography preforms | |
JPH11240728A (en) | Production of synthetic quartz glass optical member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |