TW579525B - Semiconductor memory device post-repair circuit and method - Google Patents
Semiconductor memory device post-repair circuit and method Download PDFInfo
- Publication number
- TW579525B TW579525B TW91135808A TW91135808A TW579525B TW 579525 B TW579525 B TW 579525B TW 91135808 A TW91135808 A TW 91135808A TW 91135808 A TW91135808 A TW 91135808A TW 579525 B TW579525 B TW 579525B
- Authority
- TW
- Taiwan
- Prior art keywords
- redundant
- circuit
- repair
- address
- memory
- Prior art date
Links
Landscapes
- For Increasing The Reliability Of Semiconductor Memories (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Abstract
Description
579525 五、發明說明(1) 發明所屬之技術領域 本發明係關於半導體記憶體元件修復結構及修復方 法,特別關於後段修復結構及方法。 先前技術 半導體記憶體元件,例如動態隨機存取記憶體 (D R A Μ )元件,包含複數個排列於一個列/行(r 〇 w / c ο 1 u m η ) 陣列之記憶體單元。每一記憶體單元典型上儲存一位元 之資訊。上述陣列包含列信號線路,以及排列垂直於上 述列線路之行信號線路。記憶體單元置於列線路(r〇w line)與行線路(column line)之每一交叉點。同時定址 一特定記憶體單元所連接之陣列列線路及陣列行線路可 存取上述記憶體單元。 半導體記憶體元件之大部分應用需要記憶體單元、 列線路以及行線路之中的1 0 0 %為可操作。實作上,在一 已知晶圓(w a f e r )上的許多(甚至大部分)主記憶體單元陣 列可能無法達到1 0 0 %可使用性。因此,大部分元件設計 併入一比較小的冗贅陣列之記憶體單元,其中上述記憶 體單元能夠代替有限數目之故障單元。 於一種普遍設計中,上述冗贅陣列是由冗贅行之記 憶體單元所構成,其中每一單元連接至一條交叉上述主 記憶體單元陣列列線路之冗贅行線路。每一冗贅行線路 因此可以代替一條被發現有一或多個故障單元之主記憶 體單元陣列行線路。每次定址上述主陣列之一行時,一 冗贅控制方塊將比較上述行位址(c ο 1 u m n a d d r e s s )與上579525 V. Description of the invention (1) Technical field to which the invention belongs The present invention relates to a semiconductor memory element repair structure and a repair method, and more particularly, to a post-stage repair structure and method. In the prior art, semiconductor memory devices, such as dynamic random access memory (DR A M) devices, include a plurality of memory cells arranged in a row / row (r 0 w / c 1 u m η) array. Each memory cell typically stores one bit of information. The array includes column signal lines and row signal lines arranged perpendicular to the column lines. The memory cell is placed at each intersection of the row line and the column line. At the same time, the array line and the array line connected to a specific memory unit can access the memory unit. Most applications of semiconductor memory elements require 100% of the memory cells, column lines, and row lines to be operable. In practice, many (or even most) main memory cell arrays on a known wafer (waf e r) may not achieve 100% usability. Therefore, most of the component designs incorporate a relatively small redundant array of memory cells, where the above-mentioned memory cells can replace a limited number of defective cells. In a general design, the redundant array is composed of redundant rows of memory cells, where each cell is connected to a redundant row of lines that crosses the main memory cell array column lines. Each redundant line can thus replace a main memory cell array line that is found to have one or more failed cells. Each time a row of the main array is addressed, a redundant control block will compare the row address (c ο 1 u m n a d d r e s s) with the above
10559pif. ptd 第7頁 579525 五、發明說明(2) 述故障行位址。而當上述故障行被定址時,上述冗贅控 制方塊將選擇與上述故障行位址相關之冗贅行取代之。 一種以冗贅列取代故障列之冗贅設計也被使用。一些 元件則包含與冗贅列及冗贅行相關之電路系統。 在能夠使用一冗贅控制方塊及其相關之冗贅行/列之 前,必須先程式設計上述故障線路位址於上述控制方 塊。為簡化程式設計,上述冗贅控制方塊包含一熔絲方 塊。當上述半導體記憶體元件處於晶圓狀態時,將測試 上述主記憶體陣列並定位故障單元。考慮例如行取代之 情況,將選擇一冗贅控制方塊及一冗贅行取代一已知故 障行。上述故障行之位址藉由有選擇地切斷上述熔絲方 塊中的熔絲來表示上述行位址而被設定於上述冗贅控制 方塊。通常利用雷射光束來實體切斷每一個想切斷之熔 絲以程式設計熔絲。 欲解決的問題點 雖然大部分記憶體陣列故障在晶圓狀態測試期間是 可偵測的,但是一些故障在一記憶體元件封裝之後可能 發生或首次變得明顯。對於這種故障,能否在封裝之後 修復上述記憶體陣列可能影響其成為一可販售單元或一 廢棄單元。 在封裝之後修復陣列故障被稱為一種後段修復能 力。雷射切斷熔絲不具有後段修復能力,因為封裝材料 妨礙雷射瞄準及熔絲切斷。相形之下,所說明之實施例 都包含一種利用電性可程式熔絲方塊之後段修復能力。10559pif. Ptd Page 7 579525 V. Description of the invention (2) The address of the faulty line. When the faulty row is addressed, the redundant control block will select a redundant row related to the faulty row address to replace it. A redundant design in which redundant columns are replaced by redundant columns is also used. Some components include circuitry related to redundant columns and redundant rows. Before a redundant control block and its associated redundant rows / columns can be used, the above fault line address must be programmed in the above control block. To simplify programming, the redundant control block includes a fuse block. When the semiconductor memory element is in a wafer state, the main memory array is tested and a faulty cell is located. Considering, for example, row replacement, a redundant control block and a redundant row will be selected to replace a known failing row. The address of the faulty row is set in the redundant control block by selectively cutting the fuse in the fuse block to indicate the row address. Laser beams are usually used to physically cut each fuse to be cut and program the fuses. Issues to be addressed Although most memory array failures are detectable during wafer condition testing, some failures may occur or become apparent for the first time after a memory element package. For such a failure, whether the memory array can be repaired after packaging may affect it as a saleable unit or an obsolete unit. Repairing array failures after encapsulation is called a back-end repair capability. Laser cut-off fuses do not have the ability to repair at the back end because the packaging material prevents laser targeting and fuse-cutting. In contrast, the illustrated embodiments all include an ability to repair the back end of an electrically programmable fuse block.
10559pif.ptd 第8頁 579525 五、發明說明(3) 此種熔絲方塊能夠在元件封裝之後利用施加至上述元件 正常封裝接點之特殊程式設計指令信號來程式設計。 雖然後段修復冗贅因為允許更正在封裝期間所發生 的故障而吸引人,但是此種冗贅卻有缺點。上述後段修 復冗贅控制方塊及其相關之電性程式設計電路系統比一 雷射切斷熔絲冗贅控制方塊需要更多的電路面積。因 此,以晶圓表面積角度衡量,利用電性切斷熔絲比起雷 射切斷熔絲所增加之成本可能超過後段修復能力之獲 利。 發明内容 於本說明之第一觀點中,揭露一種半導體記憶體元 件。上述記憶體元件包括一種混合晶圓狀態(例如雷射切 斷)熔絲程式設計優點與後段修復程式設計優點之雙重模 式冗贅電路。此種電路包括複數條冗贅記憶體線路(例如 額外的行或列線路,其中每一條定址冗贅單元)。每一條 冗贅記憶體線路與一附屬冗贅控制方塊結合。大多數冗 贅控制方塊包含雷射熔絲方塊,並且只能夠在封裝上述 記憶體元件之組裝之前被程式設計。然而,上述冗贅控 制方塊之中至少一個包含一電性可程式炫絲方塊,並且 能夠在封裝上述記憶體元件之組裝之後被程式設計。因 此,此種元件允許一種雙循環修復方法:大部分元件修 復在晶圓狀態中以較經濟的雷射熔絲方塊來完成;然 而,假如在後段修復模式中發生例如與封裝相關之故 障,則少數電性熔絲方塊在封裝組裝之後為可使用且可10559pif.ptd Page 8 579525 V. Description of the invention (3) This type of fuse block can be programmed after the component is packaged by using special programming instruction signals applied to the normal package contacts of the above components. Although the post-repair verbosity is attractive because it allows correction of failures that occur during packaging, this verbosity has disadvantages. The above-mentioned redundant redundant control block and its related electrical programming circuit system require more circuit area than a laser cut-off fuse redundant control block. Therefore, in terms of wafer surface area, the increased cost of using electrical cut-off fuses compared to laser cut-off fuses may outweigh the benefits of later repair capabilities. SUMMARY In a first aspect of the present description, a semiconductor memory device is disclosed. The above memory element includes a dual-mode redundant circuit of a mixed wafer state (such as laser cut) with the advantages of fuse program design and the advantages of post-stage repair program design. Such a circuit includes a plurality of redundant memory circuits (for example, additional row or column circuits, each of which addresses a redundant unit). Each redundant memory circuit is combined with an attached redundant control block. Most redundant control blocks contain laser fuse blocks and can only be programmed before assembly of the above-mentioned memory components. However, at least one of the redundant control blocks includes an electrically programmable silk block, and can be programmed after the assembly of the memory element is packaged. Therefore, this type of component allows a two-cycle repair method: most component repairs are done in a wafer state with a more economical laser fuse block; however, if, for example, a package-related failure occurs in a later repair mode, then A few electrical fuse blocks are available and can be used after package assembly
10559pi f.ptd 第9頁 579525 五、發明說明(4) 定址的。 上述設計使部分冗贅記憶體線路用於雷射修復,而 部分冗贅記憶體線路則用於後段修復。若一條用於後段 修復之冗贅記憶體線路本身就是故障的,則後段修復變 為不可能。事實上縱使良好的冗贅雷射修復記憶體線路 仍未使用,但是那些線路卻不能使用於後段修復。 因此,於第二觀點中,揭露一種包含更可能完成後 段修復之電路系統之雙重模式冗贅電路。一般而言,這 電路系統允許一晶圓狀態位址儲存單元(例如一雷射熔絲 方塊)與一冗贅線路結合。而於第二組態中,這電路系統 允許一後段修復位址儲存單元(例如一電性熔絲方塊)與 相同冗贅線路結合。如此,使用這種雙重模式冗贅之半 導體記憶體元件允許額外的修復彈性。例如,在晶圓狀 態測試期間,内定每一冗贅線路可能與一雷射熔絲方塊 結合。並在測試期間,指定一無故障冗贅記憶體線路使 用於後段修復。上述冗贅記憶體線路與上述後段修復位 址儲存單元結合,使其可使用於後段修復。 於一相關方法中,上述半導體元件具有多重冗贅記 憶體線路,其中每一冗贅記憶體線路與一雷射熔絲/比較 器結合。測試主要及冗贅記憶體線路以測定那些線路是 故障的而那些線路是無故障的。對於每一故障主記憶體 線路,指定一無故障冗贅記憶體線路,並組織與上述冗 贅記憶體線路相關之雷射熔絲/比較器以取代上述故障主 記憶體線路。當在這步驟之後仍有至少一無故障冗贅記10559pi f.ptd Page 9 579525 V. Description of Invention (4) Addressed. The above design allows some redundant memory circuits to be used for laser repair, and some redundant memory circuits to be used for later repair. If a redundant memory line used for repair at the back end is itself faulty, the repair at the back end becomes impossible. In fact, although good redundant laser repair memory circuits are still unused, those circuits cannot be used for later repair. Therefore, in the second point of view, a dual mode redundant circuit including a circuit system that is more likely to perform post-stage repair is disclosed. Generally speaking, this circuit system allows a wafer state address storage unit (such as a laser fuse block) to be combined with a redundant circuit. In the second configuration, this circuit system allows a back-end repair address storage unit (such as an electrical fuse block) to be combined with the same redundant circuit. As such, using this dual mode redundant semiconductor memory element allows for additional repair flexibility. For example, during wafer state testing, each redundant line may be combined with a laser fuse block. During the test, a trouble-free redundant memory circuit was designated for later repair. The above redundant memory circuit is combined with the above-mentioned post-stage repair address storage unit, so that it can be used for post-stage repair. In a related method, the semiconductor device has multiple redundant memory circuits, and each of the redundant memory circuits is combined with a laser fuse / comparator. Test the main and redundant memory circuits to determine which circuits are faulty and which circuits are fault-free. For each faulty main memory circuit, a fault-free redundant memory circuit is designated, and a laser fuse / comparator related to the redundant memory circuit is organized to replace the faulty main memory circuit. After this step there is still at least one trouble-free redundant
10559pif.ptd 第10頁 579525 五、發明說明(5) 憶體線路未被指定時,將指定至少一條剩餘之無故障冗 贅記憶體線路使用於後段修復。上述後段修復指定之冗 贅記憶體線路與一後段修復比較器結合以取代其相關之 雷射熔絲/比較器,之後並使用於後段修復。 為讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂,下文特舉一較佳實施例,並配合所附圖式, 作詳細說明如下: 實施方式: 第1圖繪示如第一實施例所述之半導體記憶體元件2 0 之方塊圖,上述元件於本例中為同步DRAM(SDRAM)。簡言 之,主單元陣列3 0及冗贅行單元陣列3 2由列與行電路系 統所伺服。上述行電路系統包含讀出放大器3 4及行解碼 器5 0。對於每一行位址C A,行解碼器5 0選擇將要讀出/寫 入之行(位元)線路。在行解碼器5 0内,冗贅記憶體線路 控制電路1 00根據行位址CA及行選擇啟動信號CSLEN決定 何時一冗贅行將被使用於一主要行。 上述列電路系統包含列解碼器4 0及列位址多工器 4 2。對於每一列位址R A,列解碼器4 0選擇將啟動那一歹ij (字)線路。列選擇啟動信號R S L E N指示何時R A有效。雖然 在元件2 0中未顯示冗贅列線路及電路系統,但是這些可 能存在並且類似於冗贅陣列3 2及控制電路1 0 0。注意R A有 兩個來源,並經由多工器4 2選通:由位址暫存器8 0所提 供之外部列位址;以及在更新控制器4 4控制下由更新計 數器4 6所提供之更新列位址。10559pif.ptd Page 10 579525 V. Description of the invention (5) When the memory circuit is not specified, at least one remaining fault-free redundant memory circuit will be designated for later repair. The redundant memory circuit specified in the above-mentioned post-stage repair is combined with a post-stage repair comparator to replace its associated laser fuse / comparator, and then used for post-stage repair. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below in conjunction with the accompanying drawings to make a detailed description as follows: Implementation mode: FIG. 1 shows as The block diagram of the semiconductor memory device 20 described in the first embodiment is a synchronous DRAM (SDRAM) in this example. In short, the main cell array 30 and the redundant row cell array 32 are servoed by a column and row circuit system. The above-mentioned row circuit system includes a sense amplifier 34 and a row decoder 50. For each row address CA, the row decoder 50 selects the row (bit) line to be read / written. In the row decoder 50, the redundant memory circuit control circuit 100 determines when a redundant row is to be used for a main row according to the row address CA and the row selection enable signal CSLEN. The above column circuit system includes a column decoder 40 and a column address multiplexer 42. For each column address R A, the column decoder 40 selects which ij (word) line will be activated. The column selection enable signal RS L EN indicates when R A is active. Although redundant column lines and circuits are not shown in element 20, these may exist and are similar to redundant array 32 and control circuit 100. Note that RA has two sources and is gated by the multiplexer 42: the external column address provided by the address register 80; and the one provided by the update counter 46 under the control of the update controller 44. Update the column address.
10559pif. ptd 第11頁 W952510559pif. Ptd Page 11 W9525
^,輸入及輸出經由三個暫存器設定電路產生。指 ‘ J:職由例如-外部記憶體控制器(未 ^在^令匯流棑CMD上的指令信號,例如啟動字線路、 rV1St、預先充電、自動更新、載入模式暫存器(-心 收等等。位址暫存器⑼經由上述記憶體控制器接 於屮斬^址匯流排上的位址信號ADD [ 0 : m ]。而資料輸入/ 輸出暫存器90連接至雙向資料線路DQ[〇 :w]。 t令解碼器60直譯所接收之指令並且產生適當的控 ^ ^ 其他記憶體元件方塊。當在CMD匯流排上接收到 % #入模式暫存為指令時模式暫存器設定電路(M R s ) 6 2能 =接收在位址匯流排ADD上的元件設定。一般而言,上述 用^以疋義SDRAM之操作參數,例如突發類型、突發長 ^ a等待時間等等。於較佳實施例中,上述MRS之一功能 二艾在CMD匯流排上接收到一特殊指令時,設定一電性熔 …盖之熔絲單元至一個ADD匯流排上所提供之位址。 歸—,然更^先進特性存在於許多本發明可應用之記憶 =4 &彳一疋上述對於大多數SDRAM元件之共通基本特性 1況明能夠支持本發明之一實施例。元件2 〇之特性當中 上別關方;本發明實施例之部分現在將予以更詳細地探 討0 ^ 第2圖為如本發明之第一實施例所述之基本雙重模式 ^ %行控制電路丨〇 〇之方塊圖。參照第2圖,冗贅行控制 =路1 0 0具有電性熔絲盒1 1 0、位址比較器1 2 0、電性冗贅 控制方塊1 3 1 、雷射冗贅控制方塊1 3 2至1 3 η以及冗贅行選^, Input and output are generated through three register setting circuits. Refers to 'J: job by, for example-external memory controller (not ^ in ^ order bus 棑 CMD command signals, such as start word line, rV1St, pre-charge, automatic update, load mode register (-heart receive Wait. The address register ⑼ is connected to the address signal ADD [0: m] on the address bus via the memory controller. The data input / output register 90 is connected to the bidirectional data line DQ. [〇: w]. Make the decoder 60 interpret the received instructions directly and generate appropriate control blocks ^ ^ Other memory element blocks. Mode register when %% input mode is temporarily stored as instruction on the CMD bus. The setting circuit (MR s) 6 2 can = receive the component settings on the address bus ADD. Generally speaking, the above uses ^ to define the operating parameters of the SDRAM, such as the burst type, burst length ^ a waiting time, etc. Etc. In a preferred embodiment, when one of the functions of the MRS mentioned above receives a special instruction on the CMD bus, it sets an electrical fuse ... fuse unit of the cover to the address provided on an ADD bus. Return to, but more advanced features exist in many applications of the present invention = 4 & First, the above-mentioned common basic characteristics for most SDRAM elements 1 can support one embodiment of the present invention. Among the characteristics of the element 20, the above-mentioned parties are involved; the embodiment of the present invention will be described in more detail To explore 0 ^ Figure 2 is a block diagram of the basic dual mode ^% line control circuit as described in the first embodiment of the present invention. Referring to Figure 2, redundant line control = circuit 1 0 0 has power Fuse box 1 1 0, address comparator 1 2 0, electrical redundancy control block 1 3 1, laser redundancy control block 1 3 2 to 1 3 η, and redundant line selection
10559pi f.ptd 第12頁 579525 五、發明說明(7) 擇信號(R C S L )產生器1 4 1至1 4 η。 冗贅行控制電路1 0 0控制在冗贅單元陣列3 2 (第1圖) 中η行冗贅行之存取。當一相對應之冗贅行選擇信號 (RCSLi ,i二1〜η)由一RCSL產生器I4i產生時,將選擇上述 η行冗贅行之一來取代一故障主陣列行。啟動每一 R c s L產 生器以響應出自一冗贅控制方塊之一相對應之RCSL啟動 信號(RCSLENi,i 二卜η )。每一 RCSL 產生器 14i(i = l 〜η ) 可利用兩個串聯反相器(未顯示)來實施。 第3圖繪示雷射冗贅控制方塊丨3 2至1 3 η以及電性冗贅 控制方塊1 3 1之詳細電路圖。每一雷射冗贅控制方塊包含 一雷射熔絲盒及位址比較器(亦即一雷射熔絲/比較 為)1 5 0。在晶圓階段修復操作期間雷射光束能夠切斷在 上述雷射、)谷絲盒中所選擇之熔絲。此後,雷射溶絲/比較 器1 5 0比較行位址C Α與儲存於上述雷射熔絲盒之故障行位 址,並且當C A符合所儲存之位址時產生〇 υ τ。反及閘丨5 2 連同串列反相器1 5 4根據π及π運算產生R c s L E n i ,當同時 產生OUT及CSLEN(行選擇啟動信號)時,也將產生 RCSLENi ,因而將選擇冗贅行i 。 電性冗贅控制方塊1 3 1包含反及閘1 6 〇與串列反相器 162 ’用以根據”及’’運算產生RCSLEN1 ,當同時產生EN及 CSLEN時,也將產生RCSLEN1 ,因而將選擇冗贅行1 。 ΕΝ是位址比較器120之一輸出,並且當CA符合^^八時 被產生(第2圖)。E C A是一個出自電性溶絲盒1 1 〇之電性儲 存之故障行位址。因此冗贅行線路2至η只能夠在晶圓階10559pi f.ptd Page 12 579525 V. Description of the invention (7) Selective signal (RCS L) generator 1 4 1 to 1 4 η. The redundant line control circuit 1 0 0 controls the access of redundant lines in n rows in the redundant cell array 3 2 (FIG. 1). When a corresponding redundant row selection signal (RCSLi, i ~ 1 ~ η) is generated by an RCSL generator I4i, one of the above redundant rows will be selected to replace a failed main array row. Each R c s L generator is activated in response to an RCSL start signal (RCSLENi, i = η) corresponding to one of a redundant control block. Each RCSL generator 14i (i = l to η) can be implemented using two series inverters (not shown). Fig. 3 shows the detailed circuit diagrams of the laser redundant control blocks 3 2 to 1 3 η and the electrical redundant control blocks 1 3 1. Each laser redundant control block includes a laser fuse box and an address comparator (ie, a laser fuse / comparison) 1 50. The laser beam can cut the fuse selected in the above-mentioned laser box during the wafer stage repair operation. Thereafter, the laser melting wire / comparator 150 compares the row address C A with the faulty row address stored in the above-mentioned laser fuse box, and generates 0 υ τ when C A matches the stored address. Reverse gate 5 2 together with the serial inverter 1 5 4 generates R cs LE ni according to π and π operations. When OUT and CSLEN (row selection start signal) are generated at the same time, RCSLENi will also be generated, so the selection will be redundant. Line i. The electrical redundant control block 1 3 1 includes a reverse AND gate 160 and a serial inverter 162 ′ for generating RCSLEN1 according to the “and” operation. When EN and CSLEN are generated at the same time, RCSLEN1 will also be generated, so Select redundant line 1. EN is the output of one of the address comparators 120, and is generated when the CA meets ^^ 8 (Figure 2). ECA is an electrical storage from the electrical melting box 1 1 〇 Fault row address. So redundant row lines 2 to η can only be at the wafer level
1 0559pif. ptd 第13頁 579525 五、發明說明(8) 段修復期間被程式設計,而冗贅行線路1卻能夠在任何時 候被程式設計,例如在一後段修復操作期間。 第4圖及第5圖繪示電性熔絲方塊1 1 0之一實施例。首 先參照第4圖,電性熔絲方塊1 1 0包含複數個具有緩衝輸 出之電性熔絲單元(3 1 a,3 1 i ,i = 0〜k )。每一電性熔絲單 元保持一位元資料。熔絲單元3 1 a保持位元0 U T a,而0 U T a 在緩衝之後變成用以指示上述電性熔絲盒是否已經被程 式設計之主存取信號Μ A。熔絲單元3 1 i ,i = 0〜k,保持 0 U T i ,而0 U T i在緩衝之後變成一電性行位址信號位元 ECAi ° 模式暫存器設定電路(M R S ) 6 2 (第1圖)產生程式設計 輸入(MRSA,MRSCAO至MRSCAk)至熔絲盒1 1 0以響應一外部 指令。起初製作每一電性熔絲單元成為一第一狀態,例 如代表一未設定位址位元。若產生一已知M R S程式設計輸 入,則設定上述相對應之電性熔絲單元為一第二狀態, 例如代表一已設定位址位元。因此為了程式設計熔絲盒 1 1 0,M R S 6 2將修復中的行位址置於M R S C A 0〜k以程式設計 此位址,並且產生M R S A以程式設計上述主存取位元。 第5圖為一電性熔絲單元3 1 i ( i二a,0〜k )之一實施例 之詳細電路圖。每一電性熔絲單元3 1 i具有第一與第二熔 絲(FI ,F2)、第一至第五NMOS電晶體(N1〜N5)以及第一與 第二PMOS電晶體(PI ,P2)。NMOS電晶體N1及N2之汲極、 PMOS電晶體P1之汲極、PMOS電晶體P2之閘極以及NMOS電 晶體N3之閘極都連接至第一節點41 1 。PMOS電晶體P1之閘1 0559pif. Ptd Page 13 579525 V. Description of the invention (8) The period of repair is programmed, but the redundant line 1 can be programmed at any time, for example, during a subsequent repair operation. Figures 4 and 5 show an embodiment of the electrical fuse block 1 110. First referring to FIG. 4, the electrical fuse block 1 1 0 includes a plurality of electrical fuse units (3 1 a, 3 1 i, i = 0 ~ k) with buffered outputs. One bit of metadata is maintained for each electrical fuse unit. The fuse unit 3 1 a holds bit 0 U T a, and 0 U T a after buffering becomes a main access signal M A to indicate whether the above-mentioned electrical fuse box has been programmed. The fuse unit 3 1 i, i = 0 ~ k, maintains 0 UT i, and 0 UT i becomes an electrical row address signal bit ECAi ° mode register setting circuit (MRS) 6 2 (No. Figure 1) Generate programming input (MRSA, MRSCAO to MRSCAk) to fuse box 110 in response to an external command. Initially, each electrical fuse unit is made into a first state, for example, it represents an unset address bit. If a known M R S programming input is generated, the corresponding electrical fuse unit is set to a second state, for example, it represents a set address bit. Therefore, in order to program the fuse box 110, M R S 62 places the repaired row address at M R S C A 0 ~ k to program this address, and generates M R S A to program the above-mentioned main access bit. FIG. 5 is a detailed circuit diagram of an embodiment of an electrical fuse unit 3 1 i (i 2a, 0 ~ k). Each electrical fuse unit 3 1 i has first and second fuses (FI, F2), first to fifth NMOS transistors (N1 to N5), and first and second PMOS transistors (PI, P2). ). The drains of the NMOS transistor N1 and N2, the drain of the PMOS transistor P1, the gate of the PMOS transistor P2, and the gate of the NMOS transistor N3 are all connected to the first node 41 1. Gate of PMOS transistor P1
10559pif. ptd 第14頁 五、發明說明(w --------- 才、Ν Μ Π Q + 及PMOS雷Ϊ晶體N2之閘極、NM〇S電晶體N3及N4之沒極以 述第二^ f體1"2之沒極都連接至第二節點412。出現在上 晶體:Z點之信號也形成一輸出信號(OUT)。每一NM0S電 元件F 1 I、極都被接地’而? 1及1"2之源極則分別經由熔絲 制及連接至VDD。N5之汲極連接至P1之源極。 $作合絲單元3 1 i使得熔絲F 2之電阻大於熔絲ρ 1之電 口口 —士此由於兩熔絲都保持完整,當輸電至上述熔絲 ==日:驅動節點412(也連接至ουτ)至一邏輯低準位並且 驅動郎點4 1 1至一邏輯高準位。 ΜΜΜ Ϊ入二個通常處於低準位之第一輸入信號(MRS1 )至 電晶體及N4之閘極。輸入信號MRS1用以測試熔絲 1疋否已切斷,這些稍後將予以說明。 >輪入一第二輸入信號(MRS2)至電晶體…之閘極。輸 入=,MRS2用以電性切斷熔絲F1。若設定輸入信號mrs2 為一高邏輯準位,則導通關08電晶體N5,並導致一股大 到足以燒斷熔絲F 1之暫態電流流經熔絲F丨。當熔絲?丨 切斷時,電晶體N 5也降低在電晶體?丨之源極之準位,並 且也降低在節點4 1 1之準位。當在節點4丨1之電壓降低 時,將導通電晶體P2且斷開電晶體N3 ,因而升高在節點 4 1 2之電壓。這接連地促使導通電晶體N 2,更加降低在々 點4 1 1漸減的電壓並且更加升高在節點4丨2漸增的電屙β 到〇 U Τ切換至一高邏輯準位。 土 Α10559pif. Ptd Page 14 V. Description of the invention (w --------- Cai, NM Π Q + and PMOS thunder gate N2, NMOS transistor N3 and N4 gate The two poles of the second ^ f body 1 " 2 are all connected to the second node 412. The signal appearing on the upper crystal: the Z point also forms an output signal (OUT). Each NMOS electric element F 1 I, the pole are Ground ', and the sources of 1 and 1 " 2 are connected to VDD via fuses and the drain of N5 is connected to the source of P1. Electrical port of fuse ρ 1—Since both fuses remain intact, when power is transmitted to the above fuse == day: drive node 412 (also connected to ουτ) to a logic low level and drive Lang point 4 1 1 to a logic high level. MMMM inputs two first input signals (MRS1), which are usually at a low level, to the gate of the transistor and N4. The input signal MRS1 is used to test whether fuse 1 has been cut off. These will be explained later. ≫ Turn a second input signal (MRS2) to the gate of the transistor ... Input =, MRS2 is used to electrically cut the fuse F1. If the input signal mrs2 is set to High logic level turns on transistor N5 and causes a transient current large enough to blow fuse F 1 to flow through fuse F. When the fuse is cut off, transistor N 5 Also lower the level of the source at the transistor? 丨 and also lower the level at node 4 1 1. When the voltage at node 4 丨 1 decreases, the transistor P2 will be turned on and the transistor N3 will be turned off, so Increasing the voltage at node 4 1 2. This successively promotes the conduction of the crystal N 2, which further decreases the decreasing voltage at point 4 1 1 and further increases the increasing voltage at node 4 丨 2 to 〇U Τ Switch to a high logic level.
曰在程式設計之後,輸入信號MRs丨能夠用以測定熔絲 F 1疋否由於輸入彳§號M R S 2的產生而被完全切斷。於—測After programming, the input signal MRs can be used to determine whether the fuse F 1 is completely cut off due to the generation of the input signal MR S 2. In-test
10559pif.ptd 第15頁 579525 五、發明說明(ίο) 試模式中,使M R S 1瞬間達到一高準位以將節點4 1 1及節點 4 1 2兩者拉至一低準位。若已經切斷熔絲F 1 ,則當M R S 1回 到一低準位時節點4 1 2將恢復成一高準位。若尚未切斷熔 絲F 1 ,則當M R S 1回到一低準位時節點4 1 1將恢復成一高準 位。 隨著M R S 1的產生/消失,將測試所修復之位址線路。 若上述測試不成功,則可假定未完全切斷一或多個熔 絲,因而上述冗贅行未成功地使用於上述故障行。在這 .種情況下,為了再嘗試切斷熔絲可能重複上述電性程式 設計及測試步驟。 第6圖為第2圖之位址比較器1 2 0之一實施例之詳細電 路圖。位址比較器1 2 0具有複數個比較單元(5 1 i , i = 0〜k ),以及複數個及(A N D )邏輯閘(所繪示之邏輯閘 520、522以及524)。每一及(AND)閘由一個在其輸出具有 一反相器之反及(N A N D )閘所構成。 每一比較單元51i(i = 0〜k)執行一位元之互斥反或 (X N 0 R )運算。比較單元5 1 i接收一電性比較位址位元 (E C A i ,i二0〜k )與一相對應之外部位址位元(C A i , i二0〜k ),並且比較上述兩位元。若上述兩位元位於相同 邏輯準位,則比較單元5 1 i輸出一高邏輯準位信號。若上 述兩位元不同,則比較單元5 1 i輸出一低邏輯準位信號。 上述每一比較單元51i之輸出信號(i = 0〜k)與上述主 存取信號(Μ A )將執行及(A N D )運算並且輸出作為一電性修 復啟動信號(E N )。因此,當所有比較單元5 1 0至5 1 k所輸10559pif.ptd Page 15 579525 V. Description of the invention (ίο) In the test mode, make MR S 1 reach a high level instantly to pull both node 4 1 1 and node 4 1 2 to a low level. If fuse F 1 has been cut off, node 4 1 2 will return to a high level when M R S 1 returns to a low level. If fuse F 1 has not been cut off, node 4 1 1 will return to a high level when M R S 1 returns to a low level. As M R S 1 is generated / disappeared, the repaired address line will be tested. If the above test is unsuccessful, it may be assumed that one or more fuses have not been completely cut off, and thus the redundant line was not successfully used for the failed line. In this case, the above electrical programming and testing steps may be repeated in order to try to cut the fuse again. Fig. 6 is a detailed circuit diagram of an embodiment of the address comparator 12 of Fig. 2. The address comparator 1 2 0 has a plurality of comparison units (5 1 i, i = 0 ~ k), and a plurality of AND gates (A N D) logic gates (the logic gates 520, 522, and 524 are shown). Each AND gate is composed of an inverse AND gate having an inverter at its output. Each comparison unit 51i (i = 0 ~ k) performs a one-bit exclusive OR operation (X N 0 R). The comparison unit 5 1 i receives an electrical comparison address bit (ECA i, i 2 0 ~ k) and a corresponding external part address bit (CA i, i 2 0 ~ k), and compares the two bits. yuan. If the two bits are at the same logic level, the comparison unit 5 1 i outputs a high logic level signal. If the two bits are different, the comparison unit 5 1 i outputs a low logic level signal. An output signal (i = 0 ~ k) of each of the above-mentioned comparison units 51i and the above-mentioned main access signal (M A) will perform an AND operation (A N D) and output as an electrical repair start signal (E N). Therefore, when all comparison units 5 1 0 to 5 1 k
10559pif. ptd 第16頁 579525 五、發明說明(11) 出之信號都是高邏輯準位並且上述主存取信號也是高邏 輯準位時,將啟動電性修復啟動信號(E N )。 第2圖至第6圖所示及以上所述之冗贅行控制電路, 因為保留一冗贅行作為後段修復之用,所以提供比只有 雷射熔絲之冗贅架構更為增進之修復能力。同時,藉由 以更經濟之雷射熔絲控制電路系統來驅動大部分冗贅 行,本實施例由於大部分陣列故障在晶圓階段修復期間 出現並可偵測而獲益。 第2圖之實施例所不能更正的一種狀況為發生於與電 性冗贅控制方塊1 3 1相關之冗贅行之故障。若此冗贅行是 故障的,縱使冗贅行2至η之中有一或多行是無故障且未 使用,仍然無法實施後段修復。反之,藉由允許若干冗 贅行之一可能選擇與電性冗贅控制信號結合,使第二實 施例增加後段修復的可能性。而較佳情況為在晶圓製造 之後能夠指定一無故障冗贅行作為後段修復之用。同樣 地,較佳情況為能夠相對地指定每一無故障冗贅行作為 雷射修復之用。 第7圖繪示第二實施例之冗贅行控制電路2 0 0。雖然 在某些方面類似於第2圖,但是第7圖包含後段修復控制 方塊2 5 1至2 5 η,不同的冗贅控制方塊2 3 1至2 3 η,以及控 制信號的差異。這些差異將參照第7圖至第1 0圖予以進一 步探討。簡言之,每一冗贅控制方塊2 3 i具有雷射熔絲功 能,但是能夠被組織來響應電性修復啟動信號(E N )。因 此沒有冗贅行是無條件製作為後段修復之用,若有需要10559pif. Ptd Page 16 579525 V. Description of the invention (11) When the signals output are all high logic levels and the main access signal is also high logic levels, the electrical repair start signal (EN) will be activated. The redundant line control circuits shown in Figs. 2 to 6 and described above, because a redundant line is reserved for subsequent repairs, it provides more enhanced repair capabilities than the redundant structure of the laser fuse . At the same time, by driving most of the redundant rows with a more economical laser fuse control circuit system, this embodiment benefits from the fact that most of the array failures can be detected during wafer stage repair and can be detected. A situation that cannot be corrected in the embodiment of Fig. 2 is a failure of a redundant line related to the electrical redundant control block 1 31. If this redundant line is faulty, even if one or more of redundant lines 2 to η are fault-free and unused, the subsequent stage repair cannot be implemented. Conversely, by allowing one of several redundant rows to be possible to be combined with the electrical redundant control signal, the second embodiment increases the possibility of repair at the later stage. It is preferable that after the wafer is manufactured, a trouble-free redundant line can be designated as a post-stage repair. Similarly, it is better to be able to designate each trouble-free redundant line for laser repair relatively. FIG. 7 shows a redundant row control circuit 2 0 0 of the second embodiment. Although it is similar to Figure 2 in some respects, Figure 7 contains post-repair control blocks 2 51 to 2 5 η, different redundant control blocks 2 3 1 to 2 3 η, and differences in control signals. These differences will be discussed further with reference to Figures 7 to 10. In short, each redundant control block 2 3 i has a laser fuse function, but can be organized to respond to an electrical repair start signal (EN). Therefore, no redundant lines are made unconditionally for later repairs, if necessary
10559pi f.ptd 第17頁 579525 五、發明說明(12) 則所有冗贅行都能使用於雷射熔絲修復,並且在晶圓製 造之後,一無故障冗贅行能夠與上述後段修復電性熔絲 電路系統結合。這種彈性能夠提供在混合晶圓階段及後 段修復操作中無故障冗贅記憶體線路之有效利用。 類似於第2圖之冗贅行控制電路1 0 0,第7圖之控制電 路2 0 0具有一個能夠利用與所需之後段修復行位址相關之 模式暫存器設定電路來設定之電性熔絲盒2 1 0。位址比較 器2 2 0比較來自電性熔絲盒210之位址ECA與行位址CA,並 且當ECA與CA相符(且主存取信號MA指示ECA為有效)時產 生E N。 在第2圖中只有電性冗贅控制方塊1 3 1接收來自電性 修復位址比較器1 2 0之E N,然而在第7圖中每一冗贅控制 方塊2 3 1至2 3 η都接收來自位址比較器之E N。每一冗贅控 制方塊2 3 i也接收行位址C A,以及來自一相對應之後段修 復控制方塊25 i之控制信號CSi 。CSi決定冗贅控制方塊 2 3 1究竟是響應E N,或者利用C A連同一個在冗贅控制方塊 2 3 1之内的雷射熔絲/比較器來執行冗贅行選擇。在典型 應用中,將在一個(且唯一)後段修復控制方塊2 5 i之中切 斷一熔絲以產生一相對應之C S i信號線路,(若有需要時) 用以指示將使用於後段修復之冗贅行。 第8圖繪示一冗贅控制方塊2 3 i之内部電路系統。每 一冗贅控制方塊2 3 i ( i = 1〜η )輸出一冗贅啟動信號 (RCSLENi ,i = l〜η)至一相對應之RCSL產生器24i(i二1〜η, 第7圖)。每一冗贅控制方塊2 3 i具有使用於雷射修復之雷10559pi f.ptd Page 17 579525 V. Description of the invention (12) All redundant lines can be used for laser fuse repair, and after wafer manufacturing, a fault-free redundant line can be used to repair the electrical properties in the above-mentioned later stages. Fuse circuit system combined. This flexibility can provide effective utilization of trouble-free redundant memory circuits during mixed wafer stage and post-repair operations. Similar to the redundant row control circuit 100 in FIG. 2 and the control circuit 200 in FIG. 7 has an electrical property that can be set by using a mode register setting circuit related to the required subsequent repair line address. Fuse box 2 1 0. The address comparator 2 2 0 compares the address ECA from the electrical fuse box 210 with the row address CA and generates EN when the ECA and CA match (and the main access signal MA indicates that the ECA is valid). In Fig. 2, only the electrical redundant control block 1 3 1 receives EN from the electrical repair address comparator 1 2 0. However, in Fig. 7, each redundant control block 2 3 1 to 2 3 n Receive EN from address comparator. Each redundant control block 2 3 i also receives a row address CA and a control signal CSi from a corresponding subsequent repair control block 25 i. CSi decides whether redundant control block 2 3 1 responds to E N or uses CA together with a laser fuse / comparator within redundant control block 2 3 1 to perform redundant line selection. In a typical application, a fuse will be cut in a (and only) back-end repair control block 2 5 i to generate a corresponding CS i signal line (if necessary) to indicate that it will be used in the back-end Redundant lines to fix. FIG. 8 shows the internal circuit system of a redundant control block 2 3 i. Each redundant control block 2 3 i (i = 1 ~ η) outputs a redundant start signal (RCSLENi, i = 1 ~ η) to a corresponding RCSL generator 24i (i = 1 ~ η, Figure 7) ). Each redundant control block 2 3 i has a laser for laser repair
10559pi f.ptd 第18頁 579525 五、發明說明(13) 射修復處理元件6 1 0,以及使用於後段修復之後段修復處 理元件6 2 0。 雷射修復處理元件6 1 0包含雷射熔絲盒6 1 1、位址比 較器6 1 2以及第一邏輯單元6 1 3。 雷射熔絲盒6 1 1具有複數個能夠以雷射光束切斷之熔 絲。藉由有選擇地以雷射切斷雷射溶絲,可程式設計上 述雷射、丨谷絲盒以產生一個用以指示故障單元所發生之主 俥列行之位址L C A。 類似於位址比較器2 2 0,當LCA與一外部位址CA相符 時,位址比較器6 1 2將產生一輸出信號〇 u T。 邏輯單元6 1 3對OUT與控制信號CSi作或(OR)運算以產 生第一邏輯信號T S 1。因此若後段修復控制方塊2 5 i尚未 產生C S i (意指尚未選擇冗贅控制方塊2 3 i使用於後段修 復),則TS1複製OUT。但是若產生CSi ,指示這是一個後 段修復方塊,則將超越0 U T,並將產生T S 1而不管〇 u T之狀 態。 後段修復處理元件6 2 0具有反相器6 2 1以及第二邏輯單 元622。反相器621產生CSi#,其為倒置之CSi 。第二邏輯 單元6 2 2對CS i #與來自電性熔絲位址比較器2 2 0之電性修 復啟動信號EN作或(OR)運算以產生第二邏輯信號TS 2。>因 此若後段修復控制方塊2 5 i已經產生c S i ,指示這是一個 後段修復方塊,則TS2複製EN。但是若尚未產±CSi ,則 將超越EN,並將產生TS2而不管EN之狀態。因此明顯地, 冗贅控制方塊2 3 i將只會響應比較器6 1 2輸出信號〇UT與電10559pi f.ptd Page 18 579525 V. Description of the invention (13) The radio-repair processing element 6 1 0 and the post-repair processing element 6 2 0 are used. The laser repair processing element 6 1 0 includes a laser fuse box 6 1 1, an address comparator 6 1 2, and a first logic unit 6 1 3. The laser fuse box 6 1 1 has a plurality of fuses that can be cut by a laser beam. By selectively cutting the laser melting wire with a laser, the laser and the valley box can be programmed to generate an address L C A which is used to indicate the main queue of the faulty unit. Similar to the address comparator 2 2 0, when the LCA matches an external address CA, the address comparator 6 1 2 will generate an output signal 0 u T. The logic unit 6 1 3 performs an OR operation on OUT and the control signal CSi to generate a first logic signal T S 1. Therefore, if the control block 2 5 i in the subsequent stage has not generated C S i (meaning that the redundant control block 2 3 i has not been selected for subsequent stage repair), then TS1 copies OUT. However, if CSi is generated, indicating that this is a post-repair block, it will exceed 0 U T and T S 1 will be generated regardless of the state of 0 u T. The post-stage repair processing element 6 2 0 includes an inverter 6 2 1 and a second logic unit 622. The inverter 621 generates CSi #, which is an inverted CSi. The second logic unit 6 2 2 performs an OR operation on CS i # with the electrical repair start signal EN from the electrical fuse address comparator 2 2 0 to generate a second logic signal TS 2. > Therefore, if the back-end repair control block 2 5 i has generated c S i, indicating that this is a back-end repair block, TS2 duplicates EN. However, if ± CSi has not been produced, EN will be exceeded and TS2 will be generated regardless of the state of EN. So obviously, the redundant control block 2 3 i will only respond to the output signal of the comparator 6 12
10559pi f.ptd 第19頁 579525 五、發明說明(14) 性修復啟動信號E N其中之一,而這選擇是根據C S i的狀 態。 第三邏輯單元6 3 1為雷射修復處理元件6 1 0與後段修復 處理元件620所共用。第三邏輯單元631對第一及第二邏 輯信號(T S 1 ,T S 2 )連同行選擇信號C S L E N作及(A N D )運 算,然後輸出冗贅啟動信號(RCSLENi ,i二1〜η)。 當上述半導體記憶體元件接收一讀取或寫入指令時, 一外部行位址C Α (用以指定將要存取之主陣列行)將伴隨 上述指令。當C A所指定之主要行尚未修復時,將無任何 修復熔絲盒(雷射或電性)包含上述位址。當C A所指定之 主要行在晶圓階段雷射熔絲修復期間已經以一冗贅行取 代時,將已儲存上述行位址於冗贅控制方塊2 3 i之一之雷 射熔絲盒6 1 1 。而當C A所指定之主要行在後段修復期間已 經以一冗贅行取代時,將已儲存上述行位址於電性熔絲 盒2 1 0。CA被提供給每一冗贅控制方塊23 i之位址比較器 6 1 2,同樣也被提供給電性熔絲位址比較器2 2 0 (第7圖)。 每一位址比較器比較C A與其所儲存之位址(比較器6 1 2之 雷射熔絲位址LCA,比較器2 2 0之電性熔絲位址ECA)。對 於一故障但已修復之主要行,上述位址比較器之一將偵 測到符合CA,並且將產生其輸出信號(比較器6 12之OUT, 比較器2 2 0之E N )。若C A所指定之主要行尚未修復時,貝ij 將無比較器產生其輸出信號。 每一冗贅控制電路2 3 i之第一或主要操作模式響應一 雷射熔絲程式設計修復位址。在這模式中,未產生C S i ,10559pi f.ptd Page 19 579525 V. Description of the invention (14) One of the sexual repair start signals EN is selected according to the state of C S i. The third logic unit 6 31 is shared by the laser repair processing element 610 and the post-stage repair processing element 620. The third logic unit 631 calculates the first and second logic signals (TS1, TS2) together with the row selection signals CSLNE and (AND), and then outputs redundant start signals (RCSLENi, i2 1 ~ η). When the semiconductor memory element receives a read or write command, an external row address C A (used to designate the main array row to be accessed) will accompany the command. When the main line designated by CA has not been repaired, no repair fuse box (laser or electrical) will contain the above address. When the main line designated by the CA has been replaced by a redundant line during the laser fuse repair at the wafer stage, the laser fuse box 6 having the above line address stored in one of the redundant control blocks 2 3 i 1 1. When the main line designated by CA has been replaced with a redundant line during the subsequent repair period, the above-mentioned line address will be stored in the electrical fuse box 2 10. CA is provided to the address comparator 6 1 2 of each redundant control block 23 i, and is also provided to the electrical fuse address comparator 2 2 0 (FIG. 7). Each address comparator compares CA with its stored address (laser fuse address LCA of comparator 6 1 2 and electrical fuse address ECA of comparator 2 2 0). For a faulty but repaired main line, one of the above address comparators will detect compliance with CA and will generate its output signal (OUT of comparator 6 12 and E N of comparator 2 2 0). If the main line specified by C A has not been repaired, Beij will have no comparator to generate its output signal. The first or main operation mode of each redundant control circuit 2 3 i responds to a laser fuse programming repair address. In this mode, C S i is not generated,
10559pi f.ptd 第20頁 579525 五、發明說明(15) TS1響應OUT,並且總是產生TS2。如此當CA與LCA相符並 產生用以表示適當的行選擇輸出之CSLEN時,將產生冗贅 行選擇信號RCSLENi 。否則,將不會產生RCSLENi 。 冗贅控制電路2 3 i之替換操作模式響應上述電性熔絲 程式設計修復位址。在這模式中,產生C S i ,總是產生 TS1 ,並且TS2響應EN。如此當CA與ECA由位址比較器220 得知相符並產生用以表示適當的行選擇輸出之CSLEN時, 將產生冗贅行選擇信號RCSLENi 。否則,將不會產生 RCSLENi ° 在第7圖之實施例中,至多一個冗贅控制方塊2 3 i被設 定為上述替換操作模式。所有其他冗贅控制方塊都被設 定為上述主要操作模式。那一個控制方塊2 3 i被設定為上 述替換操作模式取決於後段修復控制方塊2 5 i之狀態。基 本上,每一後段修復控制方塊2 5 i包含一熔絲或其他可設 定元件。例如,第9圖為一後段修復控制方塊實施例之電 路圖。 於第9圖中,後段修復控制方塊2 5 i包含後段修復熔絲 7 1 0。後段修復熔絲7 1 0為一個能夠在晶圓階段測試期間 被切斷以改變控制信號C S i之狀態之雷射熔絲。亦即,當 後段修復熔絲7 1 0保持完整時,C S i將維持在一低邏輯準 位,而當後段修復熔絲7 1 0已切斷時,C S i將達到一高邏 輯準位。 除了熔絲7 1 0之外,後段修復控制方塊2 5 i還包含兩個 PM0S電晶體P3和P4、一個NM0S電晶體N6以及兩個反相器10559pi f.ptd Page 20 579525 V. Description of the invention (15) TS1 responds to OUT and always generates TS2. Thus, when CA and LCA match and a CSLEN is generated to indicate an appropriate row selection output, a redundant row selection signal RCSLENi will be generated. Otherwise, RCSLENi will not be generated. The alternate operation mode of the redundant control circuit 2 3 i responds to the above-mentioned electrical fuse programming repair address. In this mode, C S i is generated, TS1 is always generated, and TS2 responds to EN. Thus, when CA and ECA are found to be in agreement with each other by the address comparator 220 and a CSLEN is generated to indicate an appropriate row selection output, a redundant row selection signal RCSLENi will be generated. Otherwise, RCSLENi will not be generated. In the embodiment of Fig. 7, at most one redundant control block 2 3 i is set to the above-mentioned alternative operation mode. All other redundant control blocks are set to the main operating modes described above. Which control block 2 3 i is set to the above-mentioned replacement operation mode depends on the state of the repair control block 2 5 i in the subsequent stage. Basically, each rear stage repair control block 2 5 i includes a fuse or other configurable element. For example, Fig. 9 is a circuit diagram of an embodiment of a back-end repair control block. In FIG. 9, the post-stage repair control block 2 5 i includes a post-stage repair fuse 7 1 0. The post-stage repair fuse 7 1 0 is a laser fuse that can be cut to change the state of the control signal C S i during the wafer stage test. That is, when the back-end repair fuse 7 1 0 remains intact, C S i will be maintained at a low logic level, and when the back-end repair fuse 7 10 is cut off, C S i will reach a high logic level. In addition to the fuse 7 1 0, the rear repair control block 2 5 i also contains two PM0S transistors P3 and P4, one NM0S transistor N6, and two inverters.
10559pif. ptd 第21頁 579525 五、發明說明(16)10559pif. Ptd Page 21 579525 V. Description of the Invention (16)
712和714 °PMOS電晶體P3和P4之每一個都具有連接至VDD 之源極與連接至熔絲7 1 〇之一端點(節點8丨〇 )之汲極。 N Μ 0 S電晶體N 6使其源極接地並且使其汲極連接至熔絲7 j 〇 之反向端點。 節點8 1 0也連接至反相器7 1 2之輸入。節點8 1 2連接反 相為712之輸出,同時也連接反相器7丨4之輸入與pM〇s電 晶體P4之閘極。反相器714之輸出則作為控制信號以1。 後4又修復控制方塊2 5 i之輸入信號為開機信號v [ c Η。 開機信號VCCH之波形如第10圖所示。當最初供電至上述 半導體記憶體元件時(時間Τ1)開機信號%“位 輯準位,而一旦供電準位達到一預定準位時(時間τ2]將 轉變至一高邏輯準位。開機信號VCCH被提 及N6之閘極。 、、、口尾日日體 後段修復控制方塊2 5 i操作方式如下。首 有已切斷之後段修復控制熔絲7丨〇之控制方 。、 述半導體圮憶體元件最初接通電源時(時間A , 圖),VCCH保持在一低邏輯準位,因而導通電晶體p3。因 為已切斷熔絲710 ,所以節點81〇充電至Vdd :丑 712終將感測到節點810為一邏輯高準位S位°反相為 812至一低迦輯準位並且驅動CSi至一高邏輯。 在第10圖之時間T2,開機信號VCCH切換至一/ 位。雖然設定VCCH至一高邏輯準位因而斷開问p3, ί是2 ” =2 ί !邏輯準位已經導通ΡΜ0:曰電丑晶體 ,因此郎點81〇保持尚邏輯準位’並且控制信號⑶保Each of the 712 and 714 ° PMOS transistors P3 and P4 has a source connected to VDD and a drain connected to one of the terminals of the fuse 7 10 (node 8 丨). The N M 0 S transistor N 6 has its source grounded and its drain connected to the reverse terminal of fuse 7 j 〇. Node 8 1 0 is also connected to the input of inverter 7 1 2. Node 8 1 2 is connected to the output of the reverse phase 712, and also connected to the input of the inverter 7 丨 4 and the gate of the pMOS transistor P4. The output of the inverter 714 is set to 1 as a control signal. The last 4 repaired the input signal of the control block 2 5 i to be the power-on signal v [c Η. The waveform of the power-on signal VCCH is shown in Figure 10. When the power is initially supplied to the semiconductor memory device (time T1), the power-on signal% "level is set, and once the power-on level reaches a predetermined level (time τ2), it will transition to a high logic level. It is mentioned the gate of N6. The operation method of the repairing control block 2 5 i at the rear end of the sun and the sun is as follows. The first is the control party of the repair control fuse 7 丨 0 that has been cut off at the later stage. When the body element is initially powered on (time A, picture), the VCCH remains at a low logic level, and thus the crystal p3 is turned on. Because the fuse 710 has been cut off, the node 810 is charged to Vdd: the ugly 712 will eventually sense The node 810 is detected to be a logic high level S bit ° inverted to 812 to a low level and drive CSi to a high logic. At time T2 in FIG. 10, the power-on signal VCCH switches to one / bit. Set VCCH to a high logic level and turn off the question p3, ί is 2 "= 2! The logic level has been turned on PM0: the electric ugly crystal, so the Lang point 81 remains at the logic level 'and the control signal ⑶
第22頁 579525 五、發明說明(17) 持高邏輯準位。 現在考慮在開機時後段修復控制熔絲7 1 0保持完整的 情況。在這種情況下,節點8 1 0起初達到一高邏輯準位, 如同已切斷熔絲7 1 0的情況。但是當開機信號VCCH切換至 一高邏輯準位時,將導通電晶體N6,並斷開電晶體P 3, 且節點8 1 0放電至接地電位。反相器7 1 2感測到節點8 1 0為 低邏輯準位而使節點8 1 2達到一高邏輯準位,因而斷開電 晶體P4。反相器7 1 4則輸出低邏輯準位之控制信號CS i。 對於此實施例,最好在上述元件處於晶圓狀態時選擇 將使用於後段修復之冗贅行線路i。例如,可以測試上述 冗贅行線路以測定是否為一無故障冗贅記憶體線路。上 述無故障冗贅記憶體線路將被指定使用於後段修復。所 指定之記憶體線路藉由切斷與上述記憶體線路相關之後 段修復控制方塊之雷射熔絲7 1 0而與後段修復位址比較器 2 2 0結合。 同樣地,使用於後段修復之冗贅記憶體線路之選取最 好能夠連同晶圓階段雷射熔絲修復操作一起完成。例 如,在晶圓階段可以測試上述主要及冗贅行線路以測定 那些線路是故障的而那些線路是無故障的。對於每一故 障主陣列行線路,將指定一無故障冗贅記憶體線路,並 將以上述故障主陣列行線路之位址來程式設計與上述冗 贅記憶體線路相關之雷射熔絲盒6 1 1 (第8圖)。然後,當 所有故障主記憶體線路已經修復並且無故障冗贅記憶體 線路仍未指定時,將指定那些剩餘的無故障冗贅記憶體Page 22 579525 V. Description of the invention (17) Hold high logic level. Now consider the case where the rear-end repair control fuse 7 1 0 remains intact when the power is turned on. In this case, the node 8 10 initially reaches a high logic level, as in the case where the fuse 7 10 has been cut. However, when the power-on signal VCCH is switched to a high logic level, the transistor N6 is turned on, the transistor P 3 is turned off, and the node 8 10 is discharged to the ground potential. The inverter 7 1 2 senses that the node 8 1 0 is at a low logic level and brings the node 8 1 2 to a high logic level, thereby turning off the transistor P4. The inverter 7 1 4 outputs a control signal CS i with a low logic level. For this embodiment, it is preferable to select the redundant line i to be used for the subsequent repair when the above-mentioned components are in the wafer state. For example, the redundant line can be tested to determine whether it is a fault-free redundant memory line. The above non-faulty redundant memory circuit will be designated for later repair. The designated memory circuit is combined with the latter-stage repair address comparator 2 2 0 by cutting off the laser fuse 7 1 0 of the subsequent-stage repair control block associated with the above-mentioned memory circuit. Similarly, the selection of redundant memory circuits used in the later stage repair can best be done together with the wafer stage laser fuse repair operation. For example, the above main and redundant lines can be tested at the wafer stage to determine which lines are faulty and which lines are fault-free. For each failed main array line, a fault-free redundant memory line will be designated, and the laser fuse box related to the redundant memory line will be programmed with the address of the above-mentioned failed main array line 1 1 (Figure 8). Then, when all faulty main memory lines have been repaired and the fault-free redundant memory lines have not been assigned, those remaining fault-free redundant memory will be assigned
10559pif.ptd 第23頁 579525 五、發明說明(18) 線路使用於後段修復。所指定之冗贅記憶體線路藉由切 斷與上述記憶體線路相關之後段修復控制方塊之雷射熔 絲7 1 0 =與後段修復位址比較器2 2 〇結合。 接&著’封裝上述記憶體元件並進入第二測試。若在封 裝^悲一記憶體行被發現是故障的,則將藉由發出一個 使模式暫存器設定電路2 6 〇以上述故障行之位址設定電性 炼絲盒2^1 G之指令來嘗試修復。若一後段修復方塊2 5 i在 雷射修復之後可使用並且被指定為後段修復之用,則應 可完成後段修復。 ^雖然最好在晶圓階段測試及程式設計期間選擇後段修 復所用之行,但是其他實施例也是可行的。例如,第i i 圖繪不允許經由焊接墊8 3 〇來選擇後段修復所用之行之另 一種後段修復控制電路實施例27 i。在某一種情況下,焊 接墊8 3 0保持未連接狀態。NMOS電晶體N7、N8以及N9將節 點8 γ 0拉至低準位,使得反相器7 2 〇及7 2 2設定c s }為一低 邏^,^。在另一種情況下,焊接墊83〇連接至仰1),因 而0又疋郎點820及CSi為一馬邏輯準位。為了設定csi為高 準位亚且選擇一已知冗贅行作為後段修復之用,所以焊 接整8=0可能在引線接合期間連線至— VDD焊接點。或 者,焊接墊8 3 0可能連線至一晶片載體上的一引線,而上 述引線可能連接至外接上述元件之VDD,以選擇相對應之 冗贅行作為後段修復之用。 〜 其他替換選擇實施例繪示於第丨2圖及第丨3圖。這個實 施例允許在封裝之後選擇用以結合後段修復比較器2 2 〇之10559pif.ptd Page 23 579525 V. Description of the invention (18) The line is used for the repair of the rear section. The designated redundant memory circuit is cut by cutting the laser fuse of the subsequent-stage repair control block associated with the above-mentioned memory circuit 7 1 0 = combined with the latter-stage repair address comparator 2 2 0. The " package " is used to package the above memory element and enter a second test. If the memory line is found to be faulty in the package, it will issue a command to set the mode register setting circuit 2 6 〇 to set the electrical spinning box 2 ^ 1 G at the address of the fault line. Come and try to fix it. If a back-end repair block 2 5 i is available after laser repair and is designated for back-end repair, the back-end repair should be completed. ^ Although it is best to select the post-repair line during wafer stage testing and programming, other embodiments are possible. For example, the drawing i i does not allow the selection of another back stage repair control circuit embodiment 27 i for the back stage repair via the solder pad 8 3 0. In one case, the pad 830 remains unconnected. The NMOS transistors N7, N8, and N9 pull the node 8 γ 0 to a low level, so that the inverters 7 2 0 and 7 2 2 set c s} to a low logic level ^, ^. In another case, the pads 83 are connected to the top 1), so 0 and 点 Lang point 820 and CSi are one-horse logic level. In order to set csi to a high level and select a known redundant line for subsequent repairs, the solder joint 8 = 0 may be connected to the —VDD solder joint during wire bonding. Or, the bonding pad 8 300 may be connected to a lead on a chip carrier, and the lead may be connected to the VDD externally connected to the above components, so as to select a corresponding redundant line for the subsequent repair. ~ Other alternative embodiments are shown in Figures 2 and 3. This embodiment allows selection to be combined with the post-segment repair comparator 2 2 0 after packaging.
l〇559pif.ptd 第24頁 579525 五、發明說明(19) 冗贅行。於第1 2圖中,經由來自模式暫存器設定電路2 9 0 之一相對應之控制線路MRSPRCi可電性程式設計每一後段 修復控制方塊2 8 i ( i = :1〜η )。為了結合一已知後段修復控 制方塊2 8 i與電性熔絲盒位址比較器2 2 0,所以同時發出 一指令與一個產生上述控制線路MRSPRC i之位址,因而切 斷後段修復控制方塊2 8 i之一電性熔絲並且使控制信號 CSi產生。 在這實施例中,可能有一個困難在於測定那一個冗贅 控制方塊2 3 i (及相對應之行線路)仍然是可使用且無故障 的。為了解決這問題,所以每一後段修復控制方塊2 8 1包 含一個將用以避免上述後段修復控制方塊2 8 i之電性熔絲 被切斷之雷射熔絲。如此,在晶圓階段程式設計期間, 因為每一冗贅控制方塊2 3 i都使用於雷射修復,所以相對 應之後段修復控制方塊2 8 i之雷射熔絲也被切斷以避免上 述後段修復控制方塊之電性程式設計。當發現一已知冗 贅行故障時,相對應之後段修復控制方塊2 8 i之雷射熔絲 可能也將被切斷以避免上述後段修復控制方塊之電性程 式設計。 然後,在一故障行之後段修復期間,將針對第一個i 值來嘗試後段修復控制方塊2 8 i之選取與電性熔絲切斷。 在這第一選擇之後,若尚未修復上述故障行,則可假定 上述後段修復控制方塊2 8 i為無效。接著選取一個新的i 值,並且重複上述步驟,直到完成一成功的修復,或者 所有的i值都已經試用失敗,此時已經無法後段修復。l〇559pif.ptd Page 24 579525 V. Description of the invention (19) Redundant lines. In Fig. 12, through each control circuit MRSPRCi corresponding to one of the mode register setting circuits 2 9 0, electrical programming of each subsequent stage repairs the control block 2 8 i (i =: 1 ~ η). In order to combine a known back-end repair control block 2 8 i with an electrical fuse box address comparator 2 2 0, a command is issued at the same time as an address that generates the above-mentioned control line MRSPRC i, so the back-end repair control block is cut off. 2 8 i is an electric fuse and generates a control signal CSi. In this embodiment, there may be a difficulty in determining which redundant control block 2 3 i (and the corresponding traveling line) is still usable and trouble-free. In order to solve this problem, each back-end repair control block 2 8 1 includes a laser fuse which will be used to avoid the electric fuse of the back-end repair control block 2 8 i being cut off. In this way, during the wafer stage programming, because each redundant control block 2 3 i is used for laser repair, the laser fuse corresponding to the subsequent repair control block 2 8 i is also cut to avoid the above. Electrical programming of the control block for the later repair. When a known redundant line fault is found, the laser fuse corresponding to the subsequent repair control block 2 8 i may also be cut to avoid the electrical program design of the latter repair control block. Then, during the subsequent repair of a fault line, the selection of the rear repair control block 2 8 i and the electric fuse cut-off will be attempted for the first value of i. After this first choice, if the above faulty row has not been repaired, then it can be assumed that the above-mentioned post repair control block 2 8 i is invalid. Then select a new i-value and repeat the above steps until a successful repair is completed, or all i-values have failed the trial, and at this time it cannot be repaired later.
10559pif.ptd 第25頁 579525 五、發明說明(20) 第1 3圖繪示一個可能作為後段修復控制方塊2 8 i使用 之電路。熔絲7 3 0為一電性熔絲。控制方塊2 8 i操作方式 類似於控制方塊2 5 i (第9圖),其中,對於熔絲7 3 0保持完 整的情況,C S i在開機之後位於一低邏輯準位,而對於熔 絲7 3 0已燒斷的情況,C S i在開機之後位於一高邏輯準 位。為了切斷熔絲7 3 0 ,所以產生M R S P R C i ,因而導通電 晶體P 7並且使一股大的暫態電流流經熔絲7 3 0。注意這電 流也流經熔絲7 4 0,因此應設計熔絲7 4 0為可操作這電流 但不致於先燒斷。 為了避免控制方塊2 8 i之程式設計達到一高邏輯準 位,所以雷射切斷熔絲7 4 0。在熔絲7 4 0已切斷的情況 下,當M R S P R C i產生時將不會產生經過熔絲7 3 0之暫態電 流。 雖然上述實施例已經繪示允許單一後段修復操作之電 路,但是本發明並未侷限於此。例如,第1 4圖為一個能 夠執行雙重後段修復操作之修復電路實施例9 0 0之方塊 圖。修復電路9 0 0具有冗贅控制方塊9 3 1至9 3 η、R C S L產生 器9 4 1至9 4 η以及後段修復控制方塊9 5 1至9 5 η,類似於第7 圖所示之後段修復電路2 0 0。然而,修復電路9 0 0具有兩 個電性熔絲盒9 1 1及9 1 2以及兩個位址比較器9 2 1及9 2 2, 與後段修復電路200不同。 經由模式暫存器設定信號MRS 1及MRSCAi可分別程式設 計上述兩電性熔絲單元9 1 1及9 1 2。注意上述電性熔絲單 元可以利用一模式暫存器設定信號來選通其餘的模式暫10559pif.ptd Page 25 579525 V. Description of the Invention (20) Figure 13 shows a circuit that may be used as a post-repair control block 2 8 i. The fuse 7 3 0 is an electrical fuse. Control block 2 8 i operates similarly to control block 2 5 i (Figure 9), where for the case where fuse 7 30 remains intact, CS i is at a low logic level after power-on, and for fuse 7 In the case of 30 burnout, CS i is at a high logic level after power-on. In order to cut the fuse 7 3 0, M R S P R C i is generated, thereby energizing the crystal P 7 and causing a large transient current to flow through the fuse 7 3 0. Note that this current also flows through fuse 7 4 0. Therefore, fuse 7 4 0 should be designed to operate this current without causing it to blow out first. In order to prevent the programming of the control block 2 8 i from reaching a high logic level, the laser cut-off fuse 7 4 0 is used. When fuse 7 4 0 is cut off, when M R S P R C i is generated, no transient current will flow through fuse 7 3 0. Although the above embodiment has shown a circuit that allows a single back-end repair operation, the present invention is not limited to this. For example, Fig. 14 is a block diagram of a 900 embodiment of a repair circuit capable of performing a double back-end repair operation. The repair circuit 9 0 0 has a redundant control block 9 3 1 to 9 3 η, an RCSL generator 9 4 1 to 9 4 η, and a rear-end repair control block 9 5 1 to 9 5 η, similar to the latter section shown in FIG. 7 Repair the circuit 2 0 0. However, the repair circuit 900 has two electrical fuse boxes 9 1 1 and 9 1 2 and two address comparators 9 2 1 and 9 2 2, which are different from the latter repair circuit 200. Through the mode register setting signals MRS 1 and MRSCAi, the two electric fuse units 9 1 1 and 9 1 2 can be programmed respectively. Note that the above-mentioned electrical fuse unit can use one mode register setting signal to strobe the remaining mode registers.
10559pif.ptd 第26頁 579525 五、發明說明(21) 存器設定信號,使得每一電性熔絲單元能夠被獨立地程 式設計。 溶絲單元9 1 1產生第一電性行位址£ c A 1 ,而熔絲單元 9 1 2則產生第二電性行位址ECA2。位址比較器92 1比較 與E C A 1並且當偵測到兩者相符時產生第一啟動信號e n 1。 位址比較器9 2 2比較CA與ECA2並且當偵測到兩者相兮士 生第二啟動信號EN2。 付日守產 第一及第二啟動信號(EN1 ,EN2)被輸入到γ教 塊9 3 1至9 3 η。 几^控制方 冗贅控制方塊9 31至9 3η根據來自後巧 卜 951至95!1之控制信號(08丨,卜1〜1])以3^修復控制方塊 修復啟動信號(ΕΝ1 ,ΕΝ2)可能執行雷射==和第二電性 復。然而,於電路9 〇 〇中,每一控制传 ^设或後段体 線路:一信號線路CSi 一1搭配EN1 ,/另、Csi包含兩信於 搭配EN2。當CSi —1及cSi_2兩者都仇於〜信號線路以广 時,冗贅控制方塊9 3 i將作為一雷射修低邏輯準位1〜2 位於一高邏輯準位且CSi—2位於一低趨,方塊。當CSi i 制方塊9 3 1將作為一後段修復控制方±鬼广準位時,冗寶 ECA1。而當CSi —1位於一低邏輯準位足/響應修復位址二 輯準位時,冗贅控制方塊9 3 i將作為〜 1〜2位於—高$ 以響應修復位址ECA2。 使段修復控制 為了產生兩個控制信號,所以每〜 塊 包含兩雷射熔絲及兩套類似於第9圖戶後段修復方 第I 5圖為第I 2圖之修復電路實施例2 〇之電路系 塊9 5 i 統。 之方塊 之變形10559pif.ptd Page 26 579525 V. Description of the invention (21) The register setting signal enables each electrical fuse unit to be programmed independently. The fuse unit 9 1 1 generates a first electrical row address £ c A 1, and the fuse unit 9 1 2 generates a second electrical row address ECA2. The address comparator 92 1 compares with E C A 1 and generates a first enable signal e n 1 when a match is detected. The address comparator 9 2 2 compares CA and ECA2 and generates a second enable signal EN2 when the two are detected. The first and second start signals (EN1, EN2) of Fu Ri Shou Chan are input to the gamma teaching blocks 9 3 1 to 9 3 η. The control party redundantly controls the control blocks 9 31 to 9 3η according to the control signals (08 丨, bu1 ~ 1] from Houqiaobu 951 to 95! 1, and repairs the start signal (ΕΝ1, ΕΝ2) with 3 ^ repair control block Possibly perform laser == and second electrical complex. However, in the circuit 900, each control circuit is provided with a circuit or a rear circuit: a signal line CSi-1 with EN1, and Csi includes two signals with EN2. When both CSi-1 and cSi_2 are hostile to the signal line, the redundant control block 9 3 i will be used as a laser to repair the low logic level 1 ~ 2 at a high logic level and CSi-2 at a high level. Low trend, square. When the CSi i block 9 3 1 will be used as a post-repair controller ± Gui Guang level, the redundant treasure ECA1. And when CSi — 1 is at a low logic level foot / response repair address second level, the redundant control block 9 3 i will be located at ~ 1 ~ 2 — high $ in response to the repair address ECA2. In order to generate two control signals for the segment repair control, each ~ block contains two laser fuses and two sets of repair circuits similar to those shown in Fig. 9. Fig. I 5 is the repair circuit of Fig. I 2 of the second embodiment. The circuit block 9 5 i system. Deformation of the cube
I0559pif.ptd 第27頁 579525 五、發明說明(22) 圖。這實施例允許更正兩種第1 2圖實施例所無法更正之 可能故障狀況。第一種故障狀況為有一行已經被雷射修 復,但是與上述雷射修復相關之修復行卻已接著故障。 第二種故障狀況為有一行已經被指定為後段修復行,但 是在這修復嘗試之後卻發現所指定之後段修復行是故障 的。不論是上述那一種狀況,第1 2圖實施例都無法以一 不同冗贅行對上述特定位址作進一步的修復,因為這必 須在上述位址能夠啟動兩不同修復行的情況下才可達 成。 為了解決這些故障狀況,第1 5圖實施例擴充後段修復 控制方塊超越的觀念。上述觀念被進一步應用在冗贅控 制方塊之間。如圖所示,冗贅控制方塊2 9 1產生超越信號 0VR1至冗贅控制方塊2 9 2,冗贅控制方塊2 92產生超越信 號0VR2至冗贅控制方塊2 9 3,而這種方式重複進行到冗贅 控制方塊2 9 η。任何在其輸入超越信號接收到低邏輯準位 之冗贅控制方塊將執行兩個動作來響應:第一,它將低 邏輯準位傳遞給下一個冗贅控制方塊本身所產生之超越 信號;第二,它將阻止產生本身之RCSLEN信號,縱使出 現一個原本會產生上述RCSLEN信號的位址符合情況。一 冗贅控制方塊在未受到阻止且位址符合其程式設計位址 的情況下也將產生本身之超越信號。 在實作上,對於本實施例冗贅控制方塊2 9 i與後段修 復控制方塊2 8 i可能由方塊η開始使用,並且持續向上進 行至方塊1。例如,假設在雷射修復期間,修復若干故障I0559pif.ptd Page 27 579525 V. Description of the invention (22) Figure. This embodiment allows the correction of possible fault conditions which cannot be corrected by the two Fig. 12 embodiments. The first fault condition is that one line has been repaired by the laser, but the repair line related to the above laser repair has subsequently failed. The second fault condition is that one row has been designated as a back-end repair line, but after this repair attempt, the specified back-end repair line is found to be faulty. Regardless of the above situation, the embodiment in FIG. 12 cannot further repair the specific address with a different redundant line, because this can only be achieved if the above address can start two different repair lines. . In order to solve these fault conditions, the embodiment in FIG. 15 expands the concept of post-repair control block transcendence. The above concepts are further applied between redundant control blocks. As shown in the figure, the redundant control block 2 9 1 generates the overrun signal 0VR1 to the redundant control block 2 9 2 and the redundant control block 2 92 generates the overrun signal 0VR2 to the redundant control block 2 9 3, and this method is repeated. Go to the redundant control block 2 9 η. Any redundant control block that receives a low logic level at its input override signal will perform two actions in response: first, it will pass the low logic level to the override signal generated by the next redundant control block itself; Second, it will prevent the generation of the RCSLEN signal itself, even if there is an address compliance situation that would originally generate the above RCSLEN signal. A redundant control block will generate its own override signal if it is not blocked and the address matches its programmed address. In practice, for this embodiment, the redundant control block 2 9 i and the subsequent repair control block 2 8 i may be used from the block n, and continue to go up to the block 1. For example, suppose that during laser repair, several faults are repaired
10559pif. ptd 第28頁 579525 五、發明說明(23) 行,而其中最後一個藉由雷射程式設計一已知修復位址 RA3至冗贅控制方塊2 9 3來修復,使得冗贅控制方塊2 92及 2 9 1可使用於後段修復(如上所述,因此在雷射修復期間 關閉後段修復控制方塊2 8 3至28η)。每當CA等於RA3並且 啟動CSLEN時冗贅控制方塊2 9 3產生RCSLEN3。 然後,在封裝之後以及在後段修復測試期間,於位址 R A 3偵測到一故障。這最可能意指與冗贅控制方塊2 9 3相 關之冗贅行已經發生故障。但是上述後段修復測試無法 告知這個位址已經被修復過一次,所以將再度嘗試修復 上述位址。首先程式設計位址RA3至電性熔絲盒2 1 0。然 後上述修復系統嘗試程式設計後段修復控制方塊2 8 η,但 是在雷射修復期間這個方塊被關閉,因此上述嘗試失 敗。在成功地程式設計一後段修復控制方塊之前,上述 修復系統嘗試程式設計控制方塊2 8 ( η- 1 )等等,直到控制 方塊282為止。一旦完成程式設計CS2將轉變至一邏輯高 準位。 現在,當測試行RA3時,CA符合ECA。因此ΕΝ與CS2兩 者皆產生,而控制方塊2 9 2產生RCSLEN2以選擇其相關之 冗贅行。同時,冗贅控制方塊轉變其超越信號0VR2至一 低邏輯準位。冗贅控制方塊2 9 3,由於感測到0VR2現在位 於一低邏輯準位,縱使其本身之内部位址比較器偵測到 符合的情況,仍然阻止產生RCSLEN3。 舉此例更進一步說明,也可能與RCSL2相關之修復行 是故障的。如此則不論如何電性後段修復,當測試行R A 310559pif. Ptd Page 28 579525 5. Description of the invention (23) line, and the last one is repaired by laser programming with a known repair address RA3 to redundant control block 2 9 3 to make redundant control block 2 92 and 2 9 1 can be used for rear-end repair (as mentioned above, so the rear-end repair control block 2 8 3 to 28η is closed during laser repair). The redundant control block 2 9 3 generates RCSLEN3 whenever CA is equal to RA3 and CSLEN is activated. Then, a failure was detected at the address R A 3 after packaging and during the post-repair test. This most likely means that redundant lines related to redundant control blocks 2 9 3 have failed. However, the above-mentioned post-repair test cannot tell that this address has been repaired once, so it will try to repair the above address again. First, program the address RA3 to the electrical fuse box 2 1 0. Then the above repair system tried to program the rear repair control block 2 8 η, but this block was closed during the laser repair, so the above attempt failed. Prior to successfully programming a control block to repair the latter stage, the above repair system attempts to program control block 2 8 (η-1) and so on until control block 282. Once programming is complete CS2 will transition to a logic high level. CA is now ECA compliant when testing line RA3. Therefore, both EN and CS2 are generated, and control block 2 9 2 generates RCSLEN2 to select its related redundant rows. At the same time, the redundant control block changes its overshoot signal 0VR2 to a low logic level. Redundant control block 2 9 3, because it is sensed that 0VR2 is now at a low logic level, even if its internal address comparator detects a match, it still prevents RCSLEN3 from being generated. Take this example to further explain that the repair line related to RCSL2 may also be faulty. In this way, no matter how the electrical rear repair, when the test line R A 3
10559pif.ptd 第 29 頁 579525 五、發明說明(24) 時仍然發生一故障(也許是一不同的故障)。上述後段修 復系統具有多一個後段修復控制方塊2 8 1可使用,因此將 程式設計後段修復控制方塊2 8 1。現在,c S 1與C S 2兩者皆 產生。當CA等於RA3時,冗贅控制方塊291 、292以及293 感測至一個内部位址符合的狀況。但是由於其〇 V R 1信號 而具有優先權之方塊291阻止冗贅控制方塊2 9 2產生 RCSLEN2(方塊292接著阻止冗贅控制方塊293)。 第1 6圖繪示可達成剛剛說明之功能之冗贅控制方塊 2 9 i之一實例。雷射熔絲盒6 1 1及位址比較器6 1 2運作方式 如同前面關於第8圖之說明。邏輯單元6 1 3對0 U T與控制信 號CSi作反或(NOR)運算以產生第一邏輯信號TS1#。第二 邏輯單元6 2 2對CSi #與電性修復啟動信號εν作反或(NOR) 運算以產生第二邏輯信號TS2#。反或(NOR)閘641取TS1# 及TS2#作為輸入’並且產生第三邏輯單元631之一輸入。 邏輯單元631之其他輸入為CSLEN與〇VR(i-l)。邏輯單元 6 3 1同時對這三個信號作及(a N D )運算以產生行選擇啟動 信號R C S L E N i。注意當〇 V R ( i - 1 )位於一邏輯低準位時,其 有效地阻止R C S L E N i的產生。 兩個額外的邏輯閘被用以產生輸出超越信號〇 V R丨。反 相器6 4 2倒置0 V R ( i - 1 ) 。N 0 R閘6 4 3接收N 0 R閘6 4 1之輸出與 反相器642之輸出(作為其輸入)。n〇R閘643之輸出成為輸 出超越信號OVRi。在操作期間,每當〇VR( i-l )為低準位 時將強制OVR i為低準位。若TS1 #及TS2#兩者皆為低準 位’意指冗贅控制方塊2 9 i已經偵測到一位址符合情況,10559pif.ptd Page 29 579525 V. Description of the invention (24) A fault still occurs (perhaps a different fault). The above-mentioned post repair system has an extra post repair control block 2 8 1 available, so the post repair repair block 2 8 1 is programmed. Both c S 1 and C S 2 are now produced. When CA is equal to RA3, the redundant control blocks 291, 292, and 293 sense an internal address matching condition. However, block 291 with priority due to its 0 V R 1 signal prevents redundant control block 2 9 2 from generating RCSLEN2 (block 292 then blocks redundant control block 293). Figure 16 shows an example of a redundant control block 2 9 i that can achieve the function just described. The operation of the laser fuse box 6 1 1 and the address comparator 6 1 2 is the same as that described above with reference to FIG. 8. The logic unit 6 1 3 performs an inverse OR (NOR) operation on 0 U T and the control signal CSi to generate a first logic signal TS1 #. The second logic unit 6 2 2 performs an inverse OR operation on the CSi # and the electrical repair start signal εν to generate a second logic signal TS2 #. The inverse OR gate (641) takes TS1 # and TS2 # as inputs' and generates one of the inputs of the third logic unit 631. The other inputs of logic unit 631 are CSLEN and VR (i-1). The logic unit 6 3 1 performs an AND operation (a N D) on the three signals simultaneously to generate a row selection start signal R C S L E N i. Note that when 0 V R (i-1) is at a logic low level, it effectively prevents the generation of R C S L E N i. Two additional logic gates are used to generate the output override signal OV R 丨. The inverter 6 4 2 inverts 0 V R (i-1). N 0 R gate 6 4 3 receives the output of N 0 R gate 6 4 1 and the output of inverter 642 (as its input). The output of the n〇R gate 643 becomes the output override signal OVRi. During operation, OVR (i-1) will be forced to the low level whenever OV (i-1) is at the low level. If both TS1 # and TS2 # are low level ’means that the redundant control block 2 9 i has detected a bit address compliance,
10559pif.ptd 第30頁 579525 五、發明說明(25) 則也將強制Ο V R i為低準位。 所說明之實施例可能有許多變形。例如,冗贅控制方 塊與冗贅記憶體線路之間的結合可能有多種組態。可能 只有部分冗贅控制方塊具有雙重模式(晶圓階段雷射熔絲 與後段修復程式設計)能力,而這種能力不需要擴充至所 有冗贅控制方塊。同樣地,也可能出現兩個後段修復定 址/比較單元,其中可在一部分上述冗贅控制方塊之中程 式設計上述定址/比較單元之一,並且可在另外一部分之 中程式設計另一單元,因而減少對於多重熔絲後段修復 控制方塊與多重C S i信號線路之需求。後段修復控制方塊 不需要與冗贅控制方塊有1 : 1的對應關係,例如,利用 解碼邏輯可能使用三個熔絲來產生七個單獨的C S i信號 (以及一個不作選擇的狀況)。 上述冗贅線路可能是以行方向排列之冗贅行,以列方 向排列之冗贅列,或者兩者皆是。若上述冗贅線路是冗 贅行,則故障行被取代,而若上述冗贅線路是冗贅列, 則故障列被取代。 雖然本發明已以一較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明 之精神和範圍内,當可作些許之更動與潤飾,因此本發 明之保護範圍當視後附之申請專利範圍所界定者為準。10559pif.ptd Page 30 579525 V. The description of the invention (25) will also force 0 V R i to a low level. The illustrated embodiment may have many variations. For example, the combination of redundant control blocks and redundant memory circuits may have multiple configurations. It is possible that only some redundant control blocks have dual-mode (wafer stage laser fuse and post-repair programming) capabilities, and this capability does not need to be extended to all redundant control blocks. Similarly, there may also be two post-fix repair addressing / comparison units, in which one of the above addressing / comparison units can be programmed in a part of the redundant control block, and another unit can be programmed in another part, Reduces the need for multiple fuse back-end repair control blocks and multiple CS i signal lines. The post-repair control block does not need to have a 1: 1 correspondence with the redundant control block. For example, the decoding logic may use three fuses to generate seven separate C S i signals (and an unselected condition). The above redundant lines may be redundant rows arranged in a row direction, redundant rows arranged in a column direction, or both. If the redundant line is a redundant line, the fault line is replaced, and if the redundant line is a redundant line, the fault line is replaced. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make some changes and retouch without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application.
10559pi f.ptd 第31頁 579525 圖式簡單說明 第1圖為如本發明之一實施例所述之半導體記憶體元件 之方塊圖; 第2圖為雙重模式修復電路之第一實施例之方塊圖; 第3圖繪示第2圖之冗贅控制方塊之詳細電路圖; 第4圖、第5圖以及第6圖繪示第2圖之電性熔絲方塊及 位址比較器之詳細電路圖; 第7圖為雙重模式修復電路之第二實施例之方塊圖,其 中上述實施例使用一種結合一電性熔絲盒與若干冗贅行 之一之方法; 第8圖繪示第7圖之冗贅控制方塊之詳細電路圖; 第9圖繪示第7圖之後段修復控制方塊之詳細電路圖; 第1 0圖繪示第9圖之後段修復控制方塊所輸入之開機信 號之波形圖, 第1 1圖繪示第4圖之後段修復控制方塊之另一實施例; 第1 2圖及第1 3圖為雙重模式修復電路之第三實施例之 修復電路方塊圖及後段修復控制方塊電路圖,其中上述 實施例具有電性熔絲後段修復方塊; 第1 4圖為雙重模式修復電路之第四實施例之方塊圖, 其中上述實施例具有兩個分開的後段修復電性熔絲方 塊,而兩者之中任一個皆可結合任何冗贅記憶體線路; 第1 5圖為雙重模式修復電路之第五實施例之方塊圖, 其中上述實施例具有能夠超越(〇 v e r r i d e )已失敗的先前 修復嘗試之冗贅控制方塊;以及 第1 6圖繪示第1 5圖之冗贅控制方塊之一實施例。10559pi f.ptd Page 31 579525 Brief Description of Drawings Figure 1 is a block diagram of a semiconductor memory device according to an embodiment of the present invention; Figure 2 is a block diagram of a first embodiment of a dual-mode repair circuit Figure 3 shows the detailed circuit diagram of the redundant control block of Figure 2; Figure 4, Figure 5 and Figure 6 show the detailed circuit diagram of the electrical fuse block and address comparator of Figure 2; FIG. 7 is a block diagram of a second embodiment of the dual-mode repair circuit, wherein the above embodiment uses a method combining an electrical fuse box with one of a number of redundant lines; FIG. 8 shows the redundancy of FIG. 7 The detailed circuit diagram of the control block; Fig. 9 shows the detailed circuit diagram of the repair control block in the subsequent stage of Fig. 7; Fig. 10 shows the waveform diagram of the power-on signal input to the repair control block in the subsequent stage of Fig. 9, Fig. 11 Another embodiment of the repair control block in the latter stage of FIG. 4 is shown. FIG. 12 and FIG. 13 are the repair circuit block diagram and the repair control block circuit diagram of the third embodiment of the dual-mode repair circuit. Electrical fuse Segment repair block; Figure 14 is a block diagram of a fourth embodiment of a dual-mode repair circuit, where the above embodiment has two separate back-end repair electrical fuse blocks, and either of the two can be combined with any Redundant memory circuit; FIG. 15 is a block diagram of a fifth embodiment of a dual-mode repair circuit, wherein the above embodiment has a redundant control block capable of overriding a previous repair attempt that has failed; and FIG. 6 illustrates an embodiment of the redundant control block of FIG. 15.
10559pif.ptd 第32頁 579525 圖式簡單說明 圖式標記說明: 20 半導 體記憶體元件 30 主單 元陣列 32 冗贅 單元陣列 34 讀出 放大器 40 列解 碼器 42 列位 址多工器 44 更新 控制器 46 更新 計數器 50 行解 碼器 60 指令 解碼器 62 模式 暫存器設定電路 70 指令 暫存器 80 位址 暫存器 90 資料 輸入/輸 出 暫 存器 1 00 冗贅行控制 電 路 110 電性熔絲盒 1 20 位址比較器 13 1 電性冗贅控 制 方 塊 132 雷射冗贅控 制 方 塊 133 雷射冗贅控 制 方 塊 1 3 i 雷射冗贅控 制 方 塊 13η 雷射冗贅控 制 方 塊10559pif.ptd Page 32 579525 Schematic descriptions Schematic descriptions: 20 Semiconductor memory elements 30 Main unit array 32 Redundant unit array 34 Sense amplifier 40 Column decoder 42 Column address multiplexer 44 Update controller 46 Update counter 50 line decoder 60 instruction decoder 62 mode register setting circuit 70 instruction register 80 address register 90 data input / output register 1 00 redundant line control circuit 110 electrical fuse box 1 20 Address Comparator 13 1 Electrical redundancy control block 132 Laser redundancy control block 133 Laser redundancy control block 1 3 i Laser redundancy control block 13η Laser redundancy control block
10559pif.ptd 第33頁 57952510559pif.ptd Page 33 579525
圖式簡單說明 14 1 冗 贅 行 選 擇 信 號 (RCSL) 產 生 器 142 冗 贅 行 選 擇 信 號 (RCSL) 產 生 器 143 冗 贅 行 選 擇 信 號 (RCSL) 產 生 器 14η 冗 贅 行 選 擇 信 號 (RCSL) 產 生 器 1 50 雷 射 熔 絲 盒 /位址比較器 1 52 反 及 閘 1 54 反 相 器 1 60 反 及 閘 1 62 反 相 器 200 冗 贅 行 控 制 電 路 2 10 電 性 熔 絲 盒 220 位 址 比 較 器 23 1 冗 贅 控 制 方 塊 232 冗 贅 控 制 方 塊 233 冗 贅 控 制 方 塊 23 1 冗 贅 控 制 方 塊 2 3η 冗 贅 控 制 方 塊 241 冗 贅 行 選 擇 信 號 (RCSL) 產 生 器 242 冗 贅 行 選 擇 信 號 (RCSL) 產 生 器 243 冗 贅 行 選 擇 信 號 (RCSL) 產 生 器 24η 冗 贅 行 選 擇 信 號 (RCSL) 產 生 器 25 1 後 段 修 復 控 制 方 塊 252 後 段 修 復 控 制 方 塊 253 後 段 修 復 控 制 方 塊 10559pif.ptd 第34頁 579525Schematic description 14 1 Redundant row selection signal (RCSL) generator 142 Redundant row selection signal (RCSL) generator 143 Redundant row selection signal (RCSL) generator 14η Redundant row selection signal (RCSL) generator 1 50 Laser fuse box / address comparator 1 52 Inverter 1 54 Inverter 1 60 Inverter 1 62 Inverter 200 Redundant row control circuit 2 10 Electrical fuse box 220 Address comparator 23 1 Redundant control block 232 Redundant control block 233 Redundant control block 23 1 Redundant control block 2 3η Redundant control block 241 Redundant row selection signal (RCSL) generator 242 Redundant row selection signal (RCSL) generator 243 Redundant line selection signal (RCSL) generator 24η Redundant line selection signal (RCSL) generator 25 1 Back-end repair control block 252 Back-end repair control block 253 Back-end repair control block 10559pif.pt d p. 34 579525
圖式簡單說明 25 1 後 段 修 復 控 制 方 塊 25η 後 段 修 復 控 制 方 塊 260 模 式 暫 存 器 設 定 電路 27 i 後 段 修 復 控 制 電 路 28 1 後段修復控制 方 塊 282 後 段 修 復 控 制 方 塊 283 後 段 修 復 控 制 方 塊 28 1 後段修復控制 方 塊 28η 後段修復控制 方 塊 290 模 式 暫 存 器 -j-ru 5又 定 電路 29 1 冗 贅 控 制 方 塊 292 冗 贅 控 制 方 塊 293 冗 贅 控 制 方 塊 29 i 冗 贅 控 制 方 塊 29η 冗 贅 控 制 方 塊 3 1a 電 性 熔 絲 單 元 3 10 電 性 熔 絲 單 元 31 1 電 性 熔 絲 單 元 3 1 1 電 性 熔 絲 單 元 3 1k 電 性 熔 絲 單 元 41 1 第 一 /r/r 即 點 41 2 第 二 /r/r 即 點 5 10 比 較 單 元 5 11 比 較 單 元 10559pif.ptd 第35頁 579525 圖式簡單說明 5 1k 比較單元 5 2 0 π及π邏輯閘 5 2 2 "及"邏輯閘 5 2 4 π及”邏輯閘 6 10 雷射修復處理元件 6 11 雷射熔絲盒 6 12 位址比較器 6 13 第一邏輯單元 6 2 0 後段修復處理元件 62 1 反相器 6 2 2 第二邏輯單元 63 1 第三邏輯單元 641 反或閘 6 4 2 反相器 6 4 3 反或閘 7 10 後段修復熔絲 7 12 反相器 714 反相器 7 2 0 反相器 7 2 2 反相器 7 3 0 電性熔絲 7 4 0 雷射熔絲 8 12 節點 8 2 0 節點Brief description of the drawing 25 1 Back-end repair control block 25η Back-end repair control block 260 Mode register setting circuit 27 i Back-end repair control circuit 28 1 Back-end repair control block 282 Back-end repair control block 283 Back-end repair control block 28 1 Back-end repair control block 28 1 28η Back-end repair control block 290 Mode register-j-ru 5 and set circuit 29 1 Redundant control block 292 Redundant control block 293 Redundant control block 29 i Redundant control block 29η Redundant control block 3 1a Electrical fuse Fuse unit 3 10 Electrical fuse unit 31 1 Electrical fuse unit 3 1 1 Electrical fuse unit 3 1k Electrical fuse unit 41 1 First / r / r ie point 41 2 Second / r / r ie Point 5 10 comparison unit 5 11 comparison unit 10559pif.ptd page 35 579525 simple illustration of the diagram 5 1k comparison unit 5 2 0 π and π logic gate 5 2 2 " and " logic gate 5 2 4 π and "logic gate 6 10 Laser repair processing element 6 11 Laser fuse box 6 12 Address comparator 6 13 First logic unit 6 2 0 Back-end repair processing element 62 1 Inverter 6 2 2 Second logic unit 63 1 Third logic unit 641 OR gate 6 4 2 Inverter 6 4 3 Invertor 7 7 Back-end repair fuse 7 12 Inverter 714 Inverter 7 2 0 Inverter 7 2 2 Inverter 7 3 0 Electrical fuse 7 4 0 Laser fuse Silk 8 12 node 8 2 0 node
10559pi f.ptd 第36頁 57952510559pi f.ptd p. 36 579525
圖式簡單說明 830 焊 接 墊 900 雙重後段修復操作之修復電路 9 11 電 性 溶 絲 盒 9 12 電 性 熔 絲 盒 92 1 位 址 比 較 器 922 位 址 比 較 器 93 1 冗 贅 控 制 方 塊 932 冗 贅 控 制 方 塊 933 冗 贅 控 制 方 塊 93η 冗 贅 控 制 方 塊 94 1 冗 贅 行 選 擇 信號(R C S L ) 產 生 器 942 冗 贅行選擇信號(RCSL)產 生 器 943 冗 贅行選擇信號(RCSL) 產 生 器 94η 冗 贅 行 選 擇 信號(RCSL) 產 生 器 95 1 後段修復控制方塊 952 後段修復控制方塊 953 後段修復控制方塊 95η 後段修復控制方塊 ADD 位 址 匯 流 排 CA 行位址 CAO 外 部 位 址 位 元 CA1 外 部 位 址 位 元 CAk 外 部 位 址 位 元 CMD 指 令 匯 流 排 10559pif.ptd 第37頁 579525 圖式簡單說明 CS1 控 制 信號 CS2 控 制 信號 CS3 控 制 信號 CS1_1 匹 酉己ΕΝ 1 之信 號 線 路 CS2_1 匹 酉己ΕΝ 1 之信 號 線 路 CS3_1 匹 S己ΕΝ 1 之信 號 線 路 CSn_l 匹 酉己ΕΝ 1 之信 號 線 路 CS1_2 匹 酉己EN 2 之信 號 線 路 CS2_2 匹 酉己E N 2 之信 號 線 路 CS3_2 匹 酉己EN 2 之信 號 線 路 CSn_2 匹 酉己EN 2 之信 號 線 路 CSi 控 制 信號 CSi# 反相控制 信號 CSn 控 制 信號 CSLEN 行 選擇啟動信號 ECA 電 性 熔絲位址 ECAO 電性修復 位址 位 元 ECA1 第- -電性 行位 址 ECA2 第二 二電性 行位 址 ECAk 電性修復 位址 位 元 EN 電性修復啟 動信 號 EN1 第 一 啟動信號 EN2 第 二 啟動信號 FI 第- -熔絲Schematic description of 830 Welding pad 900 Repair circuit for double rear repair operation 9 11 Electrical fuse box 9 12 Electrical fuse box 92 1 Address comparator 922 Address comparator 93 1 Redundant control block 932 Redundant control Block 933 Redundant control block 93η Redundant control block 94 1 Redundant row selection signal (RCSL) generator 942 Redundant row selection signal (RCSL) generator 943 Redundant row selection signal (RCSL) generator 94η Redundant row selection Signal (RCSL) generator 95 1 Back-end repair control block 952 Back-end repair control block 953 Back-end repair control block 95η Back-end repair control block ADD Address bus CA Row address CAO External address bit CA1 External address bit CAk External Address Bit CMD Instruction Bus 10559pif.ptd Page 37 579525 The diagram briefly explains CS1 control signal CS2 control signal CS3 control signal CS1_1 1 signal line CS2_1 signal line CS3_1 signal line SCN1 signal line CSn_1 signal line CS1_2 signal line EN2 signal line CS2_2 signal line CS2_2 of EN 2 Signal line CSn_2 of EN 2 Signal line CS2 of EN 2 CSi Control signal CSi # Inverted control signal CSn Control signal CSLEN Row selection start signal ECA Electrical fuse address ECAO Electrical repair address bit ECA1 --Electrical line address ECA2 22nd Electrical line address ECAk Electrical repair address bit EN Electrical repair start signal EN1 First start signal EN2 Second start signal FI Section--Fuse
10559pif.ptd 第38頁 579525 圖式簡單說明 F 2 第二熔絲 LCA 雷射熔絲位址 Μ A 主存取信號 MRS 模式暫存器設定電路 MRS1 第一輸入信號 MRS2 第二輸入信號 M R S A 权式暫存為'設定電路之程式設計輸入 MRSCAO 模式暫存器設定電路之程式設計輸入 MRSCA1 模式暫存器設定電路之程式設計輸入 MRSCAi 模式暫存器設定電路之程式設計輸入 MRSCAk 模式暫存器設定電路之程式設計輸入 M R S P R C 1 控制線路 MRSPRC i 控制線路 MRSPRCn 控制線路 N1NM0S 電晶體 N2NM0S 電晶體 N3NM0S 電晶體 N4NM0S 電晶體 N5NM0S 電晶體 N6NM0S 電晶體 N7NM0S 電晶體 N8NM0S 電晶體 N9NM0S 電晶體 OUT 輸出信號10559pif.ptd Page 38 579525 Brief description of the diagram F 2 Second fuse LCA Laser fuse address M A Main access signal MRS mode register setting circuit MRS1 First input signal MRS2 Second input signal MRSA Weight Temporary programming as 'setting circuit' input MRSCAO mode register setting circuit programming input MRSCA1 mode register setting circuit programming input MRSCAi mode register setting circuit programming input MRSCAk mode register setting circuit Programming input MRSPRC 1 control line MRSPRC i control line MRSPRCn control line N1NM0S transistor N2NM0S transistor N3NM0S transistor N4NM0S transistor N5NM0S transistor N6NM0S transistor N7NM0S transistor N8NM0S transistor N9NM0S transistor OUT output signal
10559pif.ptd 第39頁 579525 圖式簡單說明 0VR1 超越信號 0VR2 超越信號 0VR3 超越信號 〇V R ( 1 - 1 ) 超越信號 OVR 1 超越信號 〇V R ( η - 1 ) 超越信號 PI PMOS 電晶體 P2PM0S 電晶體 P3PM0S 電晶體 P4PM0S 電晶體 P5PM0S 電晶體 P6PM0S 電晶體 P7PM0S 電晶體 RA 列位址 RCSL1 冗贅行選擇信號 RCSL2 冗贅行選擇信號 R C S L 3 冗贅行選擇信號 RCSLn 冗贅行選擇信號 RCSLEN1 冗贅行選擇(RCSL)啟動信號 RCSLEN2 冗贅行選擇(RCSL)啟動信號 RCSLEN3 冗贅行選擇(RCSL)啟動信號 RCSLENi 冗贅行選擇(RCSL)啟動信號 RCSLENn 冗贅行選擇(RCSL )啟動信號 RSLEN 列選擇啟動信號10559pif.ptd Page 39 579525 Brief description of the diagram 0VR1 Override signal 0VR2 Override signal 0VR3 Override signal 〇VR (1-1) Override signal OVR 1 Override signal 〇VR (η-1) Override signal PI PMOS Transistor P2PM0S Transistor P3PM0S Transistor P4PM0S Transistor P5PM0S Transistor P6PM0S Transistor P7PM0S Transistor RA Column Address RCSL1 Redundant row selection signal RCSL2 Redundant row selection signal RCSL 3 Redundant row selection signal RCSLn Redundant row selection signal RCSLEN1 Redundant row selection (RCSL ) Startup signal RCSLEN2 Redundant row selection (RCSL) Startup signal RCSLEN3 Redundant row selection (RCSL) Startup signal RCSLENi Redundant row selection (RCSL) Startup signal RCSLENn Redundant row selection (RCSL) Startup signal RSLEN Column selection start signal
10559pi f. ptd 第40頁 57952510559pi f. Ptd p. 40 579525
10559pi f.ptd 第41頁10559pi f.ptd Page 41
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/160,703 US6704228B2 (en) | 2001-12-28 | 2002-05-30 | Semiconductor memory device post-repair circuit and method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200307294A TW200307294A (en) | 2003-12-01 |
TW579525B true TW579525B (en) | 2004-03-11 |
Family
ID=32925454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91135808A TW579525B (en) | 2002-05-30 | 2002-12-11 | Semiconductor memory device post-repair circuit and method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW579525B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI511235B (en) * | 2009-12-23 | 2015-12-01 | Electro Scient Ind Inc | Adaptive processing constraints for memory repair |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100921831B1 (en) * | 2007-12-27 | 2009-10-16 | 주식회사 하이닉스반도체 | Fuse monitoring circuit for semiconductor memory device |
-
2002
- 2002-12-11 TW TW91135808A patent/TW579525B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI511235B (en) * | 2009-12-23 | 2015-12-01 | Electro Scient Ind Inc | Adaptive processing constraints for memory repair |
Also Published As
Publication number | Publication date |
---|---|
TW200307294A (en) | 2003-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100498456B1 (en) | Semiconductor memory device post-repair circuit and Method | |
KR102117633B1 (en) | Self repair device | |
TW550578B (en) | Semiconductor memory device with efficient and reliable redundancy processing | |
KR102170322B1 (en) | Shared error detection and correction memory | |
US8737146B2 (en) | Semiconductor memory device having redundancy circuit for repairing defective unit cell | |
US7254069B2 (en) | Semiconductor memory device storing redundant replacement information with small occupation area | |
US10410733B2 (en) | Memory device and controlling method thereof | |
JP3597501B2 (en) | Semiconductor integrated circuit | |
JPS6329360B2 (en) | ||
JP3821637B2 (en) | Semiconductor integrated circuit device | |
JPH06195999A (en) | Method and circuit for burn-in test of semiconductor memory device | |
KR102253011B1 (en) | Repair circuit and semiconductor memory device including the same | |
JP2005529571A (en) | Feed register for continuous fuse latch operation | |
KR20150041330A (en) | Semiconductor memory device and operating method thereof | |
JP4685282B2 (en) | Semiconductor memory device capable of multi-row address test and test method thereof | |
TW579525B (en) | Semiconductor memory device post-repair circuit and method | |
JP4430298B2 (en) | Post-repair circuit and method for semiconductor memory device | |
JP4153091B2 (en) | Semiconductor memory device | |
JP3952259B2 (en) | DEFECT ADDRESS STORAGE CIRCUIT FOR SEMICONDUCTOR MEMORY DEVICE | |
JP4890864B2 (en) | Non-volatile semiconductor memory device with wired OR structure in which data transmission from defective page buffer is blocked | |
US7546491B2 (en) | Semiconductor memory device with standby current failure judging function and method for judging standby current failure | |
US8717834B2 (en) | Programming circuit using antifuse | |
JP2004013930A (en) | Semiconductor device | |
KR20140081345A (en) | Semiconductor memory device | |
KR960013026B1 (en) | Semiconductor memory device capable of verifying use of redundant circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |