TW579519B - Semiconductor memory device - Google Patents

Semiconductor memory device Download PDF

Info

Publication number
TW579519B
TW579519B TW091133601A TW91133601A TW579519B TW 579519 B TW579519 B TW 579519B TW 091133601 A TW091133601 A TW 091133601A TW 91133601 A TW91133601 A TW 91133601A TW 579519 B TW579519 B TW 579519B
Authority
TW
Taiwan
Prior art keywords
signal
bit
mentioned
mode
refresh
Prior art date
Application number
TW091133601A
Other languages
Chinese (zh)
Other versions
TW200307289A (en
Inventor
Takeo Okamoto
Tetsuichiro Ichiguchi
Hideki Yonetani
Tsutomu Nagasawa
Makoto Suwa
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW200307289A publication Critical patent/TW200307289A/en
Application granted granted Critical
Publication of TW579519B publication Critical patent/TW579519B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/405Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4087Address decoders, e.g. bit - or word line decoders; Multiple line decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1015Read-write modes for single port memories, i.e. having either a random port or a serial port
    • G11C7/1045Read-write mode select circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/10Decoders

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

A row address decoder of a semiconductor memory device generates internal row address signals RAD0:11 and /RAD0:11 by switching most significant bit and least significant bit of row address signals RA0:11 and /RA0:11 that correspond to address signals A0 to A11, respectively. In a twin cell mode, the least significant bits RAD0 and /RAD0 of the internal row address signals corresponding to the most significant bits RA11 and /RA11 of the row address signal that are not used are selected simultaneously by row address decoder, and two adjacent word lines are activated simultaneously. Consequently, the configuration of memory cell in the semiconductor memory device can electrically be switched from the normal single memory cell type to the twin memory cell type.

Description

579519 玖、發朋說明 【發明所屬之技術領域】 本發明係關於一種半導體記憶裝置’尤其是關於一種使 用二個記憶單元可儲存以二進位資訊表示之記憶資訊之1 位元份記憶資料的半導體記憶裝置。 【先前技術】 作爲半導體記憶裝置之代表例之一的DRAM(Dynamic Random Access Memory:動態隨機存取I己憶體),其通常儲 存1位元資料的記憶單元之構成係包含有一個電晶體、及一 個電容器,且由於記憶單元本身之構造單純,所以最適於 半導體裝置之高集成化及大容量化,並可用於各式各樣的 電子機器中。 圖13係顯示於DRAM (以下,將該種的DRAM稱爲單一 記憶單元型)中之記憶單元陣列上排列成行列狀之記憶單 元構成的電路圖,該DRAM之儲存1位元資料之記憶單元 的構成係包含有一個電晶體及一個電容器。 參照圖13,記憶單元100,係包含有N通道MOS電晶 體N101及電容器C101。N通道MOS電晶體N101,係連 接在位元線BL及電容器C 1 0 1上,其閘極係連接在字線 WL上。與電容器C101和N通道MOS電晶體N101間之連 接端不同的另一端,係連接在單元板110上。 N通道MOS電晶體N101,係由只在資料寫入時及資料 讀出時才活化的字線W L所驅動,且只在資料寫入時及資 料讀出時導通,而除此以外之時間則截止。 5 326\ 專利說明書(補件)92-02\91133601.doc 579519 電容器C 1 Ο 1,係按照是否有蓄積電荷,而儲存二進位資 訊” 1”、”0”。當對電容器C 1 0 1寫入資料時,就會對應寫入 資料而預先使位元線BL預充電至電源電壓Vcc或接地電 壓V D D。然後,藉由字線W L活化而使N通道Μ 0 S電晶 · 體Ν 1 0 1導通,並從位元線B L經由Ν通道Μ 0 S電晶體Ν 1 0 1 % 而將對應二進位資訊” 1 ”” ”的電壓施加在電容器 C 1 0 1 上。藉此可進行電容器C101之充放電,且可進行資料之 寫入。 ί 另一方面,當進行資料之讀出時,預先使位元線B L預 充電至電壓Vcc/2。然後,藉由字線WL活化而使Ν通道 MOS電晶體N101導通,並使位元線BL與電容器C101通 電。藉此,相應於電容器C 1 0 1之蓄電狀態的微小電壓變 化就會出現在位元線B L上,而未圖示之感測放大器就會 將該微小電壓變化放大至電壓Vcc或接地電壓GND。該位 元線B L之電壓位準係對應被讀出的資料之狀態。 在此,在DRAM之記憶單元中,相當於記憶資料之電容 | 器C101的電荷會因各種的要因而漏電,並逐漸地消失。 亦即,記憶資料會隨著時間而消失。因此,在D R A Μ中, 於資料讀出時,在無法檢測出對應記億資料之位元線B L 的電壓變化以前,在一旦讀出資料之後會執行所謂再次寫 < 入的復新動作。 % 該復新動作,在DRAM中雖是不可或缺的,但是從動作 之高速化的觀點來看該復新動作反而成爲缺點。因此,爲 人所知者,係一種藉由形成對1位元之記憶資料分配二個 , 6 326\專利說明書(補件)92-02\91133601 .doc 記憶單元的雙記憶單元型之記憶體構成,即可加長復新動 作之間隔,且可謀求對記憶資料存取之高速化的技術。 圖1 4係顯示於雙記憶單元型DRAM中之記憶單元陣列 上排列成行列狀之記憶單元構成的電路圖。 參照圖14,該DRAM中之記憶單元,係採用對1位元之 記憶資料’分配分別儲存其記憶資料與該記憶資料之反轉 資料的二個記憶單元100A、100B之雙記憶單元型的構 成。記憶單元100A,係包含有N通道MOS電晶體N102 及電容器C102 ;而記憶單元100B,係包含有N通道MOS 電晶體N103及電容器C103。 N通道MOS電晶體N102,係連接在位元線對BL、/BL 之一方位元線B L及電容器C 1 0 2上,其閘極係連接在字線 WLn(n爲0以上的偶數)上。N通道MOS電晶體N102,係 由只在資料寫入時及資料讀出時才活化的字線WLn所驅 動,且只在資料寫入時及資料讀出時導通,而除此以外之 時間則截止。 N通道MOS電晶體N103’係連接在位元線對bl、/BL 之另一方位元線/BL及電容器C103上,其閘極係連接在字 線WLn + i上。N通道MOS電晶體N103,係由與WLn同時 活化的WLn + 1所驅動,且只在資料寫入時及資料讀出時導 通,而除此以外之時間則截止。 電谷窃C102、C103’係按照是否有蓄積電荷,而儲存二 進位資訊”1”、”〇”。電容器C103,係儲存電容器cl〇2所 儲存之記憶資料的反轉資料。電容器c 1 02之一端係連接 326\專利說明書(補件)92-02\91133601 .doc 7 在N通道MOS電晶體N102上,而另一端係連接在單元板 110上。電容器C103之一端係連接在n通道MOS電晶體 N103上’而另一端係連接在單元板11〇上。 當對電容器C 1 02、C 1 03寫入1位元之記憶資料時,就 會對應寫入資料而使位元線BL預充電至電源電壓Vcc或 接地電壓VDD中之一個電位,並使位元線/BL預充電至與 位元線BL不同的另一方電壓。然後,藉由字線wLn、WLn + 1 同時活化而使N通道MOS電晶體N1 02、1 03同時導通, 並從位元線B L經由N通道Μ 0 S電晶體N 1 0 2而將對應記 憶資料的電壓施加在電容器C 1 0 2上;從位元線/B L經由Ν 通道MOS電晶體Ν1 03而將對應記憶資料之反轉資料的電 壓施加在電容器C103上。藉此可對電容器C102、C103進 行1位元份之記憶資料的寫入。 另一方面,當進行資料之讀出時,預先使位元線B L、/B L 均預充電至電壓Vcc/2。然後,藉由字線WLn、WLn + I同時 活化而使N通道MOS電晶體N102、N103同時導通,使位 元線BL與電容器C102通電,使位元線/BL與電容器C103 通電。藉此,就會在位元線BL、/BL上出現互呈相反方向 之微小電壓變化,而未圖示之感測放大器則會檢測出位元 線BL、/BL之電位差並放大至電壓Vcc或接地電壓GND。 該被放大之電壓位準係對應被讀出的資料之狀態。 該雙記憶單元,由於係對1位元之資料分配二個記憶單 元,所以與習知之記憶單元相較雖確實會使記憶單元之面 積變成2倍,但是由於二個記憶單元儲存有互爲反轉的資 326\專利說明書(補件)92-〇2\911336〇l.doc 579519 訊,所以有位元線對B L、/B L間之電位差的振幅會變大, 動作較穩定化,且可增大復新動作之間隔的優點。 再者,在目前之雙記憶單元型DRAM中,雖然在資料讀 出時,與上述單一記憶單元型DRAM同樣,位元線對BL、 /BL會預充電至1/2 Vcc之電壓,但是該情祝,當記憶資料 由位元線對B L、/B L讀出時,由於位元線對B L、/B L之電 壓會互相變化成相反方向,所以當與上述單一記億單元型 DRAM相較時,有對應記憶資料之位元線上的電壓變化之 振幅變成2倍,而雙記憶單元型DRAM,於資料讀出時可 對資料高速存取的優點。 如上所述,圖1 3所示之單一記憶單元型DRAM、與圖 1 4所示之雙記憶單元型DRAM,只有對1位元之記憶資料 是分配一個記憶單元或是分配二個記憶單元方面有所差 異,其餘記憶單元之基本構造,則兩者相同。因此,在半 導體記憶裝置之製程中,若非從最初即分開製作單一記憶 單元型與雙記憶單元型,而是在製造過程途中可將單一記 憶單元型切換成雙記憶單元型的話,則可預見具有製程之 刪減或柔性對應級數等、及製造成本刪減的優點。 在此,在將單一記憶單元型切換成雙記憶單元型時,雖 可利用鋁佈線之圖案切換以在佈線步驟中進行切換,但是 該方法,需要將光罩圖案分開,且由於如此作業將使光罩 步驟亦隨之不同,故而無法充分地刪減製造成本。 另一方面,若能不伴隨半導體記憶裝置之構造上的切換 而進行電氣切換的話,則在單一記憶單元型與雙記憶單元 9 326\專利說明書(補件)92-02\91133601 .doc 型中可統一光罩圖案,且由於亦可統一光罩步驟,所以可 大幅刪減製造成本。 【發明內容】 因此,本發明係爲了解決該種問題而開發完成者,其目 的在於提供一種在記憶單元之構成中可將單一記憶單元型 切換成雙記憶單元型的半導體記億裝置中,可以電氣方式 進行該切換作業的半導體記憶裝置。 若依據本發明,則一種半導體記憶裝置,係具備有··記 憶單元陣列,包含排列成行列狀的複數個記憶單元;排列 於列方向的複數條字線;排列於行方向的複數條位元線 對;以及解碼器,根據複數個記憶單元之各個所特別指定 的位址信號,從複數條字線及複數條位元線對中分別選擇 特別指定之字線及特別指定之位元線對;其中,當使用二 個記憶單元來儲存以二進位資訊表示的記憶資訊之1位元 份記憶資料用的雙單元模式信號被活化時,解碼器將選擇 使二個記憶單元活化用的字線與位元線對,而二個記憶單 元’則分別儲存記憶資料及記憶資料之反轉資料。 較佳者爲,其中解碼器,係生成根據位址信號而選擇特 別指定之字線用的內部列位址信號,當雙單元模式信號被 活化時’則同時選擇內部列位址信號之指定位元的邏輯位 準對應第一邏輯位準時的第一字線、及指定位元的邏輯位 準對應第二邏輯位準時的第二字線。 較佳者爲,其中指定位元,係內部列位址信號之最下階 位元;解碼器,係當雙單元模式信號被活化時將成爲不使 10 326\專利說明書(補件)92-02\91133601.doc 用的位址信號之最上階位元分配至內部列位址信號之最下 階位元,而將位址信號之最下階位元分配至內部列位址信 號之最上階位元。 較佳者爲,一種半導體記憶裝置,其更具備有爲了保持 記憶資訊而定期執行復新動作用的復新控制電路;復新控 制電路,係產生用以指定成爲復新動作對象之記憶單元列 的復新列位址;復新列位址,係包含有至少1位元之部分 自我復新位址位元,俾其以記憶單元陣列之一部分區域爲 對象而用以指定復新動作的執行;解碼器,係包含有選擇 電路,俾其從依雙單元模式信號是否被活化而異的復新列 位址中選擇至少1位元之部分自我復新位址位元。 如以上所述,在本發明之半導體記憶裝置中,根據雙單 元模式信號,即可以電氣方式從具有作爲通常單一記憶單 元型之功能的半導體記憶裝置切換至具有作爲雙單元記憶 單元型之功能的半導體記憶裝置。 因而,若依據本發明之半導體記憶裝置,則沒有必要切 換光罩圖案來分別製作,而可藉由刪減光罩數、製程數等 進而刪減製造成本。 【實施方式】 (發明所實施之最佳形態) 以下,係邊參照圖式而邊詳細說明本發明之實施形態。 另外,在圖中相同或相當的部分上附記相同的元件符號而 不重複其說明。 (實施形態1) 11 326\專利說明書(補件)92-02\91133601 .doc 579519 圖1係顯示本發明實施形態1之半導體記憶裝置整體構 成的槪略方塊圖。 參照圖1,半導體記憶裝置1 〇,係包含有控制信號端子 1 2、位址端子1 4及資料輸出入端子1 6。又,半導體記憶 “ 裝置1 0,包含有控制信號緩衝器1 8、位址緩衝器20及輸 · 出入緩衝器22。更且,半導體記憶裝置1 0,包含有控制電 路2 4、列位址解碼器2 6、行位址解碼器2 8、輸出入控制 電路3 0、感測放大器3 2及記億單元陣列3 4。 | 另外,在圖1中,就半導體記憶裝置1 0而言,只有代 表性地顯示關於資料輸出入的主要部分而已。 記憶單元陣列3 4,係記億單元排列成行列狀的記億元件 群;且由可個別獨立動作的四個群組所構成。又,相對應 於記億單元陣列3 4由四個群組所構成,列位址解碼器2 6、 行位址解碼器2 8、輸出入控制電路3 0及感測放大器3 2亦 分別各自具備有四個。 控制信號端子1 2,係接受晶片選擇信號/CS、列位址選 | 通信號/RAS、行位址選通信號/CAS及寫入致能信號/WE 的指令控制信號。控制信號緩衝器1 8,係從控制信號端子 12中取入晶片選擇信號/CS、列位址選通信號/RAS、行位 址選通信號/CAS及寫入致能信號/WE並予以閂鎖’再輸出 、 至控制電路2 4。 、. 位址端子14,係接受位址信號A0〜An (η爲自然數)及群 組位址信號ΒΑ0、ΒΑ1。位址緩衝器20,係包含未圖示之 列位址緩衝器及行位址緩衝器。位址緩衝器20之列位址緩 12 326\專利說明書(補件)92-02\91133601 .doc 579519 衝器’係取入位址信號AO〜An及群組位址信號BAO、BAl 並予以閂鎖,再對與群組位址信號BAO、BA1所指示之群 組相對應的列位址解碼器2 6,輸出列位址信號R A < 0 : η >、/RA< 〇 : η> (相對於任意的符號X,χ< 〇 ·· 係表 示X < 0 >〜X < η >)。又,位址緩衝器2 〇之行位址緩衝器, 係取入位址信號Α0〜An及群組位址信號BAO、ΒΑ1並予以 閂鎖’再對與群組位址信號B A 0、B A 1所指示之群組相對 應的行位址解碼器28,輸出行位址信號CA < 0 : n >、/CA < 0 : η > 。 資料輸出入端子1 6,係在半導體記憶裝置1 〇中將被讀 寫的資料與外部進行輸出輸入的端子;當資料寫入時接受 由外部輸入的資料DQ0〜DQi(I爲自然數),而當資料讀出 時則將資料DQ0〜DQi朝外部輸出。輸出入緩衝器22,係 在資料寫入時,取入資料DQ0〜DQi並予以閂鎖,再將內部 資料ID Q朝輸出入控制電路30輸出。另一方面,輸出入 緩衝器2 2,係在資料讀出時,將從輸出入控制電路3 0所 接受的內部資料IDQ朝資料輸出入端子16輸出。 控制電路2 4,係從控制信號緩衝器1 8取入指令控制信 號,並根據所取入的指令控制信號來控制列位址解碼器 26、行位址解碼器28及輸出入緩衝器22。 列位址解碼器2 6,係根據從位址緩衝器2 0所接受的列 位址信號R A < 0 : η >、/RA <0: n>,而生成用以選擇記 憶單元陣列3 4上之字線的信號R A D < 0 : η >、/ R A D < 0 : η >。然後,列位址解碼器2 6,則根據信號R A D < 0 : η >、 13 3抓專利說明書(補件)92-02\91133601 .doc /RAD < ·0 : η >來解碼列位址,並選擇與該經解碼過 址相對應的記憶單元陣列3 4上之字線。然後,可依 之字元驅動器而使被選擇的字線活化。 又,行位址解碼器2 8,係根據從位址緩衝器2 0 的行位址信號CA < 0 : η >、/CA < 0 : η >來解碼行 以選擇與該經解碼過之行位址相對應的記億單元降 上之位元線對。 在資料寫入時,輸出入控制電路30,係將從輸出 器22所接受的內部資料IDQ輸出至感測放大器32 感測放大器3 2,則按照內部資料id Q之邏輯位準, 位址解碼器2 8所選出的位元線對預充電至電源電 或接地電壓GND。藉此,就可對連接在字線、與位 上的記憶單元陣列3 4上之記憶單元進行內部資料 寫入,其中字線係依列位址解碼器26而活化,而位 由行位址解碼器2 8所選擇且由感測放大器3 2預充 另一方面,在資料讀出時,感測放大器32,係在 出前將行位址解碼器2 8所選出的位元線對預充電 Vcc/2,並在被選出之位元線對中檢測/放大對應讀 所產生的微小電壓變化之後判別讀出資料之邏輯位 輸出至輸出入控制電路3 0上。然後,輸出入控制電 則將從感測放大器32所接受的讀出資料輸出至輸 衝器22上。 如上所述,記憶單元陣列3 4,係由可個別獨立動 個群組所構成,而記憶單元陣列34之群組的各個, 326\專利說明書(補件)92-02\91133601 .doc 之列位 未圖示 所接受 位址, I列 34 入緩衝 上,而 而將行 壓 Vcc 元線對 IDQ之 元線係 電。 資料讀 至電壓 出資料 準,再 路30, 出入緩 作的四 則係透 14 過在群組上排列於列方向的字線而與列位址解碼器2 6相 連接,且透過在群組上排列於行方向的位元線對而與感測 放大器3 2相連接。 圖2係顯示於半導體記憶裝置1 〇之記憶單元陣列34上 * 排列成行列狀之記憶單元構成的電路圖。另外,在圖2中’ ^ 係就排列於記憶單元陣列3 4上之記憶單元中與列方向相 鄰接的四個記憶單元加以圖示。 參照圖2,記憶單元3 4 0,係包含有N通道Μ 0 S電晶體 4 NO及電容器C0;記憶單元341,係包含有Ν通道MOS電 晶體N1及電容器C1;記憶單元3 42,係包含有N通道MOS 電晶體N2及電容器C2 ;記憶單元343,係包含有N通道 MOS電晶體N3及電容器C3。 N通道MOS電晶體NO,係連接在位元線BL及電容器 C0上,其閘極係連接在字線WL0上。N通道MOS電晶體 NO,係由只在資料寫入時及資料讀出時才活化的字線WL0 所驅動,且只在資料寫入時及資料讀出時導通,而除此以 < 外之時間則截止。 電容器 C0,係按照是否有蓄積電荷,而儲存二進位資 訊”1”、”0”。電容器C0之一端係連接在N通道MOS電晶 體NO上,而另一端係連接在單元板77上。然後,透過N * 通道MOS電晶體NO,與位元線BL完成電荷之進出,並 · 對電容器C〇進行資料之寫入/讀出。 N通道MOS電晶體N1,係連接在位元線/BL及電容器 C1上,其閘極係連接在字線WL1上。N通道MOS電晶體 15 326\專利說明書(補件)92-02\91133601 .doc 579519 N 1,係由只在資料寫入時及資料讀出時才活化的字線WL 1 所驅動,且只在資料寫入時及資料讀出時導通,而除此以 外之時間則截止。 電容器C 1,係按照是否有蓄積電荷,而儲存二進位資 訊”1”、”0”。電容器C1之一端係連接在N通道MOS電晶 體N1上,而另一端係連接在單元板77上。然後,透過N 通道Μ Ο S電晶體N 1,與位元線/B L完成電荷之進出,並 對電容器C1進行資料之寫入/讀出。 Ν通道MOS電晶體Ν2,係連接在位元線/BL及電容器 C2上,其閘極係連接在字線WL2上。Ν通道MOS電晶體 Ν2,係由只在資料寫入時及資料讀出時才活化的字線WL2 所驅動,且只在資料寫入時及資料讀出時導通,而除此以 外之時間則截止。 電容器C2,係按照是否有蓄積電荷,而儲存二進位資 訊”1”、”0”。電容器C2之一端係連接在Ν通道MOS電晶 體Ν2上,而另一端係連接在單元板77上。然後,透過ν 通道MOS電晶體Ν2,與位元線/BL完成電荷之進出,並 對電容器C2進行資料之寫入/讀出。 Ν通道MOS電晶體Ν3,係連接在位元線BL及電容器 C3上’其閘極係連接在字線WL3上。Ν通道MOS電晶體 Ν3,係由只在資料寫入時及資料讀出時才活化的字線WL 3 所驅動,且只在資料寫入時及資料讀出時導通,而除此以 外之時間則截止。 電谷器C3’係按照是否有蓄積電荷,而儲存二進位資 16 3之6\專利說明書(補件)92-02\91133601 .doc 訊”1”、”0”。電容器C3之一端係連接在N通道MOS電晶 體N3上,而另一端係連接在單元板77上。然後,透過n 通道M0S電晶體N3,與位元線BL完成電荷之進出,並 對電容器C3進行資料之寫入/讀出。 當該半導體記憶裝置1 0具有作爲單一記憶單元型之半 導體記億裝置的功能時,就可在記憶單元3 4 0〜3 4 3之各個 上分別儲存1位元的資料。然後,在對記憶單元3 40〜3 4 3 之各個進行資料之寫入/讀出時,所對應的字線WL0〜WL3 會活化,且連接有該記憶單元之位元線B L或位元線/ B L 進行電荷之進出。 另一方面,當該半導體記憶裝置1 〇具有作爲雙記億單 元型之半導體記憶裝置的功能時,就可以鄰接的記憶單元 34〇、341儲存1位元份的資料,並以鄰接的記憶單元342、 3 43儲存1位元份的資料。記憶單元3 4 3,係用以儲存記憶 單元3 4 2之記憶資料的邏輯位準呈反轉的資料。 然後,當對構成雙記憶單元之記憶單元340、341進行 資料之馬入時’位兀線B L就可對應目S憶資料而預充電至 指定電壓,而位元線/ B L則可對應記憶資料之反轉資料而 預充電至指定電壓。然後,字線WL0、WL1會同時活化, 且對應記憶資料之電荷從位元線BL供至電容器co,而對 應記憶資料之反轉資料的電荷從位元線/BL供至電容器 C1。 又,當對構成雙記憶單元之記憶單元342、3 4 3進行資 料之寫入時,位元線B L就可對應記憶資料而預充電至指 17 326傳利說明書(補件)92-02\91133601 .doc 579519 定電壓,而位元線/B L則可對應記憶資料之反轉資料而預 充電至指定電壓。然後,字線WL2、WL3會同時活化,且 對應記憶資料之電荷從位元線BL供至電容器C2,而對應 記億資料之反轉資料的電荷從位元線/B L供至電容器C 3。 如此,當半導體記憶裝置1 0被當作雙記憶單元來使用 時,就對位元線對B L、/B L寫入互爲反轉的資料,且同時 使鄰接的字線活化,藉此,鄰接列方向的二個記憶單元會 儲存1位元的資料。 圖3係槪念說明記憶單元陣列3 4之各群組中之記憶區 域構成的示意圖。另外,在以下說明中,當半導體記憶裝 置1 〇當作通常的單一記憶單元型之半導體記憶裝置來動 作時,其具有作爲記憶容量爲128M (百萬)位元,且字構成 爲” x 3 2 ”的半導體記憶裝置之功能。亦即,在半導體記憶 裝置1 〇當作通常之單一記憶單元型來使用的情況,位址信 號An之最上階位元爲All(n=ll)。 參照圖3,記憶單元陣列3 4之群組的各個,係由區域 51〜56所構成,全區域具有32M位元(128M位元/4群組) 之記憶容量。記憶單元34之群組的各個,係排列有8丨92 條的字線,且可根據信號RAD < 0 : 1 1 >、/RAD < 0 : 1 1 〉而選擇指定的字線。另外,列位址信號R A < 0 : 1 1 >、 /1^<〇:11>,係分3!]對應從外部指示之位址信號人〇〜入11 的信號;列位址信號RA < 1 1〉、/R A < 1 1 >係表示列位址 之最上階位元;而列位址信號R A < 0 >、/ R A < 0 >係表示 列位址之最下階位元。 18 326\ 專利說明書(補件)92-02\91133601 .doc 579519 記憶區域5 1〜5 3 ’及記憶區域5 4〜5 6,其等記憶鹘構成 均爲相同,並可根據信號rad < 〇 : 11 >、/RAD < 〇 : i > ,而在各自的區域中相對地選擇相同部位的字線。 區域51、52及區域54、55,係依信號/rad<11>之邏 · 輯位準而被選擇,區域53、56則依信號rad < 11 >之邏 -輯位準而被選擇。然後,當依信號/RAD < i丨 > 而選出區域 51、52及區域54、55時,區域51、54,就按照信號/rad <10>之邏輯位準而被選擇,區域52、55則依信號RAD <10>之邏輯位準而被選擇。同樣地,依信號raD<0: ^ 1 1 >、/RAD < 0 : 1 1 >之下階位元,被更細分化的區域將 被選擇,而最後依RAD<0: 11>、/RAD<〇: ιι>而被指 定的字線將被選擇。 在此,在該半導體記憶裝置1 〇中,當根據列位址信號 RA<0: 11>、/RA<0: 11> 而生成信號 rad<0: 11>、 /RAD < 0 : 1 1 > 時,列位址信號 RA < 0 : 1 1〉、/RA < 〇 : 1 1 >之最上階位元與最下階位元就會被替換而生成信號 RAD < 0 : 1 1 > 、/RAD<0: 11> 。亦即,歹IJ位址之之最上 階位元RA < 1 1 >、/RA < 1 1 >被分別分配至信號RAD < 0 : 1 1 >、/RADCO: 11〉之最下階位元 RAD<0>、/RAD<0 > ;而列位址之之最下階位元RA < Ο >、/RA < Ο >被分別 · 分配至信號RAD < Ο : 1 1 >、/RAD < Ο : 1 1〉之最上階位元 · RAD < 1 1 > 、/RAD < 1 1 > 。 然後,當半導體記憶裝置1 〇具有作爲記憶容量爲64Μ 位元,且字構成爲” X 3 2 ”之雙記憶單元型的半導體記憶裝 19 326\專利說明書(補件)92-02\91133601 .doc 置之功能時,當在生成RAD < Ο : 1 1 >、/RAD < Ο : 1 最下階位元 RAD < 0 >、/RAD <0〉之任一個均時 擇。藉此,如圖3所示,鄰接的字線6 1、6 2及字 64就會同時被選擇,而如圖2所說明,鄰接的記憶 被同時選擇而構成雙記憶單元。 另外,當半導體記憶裝置1 〇具有作爲記憶容量 位元,且字構成爲” X 3 2 ”之雙記憶單元型的半導體 置之功能時,由於,列位址信號之最上階位元爲 >、/RA < 1 0 >,而列位址信號 RA< 11>、/RA< 爲不使用,所以即使在半導體記憶裝置1 〇之內部改 位址信號RA < 1 1 >、/RA < 1 1 >對應的信號RAD · /RAD < 0 > ,在位址之指定上亦沒有問題。 圖 4係顯示生成於列位址解碼器 2 6中所包含 RAD<0: 11>、/RAD<0: 11> 之最下階位元 RAD /RAD <0>的RAD<0>生成電路之電路構成的電{? 參照圖4,RAD< 0>生成電路係包含有:接受雙 式信號/TWIN及列位址之最上階位元RA< 11 >的 閘71;反轉NAND閘71之輸出後再輸出信號RAD · 反相器72 ;接受雙單元模式信號/TWIN及列位址之 位元/RA < 1 1 >的NAND閘73 ;以及反轉NAND β 輸出後再輸出信號/RAD <0>的反相器74。 雙單元模式信號/TWIN,係當半導體記憶裝置1〇 爲雙記憶單元型之半導體記憶裝置的功能時邏輯位 L(邏輯低)位準的信號;在製造半導體記憶裝置1〇 326\專利說明書(補件)92·02\91133601.doc I >時, 常被選 線6 3、 :單元將 爲6 4 Μ 記億裝 RA < 1 0 II >成 寫與列 < 0 > 、 的信號 < 0 > 、 各圖。 單元模 NAND < 0 >的 最上階 胃73之 具有作 準變成 時,藉 20 579519 由將雙單元模式信號/TWIN與電源節點作打線連接或與接 地節點作打線連接,即可設定其邏輯位準。當雙單元模式 信號/TWIN爲L位準時,NAND閘71、73,就與列位址信 號RA < 1 1 >、/RA < 1 1 >之邏輯位準無關地分別輸出Η位 準之信號,藉此,最下階位元RAD < 0 >、/RAD < 〇 >均被 選擇(最下階位元RAD < 〇 >、/RAD < 0 >之邏輯位準係以 L位準被選擇)。 另外,在上述說明中,雙單元模式信號/TWIN,雖係依 其信號線之搭接(bo riding)切換而生成,但是亦可設定作爲 由外部提供的指令之一,又,亦可設置專用的端子。或是, 亦可在內部設置熔線電路,於製造時依是否切斷該熔線電 路之熔線元件,而設定雙單元模式信號/TWIN。 如以上所述,若依據本實施形態之半導體記憶裝置1 0, 則由於係按照雙單元模式信號而使鄰接的字線同時活化, 且以電氣方式從單一記憶單元型之半導體記憶裝置切換成 雙記憶單元型之半導體記憶裝置,所以在光罩步驟階段中 沒有必要切換光罩圖案來分開製作,而可依光罩數之刪 減、製造步驟之刪減等而刪減製造成本。 (實施形態2) 實施形態1之半導體記憶裝置1 〇,雖可從記憶容量爲 12 8M位元,且字構成爲” x32”之單一記憶單元型的半導體 記憶裝置,切換成記憶容量爲64M位元,且字構成爲” X 3 2”之雙記憶單元型的半導體記憶裝置,但是實施形態2 之半導體記憶裝置1 〇 A,則可進一步切換至記憶容量爲 21 326\專利說明書(補件)92-02\91133601.doc 579519 6 4M位元,且字構成爲” x 1 6”之雙記憶單元型的半導體記 憶裝置。 如上所述,復新動作在DRAM中是不可或缺的,而在復 新動作時,成爲復新對象之記憶單元的各個,可執行資料 之讀出、放大及再寫入,且可保持記憶資料。該復新動作, 係在排列於記憶單元陣列上的字線上執行,而其動作週期 (以下,稱爲復新週期),係在考慮可在各記億單元中保證 資料之保持的復新間隔與字線之後才決定。 再次參考圖3,當在實施形態1之半導體記億裝置1 0中 的記憶單元陣列34之各個群組中進行復新動作時,根據位 址端子1 4所接受的位址信號A0〜Α Π而生成的列位址信號 RA < 0 : 11> 、/RA<0: 11> ,即可使區域51〜53及區域 54〜56之各個中的4096條字線在區域51〜53及區域54〜56 之各個中依序活化。亦即,以4096次之復新動作來完成所 有的記億單元之復新(以下,將完成全部記憶單元之復新爲 止需要4096次之復新動作的情況稱爲「4K復新」,而將如 後所述,區域51〜56之全部字線8192條依序活化,完成 全部記憶單元之復新爲止需要8 1 9 2次之復新動作的情況 稱爲「8 K復新」)。 實施形態2之半導體記憶裝置1 0 A,係可對應8 K復新, 且爲了依序選擇8 1 92條之字線,進而設有列位址信號Ra < 1 2 >、/RA < 1 2〉。然後,復新動作時,根據列位址信 號RA< 0 : 12>、/RA< 0 : 12> ,在記憶單元陣歹丨J 34之 各個群組中使8 1 92條之字線依序活化,並以8 1 92次來完 22 326\專利說明書(補件)92-02\91133601.doc 579519 成所有的記憶單元之復新。 在半導體記憶裝置1 〇 A中,將該最上階位元RA < 1 2 >、 /RA< 12> 分配至信號 RAD< 0 : 12>、/RAD< 0 : 12> 之 最下階位元RAD < 0 >、/RAD < 0 >,而當半導體記憶裝置 I Ο A具有作爲雙記憶單元型之半導體記憶裝置的功能時, 就與實施形態1之半導體記憶裝置1 〇同樣,藉由使最下階 位元RAD < 0 >、/RAD < 0 >均活化,以具有作爲記憶容量 爲6 4M位元,且字構成爲” X 1 6 ”之半導體記憶裝置的功能。 可如此的理由,係因當半導體記憶裝置1 〇 A具有作爲記 憶容量爲64M位元,且字構成爲” X 1 6”之半導體記憶裝置 的功能時,列位址信號之最上階位元係RA < 1 1 >、/RA < II >,而列位址信號RA< 12>、/RA< 12>變成不使用, 故而即使在半導體記憶裝置1 〇 A之內部改寫與列位址信號 RA < 1 2 >、/RA<12> 對應的信號 RADCO〉、/RAD<0 >,在位址之指定上亦沒有問題之故。 實施形態2之半導體記憶裝置1 〇 A的全體構成,由於係 與圖1中所示之實施形態1的半導體記憶裝置1 0之構成相 同,所以並不重複其說明。 圖5係槪念顯示半導體記億裝置1 Ο A之記憶單元陣列3 4 之各群組中之記憶區域構成的不意圖。 參照圖5,在半導體記憶裝置1 〇 A中之記憶單元陣列3 4 的各群組中,與圖3所示之半導體記憶裝置1 0中的記憶單 元陣列34之群組相較,區域51〜53更由信號/RAD< 12 > 之邏輯位準所選擇,而區域54〜56則更由信號RAD < 12 > 23 326傳利說明書(補件)92-02\91133601 .doc 579519 之邏輯位準所選擇。 在此,在半導體記憶裝置1 0 A中,在根據列位址信號 RA<0: 12>、/RA<0: 12> 而生成信號 RAD<0: 12>、 / R A D < 0 : 1 2 > 時,列位址信號 R A < 〇 : 1 2 >、/ R A < 0 : 1 2 >之最上階位元與最下階位元就會被替換而生成信號 RAD < 0 : 12 >、/RAD < 0 : 12 >。亦即,列位址之之最上 階位元RA < 12 >、/RA < 12 >被分別分配至信號RAD < 0: 1 2 >、/RAD<0: 12> 之最下階位元 RAD<0>、/RAD < 〇 > ;而列位址之之最下階位元 RA < 0 >、/RA < 0 >被 分別分配至信號RAD < 0 : 1 2 >、/RAD < 0 : 1 2 >之最上階 位元 RAD<12> > /R AD < 1 2 >。 然後,當半導體記憶裝置1 〇A具有作爲記憶容量爲64M 位元,且字構成爲” X 1 6 ”之雙記憶單元型的半導體記憶裝 置之功能時,若生成信號 RAD<0: 12>、/RAD<0: 12 〉,則最下階位元RAD < 〇 >、/R AD <〇>之任一個均時常 被選擇。藉此,如圖5所示,鄰接的字線6 1、6 2及字線 63、64就會同時被選擇,且鄰接的記憶單元將被同時選擇 而構成雙記憶單元。 如以上所述,若依據本實施形態2之半導體記憶裝置 1 〇 A,則由於採用設計成8 κ復新用的列位址信號之最上階 位元R A < 1 2 >、/ R A < 1 2 > ,可同時使鄰接的字線活化, 所以可以電氣方式從單一記憶單元型之半導體記憶裝置, 切換至記憶容量爲64M位元,且字構成爲”x 1 6 ”之雙記憶 單元型的半導體記憶裝置。 24 326\ 專利說明書(補件)92-02\91133601 .doc 579519 (實施形態3) 實施形態3之半導體記憶裝置,係在實施形態2之半導 體記憶裝置1 〇 A中具備有自我復新功能,進而具備有只能 復新記憶區域之一部分區域,即所謂的部分自我復新功能。 · 如上所述,在復新動作時,在成爲復新對象之記憶單元 · 的各個中,可週期性地執行資料之讀出、放大及再次寫入, 並可保持記憶資料。該復新動作,係在每一字線上執行。 然後,在自我復新中,係在內部產生用以選擇復新對象 | 之字線的列位址之後進行復新動作。在部分自我復新中, 係只在列位址之上階1位元或上階2位元的邏輯位準,例 如爲L位準的記憶區域中才執行復新動作。 因而,在部分自我復新中,爲了要適當地使指定的一部 分區域被復新,就有必要將依半導體記憶裝置具有作爲單 一記憶單元型之半導體記憶裝置的功能、或具有作爲雙記 憶單元型之半導體記億裝置的功能、或者對應8 K復新者 而異的列位址之最上階位元,對應部分自我復新中的復新 · 空間。 圖6係顯示本發明實施形態3之半導體記憶裝置全體構 成的槪略方塊圖。 參照圖6 ’半導體記憶裝置丨丨,係除了實施形態2之半 · 導體記憶裝置1 〇 A所具備者外,更具備有復新控制電路 · 3 6。復新控制電路3 6,係包含有自我復新控制電路3 8、及 復新位址產生電路40。 復新控制電路3 6,係根據來自控制電路2 4之指示,而 25 326\專利說明書(補件)92-02\91133601 .doc 579519 生成進行復新動作的列位址(以下,稱爲復新列位址信號 / Q A D < 0 : η > ),並輸出至歹[J位址解碼器2 6。歹IJ位址解碼 器26,係根據來自控制電路24之指示,而在通常動作時, 根據由位址緩衝器2 0所接受的列位址信號R A < 0 : n >、 · /R A < 0 : η >而進行記憶單元陣歹[J 3 4中之字線的選擇。另 · 一方面,在自我復新模式時,列位址解碼器2 6,係根據來 自復新控制電路36之復新列位址信號/QAD< 0 : η>而進 行記憶單元陣列34中之字線的選擇。 自我復新控制電路3 8,係根據依未圖示之信號發出電路 而產生的脈波信號以生成復新信號QCU,並將所生成的復 新信號QCU輸出至復新位址產生電路40。復新信號QCu , 係在考慮可在記憶單元陣列3 4內之各記憶單元中保證資 料之保持的復新間隔、與記憶單元陣列34內字線數之後才 決定的每一指定復新週期中活化。 復新位址產生電路40,係按照復新信號QCu而更新復 新列位址,並依序切換成爲復新動作之對象的記憶單元 φ 列。具體而言,復新列位址信號/ Q A D < 0 : η >,係按照復 新信號QCU而往上計數。 如上所述,實施形態3之半導體記憶裝置1 1,並非係爲 了要進一步刪減待機模式時之消耗電力,而在自我復新模‘-式中,以全部記憶區域爲對象而執行復新動作,而是以一 -部分之記憶區域爲對象而進行復新動作,且具備有所謂的 部分自我復新功能。 在該部分自我復新中,係於記憶單元陣列3 4之各群組 26 326\專利說明書(補件)92-02\91133601 .doc 579519 中,只對復 上階2位元 加長復新週 然後,在 記億單元型 記憶單元型 復新功能之 各使用模式 圖7係功 功能方塊圖 參照圖7 數器401〜4 係按照由自 執行往上計 〇 >來輸出《 復新位址 之復新位址 將計數資料 11 >來輸出 如此,在 序選擇各記 圖8係顯 圖。 參照圖8 新列位址信號/Q AD < 0 : η >之上階1位元或是 爲L位準的記憶區域進行復新。藉此,則無須 期,而可減低待機模式時的消耗電力。 半導體記憶裝置11中,於具有作爲通常之單一 之半導體記億裝置的功能之情況、具有作爲雙 之半導體記憶裝置的功能之情況、及具備8Κ 情況中,不同的列位址之最上階位元,係按照 ,而適當地分配至部分自我復新之復新空間上。 能性說明圖6所示之復新位址產生電路40的 ,復新位址產生電路4 0,係包含有復新位址計 12。對應最下階位元的復新位址計數器40 1, 我復新控制電路3 8所輸出的復新信號QCU而 數,並將計數資料當作復新列位址信號/QAD < 計數器40 1〜4 1 2之各個,係按照由下階位元側 計數器所輸出的計數資料而執行往上計數,並 分別當作復新列位址信號/QAD < 1 >〜/QAD < 〇 自我復新時,可生成在指定之每一復新週期依 憶單元列用的復新列位址信號/Q AD < 0 : 1 1 >。 示復新位址計數器4 0 1〜4 1 2之電路構成的電路 ,復新位址計數器401〜412之各個係包含有: 27 326\專利說明書(補件)92-02\91133601 .doc 579519 將輸入信號反轉的反相器8 2、8 6 ;輸入信號之邏輯位準爲 L位準時活化,並接受輸出信號之後反轉的反相器8 1 ;構 成將反相器8 1之輸出予以閂鎖之閂鎖電路的反相器8 3、 84 ;輸入信號之邏輯位準爲Η位準時活化,並接受反相器 8 1之輸出之後反轉的反相器8 5 ;其輸入節點連接在電源節 點及反相器8 5之輸出節點上的N AND閘8 7 ;以及構成與 NAND閘87 —起反轉反相器85之輸出之後再予以閂鎖之 閂鎖電路的反相器8 8。 在復新位i止計數器401〜412之各個中,當輸出信號之邏 輯位準爲L位準時,若輸入信號爲L位準則反相器8 1被 活化,且反相器81之輸出變成Η位準。另一方面,在該 階段中,反相器8 5係未被活化,而反相器8 1之輸出,並 未傳達至反相器8 5之輸出節點上。 接著,當輸入信號之邏輯位準變成Η位準時,雖然反相 器81被活化,但是反相器81之輸出會由反相器83、84 所閂鎖。另一方面,反相器8 5被活化,且反相器8 5在反 轉Η位準之輸入之後會輸出L位準之信號。因而,NAND 閘87會輸出Η位準之信號,而其輸出則由NAND閘87及 反相器8 8所閂鎖。 接著,當輸入信號之邏輯位準變成L位準時,反相器81 就會被活化,而反相器81之輸出會變成L位準。另一方 面,反相器8 5則未被活化,且反相器8 1之輸出,並未傳 達至反相器8 5之輸出節點上。 接著,當輸入信號之邏輯位準變成Η位準時,雖然反相 28 326\專利說明書(補件)92-02\91133601.doc 579519 器8 1未被活化,但是反相器8 1之輸出會由反相器8 3、8 4 所閂鎖。另一方面,反相器8 5被活化,且反相器8 5在反 轉L位準之輸入之後會輸出Η位準之信號。因而,NAND 閘87會輸出L位準之信號,而其輸出則由NAND閘87及 ^ 反相器8 8所閂鎖。 ·579519 Description of the invention [Technical field to which the invention belongs] The present invention relates to a semiconductor memory device, and more particularly to a semiconductor that uses two memory cells to store 1-bit memory data of memory information expressed as binary information. Memory device. [Prior art] As a representative example of a semiconductor memory device, a DRAM (Dynamic Random Access Memory: dynamic random access memory), a memory cell that usually stores 1-bit data includes a transistor, And a capacitor, and because the structure of the memory unit itself is simple, it is most suitable for high integration and large capacity of semiconductor devices, and can be used in various electronic devices. FIG. 13 is a circuit diagram showing a memory cell array arranged in rows and rows on a memory cell array in a DRAM (hereinafter, this type of DRAM is referred to as a single memory cell type). The composition system includes a transistor and a capacitor. Referring to FIG. 13, the memory unit 100 includes an N-channel MOS transistor N101 and a capacitor C101. The N-channel MOS transistor N101 is connected to the bit line BL and the capacitor C 101, and its gate is connected to the word line WL. The other end, which is different from the connection between the capacitor C101 and the N-channel MOS transistor N101, is connected to the unit board 110. The N-channel MOS transistor N101 is driven by a word line WL that is activated only during data writing and data reading, and is turned on only during data writing and data reading. cutoff. 5 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 Capacitor C 1 0 1 stores binary information “1”, “0” according to whether there is an accumulated charge. When data is written to the capacitor C 101, the bit line BL is pre-charged to the power supply voltage Vcc or the ground voltage V D D in accordance with the written data. Then, the N-channel M 0 S transistor and the body N 1 0 1 are turned on by activation of the word line WL, and corresponding binary information is transmitted from the bit line BL through the N-channel M 0 S transistor N 1 0 1%. A voltage of "1" "" is applied to the capacitor C 1 0 1. This allows capacitor C101 to be charged and discharged, and data to be written. On the other hand, when reading data, the bit line B L is precharged to a voltage Vcc / 2 in advance. Then, by activating the word line WL, the N-channel MOS transistor N101 is turned on, and the bit line BL and the capacitor C101 are turned on. Thereby, a small voltage change corresponding to the storage state of the capacitor C 1 0 1 will appear on the bit line BL, and a sense amplifier (not shown) will amplify the small voltage change to the voltage Vcc or the ground voltage GND . The voltage level of the bit line BL corresponds to the state of the data being read. Here, in the memory cell of DRAM, the charge of capacitor C101, which is equivalent to storing data, will leak due to various reasons, and gradually disappear. That is, the memory data will disappear over time. Therefore, in D R AM, at the time of data reading, before the voltage change of the bit line B L corresponding to the data of billions of data cannot be detected, the so-called rewrite is performed once the data is read out. < reinstatement of incoming changes. % Although the refresh operation is indispensable in DRAM, the refresh operation becomes a disadvantage from the viewpoint of speeding up the operation. Therefore, it is known that it is a kind of dual-memory-type memory that allocates two bits of 1-bit memory data, 6 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc. The technology can increase the interval between renewal operations and speed up the access to memory data. Fig. 14 is a circuit diagram showing the arrangement of memory cells arranged in rows and columns on a memory cell array in a dual memory cell type DRAM. Referring to FIG. 14, the memory cell in the DRAM is a dual memory cell type composed of two memory cells 100A and 100B that are allocated to 1-bit memory data and allocated to store its memory data and inverted data of the memory data, respectively. . The memory unit 100A includes an N-channel MOS transistor N102 and a capacitor C102; and the memory unit 100B includes an N-channel MOS transistor N103 and a capacitor C103. N-channel MOS transistor N102 is connected to azimuth element line BL and capacitor C 1 2 of bit line pair BL, / BL, and its gate is connected to word line WLn (n is an even number greater than 0) . The N-channel MOS transistor N102 is driven by the word line WLn which is activated only during data writing and data reading, and is turned on only during data writing and data reading. cutoff. The N-channel MOS transistor N103 'is connected to the other directional element line / BL of the bit line pair bl, / BL and the capacitor C103, and its gate is connected to the word line WLn + i. The N-channel MOS transistor N103 is driven by WLn + 1 which is activated simultaneously with WLn, and is turned on only during data writing and data reading, and is turned off at other times. Denya C102 and C103 'store binary information "1" and "〇" according to whether there is an accumulated charge. Capacitor C103 is the inverted data of the memory data stored in capacitor C02. One end of the capacitor c 1 02 is connected to 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 7 on the N-channel MOS transistor N102, and the other end is connected to the unit board 110. One end of the capacitor C103 is connected to the n-channel MOS transistor N103 'and the other end is connected to the unit board 110. When writing 1-bit memory data to the capacitors C 1 02 and C 1 03, the bit line BL is precharged to one of the power supply voltage Vcc or the ground voltage VDD corresponding to the written data, and the bit is set. The element line / BL is precharged to a voltage different from the bit line BL. Then, the word lines wLn, WLn + 1 are simultaneously activated to simultaneously turn on the N-channel MOS transistors N1 02, 1 03, and the corresponding memory is stored from the bit line BL through the N-channel M 0 S transistor N 1 0 2 The voltage of the data is applied to the capacitor C 102; the voltage corresponding to the inverted data of the memorized data is applied to the capacitor C103 from the bit line / BL through the N-channel MOS transistor N103. With this, the capacitors C102 and C103 can be written with 1-bit memory data. On the other hand, when reading data, the bit lines B L and / B L are precharged to a voltage Vcc / 2 in advance. Then, by simultaneously activating the word lines WLn, WLn + I, the N-channel MOS transistors N102, N103 are simultaneously turned on, the bit line BL and the capacitor C102 are energized, and the bit line / BL and the capacitor C103 are energized. As a result, a slight voltage change in the opposite direction will occur on the bit lines BL and / BL, and a sense amplifier (not shown) will detect the potential difference between the bit lines BL and / BL and amplify the voltage to Vcc Or ground voltage GND. The amplified voltage level corresponds to the state of the data being read. The dual memory unit allocates two memory units to 1-bit data. Although it does indeed double the area of the memory unit compared with the conventional memory unit, the two memory units store each other inversely. The transferred information is 326 \ Patent Specification (Supplement) 92-〇2 \ 911336〇l.doc 579519, so the amplitude of the potential difference between the bit line pair BL and / BL will increase, the operation will be more stable, and the The advantage of increasing the interval between refresh actions. Furthermore, in the current dual memory cell DRAM, although the data is read out, the bit line pair BL, / BL is precharged to a voltage of 1/2 Vcc as in the single memory cell DRAM described above, but the Blessing, when the memory data is read out by the bit line pair BL, / BL, since the voltage of the bit line pair BL, / BL will change to each other in the opposite direction, when compared with the single memory cell type DRAM described above There are two times the amplitude of the voltage change on the bit line corresponding to the memory data, and the dual memory cell DRAM has the advantage of high-speed access to data during data read. As mentioned above, the single memory cell type DRAM shown in FIG. 13 and the double memory cell type DRAM shown in FIG. 14 only allocate one memory cell or two memory cells to the 1-bit memory data. There are differences. The basic structure of the remaining memory units is the same. Therefore, in the process of manufacturing a semiconductor memory device, if it is not separately produced a single memory cell type and a dual memory cell type from the beginning, but if the single memory cell type can be switched to a dual memory cell type during the manufacturing process, it is expected to have The advantages of manufacturing process reduction or flexible corresponding stages, and manufacturing cost reduction. Here, when switching from a single memory cell type to a dual memory cell type, although the pattern switching of the aluminum wiring can be used to switch in the wiring step, this method requires the mask pattern to be separated. The photomask steps are different accordingly, so the manufacturing cost cannot be reduced sufficiently. On the other hand, if the electrical switching can be performed without accompanying the switching of the structure of the semiconductor memory device, the single memory cell type and the dual memory cell 9 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc type The mask pattern can be unified, and since the mask steps can also be unified, the manufacturing cost can be greatly reduced. [Summary of the Invention] Therefore, the present invention was developed to solve such a problem, and its object is to provide a semiconductor memory device capable of switching a single memory cell type to a dual memory cell type in the configuration of the memory cell. A semiconductor memory device that performs this switching operation electrically. According to the present invention, a semiconductor memory device is provided with a memory cell array including a plurality of memory cells arranged in rows and columns; a plurality of word lines arranged in a column direction; and a plurality of bits arranged in a row direction. A line pair; and a decoder, which selects a specifically designated word line and a specifically designated bit line pair from a plurality of word lines and a plurality of bit line pairs, respectively, according to a specially designated address signal of each of the plurality of memory cells ; Among them, when two memory cells are used to store the 1-bit memory data signal of the memory information expressed as binary information, the dual-cell mode signal is activated, and the decoder will select the word line for activating the two memory cells. And bit line pairs, and the two memory units' store the memory data and the inverted data of the memory data, respectively. Preferably, the decoder generates an internal column address signal for selecting a specially designated word line according to the address signal. When the dual-cell mode signal is activated, then the designated bit of the internal column address signal is also selected. The logic level of the element corresponds to the first word line at the first logic level, and the logic level of the designated bit corresponds to the second word line at the second logic level. Preferably, the specified bit is the lowest order bit of the internal column address signal; the decoder is the one that does not prevent the 10-326 \ Patent Specification (Supplement) 92- when the dual-unit mode signal is activated. 02 \ 91133601.doc uses the highest order bit of the address signal to the lowest order bit of the internal column address signal, and allocates the lowest order bit of the address signal to the highest order of the internal column address signal Bit. Preferably, a semiconductor memory device is further provided with a refresh control circuit for periodically performing a refresh operation in order to maintain the memory information; the refresh control circuit generates a memory cell row for designating a refresh operation object The restoration column address; the restoration column address contains a part of at least one bit of self-recovery address bit, which is used to specify a part of the memory cell array to perform the restoration operation. ; The decoder includes a selection circuit, which selects at least one part of the self-recovery address bits from the restoring column addresses which are different depending on whether the dual-unit mode signal is activated. As described above, in the semiconductor memory device of the present invention, according to the dual cell mode signal, it is possible to electrically switch from a semiconductor memory device having a function as a normal single memory cell type to a semiconductor memory device having a function as a dual cell memory type. Semiconductor memory device. Therefore, if the semiconductor memory device according to the present invention is used, it is not necessary to switch the reticle pattern to be separately manufactured, but the number of reticle and process can be reduced to reduce the manufacturing cost. [Embodiment] (Best Mode for Implementing the Invention) Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, the same or corresponding parts are denoted by the same reference numerals in the drawings, and the description thereof will not be repeated. (Embodiment 1) 11 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 Fig. 1 is a schematic block diagram showing the overall structure of a semiconductor memory device according to Embodiment 1 of the present invention. Referring to FIG. 1, the semiconductor memory device 10 includes a control signal terminal 12, an address terminal 14, and a data input / output terminal 16. The semiconductor memory device 10 includes a control signal buffer 18, an address buffer 20, and an input / output buffer 22. Furthermore, the semiconductor memory device 10 includes a control circuit 24, and a column address. Decoder 2 6, Row Address Decoder 2 8, Input / Output Control Circuit 30, Sense Amplifier 32, and Billion Cell Array 34. In addition, in FIG. 1, for the semiconductor memory device 10, Only the main parts of data input and output are representatively displayed. The memory cell array 34 is a billion-element component group in which the billion-element units are arranged in rows and rows; and it is composed of four groups that can operate independently. Correspondingly, the 100 million cell array 34 is composed of four groups. The column address decoder 26, the row address decoder 28, the input / output control circuit 3 0, and the sense amplifier 32 are also provided respectively. Four. Control signal terminals 1 2 are command control signals that accept chip selection signal / CS, column address selection | communication number / RAS, row address strobe signal / CAS, and write enable signal / WE. Control signal Buffer 18, which takes the chip from the control signal terminal 12 Selection signal / CS, column address strobe signal / RAS, row address strobe signal / CAS and write enable signal / WE and latched 're-output, to the control circuit 2 4... Address terminal 14 It accepts the address signals A0 ~ An (η is a natural number) and the group address signals BAA0 and BAA1. The address buffer 20 includes a column address buffer and a row address buffer (not shown). The address buffer 12 of the address buffer 20 is 12 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 The punch is to take the address signals AO ~ An and the group address signals BAO and BAl and latch them. Lock, and then output the column address signal RA to the column address decoder 2 6 corresponding to the group indicated by the group address signal BAO, BA1 < 0: η >, / RA < 〇: η > (for arbitrary symbols X, χ < 〇 ·· means X < 0 > ~ X < η >). In addition, the row address buffer of the address buffer 20 takes the address signals A0 ~ An and the group address signals BAO and BΑ1 and latches them, and then matches the group address signals BA 0 and BA. The row address decoder 28 corresponding to the group indicated by 1 outputs a row address signal CA < 0: n >, / CA < 0: η >. The data input / output terminal 16 is a terminal for outputting and inputting the read / write data with the outside in the semiconductor memory device 10; when the data is written, it accepts the externally input data DQ0 ~ DQi (I is a natural number) When the data is read, the data DQ0 to DQi are output to the outside. The input / output buffer 22 is used to read and latch data DQ0 to DQi during data writing, and output the internal data ID Q to the input / output control circuit 30. On the other hand, the input / output buffer 22 is used to output the internal data IDQ received from the input / output control circuit 30 to the data input / output terminal 16 when the data is read. The control circuit 24 fetches the instruction control signal from the control signal buffer 18, and controls the column address decoder 26, the row address decoder 28, and the input / output buffer 22 according to the received instruction control signal. The column address decoder 26 is based on the column address signal R A received from the address buffer 20 < 0: η >, / RA < 0: n >, and a signal R A D for selecting a word line on the memory cell array 34 is generated. < 0: η >, / R A D < 0: η >. Then, the column address decoder 26, according to the signal R A D < 0: η >, 13 3 Patent Specification (Supplement) 92-02 \ 91133601 .doc / RAD < 0: η > to decode a column address and select a word line on the memory cell array 34 corresponding to the decoded address. Then, the selected word line can be activated by the zigzag driver. The row address decoder 28 is based on the row address signal CA of the slave address buffer 20. < 0: η >, / CA < 0: η > to decode a row to select a bit line pair in which the hundred million cells corresponding to the decoded row address are dropped. When data is written, the input / output control circuit 30 outputs the internal data IDQ received from the output device 22 to the sense amplifier 32 and the sense amplifier 32. Then, the address is decoded according to the logic level of the internal data id Q The bit line pair selected by the device 2 8 is precharged to the power supply or ground voltage GND. With this, internal data can be written to the memory cells on the memory cell array 34 connected to the word line and the bit, where the word line is activated by the column address decoder 26, and the bit by the row address The decoder 28 selects and is precharged by the sense amplifier 32. On the other hand, during data reading, the sense amplifier 32 precharges the bit line pairs selected by the row address decoder 28 Vcc / 2, and after detecting / amplifying the slight voltage change generated by corresponding reading in the selected bit line pair, the logic bit of the read data is judged to be output to the input / output control circuit 30. Then, the input-output control circuit outputs the read-out data received from the sense amplifier 32 to the amplifier 22. As mentioned above, the memory cell array 34 is composed of groups that can be moved independently, and each of the groups of the memory cell array 34 is listed in 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc The bit does not show the accepted address, I column 34 is put into the buffer, and the row presses the Vcc element line to the IDQ element line. The data is read until the voltage is out of the data, and then it goes to 30, and the four that are in and out are transparently connected to the column address decoder 26 through the word lines arranged in the column direction on the group, and through the group. The bit line pairs arranged in the row direction are connected to the sense amplifier 32. FIG. 2 is a circuit diagram showing a memory cell array 34 arranged on a memory cell array 34 of a semiconductor memory device 10. In addition, in FIG. 2, ^ indicates the four memory cells adjacent to the column direction among the memory cells arranged on the memory cell array 34. Referring to FIG. 2, the memory unit 3 4 0 includes an N channel MOS transistor 4 NO and a capacitor C0; the memory unit 341 includes an N channel MOS transistor N1 and a capacitor C1; the memory unit 3 42 includes There are N-channel MOS transistor N2 and capacitor C2; the memory unit 343 includes N-channel MOS transistor N3 and capacitor C3. The N-channel MOS transistor NO is connected to the bit line BL and the capacitor C0, and its gate is connected to the word line WL0. The N-channel MOS transistor NO is driven by the word line WL0 that is activated only during data writing and data reading, and is turned on only during data writing and data reading. < Outside time will expire. Capacitor C0 stores binary information "1" and "0" according to whether or not there is an accumulated charge. One end of the capacitor C0 is connected to the N-channel MOS transistor NO, and the other end is connected to the unit board 77. Then, through the N * channel MOS transistor NO, the charge in and out are completed with the bit line BL, and data is written / read out to the capacitor C0. The N-channel MOS transistor N1 is connected to the bit line / BL and the capacitor C1, and its gate is connected to the word line WL1. N-channel MOS transistor 15 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 N 1 is driven by the word line WL 1 which is activated only during data writing and data reading, and only It is turned on when data is written and when data is read, and other times are closed. Capacitor C1 stores binary information "1" and "0" according to whether there is a stored charge. One end of the capacitor C1 is connected to the N-channel MOS transistor N1, and the other end is connected to the unit board 77. Then, through the N channel MOS transistor N1, the charge line is completed with the bit line / BL, and data is written to / read from the capacitor C1. The N-channel MOS transistor N2 is connected to the bit line / BL and the capacitor C2, and its gate is connected to the word line WL2. The N-channel MOS transistor N2 is driven by the word line WL2 which is activated only during data writing and data reading, and is turned on only during data writing and data reading, and at other times, cutoff. Capacitor C2 stores binary information "1" and "0" according to whether or not a charge is accumulated. One end of the capacitor C2 is connected to the N-channel MOS transistor N2, and the other end is connected to the unit board 77. Then, through the v-channel MOS transistor N2, the charge in and out are completed with the bit line / BL, and the data is written to / read from the capacitor C2. The N-channel MOS transistor N3 is connected to the bit line BL and the capacitor C3 ', and its gate is connected to the word line WL3. The N-channel MOS transistor N3 is driven by the word line WL 3 which is activated only during data writing and data reading, and is turned on only during data writing and data reading, and at other times It will be closed. The electric valley device C3 'stores binary data according to whether or not it has accumulated electric charges. 16 3 of 6 \ Patent Specification (Supplement) 92-02 \ 91133601.doc News "1", "0". One end of the capacitor C3 is connected to the N-channel MOS transistor N3, and the other end is connected to the unit board 77. Then, through the n-channel M0S transistor N3, the charge is transferred in and out with the bit line BL, and data is written to / read from the capacitor C3. When the semiconductor memory device 10 has a function as a single memory cell type semiconductor memory device, one bit of data can be stored in each of the memory cells 3 40 to 3 4 3. Then, when data is written / read to each of the memory cells 3 40 to 3 4 3, the corresponding word lines WL0 to WL3 are activated, and the bit line BL or bit line of the memory cell is connected. / BL Carries in and out of charge. On the other hand, when the semiconductor memory device 10 has a function as a double memory cell type semiconductor memory device, the adjacent memory cells 34 and 341 can store 1-bit data and use the adjacent memory cells. 342, 3 43 stores 1-bit data. The memory unit 3 4 3 is used to store the inverted logical level of the memory data of the memory unit 3 4 2. Then, when the data of the memory units 340 and 341 constituting the double memory unit is entered, the bit line BL can be precharged to the specified voltage corresponding to the target memory, and the bit line / BL can correspond to the memory data. Reverse the data and precharge to the specified voltage. Then, the word lines WL0 and WL1 are simultaneously activated, and the charge corresponding to the memory data is supplied from the bit line BL to the capacitor co, and the charge corresponding to the inverted data of the memory data is supplied from the bit line / BL to the capacitor C1. In addition, when data is written to the memory units 342, 3 4 3 constituting a double memory unit, the bit line BL can be pre-charged to correspond to the memory data to 17 326 Transmitting Manual (Supplement) 92-02 \ 91133601 .doc 579519, and the bit line / BL can be precharged to the specified voltage corresponding to the inverted data of the memory data. Then, the word lines WL2 and WL3 are simultaneously activated, and the charge corresponding to the memory data is supplied from the bit line BL to the capacitor C2, and the charge corresponding to the inverted data of the billion data is supplied from the bit line / BL to the capacitor C3. In this way, when the semiconductor memory device 10 is used as a dual memory cell, the data of the bit line pair BL, / BL is written in reverse to each other, and the adjacent word lines are activated at the same time, thereby, the adjacent Two memory cells in the row direction store 1-bit data. FIG. 3 is a schematic diagram illustrating the composition of the memory area in each group of the memory cell array 34. In addition, in the following description, when the semiconductor memory device 10 is operated as a normal single memory cell type semiconductor memory device, it has a memory capacity of 128M (million) bits and a word configuration of "x 3 2 ”semiconductor memory device function. That is, when the semiconductor memory device 10 is used as a normal single memory cell type, the highest order bit of the address signal An is All (n = 11). Referring to FIG. 3, each of the groups of the memory cell array 34 is composed of areas 51 to 56, and the entire area has a memory capacity of 32M bits (128M bits / 4 groups). Each of the groups of the memory unit 34 is arranged with 8 丨 92 word lines, and can be according to the signal RAD < 0: 1 1 >, / RAD < 0: 1 1》 and select the specified word line. In addition, the column address signal R A < 0: 1 1 >, / 1 ^ < 〇: 11 >, points 3!] Corresponds to the signal of the address signal from the outside, which is 0 ~ 11; the column address signal RA < 1 1〉, / R A < 1 1 > represents the highest order bit of the column address; and the column address signal R A < 0 >, / R A < 0 > indicates the lowest order bit of the column address. 18 326 \ Patent Specification (Supplement) 92-02 \ 91133601 .doc 579519 Memory area 5 1 ~ 5 3 ′ and memory area 5 4 ~ 5 6, the memory structure is the same, and can be based on the signal rad < 〇: 11 >, / RAD < 〇: i >, and the word lines of the same location are relatively selected in the respective regions. Areas 51 and 52 and areas 54, 55 are based on signal / rad < 11 > Logic · The selection level is selected, and areas 53, 56 are based on the signal rad < 11 > Logic-Select the level. Then, when the signal / RAD < i 丨 > When areas 51 and 52 and areas 54 and 55 are selected, areas 51 and 54 are selected according to the signal / rad. < 10 > is selected according to the logic level, and areas 52 and 55 are selected according to the signal RAD < 10 > is selected. Similarly, according to the signal raD < 0: ^ 1 1 >, / RAD < 0: 1 1 > lower order bits, the more subdivided area will be selected, and finally according to RAD < 0: 11 >, / RAD < 〇: ιι > The designated word line will be selected. Here, in the semiconductor memory device 10, when the column address signal RA is used, < 0: 11 >, / RA < 0: 11 > and generate a signal rad < 0: 11 >, / RAD < 0: 1 1 > column address signal RA < 0: 1 1〉, / RA < 〇: 1 1 > the highest order bit and the lowest order bit will be replaced to generate a signal RAD < 0: 1 1 >, / RAD < 0: 11 >. That is, the highest order bit RA of the 歹 IJ address < 1 1 >, / RA < 1 1 > assigned to signal RAD separately < 0: 1 1 >, / RADCO: 11> lowest order bit RAD < 0 >, / RAD < 0 >; and the lowest order bit RA of the column address < Ο >, / RA < Ο > assigned separately to signal RAD < Ο: 1 1 >, / RAD < Ο: 1 1〉 The highest order bitRAD < 1 1 >, / RAD < 1 1 >. Then, when the semiconductor memory device 10 has a dual memory cell type semiconductor memory device with a memory capacity of 64 megabits and a word configuration of "X 3 2", 19 326 \ Patent Specification (Supplement) 92-02 \ 91133601. doc function, when generating RAD < Ο: 1 1 >, / RAD < Ο: 1 lowest order bit RAD < 0 >, / RAD < 0> is selected at any time. Thereby, as shown in FIG. 3, adjacent word lines 61, 62, and word 64 are selected at the same time, and as shown in FIG. 2, adjacent memories are selected at the same time to form a double memory unit. In addition, when the semiconductor memory device 10 has a dual memory cell type semiconductor function as a memory capacity bit and the word configuration is "X 3 2", the uppermost bit of the column address signal is > , / RA < 1 0 > while the column address signal RA < 11 >, / RA < Since it is not used, the address signal RA is changed even in the semiconductor memory device 10 < 1 1 >, / RA < 1 1 > Corresponding signal RAD · / RAD < 0 >, there is no problem in specifying the address. Figure 4 shows the RAD generated in the column address decoder 26. < 0: 11 >, / RAD < 0: 11 > lowest order bit RAD / RAD < 0 > RAD < 0 > The circuit configuration of the generating circuit {? Referring to FIG. 4, RAD < 0 > The generating circuit includes: the highest order bit RA that accepts dual signals / TWIN and column address < 11 > Gate 71; Inverts the output of NAND gate 71 before outputting a signal RADInverter 72; Accepts dual cell mode signal / TWIN and column address bit / RA < 1 1 > NAND gate 73; and output signal / RAD after inverting NAND β output < 0 > inverter 74. Dual cell mode signal / TWIN is a signal of the logic bit L (logic low) level when the semiconductor memory device 10 is a function of a dual memory cell type semiconductor memory device; in the manufacture of the semiconductor memory device 1026 \ patent specification ( (Supplement) 92 · 02 \ 91133601.doc I > When often, the line 6 is selected. 3: The unit will be 6 4 megabytes worth of RA. < 1 0 II > write and column < 0 >, < 0 > Cell mode NAND < 0 > When the uppermost level of the stomach 73 is set, the logic level can be set by using 20 579519 to connect the dual-unit mode signal / TWIN to the power supply node or to the ground node. When the dual-cell mode signal / TWIN is at the L level, the NAND gates 71 and 73 correspond to the column address signal RA. < 1 1 >, / RA < 1 1 > The signal of the Η level is output independently regardless of the logic level, whereby the lowest order bit RAD < 0 >, / RAD < 〇 > are selected (lowest bit RAD < 〇 >, / RAD < 0 > The logical level is selected at L level). In addition, in the above description, the dual-unit mode signal / TWIN is generated by switching over the bo cable of its signal line, but it can also be set as one of the commands provided by the outside, and it can also be set for exclusive use. Terminals. Alternatively, a fuse circuit can also be set internally, and the dual-unit mode signal / TWIN can be set according to whether the fuse element of the fuse circuit is cut off during manufacture. As described above, if the semiconductor memory device 10 according to this embodiment is used, the adjacent word lines are activated at the same time according to the dual-cell mode signal, and the semiconductor memory device of the single-memory cell type is switched to the dual-electric mode. Memory cell type semiconductor memory devices, so it is not necessary to switch the mask pattern to separate production during the mask step phase, but the manufacturing cost can be reduced according to the reduction of the number of masks and the reduction of manufacturing steps. (Embodiment 2) The semiconductor memory device 1 of Embodiment 1 can be switched from a single memory cell type semiconductor memory device having a memory capacity of 12 8M bits and a word structure of "x32" to a memory capacity of 64M bits. And a semiconductor memory device of the double memory cell type of “X 3 2”, but the semiconductor memory device 10A of the second embodiment can be further switched to a memory capacity of 21 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 6 4M bits, and the word structure is a double memory cell type semiconductor memory device of "x 1 6". As described above, the refresh operation is indispensable in DRAM, and during the refresh operation, each of the memory units that are the object of the refresh can perform the reading, amplification, and rewriting of data, and can retain the memory data. The refresh operation is performed on a word line arranged on the memory cell array, and the action cycle (hereinafter referred to as the refresh cycle) is considered in the refresh interval which can ensure the retention of data in each of the billion units. And word line before deciding. Referring again to FIG. 3, when a refresh operation is performed in each group of the memory cell array 34 in the semiconductor memory device 10 of Embodiment 1, according to the address signals A0 ~ A Π received by the address terminal 14 Column address signal RA < 0: 11 >, / RA < 0: 11 >, 4096 word lines in each of the regions 51 to 53 and 54 to 56 can be sequentially activated in each of the regions 51 to 53 and 54 to 56. That is, the restoration of all the 100 million units is completed with 4096 times of renewal operations (hereinafter, a case where 4096 times of renewal operations are required until the renewal of all the memory units is completed is referred to as "4K refresh", As will be described later, a total of 8192 word lines in areas 51 to 56 are activated in sequence, and a case where 8 192 renewal actions are required to complete the renewal of all memory cells is referred to as "8 K renewal"). The semiconductor memory device 10 A of the second embodiment is capable of 8K restoration, and in order to select 8 1 92 zigzag lines in sequence, a column address signal Ra is provided. < 1 2 >, / RA < 1 2>. Then, during the renewal operation, according to the column address signal RA < 0: 12 >, / RA < 0: 12 > Activating 8 1 92 zigzag lines in sequence in each group of memory cell array J 34 and completing 8 1 92 times 22 326 \ Patent Specification (Supplement) 92 -02 \ 91133601.doc 579519 into the restoration of all memory units. In the semiconductor memory device 10A, the uppermost bit RA < 1 2 >, / RA < 12 > Assign to signal RAD < 0: 12 >, / RAD < 0: 12 > lowest bit RAD < 0 >, / RAD < 0 > When the semiconductor memory device I 0 A has a function as a semiconductor memory device of a dual memory cell type, it is the same as the semiconductor memory device 1 of the first embodiment by using the lowest-order bit RAD < 0 >, / RAD < 0 > All are activated to have a function as a semiconductor memory device having a memory capacity of 64 Mbits and a word configuration of "X 1 6". The reason for this is that when the semiconductor memory device 10A has a function as a semiconductor memory device with a memory capacity of 64M bits and a word configuration of "X 1 6", the highest order bit system of the column address signal is RA < 1 1 >, / RA < II > and the column address signal RA < 12 >, / RA < 12 > becomes unused, so even within the semiconductor memory device 10 A, the column address signal RA is rewritten < 1 2 >, / RA < 12 > Corresponding signal RADCO>, / RAD < 0 >, there is no problem in specifying the address. Since the overall configuration of the semiconductor memory device 10A of the second embodiment is the same as that of the semiconductor memory device 10 of the first embodiment shown in FIG. 1, description thereof will not be repeated. FIG. 5 is a schematic view showing the unintended composition of the memory region in each group of the memory cell array 3 4 of the semiconductor memory device 100A. Referring to FIG. 5, in each group of the memory cell array 34 in the semiconductor memory device 10A, compared with the group of the memory cell array 34 in the semiconductor memory device 10 shown in FIG. 53 more by signal / RAD < 12 > is selected by the logic level, and the areas 54 to 56 are further selected by the signal RAD < 12 > 23 326 Chuanli Instruction Manual (Supplement) 92-02 \ 91133601 .doc 579519 is selected. Here, in the semiconductor memory device 10 A, the < 0: 12 >, / RA < 0: 12 > and generate a signal RAD < 0: 12 >, / R A D < 0: 1 2 > column address signal R A < 〇: 1 2 >, / R A < 0: 1 2 > the highest order bit and the lowest order bit will be replaced to generate a signal RAD < 0: 12 >, / RAD < 0: 12 >. That is, the highest order bit RA of the row address < 12 >, / RA < 12 > assigned to signal RAD separately < 0: 1 2 >, / RAD < 0: 12 > lowest bit RAD < 0 >, / RAD < 〇 >; the lowest-order bit RA of the column address < 0 >, / RA < 0 > are assigned to the signal RAD separately < 0: 1 2 >, / RAD < 0: 1 2 > highest order bit RAD < 12 > > / R AD < 1 2 >. Then, when the semiconductor memory device 10A has a function as a dual memory cell type semiconductor memory device with a memory capacity of 64M bits and a word configuration of "X 1 6", if the signal RAD is generated < 0: 12 >, / RAD < 0: 12〉, the lowest order bit RAD < 〇 >, / R AD < 〇 > Any one of them is often selected. Thereby, as shown in FIG. 5, the adjacent word lines 6 and 62 and the word lines 63 and 64 are selected at the same time, and the adjacent memory cells are selected at the same time to form a double memory cell. As described above, if the semiconductor memory device 10 A according to the second embodiment is used, since the highest order bit R A of the column address signal designed for 8 κ restoration is used < 1 2 >, / R A < 1 2 > can simultaneously activate adjacent word lines, so it can be switched from a single memory cell type semiconductor memory device to a memory capacity of 64M bits and the word structure is "x 1 6" double Memory cell type semiconductor memory device. 24 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 (Embodiment 3) The semiconductor memory device of Embodiment 3 is provided with the semiconductor memory device 100A of Embodiment 2 and has a self-recovery function. Furthermore, it has a part of the memory area that can only be refreshed, so-called partial self-recovery function. · As mentioned above, during the refreshing operation, in each of the memory units to be the subject of the refreshing, data can be read out, enlarged, and rewritten periodically, and the stored data can be maintained. This refreshing action is performed on each word line. Then, in the self-renewal, the row address of the zigzag line for selecting the object to be renewed is internally generated, and then the renewal action is performed. In the partial self-recovery, the reset operation is performed only in the logical level of the upper 1 bit or the higher 2 bits of the column address, for example, in the memory area of the L level. Therefore, in the partial self-recovery, in order to properly restore a specified part of the area, it is necessary to have the semiconductor memory device function as a single memory cell type semiconductor memory device or have a dual memory cell type The function of the semiconductor memory device, or the highest order bit of the column address corresponding to the 8K restoration, corresponds to the restoration space in the partial self-recovery. Fig. 6 is a schematic block diagram showing the overall structure of a semiconductor memory device according to a third embodiment of the present invention. Referring to FIG. 6 ′, the semiconductor memory device 丨 丨 is provided with a refresh control circuit in addition to the conductor memory device 10 A of the second embodiment. 36. The restoration control circuit 36 includes a self-recovery control circuit 38 and a restoration address generation circuit 40. The restoration control circuit 36 is based on an instruction from the control circuit 24, and 25 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 generates a column address (hereinafter, referred to as the restoration) New column address signal / QAD < 0: η >) and output to 歹 [J address decoder 2 6.歹 IJ address decoder 26 is based on an instruction from the control circuit 24, and during normal operation, it is based on the column address signal R A received by the address buffer 20. < 0: n >, / R A < 0: η > The selection of the memory cell array [J 3 4 is performed. On the other hand, in the self-recovery mode, the column address decoder 26 is based on the restored column address signal / QAD from the restoration control circuit 36. < 0: η > The selection of the zigzag lines in the memory cell array 34 is performed. The self-recovery control circuit 38 generates a refresh signal QCU based on a pulse wave signal generated by a signal sending circuit (not shown), and outputs the generated refresh signal QCU to the refresh address generation circuit 40. The refresh signal QCu is determined in each designated refresh cycle after considering the refresh interval that can ensure the retention of data in each memory cell in the memory cell array 34 and the number of word lines in the memory cell array 34. activation. The restoration address generating circuit 40 updates the restoration column address in accordance with the restoration signal QCu, and sequentially switches the memory cell φ row which is the object of the restoration operation. Specifically, the restoration column address signal / Q A D < 0: η > is counted up according to the refresh signal QCU. As described above, the semiconductor memory device 11 according to the third embodiment is not intended to further reduce the power consumption in the standby mode, but in the self-recovery mode'-type, the entire memory area is used as a target to perform the refresh operation. Instead, it takes a one-part memory area as the object to perform the renewal action, and has a so-called partial self-renewal function. In this part of the self-recovery, in each group 26 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 of the memory cell array 34, the restoration cycle is only extended for the higher-order 2 bits. Then, in the use mode of the memory-cell-type memory cell-recovery function, FIG. 7 is a block diagram of the work function. Referring to FIG. 7, the counters 401 to 4 are counted from self-executing and upwards. The restored address will output the count data 11 > Refer to Figure 8 New column address signal / Q AD < 0: η > The upper level is 1-bit or is restored for the L-level memory area. This eliminates the need for time and reduces power consumption during standby mode. The semiconductor memory device 11 has the highest order bits of different column addresses in a case where it has a function as a normal single semiconductor memory device, a case where it has a function as a dual semiconductor memory device, and a case where it has 8K. According to this, it is appropriately allocated to the part of the self-renewal renewal space. The functional description of the restoration address generation circuit 40 shown in FIG. 6 and the restoration address generation circuit 40 includes the restoration address meter 12. The refresh address counter 40 1 corresponding to the lowest-order bit, and the refresh signal QCU output from the control circuit 3 8 are counted, and the count data is used as the refresh column address signal / QAD. < Each of the counters 40 1 to 4 1 2 is counted up in accordance with the count data output from the lower-order bit-side counter, and is used as a refresh column address signal / QAD, respectively. < 1 > ~ / QAD < 〇 During self-renewal, a renewal column address signal / Q AD for the memory cell column at each specified refresh cycle can be generated < 0: 1 1 >. Shows the circuit composed of the circuits of the renewal address counters 4 0 1 to 4 1 2. Each of the renewal address counters 401 to 412 includes: 27 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 Inverters 8 2, 8 6 that invert the input signal; the logic level of the input signal is activated when the L level is activated, and the inverter 8 1 that inverts after receiving the output signal; constitutes the output of the inverter 8 1 Inverters 8 3, 84 to be latched by the latch circuit; the logic level of the input signal is activated on time and the inverter 8 5 which is inverted after receiving the output of the inverter 8 1; its input node N AND gate 8 7 connected to the power supply node and the output node of the inverter 85; and an inverter that constitutes a latch circuit that inverts the output of the inverter 85 together with the NAND gate 87 8 8. In each of the reset counters 401 to 412, when the logic level of the output signal is the L level, if the input signal is the L-bit criterion, the inverter 81 is activated, and the output of the inverter 81 becomes Η Level. On the other hand, at this stage, the inverter 85 is not activated, and the output of the inverter 81 is not transmitted to the output node of the inverter 85. Then, when the logic level of the input signal becomes the high level, although the inverter 81 is activated, the output of the inverter 81 is latched by the inverters 83 and 84. On the other hand, the inverter 85 is activated, and the inverter 85 outputs an L-level signal after inverting the input of the Η level. Therefore, the NAND gate 87 outputs a signal at a high level, and its output is latched by the NAND gate 87 and the inverter 88. Then, when the logic level of the input signal becomes the L level, the inverter 81 is activated, and the output of the inverter 81 becomes the L level. On the other hand, the inverter 85 is not activated, and the output of the inverter 81 is not passed to the output node of the inverter 85. Then, when the logic level of the input signal becomes the Η level, although the inverter 28 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 inverter 81 is not activated, the output of inverter 81 will be Latched by inverters 8 3, 8 4. On the other hand, the inverter 85 is activated, and the inverter 85 outputs a signal of the Η level after inverting the input of the L level. Therefore, the NAND gate 87 outputs an L-level signal, and its output is latched by the NAND gate 87 and the inverter 88. ·

如此,復新位址計數器401〜412之各個,會輸出將輸入 信號之週期設爲1 /2的輸出信號,藉此,復新列位址信號 /QAD&lt;0:11&gt;將往上計數。 I 圖9係顯示於列位址解碼器26中所包含之位址選擇電 路之電路構成的電路圖。位址選擇電路,係按照由控制電 路24所接受的自我復新模式信號QADSEL,而選擇由位址 緩衝器20所接受的列位址信號RA &lt; 0: 1 1 &gt;及復新列位址 信號/Q AD &lt; 0 : 1 1〉中之任一個並當作信號 RAD&lt;0: 11 &gt;來輸出。 另外,在圖9中,在說明關係上,雖在除了自我復新模 式信號QADSEL以外之其他的輸入信號及輸出信號中,歸 φ 納顯示各位元資料,且即使在以下之說明中亦以歸納各位 元資料之信號來說明,但是實際上係對應每一位元資料而 各具備有電路。 參照圖9,位址選擇電路係包含有:接受列位址信號RA * &lt; 〇 : 1 1 &gt;並予以反轉的反相器9 1 ;接受自我復新模式信 · 號QADSEL並予以反轉的反相器94;當自我復新模式信號 QADSEL爲Η位準時活化,並反轉復新歹U位址信號/QAD&lt; 0 : 11 &gt;之後輸出信號RAD&lt; 0 : 11 &gt;的反相器93 ;以及當 29 326\ 專利說明書(補件)92-〇2\91133601.doc 579519 自我復新模式信號QADS EL爲L位準時活化,並反轉反相 器91之輸出之後輸出信號Rad&lt;0: 11&gt;的反相器92。 自我復新模式信號QADSEL,係在自我復新模式時變成 Η位準的信號,且依控制電路2 4而產生。 · 位址選擇電路,係在自我復新模式信號Q A D S E L爲Η位 · 準時將復新列位址信號/QAD &lt; 0 : 1 1 &gt;所反轉的信號當作 fg號RAD&lt;0: 11&gt;來輸出。另一方面,位址選擇電路, 係在自我復新模式信號QADSEL爲L位準時將列位址信號 $ RA &lt; 0: 1 1 &gt;所反轉的信號當作信號rad &lt; 0: 1 1 &gt;來輸出。 圖1 〇至圖1 2所示的電路,係列位址解碼器2 6中所包 含的電路;且爲按照半導體記憶裝置i 1之使用模式,而將 列位址之上階位元對應於部分自我復新之復新空間內的電 路。圖1 0係顯示按照使用模式而選擇列位址之最上階位元 之下一個上階位元用之電路構成的電路圖。圖11係顯示按 照使用模式而選擇列位址之最上階位元用之電路構成的電 路圖。圖1 2係顯示產生用以停止自我復新動作之自我復新 鲁 停止信號之電路構成的電路圖。 在此,在使用模式中包含有:半導體記憶裝置1 1具有作 爲通常之單一記憶單元型之半導體記憶裝置的功能之通常 模式;半導體記憶裝置1 1具有作爲雙記憶單元型之半導體 · 記憶裝置的功能之雙單元模式;以及半導體記億裝置11 - 進行8K復新動作時的8K復新模式。 然後,在通常模式時,復新列位址之最上階位元係/QAD &lt; 1 1 &gt;;在雙單元模式時,復新列位址之最上階位元係 30 326\專利說明書(補件)92_02\911336〇l.doc 579519 /QAD&lt; 10&gt; ;在8K復新模式時,復新歹[J位址之最上階位 元係 / QAD&lt;12&gt;。 參照圖10,該電路係包含有:接受雙單元模式信號TWIN 並予以反轉的反相器1 02 ;當雙單元模式信號TWIN爲Η · 位準時活化,且接受復新列位址信號/QAD &lt; 9 &gt;並予以反 · 轉的反相器1 0 1 ;接受8 K復新模式信號8 K並於反轉的反 相器104 ;當8K復新模式信號8K爲Η位準時活化,且接 受復新列位址信號/QAD&lt; 11 &gt;並予以反轉的反相器1〇3 ; | 接受通常模式信號NORMAL並予以反轉的反相器106;當 通常模式信號NORMAL爲Η位準時活化,且接受復新列 位址信號/QAD&lt; 10&gt;並予以反轉的反相器1〇5 ;接受反相 器101、103、105之輸出並予以反轉的反相器1〇7;以及 接受反相器107之輸出並予以反轉,再輸出信號QAD&lt; 1〇 &gt;的反相器108。 該電路,係當半導體記憶裝置1 1具有作爲雙記憶單元型 之半導體記憶裝置的功能,且雙單元模式信號TWIN爲Η φ 位準時,將復新列位址信號/qAD &lt; 9 &gt;被反轉的信號當作 信號QAD&lt; 10&gt;來輸出。又,該電路,係當半導體記憶裝 置1 1係以8K復新來動作,且8K復新模式信號8K爲Η 位準時’將復新列位址信號/qAD &lt;11:&gt;被反轉的信號當作 · 信號QAD&lt; 10&gt;來輸出。更且,該電路,係當半導體記憶 · 裝置1 1具有作爲通常之單一記憶單元型之半導體記憶裝 置的功能,且通常模式信號NORMAL爲Η位準時,將復 新列位址信號/QAD&lt; 1〇&gt;被反轉的信號當作信號QAD&lt; 31 326\專利說明書(補件)92-〇2\91133601 .doc 579519 1 ο &gt;來輸出。 參照圖11,該電路係包含有:接受雙單元模式信號TWIN 並予以反轉的反相器1 12 ;當雙單元模式信號TWIN爲Η 位準時活化,且接受復新列位址信號/QAD &lt; 1 0 &gt;並予以反 轉的反相器1 1 1 ;接受8K復新模式信號8K並於反轉的反 相器1 1 4 ;當8K復新模式信號8K爲Η位準時活化,且接 受復新列位址信號/QAD&lt; 12&gt;並予以反轉的反相器113 ; 接受通常模式信號NORMAL並予以反轉的反相器116 ;當 通常模式信號NORMAL爲Η位準時活化,且接受復新列 位址信號/QAD &lt; 1 1 &gt;並予以反轉的反相器1 1 5 ;接受反相 器111、113、115之輸出並予以反轉的反相器117;以及 接受反相器117之輸出並予以反轉,再輸出信號QAD&lt; u &gt;的反相器1 1 8。 該電路,係當半導體記憶裝置1 1具有作爲雙記憶單元型 之半導體記憶裝置的功能,且雙單元模式信號TWIN爲Η 位準時,將復新列位址信號/QAD &lt; 1 0 &gt;被反轉的信號當作 信號Q A D &lt; 1 1 &gt;來輸出。又,該電路,係當半導體記憶裝 置11係以8K復新來動作,且8K復新模式信號8K爲η 位準時,將復新列位址信號/QAD &lt; 1 2 &gt;被反轉的信號當作 信號QAD&lt;11&gt;來輸出。更且,該電路,係當半導體記憶 裝置1 1具有作爲通常之單一記憶單元型之半導體記憶裝 置的功能,且通常模式信號NORMAL爲Η位準時,將復 新列位址信號/QAD &lt; 1 1〉被反轉的信號當作信號qAd &lt; Π &gt;來輸出。 32 326\專利說明書(補件)92-02\91133601 .doc 參照圖1 2,該電路係包含有:接受信號SELF_1 MSB、 信號SELFREF及信號QAD&lt;11&gt;的NAND閘123;接受信 號 QAD&lt; 11&gt;、Q AD &lt; 1 0 &gt; 的 NAND 閘 121 ;接受 NAND 閘1 2 1之輸出並予以反轉的反相器1 2 2 ;接受反相器1 2 2 之輸出、信號SELFREF及信號SELF —2MSB的NAND閘 124 ;輸出閘極連接在電源節點及NAND閘123、124之輸 出節點上的NAND閘1 25 ;以及接受NAND閘1 25之輸出 並予以反轉,再輸出自我復新停止信號SELF_S TOP的反 相器1 2 6。 信號SELF_1MSB,係在部分自我復新中,與只在復新列 位址信號之最上階位元爲L位準的記憶區域進行自我復新 之復新模式相對應的模式信號。信號SELF_2MSB,係在部 分自我復新中,與只在復新列位址信號之最上階位元及其 下一個上階位元均爲L位準的記憶區域進行自我復新之復 新模式相對應的模式信號。信號SELFREF,係當進行部分 自我復新時變成Η位準的信號。該等的信號,均係依控制 電路24而產生。 自我復新停止信號SELF_STOP,係輸出至控制電路24, 且在自我復新停止信號SELF —STOP爲Η位準時,控制電 路2 4,才停止復新動作。另一方面,若在自我復新動作中, 且自我復新停止信號SELF_STOP爲L位準則控制電路 24,會指示復新動作之執行。 在該電路中,當信號SELFREF及信號SELFJMSB均爲 Η位準時(信號SELF —2MSB變成L位準),若信號qad&lt; 33 326\專利說明書(補件)92-02\91133601.doc 579519In this way, each of the renewal address counters 401 to 412 outputs an output signal with the period of the input signal set to 1/2, whereby the renewal column address signal / QAD &lt; 0: 11 &gt; will count up. I FIG. 9 is a circuit diagram showing a circuit configuration of an address selection circuit included in the column address decoder 26. The address selection circuit selects the column address signal RA &lt; 0: 1 1 &gt; and the restoration column position accepted by the address buffer 20 in accordance with the self-recovery mode signal QADSEL received by the control circuit 24. The address signal / Q AD &lt; 0: 1 1> is output as the signal RAD &lt; 0: 11 &gt;. In addition, in FIG. 9, in the description relationship, although the input signal and the output signal other than the self-recovery mode signal QADSEL are summarized, φ is shown to show metadata, and it is also summarized in the following description. Each meta-data signal is used for explanation, but actually each circuit has a circuit corresponding to each meta-data. Referring to FIG. 9, the address selection circuit includes an inverter 9 1 that receives a column address signal RA * &lt; 〇: 1 1 &gt; and inverts it; and receives a self-recovery mode signal QADSEL and inverts it. The inverted inverter 94 is activated when the self-recovery mode signal QADSEL is at a level, and reverses the inversion of the reset U address signal / QAD &lt; 0: 11 &gt; and then the inverse of the output signal RAD &lt; 0: 11 &gt; Phaser 93; and when 29 326 \ Patent Specification (Supplement) 92-〇2 \ 91133601.doc 579519 Self-recovery mode signal QADS EL is activated at L level, the output signal Rad & lt is output after inverting the output of inverter 91 ; 0: 11 &gt; The self-recovery mode signal QADSEL is a signal that becomes a high level during the self-recovery mode, and is generated according to the control circuit 24. · Address selection circuit, when the self-recovery mode signal QADSEL is set to the right position · The column address signal / QAD &lt; 0: 1 1 &gt; is reversed as the fg number RAD &lt; 0: 11 &gt; To output. On the other hand, the address selection circuit uses the column address signal $ RA &lt; 0: 1 1 &gt; as the signal rad &lt; 0: 1 when the self-recovery mode signal QADSEL is at L level 1 &gt; to output. The circuits shown in FIG. 10 to FIG. 12 are circuits included in the series of address decoders 26; and in accordance with the use mode of the semiconductor memory device i 1, the upper order bits of the column address correspond to a part Circuits in the space of self-renewal. Fig. 10 is a circuit diagram showing a circuit structure for selecting the upper order bit of the column address according to the usage mode and the next higher order bit. Fig. 11 is a circuit diagram showing a circuit for selecting the uppermost bit of a column address according to the usage mode. Fig. 12 is a circuit diagram showing a circuit configuration for generating a self-renewal stop signal for stopping the self-renewal action. Here, the use mode includes a normal mode in which the semiconductor memory device 11 has a function as a normal single-memory-type semiconductor memory device, and the semiconductor memory device 11 has a double-memory-type semiconductor · memory device. Functional dual unit mode; and semiconductor memory device 11-8K refresh mode when performing 8K refresh operation. Then, in the normal mode, the highest-order bit system of the refresh column address / QAD &lt; 1 1 &gt;; in the two-cell mode, the highest-order bit system of the refresh column address 30 326 \ Patent Specification ( Supplement) 92_02 \ 911336〇l.doc 579519 / QAD &lt; 10 &gt;; In the 8K restoration mode, the restoration [the uppermost bit system of the J address / QAD &lt; 12 &gt;. Referring to FIG. 10, the circuit includes: an inverter 102 receiving a dual-cell mode signal TWIN and inverting it; it is activated when the dual-cell mode signal TWIN is at a level, and it accepts a new column address signal / QAD &lt; 9 &gt; Inverted inverter 1 0 1; Receives 8 K refresh mode signal 8 K and inverts the inverter 104; Activates when 8K refresh mode signal 8K is at Η level, Inverter 103 that accepts the restored column address signal / QAD &lt; 11 &gt; and inverts it; | Inverter 106 that accepts the normal mode signal NORMAL and inverts it; When the normal mode signal NORMAL is a bit Inverter 1105 that is activated on time and that receives the renewed column address signal / QAD <10> and inverts it; Inverter 101 that accepts the output of inverters 101, 103, 105 and inverts it And an inverter 108 which receives the output of the inverter 107 and inverts it, and outputs a signal QAD &lt; 10 &gt;. This circuit is to reset the column address signal / qAD &lt; 9 &gt; when the semiconductor memory device 11 has a function as a semiconductor memory device of a dual memory cell type and the dual cell mode signal TWIN is at a Η φ level. The inverted signal is output as a signal QAD &lt; 10 &gt;. In addition, this circuit is when the semiconductor memory device 11 operates with 8K refresh, and the 8K refresh mode signal 8K is at the Η level, 'the column address signal / qAD &lt; 11: &gt; is inverted The signal is output as a signal QAD &lt; 10 &gt;. Furthermore, when the semiconductor memory device 11 has a function as a normal single memory cell type semiconductor device, and the normal mode signal NORMAL is at a level, the column address signal / QAD &lt; 1 is restored. 〇 &gt; The inverted signal is output as signal QAD &lt; 31 326 \ Patent Specification (Supplement) 92-〇2 \ 91133601.doc 579519 1 ο &gt;. Referring to FIG. 11, the circuit includes: an inverter 1 12 that receives the dual-cell mode signal TWIN and inverts it; it is activated when the dual-cell mode signal TWIN is at the Η level, and it receives a refresh column address signal / QAD & lt 1 0 &gt; Inverted inverter 1 1 1; Receives 8K refresh mode signal 8K and inverts inverter 1 1 4; Activates when 8K refresh mode signal 8K is Η level, and Inverter 113 that receives the restored column address signal / QAD &lt; 12 &gt; and inverts it; Inverter 116 that accepts the normal mode signal NORMAL and inverts it; Activates when the normal mode signal NORMAL is at the Η level, and accepts Invert the column address signal / QAD &lt; 1 1 &gt; and invert the inverter 1 1 5; Inverter 117 that receives the output of inverters 111, 113, 115 and inverts; and accept the inverter The output of the phase inverter 117 is inverted, and an inverter 1 1 8 of the signal QAD &lt; u &gt; is output. This circuit is to reset the column address signal / QAD &lt; 1 0 &gt; when the semiconductor memory device 11 has a function as a dual memory cell type semiconductor memory device and the dual cell mode signal TWIN is at the Η level. The inverted signal is output as a signal QAD &lt; 1 1 &gt;. In addition, when the semiconductor memory device 11 operates at 8K refresh and the 8K refresh mode signal 8K is at the η level, the circuit refreshes the column address signal / QAD &lt; 1 2 &gt; The signal is output as a signal QAD &lt; 11 &gt;. In addition, this circuit is to reset the column address signal / QAD &lt; 1 when the semiconductor memory device 11 has the function as a normal single memory cell type semiconductor memory device and the normal mode signal NORMAL is at a level. 1> The inverted signal is output as a signal qAd &lt; Π &gt;. 32 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc Referring to FIG. 12, the circuit system includes: a NAND gate 123 that accepts the signal SELF_1 MSB, a signal SELFREF, and a signal QAD &lt; 11 &gt;; a reception signal QAD &lt; 11 &gt;;, Q AD &lt; 1 0 &gt; NAND gate 121; Inverter 1 2 2 that accepts the output of NAND gate 1 2 1 and inverts it; Accepts the output of inverter 1 2 2, signal SELFREF and signal SELF -2MSB NAND gate 124; output gate connected to the power node and the output nodes of NAND gates 123, 124; NAND gate 1 25; and accept the output of NAND gate 1 25 and invert, and then output the self-recovery stop signal Inverter of SELF_S TOP 1 2 6. The signal SELF_1MSB is a mode signal corresponding to the mode of self-renewal in the partial self-renewal, and the self-renewal mode is performed only in the memory region where the uppermost bit of the signal of the renewal column is L level. The signal SELF_2MSB is in a partial self-renewal mode, which is in contrast to the mode of self-renewal only in the memory region where the uppermost bit and the next upper-order bit of the column address signal are all L-level. Corresponding mode signal. The signal SELFREF is a signal that becomes a level when performing a partial self-recovery. These signals are generated by the control circuit 24. The self-recovery stop signal SELF_STOP is output to the control circuit 24, and when the self-recovery stop signal SELF-STOP is at the high level, the control circuit 2 4 stops the refresh operation. On the other hand, if in the self-recovery action, and the self-recovery stop signal SELF_STOP is the L-bit criterion control circuit 24, it will instruct the execution of the refresh action. In this circuit, when both the signal SELFREF and the signal SELFJMSB are at the Η level (the signal SELF —2MSB becomes the L level), if the signal qad &lt; 33 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519

11&gt;爲Η{αι準’貝ij NAND閘123之輸出會變成L位準,且 自我復新停止信號SELF__STOP會變成L位準。因而,在 復新列位址信號/QAD之最上階位元爲L位準的記憶區域 中,復新動作被執行。另一方面,當信號Q AD &lt; 1 1 &gt;爲L · 位準時,則N AND閘1 2 3之輸出會變成Η位準,且自我復 · 新停止信號SELF_S TOP會變成Η位準。因而,在復新列 位址信號/QAD之最上階位元爲Η位準的記憶區域中,復 新動作不被執行。 I 又’當信號SELFREF及信號SELF —2MSB均爲Η位準時 (信號SELF—1MSB變成L位準),若信號QAD&lt;11&gt;、QAD &lt; 1〇&gt;均爲Η位準,則NAND閘124之輸出會變成L位準, 且自我復新停止信號SELF_ STOP會變成L位準。因而, 在復新列位址信號/QAD之最上階位元及其下一個上階位 元均爲L位準的記憶區域中,復新動作被執行。另一方面, 當信號QAD&lt;11&gt;、QAD&lt;10&gt;之至少一方爲L位準時, 則NAND閘124之輸出會變成Η位準,且自我復新停止信 鲁 號SELF# STOP會變成Η位準。因而,在復新列位址信號 /QAD之最上階位元及其下一個上階位元均非爲L位準的 記憶區域中,復新動作不被執行。 如以上所述,若依據本實施形態3之半導體記憶裝置 · 1 1,則即使列位址之最上階位元因使用模式而有所不同的 · 情況,由於在部分自我復新中亦可選擇復新動作被執行之 一部分的指定記憶區域,適 當地執行部分自我復新。 .— ~ \ 34 326\專利說明書(補件)92-02\91133601 .doc 579519 此次所揭示的實施形態,應僅視爲爲所有點之例示而非 限制。本發明之範圍,並非僅限於上述實施形態之說明而 是依申請專利範圍所示之範圍,且其涵蓋與申請專利範圍 均等之意思及範圍內之所有的變更。 【圖式簡單說明】 圖1係顯示實施形態1之半導體記憶裝置整體構成的槪 略方塊圖。 圖2係顯示圖1所示於記億單元陣列上排列成行列狀之 記憶單元構成的電路圖。 圖3係槪念說明圖1所示記憶單元陣列之各群組中之記 憶區域構成的示意圖。 圖4係顯示圖1所示於列位址解碼器中所包含之RAD &lt; 〇〉生成電路之電路構成的電路圖。 圖5係槪念顯示實施形態2之半導體記憶裝置之記憶單 元陣列之各群組中之記憶區域構成的示意圖。 圖6係顯示實施形態3之半導體記憶裝置全體構成的槪 略方塊圖。 圖7係功能性說明圖6所示之復新位址產生電路的功能 方塊圖。 圖8係顯示圖7所示之復新位址計數器之電路構成的電 路圖。 圖9係顯示圖6所示乏列位址解碼器中所包含之位址選 擇電路之電路構成的電路圖。 圖1 0係顯示按照使用模式而選擇最上階位元之下一個 35 326\專利說明書(補件)92-02\91133601.doc 579519 上階位元用之電路構成的電路圖。 圖11係顯示按照使用模式而選擇最上階位元用之電路 構成的電路圖。 圖1 2係顯示產生用以停止自我復新動作之自我復新停 止信號之電路構成的電路圖。 圖1 3係顯示於單一記憶單元型DRAM中之記憶單元陣 列上排列成行列狀之記憶單元構成的電路圖。 圖I 4係顯示於雙記憶單元型DRAM中之記憶單元陣列 上 排列 成 行 列 狀 之 記 憶單 元構成的電路圖。 [ 元件 符 號 說 明 ] 10 、1 0A ' ] ί 1 半 導 體 記憶 裝置 12 控 制 信 號 端 子 14 位址 端 子 16 資 料 輸 出 入 端 子 18 控制 信 號 緩 衝器 20 位 址 緩 衝 器 22 輸出 入 緩 衝 器 24 控 制 電 路 26 列位 址 解 碼 器 28 行 位 址 解 碼 器 30 輸出 入 控 制 電路 32 感 測 放 大 器 34 記憶 單 元 陣 列 36 復 新 控 制 電 路 3 8 自我復新控制電路 40 復 新 位 址 產 生 電路 5 1〜 56 記 憶 1¾ 域 6 1 〜6 4, 、WL0〜 WL3 WLn、 WLn + 1 字線 7 1 '73 87 12 1、 • 1 23〜1 25 NAND 聞 72 、7 4 反 相 器 77 ' 11 0 單 元 板 8 1 〜8 6 、88, ‘ 9 1〜 94 101〜 108、 1 1 1〜 118、 122 % 126 反相 326\專利說明書(補件)92-02\91133601 .doc 36 579519 100、 100A 、 100B 、 340〜343 記憶單元 4 0 1 〜4 1 2 復新位址計數器 NO 〜N3、N 1 0 1 〜N1 03 Ν通道MOS CO〜C3 、 C101 〜C 1 03 電容器 BL、/BL 位元線對 /CS 晶片選擇信號 /RAS 列位址選通信號 /CAS 行位址選通信號 /WE 寫入致能信號 A 0 〜A n 位址信號 BAO、BA1 群組位址信號 DQO 〜DQi 資料 IDQ 內部資料 R A D &lt; 0 : n &gt; 、/R AD &lt; 0 : η &gt; 信號 C A &lt; 0 : n &gt; 、 /C A &lt; 0 : η &gt; 行位址信號 R A &lt; 0 : n &gt; 、 / R A &lt; 0 : η〉 列位址信號 TWIN、/TWIN雙單元模式信號 /QAD&lt;0: n&gt; 復新列位址信號 QCU 復新信號 QADSEL 自我復新模式信號 SELF__STOP 自我復新停止信號 NORMAL 通常模式信號11 &gt; The output of Η {αι 准 ’ij NAND gate 123 will become L level, and the self-restore stop signal SELF__STOP will become L level. Therefore, in the memory region where the uppermost bit of the refresh column address signal / QAD is L level, the refresh operation is performed. On the other hand, when the signal Q AD &lt; 1 1 &gt; is L · level, the output of the N AND gate 1 2 3 will become the high level, and the self-reset · New stop signal SELF_S TOP will become the high level. Therefore, in the memory region where the uppermost bit of the restoration column address signal / QAD is at the level of a unit, the restoration operation is not performed. When the signals SELFREF and signal SELF-2MSB are both at the Η level (the signal SELF-1MSB becomes the L level), if the signals QAD &lt; 11 &gt; and QAD &lt; 1〇 &gt; are both the Η level, the NAND gate The output of 124 will become the L level, and the self-restore stop signal SELF_STOP will become the L level. Therefore, in the memory region where the uppermost bit of the refresh column address signal / QAD and its next upper bit are both L-level, the refresh operation is performed. On the other hand, when at least one of the signals QAD &lt; 11 &gt; and QAD &lt; 10 &gt; is at the L level, the output of the NAND gate 124 will become the level, and the self-renewal stop signal number SELF # STOP will become the level. quasi. Therefore, in a memory region where neither the uppermost bit of the restoration column address signal / QAD nor its next upper order bit is L level, the restoration operation is not performed. As described above, if the semiconductor memory device according to the third embodiment is · 1 1, even if the uppermost bit of the column address differs depending on the usage mode, it can be selected during partial self-recovery. A part of the refresh operation is performed in a designated memory area, and part of the self-recovery is appropriately performed. .— ~ \ 34 326 \ Patent Specification (Supplement) 92-02 \ 91133601 .doc 579519 The embodiments disclosed this time should be regarded as an example rather than a limitation. The scope of the present invention is not limited to the description of the above-mentioned embodiment, but is in accordance with the scope shown in the scope of patent application, and it covers all changes within the meaning and scope equivalent to the scope of patent application. [Brief Description of the Drawings] FIG. 1 is a schematic block diagram showing the overall configuration of a semiconductor memory device according to the first embodiment. FIG. 2 is a circuit diagram showing the structure of the memory cells arranged in a row and column shape on the billion cell array shown in FIG. 1. FIG. FIG. 3 is a schematic diagram illustrating the structure of a memory area in each group of the memory cell array shown in FIG. 1. FIG. FIG. 4 is a circuit diagram showing a circuit configuration of the RAD &lt; 〇> generating circuit included in the column address decoder shown in FIG. 1. FIG. Fig. 5 is a schematic view showing the structure of a memory region in each group of a memory cell array of a semiconductor memory device of Embodiment 2; Fig. 6 is a schematic block diagram showing the overall configuration of a semiconductor memory device according to a third embodiment. FIG. 7 is a functional block diagram illustrating the function of the reset address generating circuit shown in FIG. 6. FIG. FIG. 8 is a circuit diagram showing a circuit configuration of the refresh address counter shown in FIG. 7. FIG. FIG. 9 is a circuit diagram showing a circuit configuration of an address selection circuit included in the columnar address decoder shown in FIG. 6. FIG. Fig. 10 is a circuit diagram showing a circuit selected by the upper order bit according to the use mode. 35 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 The upper order bit is used. FIG. 11 is a circuit diagram showing a circuit configuration for selecting the uppermost bit according to a use mode. Fig. 12 is a circuit diagram showing a circuit configuration for generating a self-recovery stop signal for stopping the self-recovery action. Fig. 13 is a circuit diagram showing a configuration of memory cells arranged in rows and columns on a memory cell array in a single memory cell type DRAM. Figure I4 is a circuit diagram showing the configuration of memory cells arranged in rows on a memory cell array in a dual memory cell type DRAM. [Description of component symbols] 10, 1 0A '] ί 1 semiconductor memory device 12 control signal terminal 14 address terminal 16 data input / output terminal 18 control signal buffer 20 address buffer 22 output buffer 24 control circuit 26 rank Address decoder 28 Row address decoder 30 I / O control circuit 32 Sense amplifier 34 Memory cell array 36 Restoration control circuit 3 8 Self-recovery control circuit 40 Restoration address generation circuit 5 1 ~ 56 Memory 1¾ Domain 6 1 ~ 6 4,, WL0 ~ WL3 WLn, WLn + 1 word line 7 1 '73 87 12 1, • 1 23 ~ 1 25 NAND 72, 7 4 inverter 77 '11 0 cell board 8 1 ~ 8 6, 88, '9 1 ~ 94 101 ~ 108, 1 1 1 ~ 118, 122% 126 Reverse phase 326 \ Patent specification (Supplement) 92-02 \ 91133601.doc 36 579519 100, 100A, 100B, 340 ~ 343 memory unit 4 0 1 ~ 4 1 2 Reset address counters NO ~ N3, N 1 0 1 ~ N1 03 Ν channel MOS CO ~ C3 、 C101 to C 1 03 capacitor BL, / BL bit line pair / CS chip selection signal / RAS column address strobe signal / CAS row address strobe signal / WE write enable signal A 0 to A n address signal BAO, BA1 group address signals DQO to DQi data IDQ internal data RAD &lt; 0: n &gt;, / R AD &lt; 0: η &gt; signal CA &lt; 0: n &gt;, / CA &lt; 0: η &gt; Row address signal RA &lt; 0: n &gt;, / RA &lt; 0: η> Column address signal TWIN, / TWIN dual unit mode signal / QAD &lt; 0: n &gt; Restore column address signal QCU Recovery signal QADSEL Self-recovery mode signal SELF__STOP Self-recovery stop signal NORMAL Normal mode signal

326\專利說明書(補件)92-02\91133601 .doc 37326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 37

Claims (1)

拾、申請專利讓圍: 1 . 一種半導體記憶裝置,係具備有: 記億單元陣列,包含排列成行列狀的複數個記憶單元; 排列於列方向的複數條字線; 排列於行方向的複數條位元線對;以及 解碼器,根據上述複數個記憶單元之各個所特別指定的 位址信號,從上述複數條字線及上述複數條位元線對中分 別選擇特別指定之字線及特別指定之位元線對;其中, 當使用二個’記憶單元來儲存以二進位資訊表示的記憶 資訊之1位元份記憶資料用的雙單元模式信號被活化時, 上述解碼器,將選擇使上述二個記憶單元活化用的字線 與位元線對, 而上述二個記憶單元,則分別儲存上述記憶資料及上述 記憶資料之反轉資料。 2. 如申請專利範圍第1項之半導體記憶裝置,其中上述 解碼器,係生成根據上述位址信號而選擇上述特別指定之 字線用的內部列位址信號,當上述雙單元模式信號被活化 時,則同時選擇上述內部列位址信號之指定位元的邏輯位 準對應第一邏輯位準時的第一字線、及上述指定位元的邏 輯位準對應第二邏輯位準時的第二字線。 3. 如申請專利範圍第2項之半導體記憶裝置,其中上述 指定位元,係上述內部列位址信號之最下階位元, 上述解碼器,係當上述雙單元模式信號被活化時將成爲 不使用的上述位址信號之最上階位元分配至上述內部列位 38 326\專利說明書(補件)92-02\91133601.doc 579519 址信號之最下階位元,而將上述位址信號之最下階位元分 配至上述內部列位址信號之最上階位元。 4 ·如申請專利範圍第3項之半導體記憶裝置,其中,當 處於上述雙單元模式信號未被活化之通常動作模式時,記 憶容量爲2xn(n爲自然數)位元,且字構成爲2xm(m爲自 然數)位元。 5 ·如申請專利範圍第2項之半導體記憶裝置,其更具備 有爲了保持上述記億資訊而定期執行復新動作用的復新控 制電路; 上述復新控制電路,係利用第一復新模式及第二復新模 式中之一種模式來執行上述復新動作,其中該第一復新模 式係以k (k爲自然數)次之復新動作來完成上述記億單元 陣列中所包含之所有記憶單元的復新,而該第二復新模式 係以2 X k次之復新動作來完成上述記憶單元陣列中所包 含之所有記憶單元的復新; 上述位址信號,係將選擇上述第一及第二復新模式用的 復新模式選擇位元包含在最上階位元中; 上述指定位元,係上述內部列位址信號之最下階位元; 上述解碼器,係將上述復新模式選擇位元分配至上述內 部列位址信號之最下階位元,而將上述位址信號之最下階 位元分配至上述內部列位址信號之最上階位元。 6 ·如申請專利範圍第5項之半導體記憶裝置,其中,當 處於上述雙單元模式信號未被活化之通常動作模式時,言己 憶谷量爲2χη(η爲自然數)位兀,且字構成爲2xm(m爲自 39 326\專利說明書(補件)92-02\91133601.doc 579519 然數)位元; 而當上述雙單元模式信號被活化時,記憶容量爲n位 兀’且字構成爲m位元。 7 .如申請專利範圍第丨項之半導體記憶裝置,其中上述 · 雙單元模式信號,係經由指定端子而從外部輸入者。 、 8·如申請專利範圍第〗項之半導體記憶裝置,其更具備 有切換上述雙單元模式信號之邏輯位準的熔線電路。 9 ·如申請專利範圍第丨項之半導體記憶裝置,其更具備 | 有爲了保持上述記憶資訊而定期執行復新動作用的復新控 制電路; 上述復新控制電路,係產生用以指定成爲上述復新動作 對象之記憶單元列的復新列位址; 上述復新列位址,係包含有至少1位元之部分自我復新 位址位元,俾其以上述記憶單元陣列之一部分區域爲對象 而用以指定上述復新動作的執行; 上述解碼器,係包含有選擇電路,俾其從依上述雙單元 鲁 模式信號是否被活化而異的上述復新列位址中選擇上述至 少1位元之部分自我復新位址位元。 1 0 ·如申請專利範圍第9項之半導體記億裝置,其中上述 復新控制電路,係利用第一復新模式及第二復新模式中之 · 一種模式來執行上述復新動作,其中該第一復新模式係以 -k(k爲自然數)次之復新動作來完成上述記憶單元陣列中所 包含之所有記憶單元的復新,而該第二復新模式係以2 X k 次之復新動作來完成上述記憶單元陣列中所包含之所有記 40 326\專利說明書(補件)92-02\91133601 .doc 579519 億單元的復新; 上述選擇電路,係當上述雙單元模式信號未被活化,旦 上述復新控制電路以上述第二復新模式執行上述復新動作 時,從對應上述第二復新模式而產生的上述復新列位址 中,選擇上述至少1位元之部分自我復新位址位元。 41 326\專利說明書(補件)92-02\91133601 .docPick up and apply for a patent to give up: 1. A semiconductor memory device comprising: an array of billions of cells, including a plurality of memory cells arranged in rows and columns; a plurality of word lines arranged in a column direction; a plurality of word lines arranged in a row direction A bit line pair; and a decoder, respectively, according to the address signal specified by each of the plurality of memory cells, selecting a word line and a special word line from the plurality of word lines and the bit line pairs. The specified bit line pair; where, when two 'memory units are used to store the dual unit mode signal for 1 bit of memory information represented by the binary information, the decoder will choose to use The word line and bit line pair for activation of the two memory cells, and the two memory cells store the memory data and the inverted data of the memory data, respectively. 2. For example, the semiconductor memory device in the scope of patent application, wherein the decoder generates an internal column address signal for selecting the specially designated word line according to the address signal. When the dual cell mode signal is activated, , At the same time, the first word line at which the logical level of the designated bit of the internal column address signal corresponds to the first logical level and the second word at the logical level of the designated bit corresponding to the second logical level are selected at the same time. line. 3. For the semiconductor memory device in the second scope of the patent application, the above-mentioned designated bit is the lowest-order bit of the above-mentioned internal column address signal, and the above-mentioned decoder will become The highest-order bit of the above-mentioned address signal that is not used is allocated to the above-mentioned internal rank 38 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 The lowest-order bit of the address signal, and the above-mentioned address signal The lowest order bit is allocated to the highest order bit of the internal column address signal. 4. The semiconductor memory device according to item 3 of the scope of patent application, wherein when in the above-mentioned normal operation mode in which the dual-cell mode signal is not activated, the memory capacity is 2xn (n is a natural number) bits, and the word structure is 2xm (m is a natural number) bits. 5 · If the semiconductor memory device in the second item of the patent application scope, it is further equipped with a refresh control circuit for regularly performing a refresh operation in order to maintain the above-mentioned billion-information information; the aforementioned refresh control circuit uses the first refresh mode And a second restoration mode to perform the above-mentioned restoration action, wherein the first restoration mode uses k (k is a natural number) times of restoration action to complete all of the above-mentioned billion-cell array The memory cell is renewed, and the second renewal mode is to perform the renewal of 2 X k times to complete the renewal of all the memory cells included in the memory cell array; the address signal is to select the first The restoration mode selection bits for the first and second restoration modes are included in the uppermost bits; the above-mentioned designated bits are the lowest-order bits of the internal column address signals; and the decoder is the above-mentioned restoration bits. The new mode selection bit is allocated to the lowest order bit of the internal column address signal, and the lowest order bit of the address signal is allocated to the highest order bit of the internal column address signal. 6. The semiconductor memory device according to item 5 of the scope of patent application, wherein, when in the above-mentioned normal operation mode in which the dual-cell mode signal is not activated, the memory of the word memory is 2χη (η is a natural number), and the word It is composed of 2xm (m is from 39 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc 579519 Natural number) bits; and when the above dual unit mode signal is activated, the memory capacity is n bits and the word It is composed of m bits. 7. The semiconductor memory device according to item 丨 of the patent application range, wherein the above-mentioned dual-unit mode signal is input from outside via a designated terminal. 8. If the semiconductor memory device according to item No. of the patent application scope, it further includes a fuse circuit for switching the logic level of the above-mentioned dual-cell mode signal. 9 · If the semiconductor memory device under the scope of the patent application, it is further equipped with a refresh control circuit for periodically performing a refresh operation in order to maintain the above-mentioned memory information; the above-mentioned refresh control circuit is generated to be designated as the above The refresh row address of the memory cell row of the refresh action object; The above refresh row address includes a part of the self-recovery address bit of at least 1 bit, which is based on a part of the area of the memory cell array. The object is used to specify the execution of the refresh operation; the decoder includes a selection circuit that selects at least one of the refresh column addresses from the refresh column address that varies depending on whether the dual-unit Lu mode signal is activated. Part of the self-renewal address bit. 1 · If the semiconductor memory device of item 9 of the patent application scope, wherein the above-mentioned restoration control circuit uses one of the first restoration mode and the second restoration mode · One mode to perform the above-mentioned restoration action, wherein the The first refresh mode uses -k (k is a natural number) refresh operations to complete the refresh of all the memory cells included in the memory cell array, and the second refresh mode uses 2 X k times Renewal action to complete the renewal of all the 40 326 \ patent specifications (supplements) 92-02 \ 91133601.doc 577951.9 billion units contained in the above memory cell array; the above selection circuit is used as the above dual unit mode signal When not activated, once the above-mentioned restoration control circuit executes the above-mentioned restoration operation in the above-mentioned second restoration mode, from the above-mentioned restoration column address corresponding to the above-mentioned second restoration mode, the at least one bit is selected. Partial self-recovery address bit. 41 326 \ Patent Specification (Supplement) 92-02 \ 91133601.doc
TW091133601A 2002-05-17 2002-11-18 Semiconductor memory device TW579519B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143451A JP2003338180A (en) 2002-05-17 2002-05-17 Semiconductor memory device

Publications (2)

Publication Number Publication Date
TW200307289A TW200307289A (en) 2003-12-01
TW579519B true TW579519B (en) 2004-03-11

Family

ID=29417043

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091133601A TW579519B (en) 2002-05-17 2002-11-18 Semiconductor memory device

Country Status (6)

Country Link
US (1) US6775177B2 (en)
JP (1) JP2003338180A (en)
KR (1) KR20030089410A (en)
CN (1) CN1459797A (en)
DE (1) DE10261459A1 (en)
TW (1) TW579519B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7139205B1 (en) * 2004-12-30 2006-11-21 Intel Corporation Apparatuses and methods for pre-charging intermediate nodes for high-speed wordline
KR100673901B1 (en) * 2005-01-28 2007-01-25 주식회사 하이닉스반도체 Semiconductor device for low voltage
US7511329B2 (en) * 2005-02-24 2009-03-31 United Microelectronics Corp. NAND-type non-volatile memory
KR101183684B1 (en) * 2005-07-13 2012-10-18 삼성전자주식회사 DRAM AND Method for Refreshing a Portion of Memory Cell Array
US7375999B2 (en) * 2005-09-29 2008-05-20 Infineon Technologies Ag Low equalized sense-amp for twin cell DRAMs
US7453758B2 (en) * 2006-02-21 2008-11-18 Infineon Technologies Ag Control system for a dynamic random access memory and method of operation thereof
JP2008084426A (en) * 2006-09-27 2008-04-10 Fujitsu Ltd Semiconductor memory and system
JP5130571B2 (en) * 2007-06-19 2013-01-30 ルネサスエレクトロニクス株式会社 Semiconductor device
CN103236271A (en) * 2013-03-26 2013-08-07 深圳市国微电子有限公司 Memory for reinforcing single event upset based on triple modular redundancy, and reinforcing method
KR102312178B1 (en) * 2017-10-30 2021-10-14 에스케이하이닉스 주식회사 Memory device having twin cell mode and refresh method thereof
CN109448771B (en) * 2018-12-25 2023-08-15 北京时代全芯存储技术股份有限公司 Memory device
CN109817257B (en) * 2018-12-27 2020-10-13 西安紫光国芯半导体有限公司 Power saving method under dynamic memory refresh operation and dynamic memory
US10741249B1 (en) * 2019-03-26 2020-08-11 Synopsys, Inc. Word all zero memory

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040375A (en) 1998-07-17 2000-02-08 Mitsubishi Electric Corp Semiconductor memory
JP2000057763A (en) * 1998-08-07 2000-02-25 Mitsubishi Electric Corp Dynamic type semiconductor memory device
JP4754050B2 (en) * 1999-08-31 2011-08-24 富士通セミコンダクター株式会社 DRAM for storing data in a pair of cells
JP2002216471A (en) * 2001-01-17 2002-08-02 Mitsubishi Electric Corp Semiconductor memory device

Also Published As

Publication number Publication date
KR20030089410A (en) 2003-11-21
US6775177B2 (en) 2004-08-10
DE10261459A1 (en) 2003-12-04
JP2003338180A (en) 2003-11-28
US20030214832A1 (en) 2003-11-20
TW200307289A (en) 2003-12-01
CN1459797A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP3607407B2 (en) Semiconductor memory device
US6990037B2 (en) Semiconductor memory
JP3605549B2 (en) Partially nonvolatile dynamic random access memory
US6762951B2 (en) Semiconductor integrated circuit device
JP2001319472A (en) Semiconductor memory
JPH11126491A (en) Semiconductor memory
TW579519B (en) Semiconductor memory device
JPH09265784A (en) Nonvolatile semiconductor storage
US20050180222A1 (en) Semiconductor memory device
US7130211B2 (en) Interleave control device using nonvolatile ferroelectric memory
JP2005092922A (en) Ferroelectric memory
JP2004234827A (en) Destructive read memory and memory read method
JPH11110976A (en) Non-volatile semiconductor storage device
US6587368B1 (en) Non-volatile memory circuit
US6882561B2 (en) Semiconductor memory device comprising memory having active restoration function
US20030185059A1 (en) Semiconductor storage device
JP2653689B2 (en) Random access memory and write / read method thereof
KR102707588B1 (en) Memory devices and system on chips including the same
JP2011198441A (en) Semiconductor device having nonvolatile memory containing fixed data
KR100481923B1 (en) Semiconductor memory device
JP3741230B2 (en) Ferroelectric memory
JPH09245488A (en) Ferroelectric memory
JPH09245486A (en) Ferroelectric memory
JP2002063790A (en) Memory cell and semiconductor device
JPS59116988A (en) Semiconductor memory

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees