TW569464B - Light-emitting diode structure having low-resistance layer - Google Patents

Light-emitting diode structure having low-resistance layer Download PDF

Info

Publication number
TW569464B
TW569464B TW91121366A TW91121366A TW569464B TW 569464 B TW569464 B TW 569464B TW 91121366 A TW91121366 A TW 91121366A TW 91121366 A TW91121366 A TW 91121366A TW 569464 B TW569464 B TW 569464B
Authority
TW
Taiwan
Prior art keywords
layer
gallium nitride
low
compound semiconductor
type
Prior art date
Application number
TW91121366A
Other languages
Chinese (zh)
Inventor
Wen-Hou Lan
Lung-Jian Chen
Feng-Ren Jian
Original Assignee
Formosa Epitaxy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Epitaxy Inc filed Critical Formosa Epitaxy Inc
Priority to TW91121366A priority Critical patent/TW569464B/en
Application granted granted Critical
Publication of TW569464B publication Critical patent/TW569464B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting diode structure is disclosed, which comprises a low-resistance layer structure in the P-type and/or N-type region, which can reduce the equivalent resistance of the P-type and/or N-type region, so as to reduce the operating voltage of the device for increasing the power.

Description

569464 Γ569464 Γ

【發明領域】 本發明係關於一種半導體元件,特別是關於一種應用 於低電洞移動率之二極體元件上,可降低其等效電阻,本 發明特別適用於寬能系材料如氮化鎵二極體元件等的應用 【發明背景】 、典型的光電元件由於磊晶技術的發展,常於基板上依 序成長η型區域,發光區域,ρ型區域,並於η型及Ρ型區 域中製作電極接觸區,由於電子移動率比電洞移動率為高 ,且電洞之有效摻雜量一般比電子為低,亦即於相同厚^ 與結構下/ Ρ型電阻均高於η型電阻,一般解決方法皆將 型形成長薄,且將其成長於結構的最上方,以降低電阻。 ;、、〈、於毛光一極體之應用上,為增加發光效率,透明電極乃 ^ 一相當重要選擇,於氮化鎵發光二極體上,常以Ni/Au 蒸鍍於其ρ區域上,以熱處理使其透明化,以增加穿透 ,至於一般常用透明導電氧化物材料,氧化銦錫(in。⑽ tin c^ide’ ITO),雖然與n型氮化鎵可形成歐姆接觸, 於Ρ型氮化鎵上,則由於功函數問題,導致無法形成良好 的歐姆接觸,因而無法直接應用於氮化鎵元件,而一般的 作法,可於ιτο與ρ型氮化鎵間增加一間接層(interlayer) ,以調整介面參數如功函數等,以使其形成歐姆接觸,降 低接觸電1¾,然而這種作法由於增加該間接^,影響元件 之透光率與操作性,且於高溫長時操作下,此間接層的穩[Field of the Invention] The present invention relates to a semiconductor element, and in particular, to a diode element with low hole mobility, which can reduce its equivalent resistance. The present invention is particularly suitable for wide energy systems such as gallium nitride [Application background of diode elements, etc.] [Background of the Invention] Due to the development of epitaxial technology, typical optoelectronic elements often grow n-type regions, light-emitting regions, p-type regions, and n-type and p-type regions in order on the substrate. The electrode contact area is made because the electron mobility is higher than the hole mobility, and the effective doping amount of the hole is generally lower than the electron, that is, the P-type resistance is higher than the η-type resistance under the same thickness ^ and structure Generally, the solution is to form a thin and long shape, and grow it at the top of the structure to reduce the resistance. ; ,,,, In the application of hair light monopoles, in order to increase the luminous efficiency, transparent electrodes are a very important choice. On the gallium nitride light emitting diodes, Ni / Au is often evaporated on its ρ region. It can be made transparent by heat treatment to increase penetration. As for the commonly used transparent conductive oxide material, indium tin oxide (in.⑽ tin c ^ ide 'ITO), although it can form ohmic contact with n-type gallium nitride, On P-type gallium nitride, due to work function problems, good ohmic contact cannot be formed, so it cannot be directly applied to gallium nitride elements. In general, an indirect layer can be added between ιτο and ρ-type gallium nitride. (Interlayer) to adjust interface parameters such as work function to form ohmic contact and reduce contact current 1¾. However, this method increases the indirect ^, which affects the light transmittance and operability of the component, and is long-term at high temperature Under operation, the stability of this indirect layer

569464 五、發明說明(2) 定性亦是問題。 因此,有以p型向下之結構,成長的發光二極體結構 ,而於最上層之η型區域與I TO接觸以形成良好之歐姆特性 ,然於此法,其下的p型區域則由於前述特性,導致電阻 相當高,因而限制此結構發展。 圖一為習知技藝傳統之氮化鎵二極體磊晶結構示意 圖,包括:一基板1 0 1 ; —氮化鎵化合物半導體低溫緩衝 層1 0 3 ; —無摻雜型氮化鎵化合物半導體層1 0 5 ; — η型氮 化鎵化合物半導體層1 0 7 ; —氮化鎵化合物半導體發光活 性層(active layer) 109; — ρ型氮化鎵化合物半導體 1 1 1,經由元件製程技術,製作η電極1 1 3與p層透明電極 1 1 5與ρ電極1 1 7。 於I TO電極應用上,為了改善上述ρ型區域與I TO無法 形成良好歐姆接觸之問題,可以P型向下之結構來解決, 如圖二所示。包括:一基板201; —氮化鎵化合物半導體 低溫緩衝層2 0 5 ; —無摻雜型氮化鎵化合物半導體層2 0 5 ; 一 P型氮化鎵化合物半導體層2 0 7 ; —氮化鎵化合物半導體 發光活性層(a c t i v e 1 a y e r) 2 0 9 ; — η型氮化鎵化合物半 導體2 1 1。經由元件製程技術,製作η型透明電極I TO 2 1 3 與η層電極2 1 5與ρ型電極2 1 7等。 於此狀況下,雖可解決η型氮化鎵化合物半導體層2 1 1 之I TO接觸問題,然卻使ρ型氮化鎵化合物半導體層2 0 7產 生了較大的電阻,因而限制了用途,雖然,可以改變厚度 之方法來降低電阻,然而改善有限,因此,如何有效的降569464 V. Description of invention (2) Qualitative is also a problem. Therefore, there is a p-type downward structure that grows a light-emitting diode structure, and the n-type region in the uppermost layer is in contact with I TO to form good ohmic characteristics. However, the p-type region below it is Due to the aforementioned characteristics, the resistance is quite high, which limits the development of this structure. Figure 1 is a schematic diagram of the epitaxial structure of a conventional gallium nitride diode, which includes: a substrate 1 0;-a gallium nitride compound semiconductor low-temperature buffer layer 103;-an undoped gallium nitride compound semiconductor Layer 105;-n-type gallium nitride compound semiconductor layer 107;-gallium nitride compound semiconductor light-emitting active layer 109;-p-type gallium nitride compound semiconductor 1 1 1 Η electrodes 1 1 3 and p-layer transparent electrodes 1 1 5 and ρ electrodes 1 1 7 were fabricated. In the application of the I TO electrode, in order to improve the above problem that the p-type region cannot form a good ohmic contact with the I TO, a P-type downward structure can be used to solve the problem, as shown in FIG. 2. Including: a substrate 201;-gallium nitride compound semiconductor low temperature buffer layer 2 05;-undoped gallium nitride compound semiconductor layer 2 05; a p-type gallium nitride compound semiconductor layer 2 07;-nitride A gallium compound semiconductor light emitting active layer (active 1 ayer) 2 0 9; — n-type gallium nitride compound semiconductor 2 1 1. Through the element process technology, n-type transparent electrodes I TO 2 1 3 and n-layer electrodes 2 1 5 and p-type electrodes 2 1 7 are produced. Under this condition, although the problem of the I TO contact of the n-type gallium nitride compound semiconductor layer 2 1 1 can be solved, the p-type gallium nitride compound semiconductor layer 2 0 7 has a large resistance, thus limiting its use. Although the thickness can be changed to reduce the resistance, the improvement is limited, so how to effectively reduce

本發明的目的係提出一種結構, 辦二从ΛΑ 透過該結構可使二極 體兀件的專效導電率增加,且不必改變磊晶厚度。 本發明在該架構位於二極體磊晶結構中之p層中,加 導電性較佳之η層,並於_ n層之間,加入一穿隧層 569464 五、發明說明(3)The object of the present invention is to propose a structure through which the specific conductivity of the diode element can be increased from ΛΑ through the structure without changing the epitaxial thickness. In the invention, the structure is located in the p layer in the diode epitaxial structure, and the η layer with better conductivity is added, and a tunneling layer is added between the _ n layers 569464 V. Description of the invention (3)

低η型氮化鎵化合物半導體層2丨丨 結構的主要課題,本發明即在提出電卩且,乃成為ρ型向下 穿隧效應來解決二極體高電阻問題種穿隧層結構,利用 【發明概要] 入 此低阻層由高濃度之Ρ型與η型材質,或/且以不同之異 質結構所組成。於偏壓下,電流或電子流透過電極經由偏 壓/穿隧效應越過此低阻層,到達容易導電之〇層,於η層或 面層移動至發光層下方,再經由崩潰/穿隧效應進入ρ層 區域中’再進入發光區與電子結合成光子。 ^ 為了讓本發明的目的及優點更能顯而益見,以下將由 "羊細描述中之具體實施例並配合圖式說明之。 【發明詳細說明】 本發明將於文後利用具體實施例且參考相關圖式說明 之’文内之氮化鎵化合物半導體係利用金屬有機化學氣相 =積法(MOCVD)或分子束磊晶法(ΜΒΕ)或其他磊晶技術 f作。本發明所述之η型氮化鎵化合物半導體之!!型摻雜雜 質可為:矽(Si)、鍺(Ge)或其他具相同功能的^素: 本發明所述之ρ型氮化鎵化合物半導體之ρ型摻雜雜質可為The main problem of the structure of the low-n-type gallium nitride compound semiconductor layer 2 丨 丨 is that the present invention is to propose a p-type downward tunneling effect to solve the problem of high resistance of the diode. [Summary of the Invention] This low-resistance layer is composed of high-concentration P-type and η-type materials, or / and different heterostructures. Under the bias voltage, the current or electron flow passes through the electrode through the low resistance layer through the bias / tunneling effect to reach the 0 layer which is easy to conduct. It moves under the light-emitting layer in the η layer or surface layer, and then passes through the collapse / tunneling effect Into the region of the p layer, and then enter the light-emitting area and combine with electrons to form photons. ^ In order to make the objects and advantages of the present invention more obvious and beneficial, the following will be described by the specific embodiments in the detailed description of the sheep in conjunction with the drawings. [Detailed description of the invention] The present invention will use specific examples and refer to the related drawings to explain the present invention's gallium nitride compound semiconductor system using metal organic chemical vapor phase = product method (MOCVD) or molecular beam epitaxy method (ΜΒΕ) or other epitaxial techniques. The n-type gallium nitride compound semiconductor according to the present invention! The! -Type doped impurity may be: silicon (Si), germanium (Ge), or other elements having the same function: The p-type doped impurity of the p-type gallium nitride compound semiconductor described in the present invention may be

第6頁 569464 五、發明說明(4) ••鎂(Mg)、辞(Zn)、鈹(Be)或其他具相同功能的元 素。 低阻層乃是利用載子經由如穿隨效應,或崩潰效應等 ,以降低電阻,或操作電壓的一種結構,實質結構如高濃 度(> = 7xl017cm-3)之 p/n介面,或 p + GaN/n + GaN(10〜2 0 0 0 埃);為p / η型氮化鋁銦鎵半導體層/ p / n型氮化鋁銦鎵半導 體層之超晶格結構(I n xlGa ylA 1 ( bxHD N : MgZnS i / I n x2G ay2Al"_x2_y2)N:MgZnSi’ ( xl’ylS 1,OS x2,y2g 1,OS xl+ ylg 1,0$ x2+ y2$ 1)所構成,其厚度組合 為1 0〜5 0 0 / 1 〇〜5 0 0埃(A ),對數介於3至1 0 〇之間,總厚度約 在6 0至1 〇 〇 〇 〇 〇埃(A )之間。 (實施例一) 圖二為一說明實施例一之氮化鎵二極體磊晶結構示意 圖,包括··一基板3 0 1,材質例如為一氧化鋁(a丨2〇 3, sapphire)、氮化鎵(GaN)、碳化矽(Sic)、砷化鎵 (hAs)、矽(Si)、鍺(Ge)、矽鍺(SiGe)等;一氮 =ί =合物半導體緩衝層3 〇 3,形成於基板3 〇 1表面上,為 晶質(amorphous)組織,厚度約為5〇〜5〇〇埃(Α); 一] 摻雜型氮化鎵化合物半導體層3〇5,厚度約為丨〜1〇微 〜^二)° 一 n型氮化鎵化合物半導體層3 0 7,厚度約為〇 . ! 等均m),一前述之低阻層3 0 9,結構、成分、厚度 厚】Ϊ =述。一重摻雜之P型氮化鎵化合物半導體層311, 、二5 〇 〇埃(A)〜4微米(// m),一 p型氮化鎵化合物半 569464 守腥! ύ 1 d,一發光層3 1 5,一 η型氮化鎵化合物半導體層 317+’ 一重摻雜η型氮化鎵化合物半導體層319形成於η型氮 化鎵化合物半導體層31 7表面上,厚度約為5 0 0埃(Α)〜2微 米m) ’以形成良好之歐姆接觸;接觸層亦可為單層或 多^之低能系材料如氮化銦鎵InxGa(1_x)N(〇< = x< = 1)。於磊 晶完畢後,使用鍍膜、微影(ph〇t〇lith〇graphy)、熱處 理及钱刻製程,在P型氮化鎵化合物半導體層3 1 1上製作平 台’並製作1τ〇透明電極321於η層半導體31 9之上,製作 3 2 1層之金屬接觸層3 2 3於3 2 1層之上,製作ρ型接觸層3 2 5於 3 11層上。 (實施例二) 圖四為一說明實施例二之氮化鎵二極體磊晶結構示意 圖’包括:一基板 4 0 1,材質例如為一氧化鋁(a 1 2 0 3, sapphire)、氮化鎵(GaN)、碳化矽(Sic)、砷化鎵 (GaAs)、矽(Si)、鍺(Ge)、矽鍺(SiGe)等;一氮 化鎵化合物半導體緩衝層40 3,形成於基板4〇1表面上,為 非晶質(amorphous)組織,厚度約為50〜50 0埃(A); — η或無摻雜型氮化鎵化合物半導體層4 〇 5,厚度約為1〜1 〇 微米(// m)。一 η型氮化鎵化合物半導體層40 7,厚度約為 〇 · 5〜2微米(// m),一前述之低阻層4 0 9,結構、成分、厚 度等均如前述。一重摻雜之p型氮化鎵化合物半導體層4 1 1 ’厚度約為5 0 0埃(A)〜4微米(// m),一 p型氮化鎵化合物 半導體層413,一發光層415,一 η型氮化鎵化合物半導體Page 6 569464 V. Description of the invention (4) • Magnesium (Mg), rhenium (Zn), beryllium (Be) or other elements with the same function. A low-resistance layer is a structure that uses a carrier to reduce resistance or operating voltage via, for example, a penetrating effect or a collapse effect, and a substantial structure such as a high concentration (> = 7xl017cm-3) p / n interface, or p + GaN / n + GaN (10 ~ 2 0 0 0 Angstroms); it is a superlattice structure of p / η-type aluminum indium gallium nitride semiconductor layer / p / n-type aluminum indium gallium nitride semiconductor layer (I n xlGa ylA 1 (bxHD N: MgZnS i / I n x2G ay2Al " _x2_y2) N: MgZnSi '(xl'ylS 1, OS x2, y2g 1, OS xl + ylg 1, 0 $ x2 + y2 $ 1), its thickness combination It is 10 to 50 0/1 / 0 to 50 Angstroms (A), the logarithm is between 3 to 100, and the total thickness is about 60 to 1,000 Angstroms (A). (Embodiment 1) FIG. 2 is a schematic diagram illustrating a gallium nitride diode epitaxial structure according to Embodiment 1, including a substrate 3 01, for example, an aluminum oxide (a 丨 203, sapphire), Gallium nitride (GaN), silicon carbide (Sic), gallium arsenide (hAs), silicon (Si), germanium (Ge), silicon germanium (SiGe), etc .; one nitrogen = ί = compound semiconductor buffer layer 3 〇3 Is formed on the surface of the substrate 301 and is crystalline (amorph ous) structure with a thickness of about 50 ~ 500 Angstroms (A); a] doped gallium nitride compound semiconductor layer 305, with a thickness of about 丨 ~ 10 micrometers ^^) an n-type nitrogen The gallium compound semiconductor layer 3 0 7 has a thickness of about 0.1 mm (equivalent m), the aforementioned low-resistance layer 3 9 9 has a structure, composition, and a thick thickness]. A heavily doped P-type gallium nitride compound semiconductor layer 311, 2500 angstroms (A) to 4 micrometers (/ m), a p-type gallium nitride compound half 569464 guards the fish! 1 d, a light-emitting layer 3 1 5, a n-type gallium nitride compound semiconductor layer 317+ ', a heavily doped n-type gallium nitride compound semiconductor layer 319 is formed on the surface of the n-type gallium nitride compound semiconductor layer 317, The thickness is about 500 Angstroms (A) to 2 microns (m) 'to form a good ohmic contact; the contact layer may also be a single layer or multiple low-energy materials such as indium gallium nitride InxGa (1_x) N (〇 < = x < = 1). After the epitaxy is completed, a platform is formed on the P-type gallium nitride compound semiconductor layer 3 1 1 using a coating film, lithography, heat treatment, and coining processes, and a 1τ〇 transparent electrode 321 is produced. A metal contact layer 3 2 3 of 3 21 layers is fabricated on the n-layer semiconductor 31 9, and a p-type contact layer 3 2 5 is fabricated on 3 11 layers. (Embodiment 2) FIG. 4 is a schematic diagram illustrating the gallium nitride diode epitaxial structure of Embodiment 2 including: a substrate 401, the material of which is, for example, alumina (a 1 2 0 3, sapphire), nitrogen Gallium nitride (GaN), silicon carbide (Sic), gallium arsenide (GaAs), silicon (Si), germanium (Ge), silicon germanium (SiGe), etc .; a gallium nitride compound semiconductor buffer layer 403 is formed on the substrate On the surface of 401, it is an amorphous structure with a thickness of about 50 to 50 Angstroms (A); — η or undoped gallium nitride compound semiconductor layer 405, with a thickness of about 1 to 1 0 microns (// m). An n-type gallium nitride compound semiconductor layer 407 has a thickness of about 0.5 to 2 micrometers (// m), and the aforementioned low-resistance layer 409 has the same structure, composition, and thickness as the foregoing. A heavily doped p-type gallium nitride compound semiconductor layer 4 1 1 ′ has a thickness of about 500 angstroms (A) to 4 μm (/ m), a p-type gallium nitride compound semiconductor layer 413, and a light-emitting layer 415. , An n-type gallium nitride compound semiconductor

第8頁 569464 五、發明說明(6) 層417’ 一重摻雜之n型氮化鎵化合物半導體層41 型氮化鎵化合物半導俨恳4〗7本;u 广ώ 风、 ♦體層417表面上,厚度約為5 0 0埃(Α) 〜2微米(// m) ’以形成良好之歐姆接觸;接觸層亦可為 層或多層之低能系材料如氮化銦鎵Ιηχ(^^Ν(〇<Κ〇 。於磊晶完畢後,使用鍍膜、微影(ph〇t〇Hth〇graphy) 、熱處理及蝕刻製程,在低阻層4 〇 9上製作平台並掣作 ITO透明電極層421於_半導體419之上,製作m透明電 極層421之金屬接觸層423於丨τ〇透明電極層421之上, 接觸層4 2 5於低阻層上。 < (實施例三) 圖五為一說明實施例二之氮化鎵二極體磊晶結構示意 圖,包括:一基板501,材質例如為一氧化鋁(A12〇3,。 sapphire)、氮化鎵(GaN)、碳化矽(Sic)、砷化鎵 (GaAs)、矽(Si)、鍺(Ge)、矽鍺(。以)等;一氮 化,=合物半導體緩衝層5 0 3,形成於基板5〇1表面上,為 非晶質(amorphous)組織,厚度約為5〇〜5〇〇埃(A) ; 一 n 型或無摻雜型氮化鎵化合物半導體層5〇5,厚度約為1〇 微米(// in)。一 η型氮化鎵化合物半導體層5〇7,厚度約為 0 · 5〜2微米(# m ),一前述之低阻層5 〇 9,結構、成分、厚 度等均如前述。一重摻雜之p型氮化鎵化合物半導體層 ,厚度約為5 0 0埃(A)〜4微米U m),一 p型氮化鎵化合物 半導體層5 1 3,一發光層5 1 5,一 n型氮化鎵化合物半導體 · 層5 1 7,一重摻雜η型氮化鎵化合物半導體層5丨9形成於11型Page 8 569464 V. Description of the invention (6) Layer 417 'A heavily doped n-type gallium nitride compound semiconductor layer 41-type gallium nitride compound semiconducting semiconductor 4] 7 books; The thickness is about 500 angstroms (A) to 2 microns (// m) to form a good ohmic contact; the contact layer may also be a layer or multiple layers of low energy materials such as indium gallium nitride Ιηχ (^^ Ν (0 < KO). After the epitaxy is completed, a platform is fabricated on the low-resistance layer 409 and used as a transparent ITO electrode layer using coating, lithography, heat treatment, and etching processes. 421 is on _semiconductor 419, and a metal contact layer 423 of m transparent electrode layer 421 is formed on ττο transparent electrode layer 421, and contact layer 4 2 5 is on the low resistance layer. ≪ (Embodiment 3) Figure 5 It is a schematic diagram illustrating the structure of the gallium nitride diode epitaxy of the second embodiment, including: a substrate 501 made of, for example, alumina (A1203, sapphire), gallium nitride (GaN), and silicon carbide (Sic). ), Gallium arsenide (GaAs), silicon (Si), germanium (Ge), silicon germanium (. To), etc .; nitriding, = compound semiconductor buffer layer 503, formed On the surface of the substrate 501, an amorphous structure has a thickness of about 50 to 500 angstroms (A); an n-type or undoped gallium nitride compound semiconductor layer 505 has a thickness of about 50 10 μm (// in). An n-type gallium nitride compound semiconductor layer 507, with a thickness of about 0.5 to 2 micrometers (#m), and the aforementioned low-resistance layer 509, structure and composition. The thickness and thickness are as described above. A heavily doped p-type gallium nitride compound semiconductor layer has a thickness of about 500 angstroms (A) to 4 micrometers (U), and a p-type gallium nitride compound semiconductor layer 5 1 3, A light-emitting layer 5 1 5, an n-type gallium nitride compound semiconductor · layer 5 1 7, a heavily doped n-type gallium nitride compound semiconductor layer 5 丨 9 is formed in type 11

569464 五、發明說明" ------ 氣化嫁化合物丰墓 微米u m),以自517表面上,厚度約為500埃(A)〜2 或多声之彳成良好之歐姆接觸;接觸層亦可為單層 〆,於石a二月匕糸材料如氮化銦鎵1 n x G a (卜x) N ( 〇 < = X < = 1) 、执 n 使用錢膜、微影(photolithography) 製^ ^ a,餘1製程’在n型氮化鎵化合物半導體層5 0 7上 氮化錄^並製作1 τ〇透明電極5 2 1與5 2 5分別於重摻雜η型 5 〇 7上,制$物半導體層5 1 9與η型氣化鎵化合物半導體層 電極521衣作1 Τ〇透明電極521之金屬接觸層5 2 3於I TO透明 雖妙之上’製作接觸層52 7於5 2 5層上。 限定本t本發明已以較佳實施例揭露如上’然其並非用以 和範園發明丄任何熟悉此技藝者,在不脫離本發明之精神 潤飾仍内’當可作各種之更動與潤飾,所作各種之更動與 在本發明申請專利範圍所界定者。569464 V. Description of the invention " ------ Gasification compound of the tomb (micrometer um)), from the surface of the 517, the thickness is about 500 Angstroms (A) ~ 2 or more to form a good ohmic contact; The contact layer can also be a single layer of yttrium. Materials such as indium gallium nitride 1 nx G a (bu x) N (〇 < = X < = 1), use n film, micro Photolithography process ^ ^ a, the remaining 1 process' nitrided on the n-type gallium nitride compound semiconductor layer 5 0 7 and made 1 τ〇 transparent electrodes 5 2 1 and 5 2 5 are respectively heavily doped η On type 5.0, a semiconductor layer 5 1 9 and an n-type gallium gaseous compound semiconductor layer electrode 521 are coated as a metal contact layer 5 2 3 of a transparent electrode 521 on top of I TO, although it is wonderful. The contact layer 52 7 is on the 5 2 5 layer. Limiting the invention The present invention has been disclosed in the preferred embodiment as above. However, it is not intended to be invented with Fan Yuan. Anyone familiar with this skill can still make changes and decorations without departing from the spirit of the invention. Various changes and those defined in the patent application scope of the present invention.

第10頁 569464 圖式簡單說明 【圖式簡單說明】 第一圖係一習知技藝傳統之η向下之氮化鎵發光二極體結 構不意圖。 第二圖係一 η向下之氮化鎵發光二極體結構示意圖。 第三圖係一結構示意圖,說明本發明實例一之氮化鎵發光 二極體磊晶結構。 第四圖為一說明實施例二之氮化鎵二極體磊晶結構示意圖 〇 第五圖為一說明實施例二之氮化鎵二極體磊晶結構示意圖 【圖號編號說明】 101 基板 103 氮化鎵化合物半導體低溫緩衝層 105 無摻雜型氮化鎵化合物半導體層 107 η型氮化鎵化合物半導體層 109 氮化鎵化合物半導體發光活性層 111 Ρ型氮化鎵化合物半導體 113 η電極 115 ρ層透明電極 1 1 7 ρ電極 201 基板 2 0 3 氮化鎵化合物半導體低温緩衝層Page 10 569464 Schematic description [Schematic description] The first diagram is a η-down gallium nitride light-emitting diode structure with a conventional technique. It is not intended. The second figure is a schematic diagram of the structure of a gallium nitride light-emitting diode facing downward. The third figure is a schematic structural diagram illustrating the gallium nitride light emitting diode epitaxial structure of Example 1 of the present invention. The fourth figure is a schematic diagram illustrating the structure of the gallium nitride diode epitaxial structure of the second embodiment. The fifth figure is a schematic diagram illustrating the structure of the gallium nitride diode epitaxial structure of the second embodiment. [Figure No. Description] 101 Substrate 103 GaN compound semiconductor low temperature buffer layer 105 undoped gallium nitride compound semiconductor layer 107 n-type gallium nitride compound semiconductor layer 109 gallium nitride compound semiconductor light emitting active layer 111 p-type gallium nitride compound semiconductor 113 n electrode 115 ρ Layer transparent electrode 1 1 7 ρ electrode 201 substrate 2 0 3 gallium nitride compound semiconductor low temperature buffer layer

569464 圖式簡單說明 2 0 5 無摻雜型氮化鎵化合物半導體層 2 0 7 p型氮化鎵化合物半導體層 2 0 9 氮化鎵化合物半導體發光活性層 211 η型氮化鎵化合物半導體層 213 η型透明電極ΙΤΟ 301 基板 3 0 3 氮化鎵化合物半導體缓衝層 3 0 5 η或無掺雜型氮化鎵化合物半導體層 3 0 7 η型氮化鎵化合物半導體層 3 0 9 低阻層 311 重摻雜之ρ型氮化鎵化合物半導體層 313 ρ型氮化鎵化合物半導體層 315 發光層 317 η型氮化鎵化合物半導體層 319 重摻雜η型氮化鎵化合物半導體層 321 I TO透明電極 3 2 3 金屬接觸層 3 2 5 ρ型接觸層 401 基板 40 3 氮化鎵化合物半導體緩衝層 4 0 5 η或無摻雜型氮化鎵化合物半導體層569464 Brief description of drawings 2 0 5 undoped gallium nitride compound semiconductor layer 2 0 7 p-type gallium nitride compound semiconductor layer 2 0 9 gallium nitride compound semiconductor light emitting active layer 211 n-type gallium nitride compound semiconductor layer 213 n-type transparent electrode ITO 301 substrate 3 0 3 gallium nitride compound semiconductor buffer layer 3 0 5 n or undoped gallium nitride compound semiconductor layer 3 0 7 n-type gallium nitride compound semiconductor layer 3 0 9 low resistance layer 311 heavily doped p-type gallium nitride compound semiconductor layer 313 p-type gallium nitride compound semiconductor layer 315 light-emitting layer 317 n-type gallium nitride compound semiconductor layer 319 heavily doped n-type gallium nitride compound semiconductor layer 321 I TO transparent Electrode 3 2 3 Metal contact layer 3 2 5 ρ-type contact layer 401 Substrate 40 3 GaN compound semiconductor buffer layer 4 0 5 η or undoped gallium nitride compound semiconductor layer

第12頁 569464 圖式簡單說明 4 0 7 η型氮化鎵化合物半導體層 4 0 9 低阻層 411 重摻雜ρ型氮化鎵化合物半導體層 413 ρ型氮化鎵化合物半導體層 415 發光層 417 η型氮化鎵化合物半導體層 419 重摻雜之η型氮化鎵化合物半導體層 421 I Τ0透明電極層 42 3 金屬接觸層 42 5 接觸層 501 基板 5 0 3 氮化鎵化合物半導體緩衝層 5 0 5 η型或無摻雜型氮化鎵化合物半導體層 5 0 7 η型氮化鎵化合物半導體層 5 0 9 低阻層 511 重摻雜之ρ型氮化鎵化合物半導體層 513 ρ型氮化鎵化合物半導體層 515 發光層 517 η型氮化鎵化合物半導體層 519 重摻雜η型氮化鎵化合物半導體層 521 I TO透明電極 5 2 3 金屬接觸層Page 12 569464 Brief description of the diagram 4 0 7 n-type gallium nitride compound semiconductor layer 4 0 9 Low-resistance layer 411 heavily doped p-type gallium nitride compound semiconductor layer 413 p-type gallium nitride compound semiconductor layer 415 light-emitting layer 417 n-type gallium nitride compound semiconductor layer 419 heavily doped n-type gallium nitride compound semiconductor layer 421 I TO transparent electrode layer 42 3 metal contact layer 42 5 contact layer 501 substrate 5 0 3 gallium nitride compound semiconductor buffer layer 5 0 5 n-type or undoped gallium nitride compound semiconductor layer 5 0 7 n-type gallium nitride compound semiconductor layer 5 0 9 low-resistance layer 511 heavily doped p-type gallium nitride compound semiconductor layer 513 p-type gallium nitride Compound semiconductor layer 515 Light emitting layer 517 n-type gallium nitride compound semiconductor layer 519 heavily doped n-type gallium nitride compound semiconductor layer 521 I TO transparent electrode 5 2 3 metal contact layer

第13頁 569464 圖式簡單說明 5 2 5 I TO透明電極 5 2 7 接觸層Page 13 569464 Schematic illustration 5 2 5 I TO transparent electrode 5 2 7 Contact layer

第14頁Page 14

Claims (1)

1 · 一種具有低阻層的發 或峰區域之一的低阻層·其坊〜構,該結構包括位於p 由穿隧效應、崩潰效應曰、’或::阻層係藉由利用載子經 晶結構之電阻或操作電壓。 b類的效應,以降低該磊 2 ·如申请專利範圍第1項之且 構,其中該低阻層係為^農度\低^ =發光二極體結 3·如申請專利範圍第2項之具 構’其中該南濃度的p/n介面 公分(/cm-3 )。 有低阻層的發光二極體結 ’濃度至少為7x10 17個/立方 專利範圍第2項之具有低阻層的發光二極體結 構,其中該p/η介面的厚度介於1〇埃(八)到2〇〇〇埃(Α)之 5.如申請專利範圍第1項之具有低阻層的發光二極體結 構,其中該低阻層係ρ/η型氮化鋁銦鎵半導體層之超晶格 結構(InxlGaylAl (卜Xbyl)N:MgZnSi / lnx2Gay2Al (卜x2_y2) N:MgZnSi,( 0$ xl,yl$ 1,x2,y2$ 1,0$ xl+ yi$ 1,x2+ y2$ 1)所構成,其厚度組合係介於1〇到5〇〇 埃(A )之間或1 0到5 0 0埃(A )之間,對數在3至1 0 0對之間, 總厚度約在210至1 0 0 0 0 0埃(A)之間。1 · A low-resistance layer with a low-resistance layer or one of the peak areas · Its structure includes the structure located at p by the tunneling effect, the collapse effect, or OR: the resistive layer is by using carriers Resistance or operating voltage through the crystal structure. Type b effect to reduce the ei 2 · As in the first item of the scope of the patent application, the low-resistance layer is ^ non-degree \ low ^ = light-emitting diode junction 3 · As the second scope of the patent application The structure 'wherein the south concentration of the p / n interface cm (/ cm-3). A light-emitting diode junction with a low-resistance layer has a concentration of at least 7 × 10 17 pieces / cubic patent. The light-emitting diode structure with a low-resistance layer has a thickness of 10 angstroms ( 8) to 2000 Angstroms (A) 5. The light-emitting diode structure having a low-resistance layer according to item 1 of the patent application scope, wherein the low-resistance layer is a ρ / η-type aluminum indium gallium semiconductor layer Superlattice structure (InxlGaylAl (Bu Xbyl) N: MgZnSi / lnx2Gay2Al (Bu x2_y2) N: MgZnSi, (0 $ xl, yl $ 1, x2, y2 $ 1, 0 $ xl + yi $ 1, x2 + y2 $ 1 ), The thickness combination is between 10 and 500 angstroms (A) or between 10 and 500 angstroms (A), the logarithm is between 3 and 100 pairs, and the total thickness is about Between 210 and 100 Angstroms (A). 第15頁 569464 _案號 91121366_f年 /0 月 β 日__ 六、申請專利範圍 6.如申請專利範圍第1項之具有低阻層的發光二極體結 構,其進一步包括下層電極其係位於P型氮化鋁銦鎵半導 體層、低阻層結構、或η型氮化鋁銦鎵半導體層上。Page 15 569464 _Case No. 91121366_f / 0 β__ VI. Application for patent scope 6. For example, the light-emitting diode structure with a low resistance layer in the scope of patent application No. 1 further includes a lower electrode which is located at P-type aluminum indium gallium nitride semiconductor layer, low-resistance layer structure, or n-type aluminum indium gallium nitride semiconductor layer. 第16頁Page 16
TW91121366A 2002-09-18 2002-09-18 Light-emitting diode structure having low-resistance layer TW569464B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91121366A TW569464B (en) 2002-09-18 2002-09-18 Light-emitting diode structure having low-resistance layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91121366A TW569464B (en) 2002-09-18 2002-09-18 Light-emitting diode structure having low-resistance layer

Publications (1)

Publication Number Publication Date
TW569464B true TW569464B (en) 2004-01-01

Family

ID=32590464

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91121366A TW569464B (en) 2002-09-18 2002-09-18 Light-emitting diode structure having low-resistance layer

Country Status (1)

Country Link
TW (1) TW569464B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823038B2 (en) 2011-05-20 2014-09-02 Huga Optotech Inc. Semiconductor light-emitting structure
TWI496319B (en) * 2008-11-21 2015-08-11 Agency Science Tech & Res A light emitting diode structure and a method of forming a light emitting diode structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496319B (en) * 2008-11-21 2015-08-11 Agency Science Tech & Res A light emitting diode structure and a method of forming a light emitting diode structure
US8823038B2 (en) 2011-05-20 2014-09-02 Huga Optotech Inc. Semiconductor light-emitting structure
TWI453968B (en) * 2011-05-20 2014-09-21 Huga Optotech Inc Semiconductor light-emitting structure

Similar Documents

Publication Publication Date Title
JP5150802B2 (en) Low doped layers for nitride based semiconductor devices
Akyol et al. Low-resistance GaN tunnel homojunctions with 150 kA/cm2 current and repeatable negative differential resistance
TWI240439B (en) Nitride semiconductor device and manufacturing method thereof
US9171914B2 (en) Semiconductor device
WO2009119248A1 (en) Semiconductor device
US8053794B2 (en) Nitride semiconductor light emitting device and fabrication method thereof
CN107978642B (en) GaN-based heterojunction diode and preparation method thereof
US11817528B2 (en) Nitride-based light-emitting diode device
JP2007059719A (en) Nitride semiconductor
TW569464B (en) Light-emitting diode structure having low-resistance layer
CN104465916A (en) Gallium nitride light-emitting diode epitaxial wafer
KR100974626B1 (en) Semiconductor device having active nanorods array and manufacturing method thereof
CN110752260A (en) Novel GaN junction barrier Schottky diode and preparation method thereof
US20040079947A1 (en) Light-emitting diode with low resistance layer
CN206225366U (en) A kind of Novel polycrystalline silicon thin film zener diodes
JP2004165433A (en) Light emitting diode having low resistance layer
CN111987196A (en) Semiconductor device with a plurality of semiconductor chips
Zipperian et al. A gallium phosphide high‐temperature bipolar junction transistor
JPS62286278A (en) Hot carrier transistor
TWI229952B (en) Semiconductor light emitting device and method of making the same
JP2841717B2 (en) Ohmic electrode of n-type semiconductor cubic boron nitride
TWI790928B (en) Semiconductor device
TW440966B (en) Manufacturing method to activate high resistivity p-type gallium nitride thin film into low resistivity p-type gallium nitride thin film
Liu et al. 53.3: The Size and Temperature Effect of Ideality Factor in GaN/InGaN Multiple Quantum Wells Micro Light Emitting Diodes (Micro‐LEDs)
KR20120073508A (en) Contact-led using carbon wafer and manufacturing method thereof