TW569006B - Millimeter wave imaging array - Google Patents

Millimeter wave imaging array Download PDF

Info

Publication number
TW569006B
TW569006B TW91121981A TW91121981A TW569006B TW 569006 B TW569006 B TW 569006B TW 91121981 A TW91121981 A TW 91121981A TW 91121981 A TW91121981 A TW 91121981A TW 569006 B TW569006 B TW 569006B
Authority
TW
Taiwan
Prior art keywords
input
output
layer
integrated circuit
radiometer
Prior art date
Application number
TW91121981A
Other languages
Chinese (zh)
Inventor
Carl W Pobanz
Mehran Matloubian
Peter D Brewer
Original Assignee
Hrl Lab Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hrl Lab Llc filed Critical Hrl Lab Llc
Application granted granted Critical
Publication of TW569006B publication Critical patent/TW569006B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/005Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5227Inductive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

A focal plane array for millimeter wave imaging comprising a three dimensional stack of antenna elements and radiometer microwave monolithic integrated circuits (MMICs) embedded in polymer dielectric layers built on top of a silicon substrate. Each radiometer MMIC and antenna element comprise a radiometer pixel. The silicon substrate contains integrated circuits to collect and process the signals from each radiometer pixel and generate a full-frame video signal. The array can be fabricated on a single silicon wafer or can be constructed from structures fabricated on multiple silicon wafers.

Description

玖'發明說明 (發明說明應敘明:發明所屬之技術領3或、先前技術、内容、實施方式及圖式簡單說明) C發明戶斤屬技術領域】 發明領域 本發明大致上係關於毫米波成像陣列,更具體地說, 5 係關於一種包括一高度積體化的毫米波聚焦平面輻射計陣 列之毫米波成像系統。发明 'Explanation of the invention (the description of the invention should state: the technical field 3 or the prior art, the content, the embodiments, and the drawings are simply explained) C. The invention belongs to the technical field of the invention] The invention relates to the millimeter wave The imaging array, more specifically, 5 relates to a millimeter wave imaging system including a highly integrated millimeter wave focusing plane radiometer array.

C Tltr J 發明背景 產生回應於所彳貞測到的在一視場中之物體所反射或發 1〇出之耄米波之影像(具有在約1cm - 1mm範圍中之波長之輻 射,即,頻率在30 GHZ和300 GHz之間)在許多應用中是需 要的。這大半是因為毫米波穿透許多對於可見和紅外光為 不透明之材料,使能形成先前為不可見到之景色之高解析 度衫像。例如,毫米波成像器可提供航空器對於被霧遮掩 15之跑道之降落協助。另外,毫米波成像器可提供隱蔽於衣 物下之武器的影像,因為人體和金屬物體在毫米波長上具 有不同的光學性質。 因為所有物體反射和發出亳米波,所以可使被動成像 來積測來自物體或人之自然毫米波發射或反射。物體在毫 20米波上的發射範圍很大,幾為紅外線所提供之範圍十倍大 ,如此可使用現存的黑體輻射來做高對比的影像。一被動 成像器使用感測接收器來分別毫米波發射中的小差異。發 出的放射係由將毫米波發射轉至一視訊訊號之制器加以 處理。視訊訊號之強度大致與發出之放射中的功率大小成 6 玖、發明說明 比例。 從發出的臺;、+ >/ 水波放射產生一影像在過去是困難的,因 盤、、^可4易變成陣列之小的,感測的毫求波偵測器。早 5 “、笔米波成像系統之版本使用毫米波感測器之機械式或 5電子式掃目苗。機械式系統實體地在一定義一視場之方位, 而度或二者之範圍中來移動感測器。這樣的系統複雜且易 2失敗。電子式掃目苗一般需要使用電子相位位移或開關技 術’其在宅米波頻率上要實現是相對地複雜的。 後來的毫米波成像系、统之產生使用了毫米波债測器之 …占平面陣列m㈣色為使用電路板技術來使用傳 統的二維電子積體。於1990年三月20日發給rg•忽古寧等 之美國專利第4,91〇,523號揭示了一焦點平面陣列,其包 含多個配置於一水平方向中的電路板,在該處每個電路板 具有配置於一垂直方向中的多個偵測器。於1995年八月i 15日發給p.SX·李等人之美國專利第5,438,336號亦揭示了一 供毫米波成像用之焦點平面陣列。在李等人之專利中,使 用一像素陣列來偵測毫米波影像。每個像素包含一天線, 一低雜訊放大器,一帶通濾波器以及一視訊偵測器。然而 ’李等人揭示了對這些元件使用分立部份,如此積體之程 20度發生在一單一像素之階段上,且將使用電路板技術來建 構像素。李等人亦揭示在個別像素之外部做所偵測到的訊 號之说"5虎處理。 R.T.庫拉多等人於“被動毫米波成像用之大尺寸w帶聚 焦平面陣列發展,,,被動毫米波成像技術之SPIE會議, 7 569006 玖、發明說明 1998 年四月,第 57/ςο*^ ^ 弟62頁。庫拉多等人所揭示的毫米波成 像器在^則上約30英忖,且使用混合電路卡技術來組合。 斤揭丁的成像5内的聚焦平面^貞測器使用!刚個MMic( '、單積體電路)和天線,以及15,86〇個電阻器,電容器 ,以及石夕積體電路,其由36,92〇個線接合來互連。 ;93年八月Π曰發給W.M.華特斯之美國專利第 5,237,334號揭示了—種聚焦平面天線陣列,其包含多個圓 ίο 雜形角以及圓形波導。波導陣列係藉由在一紹板上打孔來 建構以提供定義波導之通路。然後人工地將二極體組合入 每個孔中以提供毫求波之债測。所偵測到的毫米波之訊號 處理係由-分離的訊號處理模組來做。傳統的接線用來將 偵測為之陣列連接至訊號處理模組。 15 20 上面所討論的所有系統使用傳統的電路板積體,其中 組件係序列地選取並置人—基本上為二維之結構中。這些 系統苦於尺寸大和耗時的序列組裝,其係因使用傳統二維 模組式積體來實現-密集的,天生三維陣列所造成的。這 樣的系統亦因電子組件之間不必要長的互連而呈現了退化 的系統性能。建構大的,耗成本的偵測器元件會使得不得 不使用分布稀疏的陣列,其具有甚低於理論極限之影像解 析度。藉由在多個偵測器元件間共用和多工一視訊處理器 或藉由使用機械式掃瞄光學儀器來節省空間之企圖造成緩 慢的刷新速率,其無法供即時視訊用。這些限制阻礙了毫 米波成像技術的廣泛使用。 按照上面的討論,技藝上存在一對供毫米波成像用之 8 569006 玖、發明說明 精W聚焦平面陣列夕+七 早歹J之需求。具體地說,這樣一個 得亳米波成像用所+ Μ — 彳W使 斤而的凡件之積體程度最大化, 對傳統電路板組人枯炉+从 门捋使侍 口支術之依賴最小化。這樣一個 允許陣列元件之最小間 亦應 5 10 ,隔以貝現最大解析度,以及 路互連長度變得最小。 亏電 【潑^明内容】 發明概要 本發明之-目標為提供一供毫米波成像用 平面陣列,1可以料扁从Β 月間〜焦 八 電路板組合技術最小依賴程戶來 加以組合。本發明之進-步目標為允許-毫米波聚焦:面 陣列之7L件間隔為實現_由陣列所處理之影像之最大解析 度本I明之其他目標為提供基於所偵測到的毫米波 之即時視訊能力。 田 本么明包含-二維,積體的聚焦平面輕射計陣列結構 、[毫米波成像之用。結構包含—或多層聚合物薄膜,其 匕S封入的半導體裳置,傳輸線以及電路互連,其位於一 基板之頂端。基板包含多個互連的積體電路,且其連接至 上面的層中之半導體裝置。結構之頂端層包含天線元件, 八已配置於一介電質上。天線元件連接至下面層中之半導 月旦波置裝置和積體電路之小尺寸使得天線元件間隔緊密 ,且使得天線元件,半導體裝置以及積體電路之間的互連 長度最小化。天線元件之小間隔使得聚平面陣列產生一十 分高解析度的影像。互連長度之最小化提供了減低系統雜 讯且使得一即時更新速率可用於使一景色成像中。 9 569006 玖、發明說明 本發明之一第一實施例係由一基板所提供,其包含多 個積體電路,·-或多個配置於基板頂端之容納層,該容納 層每個包含多個封入於一聚合物薄膜中之微波單石積體電 路,多個以垂直互連連接至多個積體電路之微波單石積體 5電路;以及一天線承載層包含··一介電層以及多個配置於 "電層頂端之天線元件,多個以通過介電之垂直互連連接 至微波單石電路之天線元件。 本發明之第二實施例係由一包含下列之聚焦平面陣列 、ό構所& i、的·一半導體晶圓;多個形成於半導體晶圓内 1〇之積體電路;一或多個配置於矽晶圓頂端上的容納層,每 個容納層包含多個封入於一聚合物薄膜中之微波單石積體 電路,以及一配置於容納層之頂端上的天線承載層,該天 線承載層包含·一介電層以及多個配置於介電層頂端上的 天線元件。 15 由本發明所提供之微波成像陣列之小尺寸使得可在一 小的,最好是手持的封裝内配置一完整的毫米波成像系統 。這樣一個毫米波成像系統包含:一產生全框視訊之毫米 波I焦平面陣列,該陣列包含:一包含多個積體電路之基 板’或多個容納層,每個容納層包含多個封入於一聚合 20物薄獏中之積體電路;以及一天線承載層;以及一將所看 到的景色指向聚焦平面陣列之鏡片;一接收全框視訊並產 生一顯示視訊訊號之處理單元;以及一從顯示視訊訊號產 生一視覺顯示之視訊顯示器。 圖式簡單說明 10 569006 玖、發明說明 第1圖顯不了一本發明所提供之毫米波聚焦平面陣列 之簡2表示以及在陣列内之二像素之分解圖。 第圖㉝不了在本發明之一單一輕射計像素内使用的 電子元件之方塊圖。 第圖,、、、員示了在本發明之一輻射計像素之一實施例中 使用之電子元件的方塊圖。 第4圖說明了一根據本發明之一毫米波成像系統之方 塊圖。 第Η 4、、員示了 一二維多層結構之簡化表示,其提供一 在本务明中做為一輻射計使用之微波單石積體電路。 【實旋^方式】 較佳實施例之詳細說明 現在參考第丨圖,顯示了 一根據本發明之毫米波聚焦 平面陣列之簡化表7^。來自-景色30之亳米波輻射由高斯 15光學儀器20或其他毫米波聚焦裝置導入一聚焦平面陣列10 中。亳米波聚焦裝置包括由在一卡塞格侖(Cassegrain)組態 中之塑形鏡片和反射光學裝置所構成之折射光學裝置。亦 可使用其他技藝上已知的聚焦裝置。 聚焦平面陣列10包括多個輻射計像素100。每個輻射 0叶像素100具有一級次為一單一毫米波長度之大小,如此 母個輻射計像素100可具有一從約lmm2至lcm2之面積。若 聚焦平面陣列10係由一單一矽晶圓所製造(如下述),則聚 焦平面陣列10可包含從約1〇〇至1〇,〇〇〇或更多個輻射計像 素 100 〇 11 569006 玖、發明說明 第1圖之分解部份顯示了二個相鄰的輻射計像素1〇〇, 連同一組合來自多個輻射計像素之輸出之積體電路115。 多個輻射計像素100包含一成層的三維結構,一層天線131 ,一或多層有亳米波輻射計微波單石積體電路(MMIC)嵌 5入於其内之聚合物介電薄膜120,以及一包含一作用如基 板之基底之基板層11 〇之最終層。除了作用為陣列之基礎 外,基板層110最好包含輻射計處理器積體電路lu以收集 並處理來自每個輻射計]^]^1(: 121之訊號。在天線131和輻 射計MMIC121之間的連接最好由高頻垂直互連(穿孔)122 10來形成,同時在輻射計MMIC 121和積體電路之間的連接 最好由低頻穿孔112來形成。基板層丨1〇亦可包含額外的電 路115以收集並處理來自每個積體電路ιη之訊號並產生一 全框視訊訊號。一單天線131,一輻射計MMIC 121以及一 輻射計處理器積體電路1丨丨之組合形成一單輻射計像素1〇〇 15 。第1圖說明了二個在毫米波聚焦平面陣列10内之這樣的 輻射計像素之結構。 第2圖說明了本發明之一實施例之不同層之實體關係。第 2圖顯示了基板層11〇,容納層丨2〇,封入層14〇,以及一頂端 天線承載層130。這些層結合在一起以提供一積體的三維結構 20 。基板包含矽或其他材料諸如GaAs或其他III-V族半導體,其 中形成積體電路。一矽基板為最好,因為其為低成本並提供 十分高的積體程度供形成於其内之電路用。基板層110包含多 個輕射計處理器積體電路ln以處理毫米波視訊訊號。積體電 路m使用Si CMOS(互補金屬氧化物半導體)或siGe 12 569006 玖、發明說明 CMOS技術或其他適於形成於基板層11 〇内之積體電路之技 術。連同包含積體電路lu,基板層11〇形成在其上有容納 層120之主體或基底。做為一基底結構,一矽基板亦較好 ,因為其結構性堅固之故。 5 容納層120包含一對其特定射頻特性及其形成溫度之 熱塑性聚合物介電質。容納層12〇接收用以處理所接收之 RF(射頻)訊號之輻射計MMIC 121。容納層12〇最好在接收 MMIC 121之前以特殊形狀的容器微壓印,以使得具有對 應特殊形狀之放置特徵可被置於和保持於容納層12〇内。 1〇這些MMIC 121可在其被置於容納層12〇内之前完全地製造 和測試,對使用此技術所製造的聚焦平面陣列提供改進的 良率。然後如下面所說明的以一封入層14〇封入MMIC ΐ2ι 。谷納層120結合至基板層11〇。用以製備容納層12〇以接 收MMIC 121,傳送和121並將容納層12〇結合 15至基板層110之示範程序說明於下列共同待審之專利申請 案中:序號60/326,076號,標題為“用以於一晶片上組合三 維系統之方法及以此得到之結構,,;序號6〇/326,〇55號,標 題為“用以組合互補形狀容納基底和裝置微結構之方法”, 以及序號60/326,056號,標題為“自行組合電子或光學電路 2〇期間用以附著之自行閂鎖之方法,,。然而,亦可使用在這 些共同待審之專利申請案中所說明的那些之外的其他方法 來製造本發明之實施例。 容納層120中所包含的MMIC 121使用適於處理毫米波 汛號之半導體技術。這樣的技術包括低雜訊銦磷(lnp)高電子 13 569006 玖、發明說明 移動率電晶體(HEMT)技術以及GaAs異質接面雙載子電晶 體(HBT)技術。這些技術使得直接放大在一聚焦平面中之 每個像素上的毫米波輻射並將這些訊號整波變成可能。可 以多個MMIC來提供所要的放大和整波功能,或可將這些 5 功能整合至一單一 MMIC中。 封入層140覆蓋包含於容納層120中之MMIC 121並在 位置上將之固定於容納層12 0中。封入層14 0包含類似於供 容納層120用之材料之材料,因為該材料提供一類似的溫 度延伸,且亦具有良好的介電特性。從容納層12〇中之 10 MMIC 121至基板層11〇中之積體電路U1之互連可以““冗 121上之封入層140加以支撐。以在封入層14〇之頂端上的 金屬蒸發來提供這些互連。穿孔112係用來形成通過封入 140和容納層120到達位於那些層中之積體電路以及位於封 入層140之頂端上的互連之連接。可以包含真空沈積金屬 15之壓印孔或以其他技藝上已知的技術來建構穿孔112。在 序號60/326,054號之標題為‘‘用以製造高性能互連之方法” 之共同待審的專利申請案中揭示了用以產生所需穿孔之示 fe性方法。亦可使用其他用以形成穿孔之技藝上已知的方 法。 20 必須特別注意用以承載RF訊號之互連的形成,諸如 MMIC 121以及天線元件131之間的互連。這些互連一般 比供低頻訊號用之互連更為複雜,諸wMMIC 121和基板 中之積體電路η之間的互連。這些RF互連一般不是同軸就 是共面的結構。一般需要電磁模型來決定歐姆和輻射損失 14 569006 玖、發明說明 RF互連包含遮蔽和接地結構以有效地在層之間傳輸。 RF互連可包括同軸穿孔,具有共面波導微條中介轉換和共 面波導至共面波導中介轉換之同軸穿孔。低頻互連一般為 諸如單一金屬線之簡單穿孔互連結構。 5 可使用其他方法來將容納層120中之MMIC 121連接至 基板層11〇中之積體電路m。可使用穿孔112來直接從容 納層120中之MMIC 121之底部連接至基板層110中之積體 電路111。這樣一個製造方法會消除在一封入層140之頂端 上的金屬互連之需要。然而,MMIC i 21和積體電路11之 10間的直接連接可能更難以製造和更易失敗。MMIC互連金 屬亦可直接置於容納層12〇和用來連接至下面的積體電路 111之穿孔上。因為熱延展效應而使得在互連金屬和mmic 之間的連接破裂之故,此方法亦會更易失敗。 本發明之其他實施例具有多層容納層12〇,每層容納 15層12〇支樓相同或不同的半導體技術之積體電路121。此實 施例使得能在每個天線元件131所接收之射頻訊號上做額 外的處理,同時維持聚焦平面陣列之精簡大小。最好額外 的封入層140用來分離容納層120和將積體電路封入於下面 的容納層120中並提供容納層120中之積體電路121之間和 20到達基板中之積體電路111之互連。然而,容納層} 2〇可声 層堆疊’其中上面的容納層120提供在其下方之容納層12〇 之封入。 天線承載層130包含一介電層132,在1 μ 口匕 甘丹上已印刷有一 天線元件131。天線元件131將發出的亳米波輻射輕合至輕 15 569006 玖、發明說明 藐十像素中。適於_合宅米波輻射之印刷的天線元件在技 ^ 貝為人知的。天線元件大小會在欲接收之毫米波發 射之波長的1/2大小。適當的天線元件131包括-在地端平 面上的微條片’其可視賴在何處連接至該片來接收二不 同的線性極化之一。第2圖顯示-由沈積於-封入層140上 之金屬層所提供的地端平面133。亦在位於天線承載層13。 下方之其他介電層上沈積—金屬層以提供—地端平面⑶ 10 。天線承載層130最好是在輕射計像素丨⑼之層堆疊中最厚 :層且將由具有一低介電常數之介電材料所構成。雖然 厚度會視聚焦平面陣列1()操作之頻率以及沈積於層13〇上 的天線結構之型式而定來變化,但天線承載層㈣一般會 具有一近25微米之厚度。 本發明中所使用的其他適當的印刷天線元件包括一偶 極或-螺旋型式天線。一偶極會較一片狀來得沒效率,因 15為介電質和金屬層之接近之故。在需要一較廣的訊號頻寬 或對不同極化之敏感度之情況中使用一螺旋天線。 以高頻穿孔122來做在一天線元件131和一容納層12〇 中之MMIC 121之間的連接。這樣的高頻穿孔可以技藝上 已知的技術來形成。在其中已真空沈積金屬來做為通過天 2〇線承載層130,地端平面133和任何封入層14〇之連接之壓 印孔是一種提供必要連接之方法。如上述在序號 6〇/326,054號,標題為“用以製造高性能互連之方法,,之共 同待審專利申請案中說明了其他用以製造所冑穿孔之可能 方法。 16 玖、發明說明 【好°。貝的*米波影像需要高空間解析度。空 ::广到街射之限制,因此在聚焦平面陣列中之_ 間的最佳間隔為0·5至1波長。因此每個毫米波波伯 測器應適合在一伽h炎, 1 貝 為1至10亳米之空間。第2圖中所說明 之垂 發明之三維結構容易地滿足此需求。因為本發明之 刖 直積體所帶來的每個偵測器之減少的大小使能形成比先 技藝所提供者更密集的陣列。 第3圖顯示了本發明之一實施例之單一輻射計像素100 中之凡件的方塊圖以提供毫米波輻射之偵測。此實施例利 簡單的一極體谓測器以及一類比至數位轉換器來提供 一出現於一像素上的毫米波輻射之數位表示。本發明之關 鍵優點為在一單一三維結構中可提供此功能。 如第3圖中所示的,一在天線承載層13〇中之天線元件 131耦合至一容納層12〇中之MMIC 121〇mmic i2i包含一 15射頻(RF)開關126,其在天線元件131所提供的訊號和一溫 度參考125之間做切換。RF開關126取樣來自天線元件131 之訊號或為一校正過的參考負載之溫度參考丨25。一操作 於視訊頻率上之外部加上的偏壓電壓(由第3圖中之切訊號 產生器116所加上)使得RF開關126週期性地改變在天線元 20件131和溫度參考125之間的連接。一般使用一溫度穩定參 考負載之使用以供一毫米波偵測器之絕對溫度校正之用。 射頻開關126之輸出被提供給一低雜訊放大器127。低 雜訊放大器12 7將放大過的RF訊號傳遞給一功率债測器12 8 。功率偵測器128將RF訊號整合以產生一與RF輸入功率成 17 569006 玖、發明說明 比例之視訊輸出訊號。由1998年九月29日所發出的美國專 利第5,815,113號之Lo等人所作之,,被動微波/亳米波輻射計成 像系統之單石,低雜訊,同步直接偵測接收器,,中進一步說 明了 一用以偵測毫米波能量之典型電路,其在此合併為參 5 考文獻。 或者,如第5圖中所示的,可由一三維多層結構521來 實現用以偵測毫米波波能量之MMIC 121本身。在第5圖中 ,RF開關126包含於一層中,功率偵測器128包含於一第二 層中’而在一第三層中包含一低雜訊放大器127。在三維結 1〇構521中,RF開關126最好為一建造於一 GaAs基板上的低插 入損失,金屬接觸RF MEMS (射頻微機電系統)開關。低插 入損失為一RF開關126之重要特徵。低雜訊放大器127最好 為一建造於一InP基板上的高電子移動率電晶體(HEM丁)。一 低雜訊特性為低雜訊放大器127之一重要特徵。功率偵測器 15 I28最好為一量子穿隧異質結構,其使用一成長於一:^“基 板上的幾乎晶格匹配之InAs/A1Sb/GaSb系統。一線性響應和 電路簡化為功率偵測器128之重要特徵。 如上述,在三維結構521中用以偵測毫米波能量之較 好的RF開關126為一 RF MEMS開關。建造於GaAs基板上的 20 十分低的插入損失RF MEMS開關可在高達4〇 GHz時展示 低於0.2dB插入^貝失’連同開關隔絕在小於5 GHz之頻率上 大於60 dB,而在40GHz上大於25dB。二種技藝上已知的 RF MEMS開關之主要型式係由靜電力所啟動的—金屬接 觸串聯開關和薄膜並聯開關。串聯開關被認為是一種真實 18 569006 玖、發明說明 的開關,因為其利用一懸臂束,其在每次形成金屬接觸時 關上而在釋放懸臂時打開。一薄膜並聯開關以靜電地啟動 的薄膜之位置為基礎來操作。當薄膜在上時,灯訊號通過 位於薄膜下方之傳輪線。當薄膜被拉下時,開關電容將搞 、Λ號至地’對應於一開關打開的位置。雖然開關的型 :呈現了優秀的插入損失(在從職毫米波之十分廣的頻 ^】於〇 ·2),串聯開關在南於5 GHz之操作頻率上提供 較佳的隔絕特性,且因此最好使用於用以侦測毫米波能量 之三維結構521中。 1〇 在三維結構521中用以偵測亳米波能量之低雜訊放大 器127最好包含一建造於一 Inp基板上的hemt。一在 l9〇GHz上展小一小訊號增普7.2dB之InP HEMT雙級低雜訊 放大夯在技藝上是已知的。此已知的放大器使用周邊〇.工X 40// m之AlInAs/GalnAS/InP裝置且以製造於一 Inp基板上 15的共平面波導電路來實現。已從129-157GHZ測量了超過 10dB之增益。與其他諸如GaAs基礎的FET之固態裝置相比 ,InP HEMT裝置於較高的操作頻率上提供較高的增益和 較低的雜訊。這些特性是因為在高銦含量之GaInAs通道上 之較佳的電子移動率和速度,連同因為在A1InAs /GaInAs 2〇異負接面上之大導電帶不連續所造成的通道中之增加的載 子密度。 在三維結構521中用以偵測毫米波能量之功率偵測器128 最好為一背向二極體。一較佳的二極體裝置與一鍺江崎(Ge Esaki)二極體緊密相關,但使用現代磊晶成長技術來使用 19 569006 玖、發明說明 幾乎晶格匹配的InAs/A1Sb/GaSb系統來製造精確定做的量 子穿隧異質結構。此較佳二極體提供勝過可供灯功耗測 用之其他型式的二極體之優點。具體地說,較佳二極體提 供比Ge二極體所提供者更大之頻寬,且提供和蕭特基二極 5體-樣好或較其為佳之頻寬。較佳二極體具有零偏壓操作 ,Ge一極體亦有此操作,但蕭特基二極體沒有。較佳二極 體具有比其他二極體型式好的敏感度,其在零偏壓上為較 大彎曲度,其使能得到較大的動態範圍。最後,較佳二極 體具有以仔細之頻帶工程所提供之較佳線性度,來確保理 10 想的二次曲度。 返回第3圖,由MMIC 121所產生之視訊訊號耦合至在 輻射計處理器積體電路1U中之同步視訊偵測器118,其最 好包含於基板層中。一切訊號產生器116控制同步視訊偵 測器118和MMIC 121中之射頻開關126,如此使得可測量 15在所發出之毫米波影像和一溫度參考之間之毫米波功率之 差異。在這二個值中的差異提供了發出毫米波輻射之影像 之有效温度。一積分器114將視訊訊號積分,其被提供給 類比至數位轉換器113以提供一數位視訊訊號輸出。 一高品質之毫米波影像亦需要高溫解析度和快速刷新 20率。產生一毫米波輻射影像所花之時間最後視平行操作之 债測器數目’和每個偵測器測量具有一不確定性AT之溫度 Tscene所需之積分時間τ而定。高品質影像一般需要至少 0.5Κ之ΔΤ解析度,且特別對如安全監視之室内應用需要更 高之解析度。根據輻射計定律,使用一具有一寬頻寬3和 20 569006 玫、發明說明 低雜訊Tsys之接收器來使積時間最小化:C Tltr J Background of the invention Generates an image (radiation with a wavelength in the range of about 1 cm-1 mm) that is reflected in response to or measured by an object in a field of view and emits 10 millimeter waves. (Frequency between 30 GHZ and 300 GHz) is required in many applications. Most of this is because millimeter waves penetrate many materials that are opaque to visible and infrared light, enabling the formation of high-resolution shirt images that were previously invisible. For example, millimeter wave imagers can provide aircraft assistance in landing on runways covered by fog. In addition, millimeter-wave imagers can provide images of weapons hidden under clothing because humans and metal objects have different optical properties at millimeter wavelengths. Because all objects reflect and emit inverse waves, passive imaging can be used to accumulate natural millimeter wave emissions or reflections from objects or people. The emission range of an object on a millimeter 20-meter wave is very large, which is ten times larger than the range provided by infrared rays. In this way, the existing black body radiation can be used to make high-contrast images. A passive imager uses a sensing receiver to distinguish small differences in millimeter wave emissions. The emitted radiation is processed by a device that transfers millimeter-wave emissions to a video signal. The strength of the video signal is roughly proportional to the power in the emitted radiation. It is difficult in the past to generate an image from the transmitted radio wave, + > / water wave radiation, because the disk, wave, etc. can easily become a small, sensing millimeter wave detector. As early as 5 ", the version of the pen-meter wave imaging system uses a millimeter-wave sensor mechanical or 5-electronic scanning eyebrow. The mechanical system is physically in the direction defining a field of view, and in the range of degrees or both. To move the sensor. Such a system is complex and prone to failure. Electronic eye-sweeping seedlings generally require the use of electronic phase shift or switching technology, which is relatively complicated to implement at the house meter wave frequency. Later millimeter wave imaging systems The generation of Tongyuan uses millimeter wave debt detectors ... The flat array m㈣ is a traditional two-dimensional electronic integrated circuit using circuit board technology. It was issued to the United States of America, such as rg Khuguning, on March 20, 1990. Patent No. 4,91〇, 523 discloses a focal plane array including a plurality of circuit boards arranged in a horizontal direction, where each circuit board has a plurality of detectors arranged in a vertical direction US Patent No. 5,438,336 issued to p.SX · Li et al. On August 15, 1995, also discloses a focal plane array for millimeter wave imaging. In Li et al.'S patent, a pixel array is used To detect millimeter wave images. Each pixel contains an antenna, a low-noise amplifier, a band-pass filter, and a video detector. However, 'Li et al. Revealed the use of discrete parts for these components, so a 20-degree integration process occurs in a single pixel At this stage, circuit board technology will be used to construct the pixels. Li et al. Also revealed that the detected signals are done outside the individual pixels " 5 tiger processing. RT Curado et al. Development of large-scale w-band focused planar arrays for imaging, SPIE Conference on Passive Millimeter Wave Imaging Technology, 7 569006 玖, Description of Invention April 1998, 57 / ςο * ^ ^ page 62. The millimeter-wave imager disclosed by Curado et al. Is about 30 inches in size and combined using hybrid circuit card technology. Focusing plane within Jin Jieding's imaging 5 ^ Sensor used! Just a MMic (', single integrated circuit) and antenna, and 15,8660 resistors, capacitors, and Shixi integrated circuit, which are interconnected by 36,920 wire bonding. ; U.S. Patent No. 5,237,334 issued to W.M. Waters in August 1993 discloses a focusing planar antenna array, which includes a plurality of circular hetero corners and a circular waveguide. The waveguide array is constructed by punching holes on a plate to provide a path defining the waveguide. Diodes were then manually assembled into each well to provide a millimeter wave test. The detected millimeter wave signal processing is performed by a separate signal processing module. Conventional wiring is used to connect the detected array to the signal processing module. 15 20 All of the systems discussed above use traditional circuit board assemblies, in which the components are serially selected and placed side-by-side in a basically two-dimensional structure. These systems suffer from large-scale and time-consuming sequence assembly, which is caused by the use of traditional two-dimensional modular integrations-dense, natural three-dimensional arrays. Such systems also exhibit degraded system performance due to the unnecessary long interconnections between electronic components. Constructing large, costly detector elements will necessitate the use of sparsely distributed arrays with image resolutions well below theoretical limits. Attempts to save space by sharing and multiplexing a video processor among multiple detector elements or by using mechanical scanning optics result in slow refresh rates, which are not available for real-time video. These limitations hinder the widespread use of millimeter wave imaging technology. According to the above discussion, there is a technical need for a pair of millimeter-wave imaging 8 569 006 发明, invention description Fine W focusing plane array XI + seven early 歹 J. Specifically, such a successful mibo imaging + M — 彳 W maximizes the integration of all the pieces, and relies on the traditional circuit board group to dry the furnace + the door to make the mouth surgery minimize. Such a minimum allowable array element should also be 5 10, separated by the maximum resolution, and the path interconnection length has been minimized. Defective power 【Explanation】 Summary of the invention The objective of the present invention is to provide a planar array for millimeter-wave imaging, which can be used from the B month to the focal length. The further goal of the present invention is to allow-millimeter wave focusing: the 7L interval of the area array is to achieve the maximum resolution of the image processed by the array. Other objectives of the present invention are to provide real-time based on the detected millimeter wave. Video capabilities. Tian Benming includes two-dimensional, integrated focusing plane light radiometer array structure, [for millimeter wave imaging. The structure contains—or a multilayer polymer film—a semiconductor enclosure enclosed by transmission lines, transmission lines, and circuit interconnects, located on top of a substrate. The substrate contains a plurality of interconnected integrated circuits, which are connected to semiconductor devices in the upper layer. The top layer of the structure contains antenna elements, which have been arranged on a dielectric. The small size of the antenna element connected to the semiconducting wave device and integrated circuit in the lower layer makes the antenna elements closely spaced and minimizes the length of the interconnection between the antenna element, the semiconductor device and the integrated circuit. The small spacing of the antenna elements allows the poly-planar array to produce a high-resolution image. Minimizing the interconnect length provides reduced system noise and makes an immediate update rate available for imaging a scene. 9 569006 发明 Description of the Invention One of the first embodiments of the present invention is provided by a substrate, which includes a plurality of integrated circuits, or a plurality of accommodating layers disposed on the top of the substrate, each of which includes a plurality of A microwave monolithic integrated circuit enclosed in a polymer film, a plurality of microwave monolithic integrated circuits connected to a plurality of integrated circuits by vertical interconnections; and an antenna carrying layer including a dielectric layer and a plurality of configurations The antenna elements at the top of the "electrical layer" are multiple antenna elements connected to the microwave monolithic circuit through a dielectric vertical interconnection. A second embodiment of the present invention consists of a semiconductor wafer including the following focus plane array, structure &i; a plurality of integrated circuits formed in the semiconductor wafer 10; one or more A receiving layer disposed on the top of a silicon wafer, each receiving layer including a plurality of microwave monolithic integrated circuits enclosed in a polymer film, and an antenna bearing layer disposed on the top of the receiving layer, the antenna bearing layer It includes a dielectric layer and a plurality of antenna elements arranged on top of the dielectric layer. 15 The small size of the microwave imaging array provided by the present invention makes it possible to configure a complete millimeter wave imaging system in a small, preferably hand-held package. Such a millimeter wave imaging system includes: a millimeter wave I focal plane array generating full frame video, the array comprising: a substrate including a plurality of integrated circuits' or a plurality of accommodating layers, each accommodating layer including a plurality of enclosed in An integrated circuit in an aggregate of 20 objects; and an antenna bearing layer; and a lens that points the view to a focusing plane array; a processing unit that receives a full-frame video and generates a display video signal; and a A video display that generates a visual display from a display video signal. Brief description of the drawings 10 569006 发明, description of the invention Figure 1 shows a simplified representation of the millimeter wave focusing plane array provided by the present invention, and an exploded view of two pixels in the array. The figure does not show a block diagram of the electronic components used in a single radiometer pixel of the present invention. Figures 1 and 2 show a block diagram of an electronic component used in an embodiment of a radiometer pixel according to the present invention. Fig. 4 illustrates a block diagram of a millimeter wave imaging system according to the present invention. Article Η 4. The member shows a simplified representation of a two-dimensional multilayer structure, which provides a microwave monolithic integrated circuit used as a radiometer in this book. [Real rotation method] Detailed description of the preferred embodiment Now referring to FIG. 丨, a simplified table 7 of a millimeter wave focusing plane array according to the present invention is shown. The 亳 -wave radiation from the view 30 is introduced into a focusing plane array 10 by a Gaussian 15 optical instrument 20 or other millimeter wave focusing device. The Zemi wave focusing device includes a refractive optical device composed of a shaping lens and a reflective optical device in a Cassegrain configuration. Other focusing devices known in the art can also be used. The focus plane array 10 includes a plurality of radiometer pixels 100. Each radiation 0-leaf pixel 100 has a size of a single millimeter wave length, so that the mother radiometer pixel 100 may have an area from about 1 mm2 to 1 cm2. If the focusing plane array 10 is fabricated from a single silicon wafer (as described below), the focusing plane array 10 may include from about 100 to 10,000 or more radiometer pixels 100 011 569006 玖2. Description of the Invention The exploded part of FIG. 1 shows two adjacent radiometer pixels 100 connected to the integrated circuit 115 of the output from multiple radiometer pixels of the same combination. The plurality of radiometer pixels 100 includes a layered three-dimensional structure, a layer of antenna 131, one or more layers of a microwave monolithic integrated circuit (MMIC) with a radiometer, a polymer dielectric film 120 embedded therein, and a A final layer comprising a substrate layer 110 serving as a substrate for a substrate. In addition to serving as the basis of the array, the substrate layer 110 preferably includes a radiometer processor integrated circuit lu to collect and process signals from each radiometer] ^] ^ 1 (: 121 signals. Between the antenna 131 and the radiometer MMIC121 The inter-connections are preferably formed by high-frequency vertical interconnects (perforations) 122 10, while the connection between the radiometer MMIC 121 and the integrated circuit is preferably formed by low-frequency perforations 112. The substrate layer may also include Additional circuits 115 are used to collect and process the signals from each integrated circuit and generate a full frame video signal. A single antenna 131, a radiometer MMIC 121 and a radiometer processor integrated circuit 1 丨 are formed A single radiometer pixel 10015. Figure 1 illustrates the structure of two such radiometer pixels within a millimeter wave focusing plane array 10. Figure 2 illustrates the entities of different layers of an embodiment of the present invention. Relationship. Figure 2 shows a substrate layer 110, a receiving layer 20, an encapsulating layer 1440, and a top antenna carrying layer 130. These layers are combined to provide a three-dimensional structure 20 of the integrated body. The substrate contains silicon or Other materials GaAs or other III-V semiconductors, in which integrated circuits are formed. A silicon substrate is best because it is low cost and provides a very high degree of integration for circuits formed therein. The substrate layer 110 includes multiple Light meter processor integrated circuit ln to process millimeter wave video signals. Integrated circuit m uses Si CMOS (Complementary Metal Oxide Semiconductor) or siGe 12 569006 玖, invention description CMOS technology or other suitable for forming on the substrate layer 11 〇 The technology of the integrated circuit inside. Together with the integrated circuit lu, the substrate layer 11 is formed on the main body or the substrate with the accommodating layer 120 thereon. As a base structure, a silicon substrate is also better because its structure is strong 5 The containment layer 120 contains a thermoplastic polymer dielectric for its specific radio frequency characteristics and its formation temperature. The containment layer 120 receives a radiometer MMIC 121 for processing the received RF (radio frequency) signals. The containment layer 120. It is best to micro-emboss the container with a special shape before receiving the MMIC 121, so that the placement feature with the corresponding special shape can be placed and held in the containing layer 120. 10 These MMIC 121 can be Completely manufactured and tested before it is placed within the containment layer 120, it provides improved yield for focus plane arrays made using this technology. The MMIC ΐ2m is then enclosed in a single layer 14 as described below. Valley The nano layer 120 is bonded to the substrate layer 11. The exemplary procedure for preparing the receiving layer 120 to receive the MMIC 121, transmitting and 121 and combining the receiving layer 12 to 15 to the substrate layer 110 is described in the following co-pending patent applications Middle: Serial No. 60 / 326,076, titled "Method for assembling a three-dimensional system on a wafer and the structure obtained therefrom,"; Serial No. 60/326, 〇55, entitled "To assemble complementary shapes to accommodate Method of Microstructure of Substrate and Device ", and Serial No. 60 / 326,056, entitled" Method of Self-Latching for Self-Assembling Electronic or Optical Circuits for Attachment During 20, ". However, methods other than those described in these co-pending patent applications can also be used to make embodiments of the present invention. The MMIC 121 contained in the accommodating layer 120 uses a semiconductor technology suitable for processing millimeter waves. Such technologies include low-noise indium phosphorus (lnp) high electron 13 569006 006, invention description mobility transistor (HEMT) technology, and GaAs heterojunction bipolar transistor (HBT) technology. These techniques make it possible to directly amplify the millimeter wave radiation at each pixel in a focusing plane and to shape these signals. Multiple MMICs can be used to provide the required amplification and wave shaping functions, or these 5 functions can be integrated into a single MMIC. The sealing layer 140 covers the MMIC 121 contained in the containing layer 120 and fixes it in place in the containing layer 120 in position. The encapsulation layer 140 contains a material similar to that used for the receiving layer 120 because the material provides a similar temperature extension and also has good dielectric properties. The interconnection from the 10 MMIC 121 in the receiving layer 120 to the integrated circuit U1 in the substrate layer 110 can be supported by the "sealing layer 140" on the redundant 121. These interconnections are provided by metal evaporation on top of the encapsulation layer 140. The through-hole 112 is used to form a connection through the encapsulation 140 and the receiving layer 120 to the integrated circuits located in those layers and the interconnection on the top of the encapsulation layer 140. The perforations 112 may be comprised of embossed holes of the vacuum deposited metal 15 or by other techniques known in the art. A co-pending patent application serial number 60 / 326,054 entitled "Methods for Manufacturing High-Performance Interconnects" discloses a characteristic method for producing the required perforations. Other methods for Methods known in the art for forming perforations. 20 Special attention must be paid to the formation of interconnections used to carry RF signals, such as those between MMIC 121 and antenna element 131. These interconnections are generally more interconnected than those used for low frequency signals. More complicated, the interconnection between the wMMIC 121 and the integrated circuit η in the substrate. These RF interconnections are generally either coaxial or coplanar. The electromagnetic model is generally required to determine the ohmic and radiation losses. 14 569006 发明, description of the invention RF interconnects include shielding and grounding structures for efficient transmission between layers. RF interconnects can include coaxial perforations, coaxial perforations with coplanar waveguide microstrip mediation and coplanar waveguide to coplanar waveguide mediation. Low frequency interconnects It is generally a simple perforated interconnect structure such as a single metal wire. 5 Other methods can be used to connect the MMIC 121 in the receiving layer 120 to the integrated circuit m in the substrate layer 11. The through-hole 112 is directly connected from the bottom of the MMIC 121 in the receiving layer 120 to the integrated circuit 111 in the substrate layer 110. Such a manufacturing method eliminates the need for metal interconnections on the top of an incoming layer 140. However, MMIC The direct connection between i 21 and integrated circuit 11-10 may be more difficult to manufacture and more prone to failure. The MMIC interconnect metal can also be placed directly on the containment layer 12 and the through hole used to connect to the integrated circuit 111 below. Because This method will also be more prone to failure due to the thermal extension effect that breaks the connection between the interconnect metal and the mmic. Other embodiments of the present invention have multiple containment layers 120, each containing 15 floors. Integrated circuit 121 of different semiconductor technologies. This embodiment enables additional processing on the RF signal received by each antenna element 131, while maintaining the compact size of the focus plane array. It is preferable that an additional sealing layer 140 is used for Separating the accommodating layer 120 from the integrated circuit enclosed in the lower accommodating layer 120 and providing interconnection between the integrated circuit 121 in the accommodating layer 120 and the integrated circuit 111 reaching the integrated circuit 111 in the substrate. However, the accommodating layer is a stack of 20 acoustic layers, in which the upper accommodating layer 120 provides an encapsulation of the accommodating layer 120 below it. The antenna carrier layer 130 includes a dielectric layer 132, which has been formed on a 1 μm dagger. There is an antenna element 131 printed on it. The antenna element 131 lightly emits the 亳 meter wave radiation to 15 569006 玖, invention description 藐 ten pixels. The printed antenna element suitable for _ Hezhai meter wave radiation is well known ^ The size of the antenna element will be 1/2 of the wavelength of the millimeter wave emission to be received. Suitable antenna elements 131 include-a microstrip on the ground plane ', depending on where it is connected to the chip to receive One of two different linear polarizations. Figure 2 shows the ground plane 133 provided by the metal layer deposited on the sealing layer 140. Also located in the antenna bearing layer 13. A metal layer is deposited on the other dielectric layers below to provide a ground plane CG10. The antenna carrying layer 130 is preferably the thickest layer in the layer stack of the radiometer pixel, and will be composed of a dielectric material having a low dielectric constant. Although the thickness will vary depending on the frequency of the focusing plane array 1 () operation and the type of antenna structure deposited on the layer 130, the antenna carrier layer ㈣ will generally have a thickness of approximately 25 microns. Other suitable printed antenna elements used in the present invention include a dipole or -spiral antenna. A dipole is less efficient than a slice, because 15 is the proximity of the dielectric and the metal layer. A helical antenna is used in situations where a wider signal bandwidth or sensitivity to different polarizations is required. The high-frequency perforation 122 is used to make a connection between an antenna element 131 and an MMIC 121 in a receiving layer 120. Such high-frequency perforations can be formed by techniques known in the art. The embossed holes in which the metal has been vacuum deposited as the connection through the antenna carrier layer 130, the ground plane 133, and any sealing layer 14 are one way to provide the necessary connection. As mentioned above in the serial number 60 / 326,054, entitled "Methods for Manufacturing High-Performance Interconnects," the co-pending patent application describes other possible methods for manufacturing the perforations. 16 说明 Description of the invention [Good °. Bayi's * meter wave image requires high spatial resolution. The limit of air :: wide to street shooting, so the optimal interval between _ in the focusing plane array is 0.5 to 1 wavelength. Therefore each The millimeter wave wave detector should be suitable for a gamma ray, with a space of 1 to 10 亳 m. The three-dimensional structure of the vertical invention illustrated in Figure 2 can easily meet this demand. Because the direct product of the present invention The resulting reduced size of each detector enables denser arrays than those provided by the prior art. Figure 3 shows a block of the various pieces in a single radiometer pixel 100 according to an embodiment of the present invention The figure provides the detection of millimeter-wave radiation. This embodiment uses a simple polar detector and an analog-to-digital converter to provide a digital representation of millimeter-wave radiation appearing on a pixel. A key advantage of the present invention In a single three-dimensional structure This function is provided. As shown in FIG. 3, an antenna element 131 in the antenna carrying layer 13o is coupled to a MMIC 121ommic i2i in a receiving layer 12o, which includes a 15 radio frequency (RF) switch 126, which Switch between the signal provided by the antenna element 131 and a temperature reference 125. The RF switch 126 samples the signal from the antenna element 131 or the temperature reference for a calibrated reference load. 25 operates outside the video frequency The added bias voltage (applied by the cut signal generator 116 in Figure 3) causes the RF switch 126 to periodically change the connection between the antenna element 20 and the temperature reference 125. Generally a temperature stabilization is used Use of a reference load for absolute temperature correction of a millimeter wave detector. The output of the RF switch 126 is provided to a low noise amplifier 127. The low noise amplifier 12 7 passes the amplified RF signal to a power Detector 12 8. The power detector 128 integrates the RF signal to generate a video output signal at a ratio of 17 569006 玖 to the RF input power. It is a US patent No. 5,815 issued on September 29, 1998. As made by Lo et al. 113, the passive microwave / tomic wave radiometer imaging system has a single stone, low noise, and simultaneous direct detection of the receiver. It further illustrates a typical method for detecting millimeter wave energy. The circuit is incorporated here as a reference 5. Alternatively, as shown in FIG. 5, the MMIC 121 itself for detecting millimeter wave energy can be implemented by a three-dimensional multilayer structure 521. In FIG. 5, The RF switch 126 is included in one layer, the power detector 128 is included in a second layer, and a low noise amplifier 127 is included in a third layer. In the three-dimensional junction 10 structure 521, the RF switch 126 is best For a low insertion loss built on a GaAs substrate, a metal contact RF MEMS (Radio Frequency Micro Electro Mechanical System) switch. Low insertion loss is an important feature of an RF switch 126. The low-noise amplifier 127 is preferably a high electron mobility transistor (HEM) built on an InP substrate. A low noise characteristic is an important feature of the low noise amplifier 127. The power detector 15 I28 is preferably a quantum tunneling heterostructure, which uses an almost lattice-matched InAs / A1Sb / GaSb system grown on a substrate: a linear response and circuit simplified for power detection An important feature of the device 128. As mentioned above, the better RF switch 126 for detecting millimeter wave energy in the three-dimensional structure 521 is an RF MEMS switch. The 20 very low insertion loss RF MEMS switch built on the GaAs substrate can Demonstrates insertion loss below 0.2dB at up to 40GHz with switch isolation greater than 60 dB at frequencies less than 5 GHz and greater than 25 dB at 40 GHz. Two main types of RF MEMS switches known in the art It is activated by electrostatic force-metal contact series switch and membrane parallel switch. The series switch is considered to be a real 18 569006 发明, invention-explained switch, because it uses a cantilever beam, which closes every time a metal contact is formed. It opens when the cantilever is released. A film parallel switch operates based on the position of the film that is electrostatically activated. When the film is on, the light signal passes through a transmission line located below the film. When the film is on When pulled down, the switching capacitor will engage, Λ to ground corresponds to the position where a switch is open. Although the type of the switch: presents excellent insertion loss (the very wide frequency of the incumbent millimeter wave ^] at 0 · 2), the series switch provides better isolation characteristics at an operating frequency of 5 GHz, and is therefore best used in the three-dimensional structure 521 for detecting millimeter wave energy. 10 in the three-dimensional structure 521 for detecting The low-noise amplifier 127 for measuring the energy of a meter wave preferably includes a hemt built on an Inp substrate. An InP HEMT dual-stage low-noise amplifier amplified at 190 GHz and a small signal is increased by 7.2 dB. It is technically known. This known amplifier uses an AlInAs / GalnAS / InP device with peripheral dimensions of 40 // m and is implemented with a coplanar waveguide circuit manufactured on an Inp substrate 15. It has been implemented from 129- 157GHZ has measured gains in excess of 10dB. Compared to other solid-state devices such as GaAs-based FETs, InP HEMT devices provide higher gain and lower noise at higher operating frequencies. These characteristics are due to the high indium Electron mobility on GaInAs channels Speed, along with increased carrier density in the channel due to discontinuities in the large conductive strips on the A1InAs / GaInAs 2o negative and negative junctions. Power detector for detecting millimeter wave energy in a three-dimensional structure 521 128 is preferably a back-facing diode. A better diode device is closely related to a Ge Esaki diode, but using modern epitaxial growth technology to use 19 569006 发明, invention description almost crystal Lattice-matched InAs / A1Sb / GaSb systems to fabricate precisely tailored quantum tunneling heterostructures. This preferred diode provides advantages over other types of diodes available for lamp power measurement. Specifically, the preferred diode provides a larger bandwidth than the Ge diode, and provides a bandwidth that is as good as or better than that of the Schottky diode 5 body. The preferred diode has zero-bias operation, and the Ge-pole also has this operation, but the Schottky diode does not. The preferred diode has a better sensitivity than other diode types, it has a greater curvature at zero bias, and it enables a larger dynamic range. Finally, the preferred diode has better linearity provided by careful band engineering to ensure the ideal quadratic curvature. Returning to FIG. 3, the video signal generated by the MMIC 121 is coupled to the synchronous video detector 118 in the radiometer processor integrated circuit 1U, which is preferably included in the substrate layer. All signal generators 116 control the radio frequency switch 126 in the synchronous video detector 118 and the MMIC 121, so that it is possible to measure the difference in millimeter wave power between the millimeter wave image emitted and a temperature reference. The difference between these two values provides the effective temperature of the image emitting millimeter wave radiation. An integrator 114 integrates the video signal, which is provided to the analog-to-digital converter 113 to provide a digital video signal output. A high-quality millimeter-wave image also requires high-temperature resolution and fast refresh rates. The time it takes to generate a millimeter-wave radiation image depends on the number of debt detectors operating in parallel 'and the integration time τ required for each detector to measure the temperature Tscene with an uncertainty AT. High-quality images generally require a ΔT resolution of at least 0.5K, and especially for indoor applications such as security surveillance, higher resolutions are required. According to the radiometer law, a receiver with a wide bandwidth of 3 and 20 569006 is used to minimize the product time:

如分立裝置般提供之高性能低雜訊放大器(LNA)在技 藝上是廣為人知的。例如,具有一 1〇GHz頻寬之30GHz 5 LNA能提供一 17〇。尺之Tsys。以這樣一個LNA,可偵測在一 3〇〇]^之笔米波溫度之典型景像,在85//S中為具有一 ·50Κ 之解析度八丁,而在2.21118中為具有〇.1。1(:之解析度么丁。其他 具有一 10GHz頻寬之LNA提供一 600°Κ之Tsys。藉由使用一 或夕個MMIC所實現之LNA具有類似之特性。以具有上述 1〇之特性之— LNA,可以·5〇Κ在320 //S中和·ρκ在8ms中偵 ’貝J在300 K之典型景像。以這樣的裝置,在每秒趟過框 架之視訊速率上產生卓越的〇1cK之影像是可能的,只要 每個偵測器元件具有其自己的視訊處理器且天線至lna連 接為最小長度。 15 將輻射計像素垂直積體於一基板上和像素的小尺寸允 許多個像素建構於一基板上。本發明之一實施例提供將一 聚焦平面輻射計陣列結構建構於一單矽晶圓上。這樣一個 晶圓可為直徑3,,(7.6 cm)至8,,(2〇 3cm)。建構矽晶圓來包 含多個用以處理毫米波視訊訊號之積體電路。一容納層和 2〇天線承載層配置於石夕晶圓基板上以建立聚焦平面轄射計陣 列。以晶圓為基礎之聚焦平面陣列之相對小尺寸會提供手 持晕米波成像器用之能力。本發明之一其他實施例係藉由 將多個基於晶圓之聚焦平面陣列組合至一單一陣列結構中 21 569006 坎、發明說明 =供的。此結構會提供―較大的視野和/或較高的解析影 10 15 第4圖中,兒明了-使用由本發明所提供之聚焦平面陣 列之單晶圓實施例之毫米波成像系統_。在—單晶圓上的 聚焦平面陣列位於-聚焦裝置20之後,如此使得欲成像之 景色430聚焦於聚焦平面陣列1〇上。聚焦裝置2〇可調整來使 得一觀看影像放大或縮小,如由一縮放鏡片所提供般。聚 焦平面陣列接收並處理來自景色43Q之毫米波輻射並提供 持續更新之全框視訊輸出41卜如上述,更新率視所要的解 析度而定。將全框視訊輸出41〇提供給—視訊控制和訊號處 理器單元42〇’其可於毫米波影像上執行額外的處理。然後 視訊控制以及訊號處理器單元將影像傳送給一視訊顯示器 44 0。視訊顯示器以從景色4 3 〇所偵測到的毫米波輻射為基 礎來產生一影像445。視訊顯示器440可包含一 CRT(陰極射 線管)或其他顯示器裝置,但最好顯示器44〇為一液晶顯示 器,如此使得毫米波成像系統400之成本,重量和大小可 保持盡可能的低。一電源供應405用來提供電源給系統中所 有作用的組件。因為聚焦平面陣列1〇可被提供以一單晶圓 ,所以整個毫米波成像系統400可合併於一具有可供做為一 2〇手持單元使用之大小與重量之單一封裝中。可使用多個晶 圓來組成聚焦平面陣列10,其可增加其中包含有毫米波成 像系統400之封裝的大小。使用多晶圓亦會需要視訊控制和 處理器單元420處理多個全框視訊輸出41〇。 從前述的說明,本發明具有多項優點是明顯的,其優 22 569006 玖、發明說明 點之一部份已於上面說明,而其他優點於在此所說明的本 發明之實施例中是固有的。又,應了解可對在此所述的亳 米波成像裝置做修改而不達反在此所說明的内容之教導。 如此’本發明並非受限於所說明的實施例,除了如所附申 5 請專利範圍所要求者之外。 【圖式簡單^明】High-performance, low-noise amplifiers (LNAs) like discrete devices are technically well-known. For example, a 30 GHz 5 LNA with a 10 GHz bandwidth can provide a 170. Ruler of Tsys. With such an LNA, a typical scene with a meter wave temperature of 300 ^^ can be detected. In 85 // S, it has a resolution of -50K, and in 2.21118 it has 0.1. .1 (: Resolution Modin. Other LNAs with a 10GHz bandwidth provide a Tsys of 600 ° K. The LNA implemented by using one or more MMICs has similar characteristics. In order to have the above 10 characteristics Of — LNA, can detect 50 kb in 320 // S and ρκ in 8ms, detect the typical scene of 贝 J at 300 K. With such a device, it produces excellent video rate across the frame per second 〇1cK image is possible, as long as each detector element has its own video processor and the antenna is connected to the minimum length of the lna. 15 Vertically integrate the radiometer pixels on a substrate and the small size of the pixels allows A plurality of pixels are constructed on a substrate. One embodiment of the present invention provides a focusing planar radiometer array structure constructed on a single silicon wafer. Such a wafer may have a diameter of 3, (7.6 cm) to 8, (20.3cm). Construct a silicon wafer to contain multiple mmWave video Integrated circuit. A containment layer and a 20 antenna carrier layer are arranged on the Shixi wafer substrate to establish a focusing plane radiometer array. The relatively small size of the wafer-based focusing plane array will provide a handheld halo wave. Capabilities for imagers. One other embodiment of the present invention is the combination of multiple wafer-based focusing plane arrays into a single array structure. 21 569006 Kan, invention description = for. This structure will provide-larger Field of view and / or higher resolution image 10 15 In Figure 4, it is clear that the millimeter-wave imaging system using the single-wafer embodiment of the focus-plane array provided by the present invention is provided.-Focus plane on a single wafer The array is located behind the focusing device 20, so that the scene 430 to be imaged is focused on the focusing plane array 10. The focusing device 20 can be adjusted to enlarge or reduce a viewing image, as provided by a zoom lens. The focusing plane The array receives and processes millimeter-wave radiation from the scene 43Q and provides continuous update of the full-frame video output 41. As mentioned above, the update rate depends on the required resolution. Full-frame video The output is provided to the video control and signal processor unit 420 'which can perform additional processing on the millimeter wave image. The video control and signal processor unit then transmits the image to a video display 440. An image 445 is generated based on the millimeter-wave radiation detected by the scene 43. The video display 440 may include a CRT (cathode ray tube) or other display device, but it is preferable that the display 44 is a liquid crystal display, so that The cost, weight, and size of the millimeter wave imaging system 400 can be kept as low as possible. A power supply 405 is used to provide power to all functional components in the system. Because the focus plane array 10 can be provided as a single wafer, the entire millimeter wave imaging system 400 can be incorporated into a single package having a size and weight that can be used as a 20 handheld unit. A plurality of wafers can be used to form the focus plane array 10, which can increase the size of a package containing the millimeter wave imaging system 400 therein. Using multiple wafers will also require the video control and processor unit 420 to process multiple full-frame video outputs 41. From the foregoing description, it is obvious that the present invention has a number of advantages. The advantages of the invention are 22 569006. Some of the points of the invention have been described above, and other advantages are inherent in the embodiments of the invention described here. . Also, it should be understood that the teachings of the meter wave imaging device described herein can be modified without departing from the content described herein. As such, the invention is not limited to the illustrated embodiments, except as required by the appended patent claims. [Schematic simple ^ Ming]

第1圖顯不了一本發明所提供之毫米波聚焦平面陣列 之簡化表示以及在陣列内之二像素之分解圖。 帛在本”之-單-㈣計像素内使用的 10 電子兀件之方塊圖。 第3圖顯示了在太 X月之一輻射計像素之一實施例中 使用之電子元件的方塊圖。 之一毫米波成像系統之方 塊圖 第4圖說明了—根據本發明 15 第5圖顯示了 _ 二維多層結 在本發明中做為_ 輻射計使用之 構之簡化表示,其提供一 微波單石積體電路。Figure 1 shows a simplified representation of the millimeter wave focusing plane array provided by the present invention and an exploded view of two pixels within the array. A block diagram of the 10 electronic elements used in the "Single-Single-Counter" pixel. Figure 3 shows a block diagram of the electronic components used in one embodiment of a radiometer pixel. Block diagram of a millimeter-wave imaging system. Figure 4 illustrates—according to the present invention15. Figure 5 shows a simplified representation of a two-dimensional multilayer junction used as a radiometer in the present invention, which provides a microwave monolithic product. Body circuit.

20 23 569006 玖、發明說明 【圖式之主要元件代表符號表】 10…輻射計像素 20…高斯光學儀器 30…景色 100···輻射計像素 110…基板層 111···處理器積體電路 112、122···穿孔 115···積體電路 12 0…容納層 12卜·· MMIC(微波單石積 體電路) 126...RF MEMS(射頻微機 電系統)開關 127···ΙηΡ HEMT LNA(高 電子移動率電晶體技術南 性能低雜訊放大器) 128···功率偵測器 130···頂端天線承載層 13 1 · · ·天線 132…介電 133···地端平面 140···封入層 405···電源供應器 410···全框視訊輪出 420...視訊控制及訊號處理 440···視訊顯示器 445···影像 2420 23 569006 发明 Description of the invention [Representative symbols of the main components of the drawing] 10 ... radiometer pixels 20 ... Gaussian optical instruments 30 ... scenery 100 ... radiometer pixels 110 ... substrate layer 111 ... processor integrated circuits 112, 122 ·· Perforation 115 ·· Integrated Circuit 12 0… Receiving Layer 12 ·· MMIC (Microwave Monolithic Integrated Circuit) 126 ... RF MEMS (Radio Frequency Micro-Electro-Mechanical System) Switch 127 ·· ΙηΡ HEMT LNA (High Electron Mobility Transistor Technology South Performance Low Noise Amplifier) 128 ··· Power Detector 130 ··· Top Antenna Carrier Layer 13 1 · · · Antenna 132 ... Dielectric 133 ··· Ground Plane 140 ··· Enclosure layer 405 ··· Power supply 410 ··· Full frame video rotation out 420 ... Video control and signal processing 440 ··· Video display 445 ··· Image 24

Claims (1)

569006 拾、申請專利範圍 L 一種亳米波成像之裝置,其包含: 一基板,其包含多個第一積體電路; 一或多個配置於基板頂端上的容納層,一或多個 容納層之每個容納層包含: 多個封入於一聚合物薄膜中之第二積體電路; 多個垂直互連;以及 一天線承載層包含: 一天線介電層以及 多個配置於天線介電層之頂端上的天線元件。 10 2.如申請專利範圍第1項之裝置,其進一步包含: 一或多個第一封入層,每個封入層位於該一或多 個容納層之每個容納層上且一或多個封入層之至少一 封入層包含: 一介電層以及 多個沈積於介電層頂端上的水平互連,多個連接 垂直互連之水平互連,多個第一積體電路以及多個第 二積體電路。 3. 如申請專利範圍第丨項之裝置,其進一步包含: 一沈積於天線介電層下方之金屬層;以及 20 一位於金屬層下方之地端平面介電層。 4. 如申請專利範圍第旧之裝置,其中該多個天線元件係 配置為使得在該多個天線元件中之每個天線元件與在 一垂直方向上的其他天線元件分離。 5·如申凊專利|巳圍第1項之裝置,其中多個第二積體電路 25 569006 拾、申請專利範圍 之母個積體電路包含一輻射計,其具有· 一連接至該多個天線元件之一單一天線元件之射 頻輸入; 一控制輸入; 5 一功率輸入;以及 一視訊輸出; 以及其中多個第一積體電路之每個積體電路包含 一輻射計處理器,其具有: 一連接至該輻射計之控制輸入之控制輸出; 1〇 一連接至該輻射計之電源輸入之電源輸出; 一連接至該輻射計之視訊輸出之視訊輸入; 一數位視訊輸出; 一直流輸入;以及 一時脈輸入。 15 6·如申請專利範圍第5項之裝置,其中輻射計包含: 一溫度參考; 一射頻開關,其具有一連接至射頻輸入之第一輸 入’一連接至溫度參考之第二輸入,以及一開關輸出 ’該射頻開關將第一輸入或第二輸入連接至開關輸出 20 ’且射頻開關係由控制輸入控制; 一低雜訊放大器,其具有一放大器輸入以及一放 大器輸出,該放大器輸入連接至開關輸出;以及 一功率偵測器,其具有一偵測器輸入以及一偵測 器輸出’該偵測器輸入連接至放大器輸出,以及偵測 26 拾、申請專利範圍 輻射計處理器包含: 直流電壓調整器,其提供 门正過的電源給電源 器輪出連接至視訊輸入。 λ如申請專利範圍第5項之裝置,其中 輪出; 有截波輪出,該截波輸 一截波訊號產生器,其具 出連接至控制輸出; 一问歩視訊偵測器,盆連接 、、 八埂筏至視矾輪出並連接 截波輸出並提供一偵測到的視訊輸出; 10 -整合器’其連接至偵測到的視訊輸出且提供一 整合的視訊輸出;以及 一類比至數位轉換器,其連接至整合的視訊輸出 並提供數位視訊輸出。 8.如申請專利範圍第5項之裝置,其中純射計包含一微 波單石積體電路。 15 9.如申請專利範圍第8項之裝置,其中該微波單石積體電 路包含一三維多層結構,該三維多層結構包含: 一在第一層中之RF MEMS (射頻微機電系統)開關 ,該RF MEMS開關具有一連接至射頻輸入之第一輸入 ’一連接至溫度參考之第二輸入,以及一 RF開關輸出 20 ,該RF MEMS開關係由該控制輸入所控制; 一在第二層中之低雜訊放大器積體電路,該低雜 訊放大器積體電路具有一放大器輸入和一放大器輸出 ,該放大器輸入連接至該RF開關輸出;以及 一在第三層中之功率偵測器積體電路,該功率偵 27 569〇〇6 怕、、甲請專利範圍 測器積體電路呈右—;查植$ 4 _ ,、有連接至该放大器輸出之功率偵測器 輸入’且具有—連接至該視訊輸出之功率摘測器輸出 10·如申請專利範圍第9項之裝置’其中該低雜訊放大器積 體電路包3 —建造於一銦磷(Inp)基板上的HEMT(高電 子移動率電晶體)。 11·如申請專利範圍第9項之裝置,其中該功率_器積體 電路包含一背向二極體。 U· 一種毫米波聚焦平面陣列,其包含: ίο 一或多個聚焦平面陣列結構,其包含·· 一半導體晶圓; 多個第—龍電路,其形成於半導體晶圓中; 一或多個位於半導體晶圓頂端上的容納層, 每個容納層包含多個封入於一聚合物薄膜中之第二 積體電路;以及 15 人y位於容納層頂端上的天線承載層,該天線承載層 包含. 一天線介電層;以及 多個位於天線介電層頂端上的天線元件。 20 A如申請專利範圍第12項之毫米波聚焦平面陣列,其中在 多個第二積體電路中之至少-積體電路包含-麵射叶, 且在多個第-積體電路中之至少一積體電路包含—連接 至該輻射計之輻射計處理器。 14·如申請專利範圍第13項之毫米波聚焦平面陣列,其進— 步包含: ^ 28 569006 拾、申請專利範圍 一連接至每個輻射計處理器之視訊框架處理器。 15·如申請專利範圍第13項之亳米波聚焦平面陣列,其中該 幸田射e十包含一二維多層結構,該三維多層結構包含: 一在一第一層中之RF MEMS開關,該RF MEMS開 關具有一連接至多個天線元件之一天線元件之第一輸 入,連接至一溫度參考之第二輸入,以及一 RF開關 輪出; 一在一第二層中之低雜訊放大器積體電路,該低 雜訊放大器積體電路具有一放大器輸入以及一放大器 輪出,該放大器輸入連接至該尺!7開關輸出;以及 一在一第三層中之功率偵測器積體電路,該功率 偵測器積體電路具有一連接至該放大器輸出之功率偵 測器輸入且具有一功率^貞測器輸出。 16·如申請專利範圍第15項之毫米波聚焦平面陣列,其中 該低雜訊放大器積體電路包含一建造在一 Inp基板上的 HEMT。 17 ·如申請專利範圍第15項之毫米波聚焦平面陣列,其中 該功率偵測器積體電路包含一背向二極體。 18· 一種用以基於由一所看到之景像接收之亳米波輕射來 產生一顯示之毫米波成像系統,該系統包含: 一產生全框視訊訊號之毫米波聚焦平面陣列,該 陣列包含 一包含多個基板積體電路之基板; 一或多個容納層,每個容納層包含多個封入於一 29 569006 拾、申請專利範圍 聚合物薄膜中之轄射計積體電路;以及一具有多個天 線兀件之天線承載層;以及一將所看到的景像指向毫 米波聚焦平面陣列;一接收全框視訊訊號並產生一顯 示視訊訊號之處理單元;以及 5 一由顯示視訊訊號產生一可見顯示之視訊顯示器。 19·如申請專利範圍第18項之毫米波成像系統,其中該基 板包含一單矽晶圓。 20·如申請專利範圍第18項之毫米波成像系統,其中該基 板包含多矽晶圓。 10 21·如申請專利範圍第18項之毫米波成像系統,其中該多 個基板積體電路之一基板積體電路包含電路來產生一 全框視訊訊號,且多個基板積體電路之每個剩餘的基 板積體電路包含一輕射計處理器。 22.如申請專利範圍第18項之毫米波成像系統,其中該多 15 個輻射計積體電路之每個輻射計積體電路包含一三維 多層結構’該三維多層結構包含: 一在一第一層中之RF MEMS開關,該rf Mems開 關具有一連接至多個天線元件之一天線元件之第一輸 入,一連接至一溫度參考之第二輸入,以及一RF開關 20 輸出; 一在一第二層中之低雜訊放大器積體電路,該低 雜訊放大器積體電路具有一放大器輸入和一放大器輸 出,該放大器輸入連接至該RF開關輸出;以及 一在一第三層中之功率偵測器積體電路,該功率 30 569006 拾、申請專利範圍 偵測器積體電路具有一連接至該放大器輸出之功率偵 測器輸入,且具有一功率偵、測器輸出。 23.如申請專利範圍第18項之毫米波成像系統,其中該系 統係包含於一單一手持封裝之内。 5 24.如申請專利範圍第18項之毫米波成像系統,其中鏡片 為一放縮放鏡片。 25.如申請專利範圍第18項之毫米波成像系統,其中視訊 顯示器包含一液晶顯示器。 31569006 Patent application scope L An infra-wave imaging device comprising: a substrate including a plurality of first integrated circuits; one or more receiving layers arranged on top of the substrate, and one or more receiving layers Each receiving layer includes: a plurality of second integrated circuits enclosed in a polymer film; a plurality of vertical interconnections; and an antenna carrying layer includes: an antenna dielectric layer and a plurality of antenna dielectric layers Antenna element on top. 10 2. The device according to item 1 of the patent application scope, further comprising: one or more first sealing layers, each sealing layer being located on each of the one or more receiving layers and one or more sealing layers At least one of the layers includes: a dielectric layer and a plurality of horizontal interconnections deposited on top of the dielectric layer; a plurality of horizontal interconnections connected to the vertical interconnection; a plurality of first integrated circuits and a plurality of second Integrated circuit. 3. The device according to the scope of the patent application, further comprising: a metal layer deposited under the antenna dielectric layer; and 20 a ground plane dielectric layer under the metal layer. 4. The oldest device in the scope of patent application, wherein the plurality of antenna elements are configured such that each antenna element in the plurality of antenna elements is separated from other antenna elements in a vertical direction. 5 · As claimed in the patent | apparatus of the first item, in which a plurality of second integrated circuits 25 569006, the parent integrated circuit of the patent application scope includes a radiometer, which has a connection to the multiple One of the antenna elements is a radio frequency input of a single antenna element; a control input; 5 a power input; and a video output; and each of the plurality of first integrated circuits includes a radiometer processor having: A control output connected to the control input of the radiometer; 10 a power output connected to the power input of the radiometer; a video input connected to the video output of the radiometer; a digital video output; a DC input; And a clock input. 15 6. The device according to item 5 of the patent application scope, wherein the radiometer includes: a temperature reference; a radio frequency switch having a first input connected to the radio frequency input ', a second input connected to the temperature reference, and a Switch output 'The RF switch connects the first input or the second input to the switch output 20' and the RF open relationship is controlled by the control input; a low noise amplifier having an amplifier input and an amplifier output, the amplifier input is connected to Switch output; and a power detector with a detector input and a detector output, 'the detector input is connected to the amplifier output, and the detector 26 patent-pending radiometer processor includes: DC A voltage regulator that provides power through the door to the power supply wheel and connects to the video input. λ If the device in the scope of patent application No. 5 is in rotation, there is a cutting wave rotation, the cutting wave input is a cutting wave signal generator, which has a connection to a control output; a video detector, a pot connection 、, 埂 埂 视 to the video wheel out and connect the clipped output and provide a detected video output; 10-Integrator 'which is connected to the detected video output and provides an integrated video output; and an analogy To digital converter that connects to the integrated video output and provides digital video output. 8. The device according to item 5 of the patent application, wherein the pure radiometer includes a microwave monolithic integrated circuit. 15 9. The device according to item 8 of the patent application scope, wherein the microwave monolithic integrated circuit includes a three-dimensional multilayer structure, the three-dimensional multilayer structure includes: an RF MEMS (radio frequency micro-electromechanical system) switch in the first layer, the The RF MEMS switch has a first input connected to a radio frequency input, a second input connected to a temperature reference, and an RF switch output 20. The RF MEMS switching relationship is controlled by the control input; Low-noise amplifier integrated circuit having an amplifier input and an amplifier output, the amplifier input connected to the RF switch output; and a power detector integrated circuit in the third layer The power detection circuit of 27,569,006 patents, patents, and patents is subject to the right of the integrated circuit of the detector; check $ 4 _, there is a power detector input connected to the output of the amplifier 'and has-connected to The power output of the video output tester output is 10. Such as the device of the scope of patent application No. 9 'wherein the low-noise amplifier integrated circuit package 3-HEMT (internal phosphorus (Inp) substrate) Electron mobility transistor). 11. The device according to item 9 of the scope of patent application, wherein the power device integrated circuit includes a back-facing diode. U · A millimeter wave focusing plane array, comprising: ίο one or more focusing plane array structures, including a semiconductor wafer; a plurality of dragon circuits, which are formed in the semiconductor wafer; one or more A receiving layer on the top of the semiconductor wafer, each receiving layer including a plurality of second integrated circuits enclosed in a polymer film; and an antenna bearing layer on the top of the receiving layer of 15 people, the antenna bearing layer comprising An antenna dielectric layer; and multiple antenna elements on top of the antenna dielectric layer. 20 A The millimeter wave focusing plane array according to item 12 of the patent application scope, wherein at least the -integral circuit in the plurality of second integrated circuits includes a -area radiating leaf, and at least in the plurality of -integrated circuits An integrated circuit includes a radiometer processor connected to the radiometer. 14. The millimeter-wave focusing plane array according to item 13 of the scope of patent application, which further includes: ^ 28 569006, patent application scope-a video frame processor connected to each radiometer processor. 15. As described in the patent application No. 13 of the Yami wave focusing plane array, the Kota shot e10 includes a two-dimensional multilayer structure, the three-dimensional multilayer structure includes: an RF MEMS switch in a first layer, the RF The MEMS switch has a first input connected to one of a plurality of antenna elements, a second input connected to a temperature reference, and an RF switch wheel out; a low-noise amplifier integrated circuit in a second layer The low-noise amplifier integrated circuit has an amplifier input and an amplifier turn-out, the amplifier input is connected to the ruler! 7 switch output; and a power detector integrated circuit in a third layer, the power The detector integrated circuit has a power detector input connected to the amplifier output and a power detector output. 16. The millimeter-wave focusing plane array according to item 15 of the application, wherein the low-noise amplifier integrated circuit includes a HEMT built on an Inp substrate. 17 · The millimeter-wave focusing plane array according to item 15 of the patent application, wherein the power detector integrated circuit includes a back-facing diode. 18. · A millimeter wave imaging system for generating a display based on a light wave transmitted by a meter wave received by a seen scene, the system comprising: a millimeter wave focusing plane array generating a full frame video signal, the array Including a substrate including a plurality of substrate integrated circuits; one or more containing layers, each containing a plurality of integrated spectroscopic integrated circuits enclosed in a 29,569,006, patent-pending polymer film; and An antenna bearing layer with multiple antenna elements; and a sighted image pointing at a millimeter wave focusing plane array; a processing unit that receives a full frame video signal and generates a display video signal; and 5 a display video signal Video display producing a visible display. 19. The millimeter wave imaging system according to claim 18, wherein the substrate includes a single silicon wafer. 20. The millimeter-wave imaging system according to item 18 of the patent application, wherein the substrate comprises a polysilicon wafer. 10 21 · The millimeter wave imaging system according to item 18 of the patent application scope, wherein one of the plurality of substrate integrated circuits includes a circuit to generate a full-frame video signal, and each of the plurality of substrate integrated circuits The remaining substrate integrated circuits include a radiometer processor. 22. The millimeter wave imaging system as claimed in claim 18, wherein each of the 15 additional radiometer integrated circuits includes a three-dimensional multilayer structure. The three-dimensional multilayer structure includes: RF MEMS switch in a layer, the rf Mems switch has a first input connected to one of a plurality of antenna elements, a second input connected to a temperature reference, and an RF switch 20 output; Low noise amplifier integrated circuit in a layer, the low noise amplifier integrated circuit has an amplifier input and an amplifier output, the amplifier input is connected to the RF switch output; and a power detection in a third layer The device integrated circuit has a power of 30 569006. The patent application range detector integrated circuit has a power detector input connected to the amplifier output and a power detector and detector output. 23. The millimeter-wave imaging system of claim 18, wherein the system is contained in a single handheld package. 5 24. The millimeter wave imaging system according to item 18 of the patent application, wherein the lens is a zoom lens. 25. The millimeter wave imaging system according to claim 18, wherein the video display comprises a liquid crystal display. 31
TW91121981A 2001-09-28 2002-09-25 Millimeter wave imaging array TW569006B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US32605301P 2001-09-28 2001-09-28

Publications (1)

Publication Number Publication Date
TW569006B true TW569006B (en) 2004-01-01

Family

ID=23270620

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91121981A TW569006B (en) 2001-09-28 2002-09-25 Millimeter wave imaging array

Country Status (3)

Country Link
AU (1) AU2002362394A1 (en)
TW (1) TW569006B (en)
WO (1) WO2003029772A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9705202B2 (en) 2009-01-07 2017-07-11 Sony Corporation Semiconductor device, method of manufacturing the same, in-millimeter-wave dielectric transmission device, method of manufacturing the same, and in-millimeter-wave dielectric transmission system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313907B (en) 2010-06-30 2014-04-09 清华大学 Millimeter wave inspection equipment
US8653467B2 (en) 2012-06-19 2014-02-18 Raytheon Company Multichip packaging for imaging system
EP2965356A1 (en) * 2013-03-08 2016-01-13 Northrop Grumman Systems Corporation Waveguide and semiconductor packaging
KR102028714B1 (en) * 2017-12-06 2019-10-07 삼성전자주식회사 Antenna module and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438336A (en) * 1993-11-12 1995-08-01 Trw Inc. Focal plane imaging array with internal calibration source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9705202B2 (en) 2009-01-07 2017-07-11 Sony Corporation Semiconductor device, method of manufacturing the same, in-millimeter-wave dielectric transmission device, method of manufacturing the same, and in-millimeter-wave dielectric transmission system

Also Published As

Publication number Publication date
WO2003029772A3 (en) 2003-06-19
WO2003029772A2 (en) 2003-04-10
AU2002362394A1 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
US6828556B2 (en) Millimeter wave imaging array
US7460060B2 (en) Electromagnetic wave transmitting/receiving module and imaging sensor having electromagnetic wave transmitting/receiving module
US7795859B1 (en) Low cost millimeter wave imager
JP6176869B2 (en) Waveguide and semiconductor packaging
US7135848B1 (en) Highly integrated radiometer sensor cell
US8547278B2 (en) Sensing device having multi beam antenna array
US8098187B1 (en) Wide field of view millimeter wave imager
EP2748891B1 (en) Non-heterodyne radiation imager
US10897073B2 (en) Receiver for detecting a terahertz wave and image forming apparatus
Rahman et al. A G-band monolithically integrated quasi-optical zero-bias detector based on heterostructure backward diodes using submicrometer airbridges
TW569006B (en) Millimeter wave imaging array
Hajimiri mm-wave silicon ICs: Challenges and opportunities
Yan et al. Monolithically integrated 200-GHz double-slot antenna and resistive mixers in a GaAs-mHEMT MMIC process
Yuan et al. Compact 120–140 GHz radar Tx/Rx sensors with on-chip antenna
Radisic et al. Demonstration of a micro-integrated sub-millimeter-wave pixel
Grzyb et al. Toward room-temperature all-silicon integrated THz active imaging
JP2004534216A (en) Millimeter wave surface imaging device
Sato et al. Compact receiver module for a 94 GHz band passive millimetre-wave imager
Kar-Roy et al. Recent developments using TowerJazz SiGe BiCMOS platform for mmWave and THz applications
Schaffner et al. A wideband radiometer module for an unamplified direct detection scalable W-band imaging array
Chiu et al. 340-GHz heterogeneously-integrated THz imager with 4°-beamwidth 16× 16 IPD antenna array for lensless terahertz imaging applications
Lynch et al. Unamplified direct detection sensor for passive millimeter wave imaging
Mollenkopf et al. A low-cost 20-22 GHz MIC active receiver/radiometer
Ali-Ahmad Millimeter and submillimeter-wave integrated horn antenna Schottky receivers
Kawano et al. Ultra high-speed and ultra low-noise InP HEMTs

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees