TW561572B - Mushroom stem wafer pedestal for improved conductance and uniformity - Google Patents
Mushroom stem wafer pedestal for improved conductance and uniformity Download PDFInfo
- Publication number
- TW561572B TW561572B TW91107534A TW91107534A TW561572B TW 561572 B TW561572 B TW 561572B TW 91107534 A TW91107534 A TW 91107534A TW 91107534 A TW91107534 A TW 91107534A TW 561572 B TW561572 B TW 561572B
- Authority
- TW
- Taiwan
- Prior art keywords
- support
- process chamber
- semiconductor
- pillar
- supporting
- Prior art date
Links
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
561572561572
五、發明説明( 發明領域:_ 本發明大體而言與半導體物件製造領域有關。更明確 的說’本發明與製程室内支撐半導體晶圓的設備及製程有 關。 發明背景:_ 在製造半導體物件時,均勻性及一致性是非常重要 的。藉由特殊設計的製程室,各種製造步驟(蝕刻、沉積 等等)係於真空且受到控制的環境中進行。 製程室的大小及形狀會影響到低壓氣體在裡面的行 為特性,因此,影響到該氣體對半導體工作件的作用。特 別需注意的問題是如何維持分布於工作件表面塵力的均 勻性。在工作件中的某一點與另外一點相較下,即使僅有 最微小壓力上的差異,都可造成工作晶圓片表面與其接觸 之分子在一致性程度上的實質差異。現今的製程室配置因 為上述的I力差異造成的製程不一致而深受困擾。 如第1圖,該圖為一習知可於製程室中支撐一半導體 晶圓的結構。放入一半導體晶圓3 0在製程室1 〇中,並將 其置於一圓柱狀的支撐結構20上。該圓柱狀支撐結構20 佔去了製程室10内部空間的較佳部分。於真空室10内的 氣體係由圓柱狀支撐結構20與真空室1 0内壁間的空間抽 出。之後氣體透過一個一端分支與一真空幫浦(如圖所示 之一渦輪分子幫浦)相連的幫浦通道離開製程室1 〇。 此種製程是配置存在一個不利的壓力梯度分布於晶 第4頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) -訂· 經濟部智慧財產局員工消費合作社印製 561572 A7V. Description of the invention (Field of invention: _ The present invention is generally related to the field of semiconductor object manufacturing. More specifically, the present invention is related to equipment and processes for supporting semiconductor wafers in the process chamber. Background of the invention: _ When manufacturing semiconductor objects Uniformity and consistency are very important. With a specially designed process chamber, various manufacturing steps (etching, deposition, etc.) are performed in a vacuum and controlled environment. The size and shape of the process chamber can affect low pressure The behavior characteristics of the gas inside it, therefore, affect the effect of the gas on the semiconductor work piece. The problem that needs special attention is how to maintain the uniformity of the dust force distributed on the surface of the work piece. One point in the work piece is different from the other point In contrast, even the slightest difference in pressure can cause a substantial difference in the degree of consistency between the surface of the working wafer and the molecules it contacts. The current process room configuration is due to the inconsistent process caused by the above-mentioned difference in I force. Very troubled. As shown in Figure 1, this figure shows a structure that can be used to support a semiconductor wafer in a process chamber. A semiconductor wafer 30 is placed in the process chamber 10 and placed on a cylindrical support structure 20. The cylindrical support structure 20 occupies a better portion of the internal space of the process chamber 10. The gas system in the vacuum chamber 10 is extracted from the space between the cylindrical support structure 20 and the inner wall of the vacuum chamber 10. Then, the gas passes through an end branch and is connected to a vacuum pump (a turbo molecular pump as shown in the figure). Pu Channel left the process chamber 1 0. This process is configured with an unfavorable pressure gradient distributed on the crystal. Page 4 This paper applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) (Please read the note on the back first) Please fill in this page again)-Ordered · Printed by the Consumers' Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 561572 A7
五、發明説明() 經濟部智慧財產局員工消費合作社印製 圓表面。壓力梯度乃是由於在圓柱狀支撐結構20上方的 氣體分子至真空室中的最小路徑長度非常不同所導致,該 最小路徑長度端賴於那些氣體分子於晶圓3〇上的起始位 置而定。至真空幫浦的最小路徑長度愈長,晶圓上區域的 壓力就愈大。 如第2圖,該圖說明一按照習知技術配置的製程室及 圓柱狀支撐物件。在製程室40中,一圓柱狀支轉50上支 撐著一個待加工的半導體晶圓7〇,該圓柱狀支撐由一個自 製程室40側壁延伸出來的懸臂樑(cantUever)支撐60所支 撐。雖然通往真空幫浦的入口 8〇係置於晶圓70及圓柱狀 支撐結構50下方的中間,但氣體分子通過晶圓70表面的 最小路徑長度仍然不夠均勻。當有懸臂樑支撐6 0時,基 本上靠近晶圓側邊的氣體分子到達真空幫浦的入口 8 〇會 比晶圓7 0上其他點的氣體分子有比較長的最小路徑長度 (要閃過懸臂樑支撐60 )。這會再度造成晶圓70表面上 的非等向性(anisotropic )壓力狀況。 此種配置的另外一個缺點就是不允許圓柱狀支撐架 構沿著z軸方向(即沿著一垂直的軸)移動。 如第3圖,該圖為一個按照習知技術配置的製程室J 2 的橫切面圖。該製程室1 2有兩組製程區域1 8可以同時加 工兩片晶圓。兩組製程區域1 8藉由與外圍裝置於製程室 牆上的幫浦管線2 5相連的多組抽氣通道3 1抽成真空。 如第4圖,該圖為第3圖製程室的平面圖。抽氣路徑 於此圖中顯示出來。每個製程區域1 8的外圍繁浦管線2 5 第5頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閲讀背面之注意事項再 填寫本 頁) 訂·V. Description of Invention () Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. The pressure gradient is due to the very different minimum path lengths of the gas molecules above the cylindrical support structure 20 into the vacuum chamber. The minimum path length end depends on the starting positions of those gas molecules on the wafer 30. . The longer the minimum path length to the vacuum pump, the greater the pressure on the area on the wafer. As shown in Fig. 2, this figure illustrates a process chamber and a cylindrical support object arranged in accordance with conventional techniques. In the process chamber 40, a semiconductor wafer 70 to be processed is supported on a cylindrical support 50. The cylindrical support is supported by a cantUever support 60 extending from a side wall of the process chamber 40. Although the entrance 80 to the vacuum pump is located between the wafer 70 and the bottom of the cylindrical support structure 50, the minimum path length of the gas molecules through the surface of the wafer 70 is not uniform enough. When a cantilever is used to support 60, gas molecules that are basically close to the side of the wafer reach the entrance of the vacuum pump 8 will have a longer minimum path length than gas molecules at other points on the wafer 70 (to be flashed Cantilever support 60). This will again cause anisotropic stress conditions on the surface of the wafer 70. Another disadvantage of this configuration is that it does not allow the cylindrical support structure to move along the z-axis direction (that is, along a vertical axis). As shown in Figure 3, this figure is a cross-sectional view of a process chamber J 2 configured according to conventional techniques. The process chamber 12 has two sets of process areas 18 that can process two wafers simultaneously. The two sets of process areas 18 are evacuated by a plurality of sets of suction channels 31 connected to a peripheral line on the wall of the process room. As shown in Figure 4, this figure is a plan view of the process chamber of Figure 3. The extraction path is shown in this figure. Peripheral Fanpu pipeline 1 8 for each process area 2 5 Page 5 This paper size applies to China National Standard (CNS) A4 (210X297 mm) (Please read the precautions on the back before filling this page) Order ·
Me. 561572 A7 B7 緩濟部智慧財產局員工消費合作杜印製 五、發明說明() 藉由一共同的抽氣管線1 9與一共同的真空幫浦相連接。 插氣管線1 9藉由抽氣導管2 1與每個製程區域1 8的幫浦 管線25相連接。抽氣管線19藉由一抽氣線路(未顯示) 與真空幫浦相連接。 如第5圖,該圖顯示依照另一個習知技術配置的一製 程室的橫切面圖。製程室39有個製程區域42加工一片晶 圓。製程區域42藉由一裝置於製程室牆上的外圍幫浦管 線53抽成真空。一個與製程區域42中的幫浦管線53相 連的抽氣管線57,藉由一抽氣線路(未顯示)連結至真空 繁浦以供抽氣。 第3圖至第5圖的配置與第1圖及第2圖有著相同的 問題,就是由於晶圓表面上分子的最小路徑長度明顯不對 私’以致於製程中的晶圓表面上會導致壓力梯度。偏離式 繁浦配置(offset pump configuration)(第 1 圖及第 3-5 圖)與懸臂樑支撐配置(第2圖)先天上就會有這樣子的 問題。壓力梯度基本上會在晶圓的表面造成不均勻的製 因此需要設計一製程室,藉由提供一個自晶圓表面至 繁浦區域更一致的最小路徑長度來減低晶圓表面的壓力 差。 在半導體製程中,另外一個挑戰來自於如何同時於兩 個製程室中提供一致的條件,如此兩個半導體工作件才能 同步的加工。現今能使用的半導體製程技術在兩個看似完 全相同的製程室中並未能提供一致的條件,此乃因為每— 第6頁 本紙張尺度適用中關家標準(CNS)A4規格(21()χ 297公爱)" -- (請先閲讀背面之注意事項再填寫本頁)Me. 561572 A7 B7 Consumption cooperation by employees of the Intellectual Property Bureau of the Ministry of Economic Rehabilitation Du printed 5. Description of the invention () Connected to a common vacuum pump by a common extraction line 19. The air inlet line 19 is connected to the pump line 25 of each process area 18 through the air suction duct 21. The suction line 19 is connected to a vacuum pump by a suction line (not shown). As shown in Figure 5, this figure shows a cross-sectional view of a process chamber configured in accordance with another conventional technique. The process chamber 39 has a process area 42 for processing a wafer. The process area 42 is evacuated by a peripheral pump line 53 mounted on the wall of the process chamber. An extraction line 57 connected to the pump line 53 in the process area 42 is connected to the vacuum pump for extraction by an extraction line (not shown). The configuration of Figures 3 to 5 has the same problem as Figures 1 and 2, because the minimum path length of the molecules on the wafer surface is obviously not private, so that a pressure gradient will be caused on the wafer surface during the process. . Offset pump configuration (Figure 1 and Figures 3-5) and cantilever support configuration (Figure 2) inherently have such problems. The pressure gradient basically causes uneven manufacturing on the surface of the wafer. Therefore, a process chamber needs to be designed to reduce the pressure difference on the wafer surface by providing a more consistent minimum path length from the wafer surface to the fan area. Another challenge in semiconductor manufacturing is how to provide consistent conditions in two process chambers at the same time so that two semiconductor workpieces can be processed simultaneously. The semiconductor process technology that can be used today does not provide consistent conditions in two seemingly identical process chambers. This is because every page of this paper applies the Zhongguanjia Standard (CNS) A4 specification (21 ( ) χ 297 公 爱) "-(Please read the notes on the back before filling this page)
訂· 着 發明説明() 装私主擁有自己獨儿的真2幫浦。儘管製程室操作參數的 控制指令是相I同的,兩個真空背浦表現出來的細微差異會 因為氣體的傳遞路徑,造成兩個製程室中壓力曲線(至少 包含工間上及時間上)彳著相當大的差異。這樣的問題將 造成藉由同時於多個晶圓上施以相同的步驟時增加產能 的障礙。 因此亦而要一維持相同壓力曲線條件的方法於同時 進行兩製程的製程室中。 #明目的及概述: 本發明態樣之一為提供製程室中進行處理的半導體 晶圓更均勻的製程條件。 本發明的另一態樣為提供於一真空製程室中進行處 理的半導體工作件更均勻的壓力條件。 本發明的另一態樣為一雙晶圓的製程室,藉由對一對 晶圓同時提供實質上完全相同的製程條件可加強晶圓製 程的產能。 本發明的另一態樣為提供一較習知技術有更短的物 理路徑的半導體晶圓製程室。 本發明的另一態樣為提供一製程室中的數個半導體 晶圓實質相同的條件,藉由設計外型、氣體傳遞以及氣體 傳遞參數,於不依賴主動控制的情形下維持相同的條件。 本發明的另一態樣為提供一晶圓支撐結構,其具有一 支撐柱從下面支撐著夾盤(Chuck ),而支撐柱遠較失盤 第7頁 561572 五、發明説明() 來得狹窄。 本發明的另一態樣為提供一個具有夾盤的晶圓支撐 結構,該夾盤係由支撐柱所支撐,該支撐柱係遠較夾盤來 得狹窄。 本發明另一態樣為提供一失盤以及支撐柱結構以增 加晶圓製程室内的壓力均句性。 本發明另一態樣為一晶圓支撐結構,夬盤下面的製程 室體積較大’故當製程室體積總和維持不變時’夾盤上面 的體積將會減小。 本發明一具體實施例為一製程室,其係具有一大體上 為菌形外觀的晶圓支撐結構。一廣大的圓形夾盤用來支撐 製程中的晶圓,夾盤下有一根柱子支撐。夾盤完全藉由該 柱子支撐。將製程室抽空的幫浦通道基本上被放置在夹盤 下面。 加工半導體元件的製程室具有一製程室本體、一夾 盤、以及一柱子。製程室本體具有一底牆,底牆内裝置有 幫浦通道。夾盤位於製程室本體中,具有上表面及面對底 踏的下表面。夾盤的上表面寬度足以支撐半導體元件。柱 子支撐著夾盤,並由製程室本體的底牆延伸至夾盤的下表 面。柱子的寬度比夾盤的寬度窄小的很多。 本發明上述其他部分的具體實施為藉由一製程室在 基本上相同製程條件下同時加工兩半導體工作件(即晶 圓)。該製程室至少包含製程室本體,其底牆中配置一幫 浦通道;另至少包含一真空繁浦,其與幫浦通道以流體方 第8頁 ..............., (請先閱讀背面之注意事項再填寫本頁) 、可. 着 經濟部智慧財產局員工消費合作社印製 561572 經濟部智慧財產局員工消費合作社印製 、發明説明() 式又流。一對支撐物件以及各自支撐該支撐物件的柱子均 係配置於製程室中。每一個支撐物件均具有上表面及面對 製程1:本體底牆的下表面。柱子支撐其各自的支撐物件, 並由製程室本體的底牆延伸至支撐物件的下表面。每一支 樓物件的上表面有足夠的寬度以支撐半導體元件。每一柱 子的寬度基本上比該支撐物件的寬度要小的很多。 上述方·面仍有其他部分乃利用晶圓支撐組件 (assembly)具體實施在一製程室中,用以支撐半導體晶 圓。晶圓支撐組件包括一晶圓支撐物件(即夾盤)以及一 柱子。晶圓支撐物件具有足夠寬的上表面以支撐半導體晶 圓柱子自晶圓支撐物件的下表面延伸,且其寬度較晶圓 支撐物件基本上要小的很多。 本發明的額外目標及優點在閱讀過以下的詳細描述 並結合相關的描繪圖示之後將會非常清楚。 發明詳細纷昍: 根據本發明之製程室配置產生至少兩個明顯的好處。 依據本發明,將晶圓支撐結構與抽出 3 *何結構 (pump out geometries )相結合,此種新穎組厶、 、σ万式的一 個有用的優點為,可減低製程室中處於製程中 ' τ <晶圓表面 的壓力梯度。由於如此可提升晶圓表面上製程 机々王旳均勻性, 故此壓力梯度的減低是有益的,因此可增加矣 母〜個晶圓上 產出高品質晶片的數目。 第9頁 (請先閲讀背面之注意事項再 填寫本 頁) 訂- 五 經濟部智慧財產局員工消費合作社印製 561572 A7 -----B7 發明説明() 本發明另外一個有用的優點是製程室中的高流體傳 遞性。一裝置於此的晶圓支撐結構增加了製程室於夾盤下 方的體積’因此夾盤上方的體積將會減少(好比夾盤於製 程室中向上移動)當製程室總共的體積維持不變時。此夾 盤下方魔大的體積正是氣體流動至製程室底牆的幫浦通 道所經過的製程室部分,而由於該體積比較大,故傳遞性 會如同液體流動路徑變大而變高。當具有較高傳遞性的抽 出路徑時’幫浦效能便會提升因而能維持晶圓表面有穩定 的壓力。 另外’更大的製程室内部流體體積會增加製程穩定 性’因為壓力或流動的瞬間變化(transient )在較大的體 積中較容易控制。在未增加製程室外部體積的情況下維持 如此大的内部流體體積會造成製程穩定程度上升且不會 增加製程室的足跡(footprint )(亦即製程室佔用製造樓 面的不動產面積多寡)。 如第6圖,該圖說明依照本發明之一具體實施例的一 晶圓支撐夾盤。一晶圓3 5 0透過晶圓傳遞通道3 3 4放入製 程室3 3 0中。在放入到晶圓室3 3 0之後,晶圓3 5 0便置於 夾盤310上。一相對而言較細的柱子32〇支撐夾盤31〇於 製程室330之内。柱子320自夾盤310的底面312延伸至 製程室330的底踏332。藉由柱子314延伸出製程室330 之底踏3 3 2外的一部分,提供夾盤31 〇相關的支撐 (service)。藉由柱子314外面的部分提供的支撐最好包 括無線電頻率能量(RF energy )、作為靜電夾盤功能 第順 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公楚) (請先閲讀背面之注意事項再填寫本頁) 7訂· 561572 A7 _________ B7 五 經濟部智慧財產局員工消費合作社印製 發明説明() (electrostatic chucking function )的直流電位(Dc potential)、氦氣以及冷卻劑。 (請先閱讀背面之注意事項再填寫本頁) 另一方面柱子320具有一摺柱(bellows ) 322 ,其可 允許柱子320的長度可以在高低兩處來回調整。柱子在低 處時’夾盤310定位於可使晶圓350輕易的藉由晶圓傳遞 通道334傳入或傳出製程室330。當準備進行晶圓35〇之 製程時,夾盤310會由於柱子320的伸長而上升至高處。 提高夾盤310會使得晶圓350更加接近位於製程室頂端的 嘴麗頭(shower head ),其會噴灑試劑氣體(reagent gas )。 此種上下間沿著z軸的運動使得在製程時電漿雲無法『看 見』(see)晶圓傳遞通道334,因此可防止電衆雲因延伸 進入晶圓傳遞通道334而扭曲。 製程室330内的真空狀態係由一個位於製程室334底 牆332中並與抽氣通道324連結的真空幫浦340維持。重 要的是,抽氣通道324起碼有一部份裝置於夾盤310的下 方。這樣的裝置基本上可以讓氣體分子自晶圓350的上方 移動至抽氣通道3 24的最小路徑長度相等。· 如第7圖,該圖說明一依照本發明之另一具體實施例 的晶圓支撐結構。一夾盤410支撐著位於晶圓室内部即將 進行製程的晶圓450。一相對來說較細的柱子420支撐著 夾盤410,該夾盤可自夬盤410的下方412延伸至製程室 的底面410。此種偏離式設置使得裝設抽氣通道變得可 能。如此會更容易使氣體分子自晶圓450的上方移動至抽 氣通道424的最小路徑長度相等,並被幫浦440吸出。 第11頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) 561572 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明() 擅柱4 2 2裝設於柱子4 2 0上,可以改變柱子4 2 0的長 度,便可連帶將夾盤410上下移動。當夾盤41〇位於低處 時,晶圓450可以藉由晶圓傳遞通道434被放入或移出製 程室430。當準備進行晶圓450之製程時,夾盤410會提 升其位置以使晶圓450位於較接近嘴灑頭436之處,該喷 >麗 >員會散布試劑氣體至晶圓4 5 0上方的空間。此種上下間 沿著z軸的運動使得在製程時電漿雲無法『看見』(see ) 晶圓傳遞通道434,因此可防止電漿雲因延伸進入晶圓傳 遞通道434而扭曲。 藉由柱子420之一部分414,其伸出製程室430之底 牆432,提供夾盤410相關的支撐。 如第8圖’該圖說明依據此發明之一種供選擇的雙製 程區域的具體實施例。兩個製程區域53〇、58〇被相鄰配 置於單一製程室500中’並為一對晶圓550、590提供實 質上相同的製程條件。隔綸(partiti〇11) 502至少向下延 伸至夾盤510、560的下方,並將兩個製程區域53〇、580 彼此分隔。 每一製程區域530、580各自具有一夾盤510、5 60於 製程中支撐各自的晶圓550、590。圖中以虛線表示的晶圓 550、590以及其支撐夾盤510、560代表為了接近氣體教 布嗜灑頭536、586而將放置晶圓550、590的夾盤移動至 高處的位置。 在低處的位置,夾盤5 1 2恰好置於晶圓傳遞通道534 的下方’而晶圓550藉由該晶圓傳遞通道放入或移出製程 第12頁 本紙張尺度制t國ϋ家標準(CNS)A4規格(21GX 297公楚) (請先閲讀背面之注意事項再填寫本頁)Book · Description of invention () Pretend that the private owner owns the only 2 pumps of his only child. Although the control commands for the operating parameters of the process chambers are the same, the slight differences shown by the two vacuum pumps will cause the pressure curve in the two process chambers (at least including in the workshop and time) due to the gas transmission path. This is quite a difference. Such problems will create obstacles to increasing throughput by applying the same steps on multiple wafers simultaneously. Therefore, a method of maintaining the same pressure curve conditions in a process chamber that performs two processes simultaneously is also required. # 明 Purpose and summary: One aspect of the present invention is to provide more uniform process conditions for semiconductor wafers processed in a process chamber. Another aspect of the present invention is to provide a more uniform pressure condition for a semiconductor work piece to be processed in a vacuum process chamber. Another aspect of the present invention is a two-wafer processing chamber. By simultaneously providing a pair of wafers with substantially the same process conditions, the production capacity of the wafer process can be enhanced. Another aspect of the present invention is to provide a semiconductor wafer process chamber with a shorter physical path than conventional techniques. Another aspect of the present invention is to provide several semiconductor wafers in a process chamber with substantially the same conditions. By designing the shape, gas transfer, and gas transfer parameters, the same conditions are maintained without relying on active control. Another aspect of the present invention is to provide a wafer support structure having a support pillar supporting a chuck (Chuck) from below, and the support pillar is far narrower than a lost disk. Page 7 561572 V. Description of the invention () is narrower. Another aspect of the present invention is to provide a wafer support structure having a chuck, which is supported by a support post, which is much narrower than the chuck. Another aspect of the present invention is to provide a misalignment and support pillar structure to increase pressure uniformity in a wafer processing chamber. Another aspect of the present invention is a wafer support structure. The volume of the process chamber below the reel is large, so the volume on the chuck will decrease when the total volume of the process chamber remains unchanged. A specific embodiment of the present invention is a process chamber, which is a wafer support structure having a generally mushroom-shaped appearance. A large circular chuck is used to support the wafer in the process, and a pillar is supported under the chuck. The chuck is fully supported by the post. The pump channel that evacuates the process chamber is basically placed under the chuck. A process chamber for processing semiconductor elements has a process chamber body, a chuck, and a pillar. The main body of the process chamber has a bottom wall, and a pump channel is installed in the bottom wall. The chuck is located in the process chamber body and has an upper surface and a lower surface facing the bottom tread. The upper surface of the chuck is wide enough to support the semiconductor element. The column supports the chuck and extends from the bottom wall of the process chamber body to the lower surface of the chuck. The width of the post is much narrower than the width of the chuck. The other parts of the present invention are specifically implemented by processing two semiconductor workpieces (i.e., wafers) simultaneously in a process chamber under substantially the same process conditions. The process chamber contains at least the process chamber body, a pump channel is arranged in the bottom wall; and at least one vacuum pump is included, which is in fluid flow with the pump channel. ..., (Please read the precautions on the back before filling out this page), OK. Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs and printed by the Consumer Cooperative 561572 . A pair of supporting objects and pillars each supporting the supporting object are arranged in the process room. Each support object has an upper surface and a lower surface facing the process 1: the bottom wall of the body. The pillars support their respective supporting objects and extend from the bottom wall of the process chamber body to the lower surface of the supporting objects. The upper surface of each building object has sufficient width to support the semiconductor components. The width of each post is substantially smaller than the width of the support object. There are still other parts of the above aspects, which are specifically implemented in a process chamber using wafer support assemblies to support semiconductor wafers. The wafer support assembly includes a wafer support object (ie, a chuck) and a post. The wafer support object has a wide enough upper surface to support the semiconductor crystal. The cylinder extends from the lower surface of the wafer support object, and its width is substantially smaller than that of the wafer support object. Additional objects and advantages of the present invention will become apparent upon reading the following detailed description in conjunction with the associated descriptive drawings. Details of the invention vary: The process chamber configuration according to the present invention yields at least two distinct benefits. According to the present invention, when a wafer support structure is combined with a pump out geometries, a useful advantage of this novel combination of 厶, σ, and 万 is that it can reduce the number of processes in the process chamber 'τ < Pressure gradient on the wafer surface. Since this improves the uniformity of the process on the wafer surface, the reduction of the pressure gradient is beneficial, so the number of high-quality wafers produced on the mother wafer to one wafer can be increased. Page 9 (Please read the precautions on the back before filling out this page) Order-Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economy 561572 A7 ----- B7 Description of the Invention () Another useful advantage of the present invention is the manufacturing process High fluid transmission in the chamber. A wafer support structure installed therein increases the volume of the process chamber below the chuck, so the volume above the chuck will decrease (like the chuck moves upward in the process chamber) when the total volume of the process chamber remains unchanged . The magic volume below this chuck is exactly the part of the process chamber through which the gas flows to the pump channel of the bottom wall of the process chamber. Because the volume is relatively large, the transferability will become as large as the liquid flow path and become higher. When the extraction path has a higher transferability, the pumping efficiency is improved and a stable pressure can be maintained on the wafer surface. In addition, 'larger fluid volume inside the process chamber will increase process stability' because the transient changes in pressure or flow are easier to control in larger volumes. Maintaining such a large internal fluid volume without increasing the external volume of the process chamber will increase the stability of the process without increasing the footprint of the process chamber (that is, how much real estate area the process chamber occupies on the manufacturing floor). As shown in FIG. 6, this figure illustrates a wafer support chuck according to a specific embodiment of the present invention. A wafer 3 50 is placed in the process chamber 3 3 0 through the wafer transfer channel 3 3 4. After being placed in the wafer chamber 330, the wafer 350 is placed on the chuck 310. A relatively thin post 32o supports the chuck 31o within the process chamber 330. The post 320 extends from the bottom surface 312 of the chuck 310 to the bottom step 332 of the process chamber 330. The pillar 314 extends out of the bottom of the process chamber 330 and steps 3 3 2 to provide the chuck 31 0 related services. The support provided by the outer part of the pillar 314 preferably includes radio frequency energy (RF energy), as an electrostatic chuck function. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297). (Please read the back first Please pay attention to this page, please fill in this page) 7th order · 561572 A7 _________ B7 5. The DC potential, helium and coolant of the electrostatic chucking function printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. (Please read the precautions on the back before filling this page) On the other hand, the pillar 320 has a bellows 322, which allows the length of the pillar 320 to be adjusted back and forth between high and low. When the pillars are low, the chuck 310 is positioned so that the wafer 350 can be easily transferred into or out of the process chamber 330 through the wafer transfer channel 334. When the wafer 35 is prepared, the chuck 310 will rise to a high position due to the elongation of the pillar 320. Increasing the chuck 310 will bring the wafer 350 closer to the shower head at the top of the process chamber, which will spray the reagent gas. This movement along the z-axis between the upper and lower sides prevents the plasma cloud from “seeing” the wafer transfer channel 334 during the manufacturing process, so that the electric cloud can be prevented from being distorted by extending into the wafer transfer channel 334. The vacuum state in the process chamber 330 is maintained by a vacuum pump 340 located in the bottom wall 332 of the process chamber 334 and connected to the suction channel 324. Importantly, the suction channel 324 is at least partially mounted below the chuck 310. Such a device basically allows the minimum path lengths of gas molecules to move from above the wafer 350 to the extraction channels 3 24 to be equal. As shown in FIG. 7, this figure illustrates a wafer support structure according to another embodiment of the present invention. A chuck 410 supports a wafer 450 which is to be processed in the wafer chamber. A relatively thin post 420 supports a chuck 410, which can extend from the underside 412 of the pan 410 to the bottom surface 410 of the process chamber. This off-set arrangement makes it possible to install suction channels. This will make it easier for gas molecules to move from above the wafer 450 to the minimum path length of the extraction channel 424, and be sucked out by the pump 440. Page 11 This paper size applies to Chinese National Standard (CNS) A4 specifications (210X 297 mm) 561572 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy On 20, you can change the length of the post 420, and then you can move the chuck 410 up and down. When the chuck 41 is located at a low position, the wafer 450 can be put into or removed from the process chamber 430 through the wafer transfer path 434. When the wafer 450 process is ready to be performed, the chuck 410 will raise its position so that the wafer 450 is located closer to the nozzle sprinkler 436. The sprayer > Li > will distribute the reagent gas to the wafer 4 5 0 Space above. This movement between the upper and lower sides along the z axis makes the plasma cloud unable to “see” the wafer transfer channel 434 during the manufacturing process, and thus prevents the plasma cloud from being distorted by extending into the wafer transfer channel 434. With a portion 414 of the pillar 420, it protrudes from the bottom wall 432 of the process chamber 430 to provide support to the chuck 410. Fig. 8 'shows a specific embodiment of an alternative dual process area according to the invention. The two process areas 53 and 58 are adjacently placed in a single process chamber 500 'and provide a pair of wafers 550 and 590 with substantially the same process conditions. The partition 502 extends at least below the chucks 510 and 560 and separates the two process areas 53 and 580 from each other. Each process area 530, 580 has a chuck 510, 5 60 to support a respective wafer 550, 590 during the process. The wafers 550 and 590 and the support chucks 510 and 560 indicated by dashed lines in the figure represent that the chucks on which the wafers 550 and 590 are placed are moved to a higher position in order to access the gas shower heads 536 and 586. At the lower position, the chuck 5 1 2 is placed just below the wafer transfer channel 534 ', and the wafer 550 is put into or removed from the wafer transfer channel through the process. Page 12 (CNS) A4 specifications (21GX 297) (Please read the precautions on the back before filling this page)
訂· 着 561572 A7 一·____g7 五、發明説明() 區域530。同樣地,在隔壁製程區域58〇中的夹盤5 62於 低處時亦恰好置於晶圓傳遞通道5 8 8的下方。 個具有裡面部分528的柱子526支撐左側製程區域 530的夾盤512,該柱子可自由向上移動以將夾盤51〇置 於較高的位置。同樣地一個具有裡面部分578的柱子576 支撐右側製程區域580的夾盤562,該柱子可自由向上移 動以將夾盤560置於較高的位置。柱子526、576之可變 化的長度這點係由其個別摺狀柱的構造所促成(並未顯示 於圖中),該摺狀構造係位於圖中柱子部分526、528、576、 5 78的内部。 根據此具體實施例,柱子526號、576號偏離各自夾 盤5 12、562的中心。此種偏離配置使得夾盤能有最大的 比例位於抽氣通道5 2 4的上方。 一共用的真2繁浦540將兩製程區域530、580抽成 真空。左側製程區域530内的氣體經由抽氣通道524抽出 至真空幫浦540,同樣地,右側製程區域内的氣體經由相 同的抽氣通道524抽出。兩製程區域530、580與共用的 真空繁浦540構成一晶圓製程系統。就電漿而言,隔牆5〇2 兩側的電蒙僅會看見自己的製程區域,就好比仍然是一單 獨的製程室般。在各製程區域中會單獨產生電衆。然而, 兩製程區域530、580因為連接至同一個抽氣繁浦而擁有 共同的製程條件,故會有相同的壓力。 對夾盤510、560的支撐乃藉由伸出製程室底綸的柱 子部分514、574提供。 第13頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂- 舞 經濟部智慧財產局員工消費合作社印製 561572 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 如第9圖,該圖說明依據此發明之另外一種供選擇的 雙製程區域的具體實施例。兩個製程區域5 3 1、5 8 1被相 鄰配置於單一製程室501中,並為一對晶圓550、590提 供實質上相同的製程條件。隔牆502至少向下延伸至夾盤 511、561的下方,並將兩個製程區域531、581彼此分隔。 每一製程區域531、581各自具有一夾盤511、561於 製程中支撐各自的晶圓550、590。圖中以虛線表示的晶圓 550、590以及其支撐夾盤511、561代表為了接近氣體散 布噴灑頭536、586而將放置晶圓· 550、590的夾盤移動至 高處的位置。 在低處的位置,夾盤5 1 3恰好置於晶圓傳遞通道534 的下方’而晶圓5 5 0藉由該晶圓傳遞通道放入或移出左側 的製程區域5 3 1。同樣地,在右側製程區域5 8 1中的夾盤 5 6 3於低處時亦恰好置於晶圓傳遞通道5 8 8的下方。 經濟部智慧財產局員工消費合作社印製 一個具有裡面部分529的柱子527支撐左側製程區域 531的夾盤513,該柱子可自由向上移動以將夾盤511置 於較高的位置。同樣地一個具有裡面部分579的柱子577 支撐右側製程區域581的夾盤563,該柱子可自由向上移 動以將夾盤561置於較高的位置。柱子527號、577號之 可變化的長度這點係由其個別摺狀柱的構造所促成(並未 顯示於圖中),該摺狀構造係位於圖中柱子部分527、529、 577、579的内部。 根據此具體實施例,柱子527、577置於其各自夾盤 513、563正中央的下方。此中心柱配置(centered stem 第14頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公楚) 561572 A7 B7 五、發明説明() 氦氣以冷卻晶圓。 於夾盤6 1 0上方裝置一靜電爽盤以維持晶圓在製程中 (請先閱讀背面之注意事項再場寫本頁) 能夠安全的位於適當的地方(未顯示於此圖中)。内部軸 614連同其他支撐,提供直流電位以驅動靜電夾盤616。 此發明已由較佳的具體實施例加以說明,然而在不達 背此發明的領域的情況下,各種對於已說明之具體實施例 所做的更改及改進都是可被接受的。此發明僅為以下的中 請專利範圍所限制。 圖式簡軍說明: 第1圖為一根據第一個習知技術配置之具有一 ·圓柱狀日圓 支撐結構的製程室之局部剖面圖。 第2圖為一根據第二個習知技術配置之具有一懸臂樣晶圓 支撐結構的製程室之局部剖面圖。 第3圖為一根據第三個習知技術配置的製程室之橫剖面 圖。 第4圖為第3圖製程室的上視圖。 第5圖為一根據第四個習知技術配置的製程室之橫剖面 圖。 經濟部智慧財產局員工消費合作社印製 第6圖為一根據本發明的第一個具體實施例配置的製程室 之部分剖面圖。 第7圖為一根據本發明的第二個具體實施例配置的製程室 之部分剖面圖。 第8圖為一根據本發明的第三個具體實施例配置的雙製程 第16頁 本紙張尺度適用巾S S家標準(CNS)A4規格(210x297公楚)— 一—---- 561572 A7 B7 發明説明() 區域晶圓製程系統之部分剖面圖。 第9圖為另一根據本發明的第四個具體實施例配置的雙製 程區域晶圓製程系統之部分剖面圖。 第1 〇圖為一與本發明的各個具體實施例一致的晶圓支撐 結構之部分剖面圖。 經濟部智慧財產局員工消費合作社印製 (請先閱讀背面之注意事項再場寫本頁) 訂· 着· 圖號對照說明: 1 0、1 2、39、330、430、500、 501 18、42、530、531、580 ° 581 324、424、524 42 31 50 19 20 21 25、53 30、70 57 60 80 310 、 410、 510、 512 560 、 561 、 562 、 563 312 、412、61 2 314、414、514、51 5 575 320 、 420 、 526 、 527 577 、 620 322 、 422 、 622 350、450、550、590 513 610 574 576 第17頁 製程室 製程區域 抽氣通道 圓柱狀支撐結構 抽氣導管 外圍幫浦管線 半導體晶圓 抽氣管線 懸臂樑支撐 真空幫浦的入口 夾盤 夾盤底面 延伸出底牆的部分柱 子 柱子 摺柱 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 561572 A7 B7 五、發明説明() 經濟部智慧財產局員工消費合作社印製 332 > 432 製 程 室 的 底 牆 334 、434 晶 圓 傳 遞 通 道 336 、436 喷 灑 頭 340 、440 真 空 幫 浦 502 隔 牆 528 、529 、 578 、 579 柱 子 裡 面 的 部 分 534 ^ 588 晶 圓 傳 遞 通 道 536 、586 散 布 氣 體 的 喷 灑頭 540 共 用 的 真 空 幫 浦 614 柱 子 内 部 的 軸 616 靜 電 夾 盤 625 很 大 的 凸 緣 626 外 層 縮 疊 艢 628 内 層 縮 疊 牆 632 無 線 電 頻 率 連 接 634 、636 流 體 連 結 器 第18頁 (請先閲讀背面之注意事項再填寫本頁)Order 561572 A7 I ____g7 V. Description of Invention () Area 530. Similarly, the chuck 5 62 in the process region 58 next door is also positioned just below the wafer transfer channel 5 8 8 at a low position. A post 526 having an inner portion 528 supports the chuck 512 of the left process area 530, and the post is free to move upward to set the chuck 51 to a higher position. Similarly, a post 576 with an inner portion 578 supports the chuck 562 of the right-hand process area 580, and the post is free to move upward to place the chuck 560 in a higher position. The variable length of the columns 526, 576 is facilitated by the structure of the individual folded columns (not shown in the figure), which are located in the columns 526, 528, 576, 5 78 internal. According to this specific embodiment, the pillars 526, 576 are offset from the centers of the respective chucks 5, 12, 562. This deviation configuration allows the largest proportion of the chuck to be located above the suction channel 5 2 4. A common Shin 2 Fanpu 540 evacuates the two process areas 530, 580. The gas in the left process region 530 is extracted to the vacuum pump 540 through the suction channel 524. Similarly, the gas in the right process region is extracted through the same suction channel 524. The two process areas 530, 580 and the common vacuum fan 540 constitute a wafer processing system. As far as plasma is concerned, the electric masks on both sides of the partition wall 502 will only see their own process area, as if they are still a separate process room. Electricity is generated separately in each process area. However, the two process areas 530, 580 have the same process conditions because they are connected to the same pumping pump, so they have the same pressure. Support for the chucks 510, 560 is provided by the post portions 514, 574 protruding from the bottom of the process chamber. Page 13 This paper size applies Chinese National Standard (CNS) A4 (210X297 mm) (Please read the precautions on the back before filling out this page) Order-Printed by the Wuzu Economic Affairs Bureau Intellectual Property Bureau Employee Consumption Cooperative 561572 A7 B7 5 2. Description of the invention () (Please read the notes on the back before filling out this page) As shown in Figure 9, this figure illustrates a specific embodiment of another alternative dual-process area according to this invention. The two process areas 5 3 1 and 5 8 1 are arranged next to each other in a single process chamber 501 and provide substantially the same process conditions for a pair of wafers 550 and 590. The partition wall 502 extends at least below the chucks 511 and 561 and separates the two process areas 531 and 581 from each other. Each of the process areas 531, 581 has a chuck 511, 561 for supporting a respective wafer 550, 590 during the process. The wafers 550 and 590 and their support chucks 511 and 561 indicated by dashed lines in the figure represent that the chucks on which the wafers 550 and 590 are placed are moved to a higher position in order to approach the gas diffusion nozzles 536 and 586. In the lower position, the chuck 5 1 3 is placed just below the wafer transfer channel 534 ', and the wafer 5 50 is inserted into or removed from the left process region 5 3 1 through the wafer transfer channel. Similarly, the chuck 5 6 3 in the right-side process area 5 8 1 is also placed just below the wafer transfer channel 5 8 8 when it is low. Printed by the Employees' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. A post 527 with an inner portion 529 supports a chuck 513 on the left process area 531. The post can be moved upward freely to place the chuck 511 at a higher position. Similarly, a post 577 having an inner portion 579 supports the chuck 563 of the right-hand process area 581, and the post can be freely moved upward to place the chuck 561 in a higher position. The variable lengths of pillars 527 and 577 are facilitated by the structure of individual folded columns (not shown in the figure), which are located in the pillars 527, 529, 577, 579 in the figure internal. According to this specific embodiment, the posts 527, 577 are placed below the center of their respective chucks 513, 563. This center column configuration (centered stem, page 14) This paper size is in accordance with Chinese National Standard (CNS) A4 (210X297). 561572 A7 B7 5. Description of the invention () Helium gas to cool the wafer. Above the chuck 6 1 0 An electrostatic disk is installed to keep the wafer in the process (please read the precautions on the back before writing this page). It can be safely located in an appropriate place (not shown in this figure). The internal shaft 614, along with other supports, provides DC potential to drive the electrostatic chuck 616. This invention has been described by preferred embodiments, but without departing from the field of this invention, various changes and improvements to the described embodiments are made. It is acceptable. This invention is only limited by the scope of the following patents. Brief description of the drawings: Figure 1 is a process room with a cylindrical cylindrical yen support structure configured according to the first conventional technology. Partial cross-sectional view. Figure 2 is a partial cross-sectional view of a process chamber with a cantilever-like wafer support structure configured according to the second conventional technology. Figure 3 is a configuration according to the third conventional technology. A cross-sectional view of the process room in Figure 4. Figure 4 is a top view of the process room in Figure 3. Figure 5 is a cross-section view of a process room configured according to the fourth conventional technology. Employee Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs FIG. 6 is a partial cross-sectional view of a process chamber configured according to a first embodiment of the present invention. FIG. 7 is a partial cross-sectional view of a process chamber configured according to a second embodiment of the present invention. Figure 8 is a dual process configuration according to the third embodiment of the present invention. Page 16 The paper size is suitable for SS Home Standard (CNS) A4 specifications (210x297 cm) — one — 561572 A7 B7 Explanation of the invention () Partial cross-sectional view of a regional wafer processing system. FIG. 9 is a partial cross-sectional view of a dual-process regional wafer processing system configured according to another fourth embodiment of the present invention. FIG. 10 is a Partial cross-sectional view of a wafer support structure consistent with various embodiments of the present invention. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs (please read the precautions on the back before writing this page). Explanation: 1 0, 1 2, 39, 330, 430, 500, 501 18, 42, 530, 531, 580 ° 581 324, 424, 524 42 31 50 19 20 21 25, 53 30, 70 57 60 80 310, 410, 510, 512 560, 561, 562, 563 312, 412, 61 2 314, 414, 514, 51 5 575 320, 420, 526, 527 577, 620 322, 422, 622 350, 450, 550, 590 513 610 574 576 Page 17 Process chamber Process area Extraction channel Cylindrical support structure Extraction duct Peripheral pump line Semiconductor wafer extraction line Cantilever beam Cantilever beam supporting vacuum pump Inlet chuck The bottom surface of the chuck extends out of the bottom wall Part of the column fold Column paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 561572 A7 B7 V. Description of invention () Printed by Employee Consumer Cooperative of Intellectual Property Bureau of Ministry of Economy 332 > 432 Bottom wall of process room Circular transfer channels 336, 436 Spray heads 340, 440 Vacuum pumps 502 Partition walls 528, 529, 578, 579 Part of the column 534 ^ 588 Wafer transfer channels 536, 586 Spraying gas Sprinkler 540 Common vacuum pump 614 Shaft inside the column 616 Electrostatic chuck 625 Large flange 626 Outer shrink 艢 628 Inner shrink wall 632 Radio frequency connection 634, 636 Fluid connector page 18 (Please read first (Notes on the back then fill out this page)
訂· 本紙張'度適用中國國家標準(CNS)A4規格(210X297公釐)Order this paper's degree is applicable to China National Standard (CNS) A4 specification (210X297 mm)
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10834501A | 2001-04-12 | 2001-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW561572B true TW561572B (en) | 2003-11-11 |
Family
ID=32391987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91107534A TW561572B (en) | 2001-04-12 | 2002-04-12 | Mushroom stem wafer pedestal for improved conductance and uniformity |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW561572B (en) |
-
2002
- 2002-04-12 TW TW91107534A patent/TW561572B/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101056219B1 (en) | Showerhead and Substrate Processing Unit | |
JP5270310B2 (en) | Electrostatic chuck and substrate processing apparatus | |
JP4697833B2 (en) | Electrostatic adsorption mechanism and surface treatment apparatus | |
US20150030766A1 (en) | Pedestal bottom clean for improved fluorine utilization and integrated symmetric foreline | |
JP2019519927A (en) | High-power electrostatic chuck with aperture reduction plug in gas holes | |
TWI776800B (en) | High power electrostatic chuck design with radio frequency coupling | |
TW201532174A (en) | Substrate processing device | |
TW201241868A (en) | Plasma processing apparatus | |
JP2013531364A (en) | Process chamber having common resources and method of use thereof | |
TWI576889B (en) | Plasma processing apparatus | |
JPH06143074A (en) | Wafer fixing device | |
TW200533776A (en) | Showerhead mounting to accommodate thermal expansion | |
CN101197249A (en) | Reaction cavity lining and reaction cavity including the same | |
TW201114333A (en) | Substrate processing apparatus | |
WO2021036214A1 (en) | Faraday cleaning device and plasma processing system | |
JP2011066202A (en) | Plasma processing apparatus | |
TW200826190A (en) | Plasma processing apparatus | |
TW561572B (en) | Mushroom stem wafer pedestal for improved conductance and uniformity | |
JP5654083B2 (en) | Electrostatic chuck and substrate processing apparatus | |
JP2016167582A (en) | Substrate processing method and substrate processing apparatus | |
KR102459904B1 (en) | Chamber body design architecture for the next generation of advanced plasma technology | |
WO2022205495A1 (en) | Wafer electrode cleaning apparatus | |
KR20140101996A (en) | Unit for supporting a substrate and apparatus for etching substrate using plasma with the same | |
CN111463108A (en) | Wafer cleaning device | |
KR100712224B1 (en) | Cooling passage |