TW558853B - Continuously tunable MEMs-based phase shifter - Google Patents

Continuously tunable MEMs-based phase shifter Download PDF

Info

Publication number
TW558853B
TW558853B TW091101974A TW91101974A TW558853B TW 558853 B TW558853 B TW 558853B TW 091101974 A TW091101974 A TW 091101974A TW 91101974 A TW91101974 A TW 91101974A TW 558853 B TW558853 B TW 558853B
Authority
TW
Taiwan
Prior art keywords
phase
patent application
scope
item
phase shifter
Prior art date
Application number
TW091101974A
Other languages
English (en)
Inventor
Keyvan Sayyah
Original Assignee
Hrl Lab Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hrl Lab Llc filed Critical Hrl Lab Llc
Application granted granted Critical
Publication of TW558853B publication Critical patent/TW558853B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/16Networks for phase shifting
    • H03H11/20Two-port phase shifters providing an adjustable phase shift

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Networks Using Active Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

558853 五、發明說明(1) 本發明係有關於一種相移器,特別係有關一種以半導 體為基底的小型連續可變相移器(C〇nfinu〇uSly Variable phase shifter) 〇 現在商業上的可變相移器’如Trak Mibrowave Corp. (Florida)所販賣的相移器,其包括數個最大相位為120。 操作通帶為1GHz的變容二極體(varact〇r diode)。 然而’要改變操作通帶(〇perati〇n bandpass)需改變 適當的耦合阻抗元件,且相位超過1 2 〇。的相移器可用單 一元件串聯而獲得。 另一種習知的相移器包括:一共面波導傳送線 (coplanar - waveguide transmission line)週期性地由複 數個可變電容所負載,其中電容由一微機電開關陣列所構 成’並由上述電容產生類比控制。由"RF-MEMS Switches Integrated Circuit11, Elliott R. Brown, IEEE Transactions on Microwave Theory and Technique,
Vo 1· 46,No. 11, Nov, 1 9 98中已揭露一種微機電開關, 而共面波導傳送線線在"Distributed MEMS True-Time Delay Phase Shifters and Wide-Band Switches 丨丨,Ν· Scott Barker, IEEE Transactions on Microwave Theory and Technique,Vol. 46,No· 11,Nov,1 998 亦 有揭露。 使用第二種方式之相移器,由於微機電電容值的可變 範圍有限(30%),為了控制相位,多數的電容在負載的傳 送線上需具有大量的結合效應(combined effect),例
1012-4608-PF(N).ptd 第5頁 558853 五、發明說明(2) 如:具有32個微機電開關的1 〇mm負載線需要提供2 ° /GHz 的相位移。 另一種可變RF相移器包括一由Li Nb03製作之可變電壓 光耦合器(voltage variable optical coupler),其與一 光纖延遲線(optical fiber delay line)相結合。請參考 "A Novel Wide-Band Tunable RF Phase Shifter Using a Variable Optical Directional Coupler", K. Ghorbani, A. Mitchell, R.B. Waterhouse, and M,W. Austin, IEEE Transactions on Microwave Theory and Technique, Vol· 47, No·5, Nov, 1999 〇 其中,上述元件在最大操作頻率80MHz時之最大相位 移完全被限制在40。〜60。内,其嵌入損常失(inserti〇n loss)在 80MHz 時約 8dB,此外以LiNb03。 因此,本發明就是要提供一種小型且便宜的相移器, 其具有較大的頻帶,在GHz的頻帶也能具有360。的相位移 能力。 發明摘要 本發明的第一個目的是提供一種小型連續可調諸式的 相移器,其特別應用於無線射頻領域,此相移器亦應用於| VHF、UHF、微波或是毫米波之頻帶。本發明之相移^包括 二且粗調之數位二元微機電相移器(digital binary MEMs-based phase shifter)、及一電阻、電感、電容 路(以下簡稱RLC電路),RLC電路以並聯方式與數位二元相
558853 五、發明說明(3) 移器連接, 可變電阻以 本發明 :作為微調之用,其中是以可變光能調整連續 達到微調的目的。 法,勺括下=二個目的是提供-種連續相位調整的方 法包括下列步驟:提供一RLC電路,其具有一電阻、一 電容;以及以光學方法連續改變該電阻之電 電感及一第 阻值。 如上所 連續可調變 錄晶圓。依 濾波器,其 線性之相位 頻帶,其頻 改變,因此 調整上述參 因此, 作頻寬大, 乎線性之相 移。 此外, 路的微機電 相位調整大 本發明 砷化鎵晶圓 述 5 一 相位移 據本發 具有非 延遲。 寬可簡 本發明 數,來 本發明 具有整 位延遲 種小型 ,此相 明較佳 常低之 此外, 單地由 之相移 調整頻 之優點 合的可 、低嵌 可調變相移器具有0。〜360。之 移器可整合於傳統的矽或是砷化 實施例,以RLC電路作為一低通 嵌入損耗及在頻率響應中一近乎 本發明之相移器具有很寬的操作 調整RLC電路中的電阻及電容而 器可藉由一整合的微機電開關來 寬。 可分別敘述如下:其體積小,操 調變頻寬單元、在頻率響應中近 入損耗以及極高的最大相位位 本發明之相移器僅需要少於丨〇個整合KRL(:電 開關即可得到360。的連續相位移,且其最大 於習知之相移器。 之另一優點是因為使用現在商業上通用的矽及 作為基底,因此使其售價降低。
558853 五、發明說明(4) 實施例 第1圖表示本發明較佳實施例之相移器之方塊圖,如 第1圖所示,要進行相位調整之RF訊號由輸入端RFin輸入, 經過一 3位元之二進位粗調相移方塊1,粗調相位移方塊1 包括一系列的微機電交換延遲線D1〜D6 (MEMs-swi tched delay 1 ine),每個對應設置一開關si〜S6。其中,在方塊 1中包括三個區段A、B、C,每個區段均包括二個具有不同 電性長度之臂及二個開關,可控制RF訊號由其中一端通 過。請參考第1圖,區段A具有二臂Dl,D2,且Dl,D2相對 具有開關Sl,S2 ;區段B有二臂D3, D4,且D3, D4相對具有 開關S3,S4 ;區段C具有二臂D5, D6,且D5,D6相對具有開 關S5, S6。注入此種結構之RF訊號可藉由使訊號經由適當 的電性延遲線(electrical delay line)即可提供8種(23) 可能的相位調變:45。 、90。 、135。 、180。 、225。、 2 7 0。 、31 5。及3 6 0。。例如:各臂之距離比例可參考下 表1,而表1中之d為一既定值。
1012-4608-PF(N).ptd 第 8 頁 558853
表1 臂 長度 D1 d D2 4d D3 d D4 7d D5 d D6 13d
在2GHz的操作頻率下,產生36 0。(24d)的相位移的 遲線的總長度為3.4吋,可在以矽為基底、寬度為52密爾壬 的金線上產生50歐姆的微帶線(micr〇strip line),而以 I呂為基底之金線其長度為2· 3吋、寬度則為24密爾,根據 如第1圖之三位元粗調相移器,總長度24d即可產生36〇。 之相位移,因此,在2GHz的操作頻率下,在矽基底上之己 為142密爾,在砷化鎵基底上之d為96密爾。 下表2為開關s 1〜S 6之所有可能變化,’’ Ν Οπ表示開關為 導通’ ’’ 0 F Fπ表示開關為斷路。
1012-4608-PF(N).ptd 第9頁 558853 五、發明說明(6) 表2 S1 S2 S3 S4 S5 S6 路徑長度 三位元之狀態 相位移 ON OFF ON OFF ON OFF 3d 1 1 1 45° OFF ON ON OFF ON OFF 6d 0 1 1 90° ON OFF OFF ON ON OFF 9d 1 0 1 135° OFF ON OFF ON ON OFF 12d 0 0 1 180° ON OFF ON OFF OFF ON 15 d 1 1 0 225° OFF ON ON OFF OFF ON 18d 0 1 0 270° ON OFF OFF ON OFF ON 21 d 1 0 0 315° OFF ON OFF ON OFF ON 24d 0 0 0 360° 因此,利用適當的MEMS開關,就可決定相移器的相位 移範圍,例如,一粗調相位移為22 5 ° ,其可開閉S1、 S3、S6即可,其可對輸入之訊號產生一路徑,此路徑之長 度為 Dl+D3 + D6 = d + d+13d=15d,故相位移即為 225 ° 。 在第1圖的方塊圖中更包括一第七臂D7及一第七MEMS 開關S7,其不具有相位移之功能,且可使輸入之訊號直接 送至本發明之第二區段的微調相移器中,以提供0 °〜45 ° 之相位移改變量。在此,其路徑長度與360 °之相位移路 徑相同為2 4d,而本發明也可不具有D7,由表2中可知,若 S2 = S4 = S6 = 0,則相位移亦為360 ° 。 本發明之相移器更包括了一微調相位移方塊2,其與
1012-4608-PF(N).ptd 第10頁 558853
五、發明說明(7) j =移:塊相串聯’目的在於提供額外的細 滿足需求。 塊提供38。之相位移,即 方塊2包括一rlc電路,其中,電阻μ光導體 (J^otoconductor),其電阻可依光能^而連續變化。在如 第〜圖的較佳實施例+,電組R與電感L並聯,再與一分流 電容c串聯。一對於小於1GHz之頻率範圍,電容c及電感匕以 使用分離之元件為佳;而對於大於1GHZ之頻率範圍,電容 C及電感L則以分別為開路或是通路的微帶線為佳。 第1圖顯示一混合串並聯RLC電路結構,其可用其他的 RLC電路結構取代,但如第1圖之RLC電路結構是較佳的, 此電路可使得頻率與相位移之比例接近線性,且嵌入損失 也較小。 第1圖之RLC電路系統若在一具有初始電壓Vs、負栽50 歐姆、輸出電壓Vo的系統作交流分析,則可得到下列近似 的表示式,其中|V〇/Vs|及<Vo/Vs分別為電壓轉換函數之 大小及相位。 (1) I Vo/Vs I =(R2 + w2L2)1/2/[ (2R-w2LRC-5 0w2LC)2 + w2(2L + 0· 02RL + 50RC)2]1,2 <Vo/Vs = tanM(wL/R)-tan'l[w(2L + 0. 02RL + 50RC)/ (2R-w2LRC-50w2LC)] (2) 其中w為角頻率,由下式顯示第1式之電壓轉換函數為 一 3分貝之低通濾波器。
558853 五、發明說明(8) [(R + 50)2L2C2]wH[4(l + 0· 0 2R)2L2 + 5 02 R2C2 + 2 0 0 (1 + 0· 02R)LCR-4LCR(R + 50)-8L2]w2-4R2 = 0 (3) 第3式是由第2式中將I v〇/Vs I之值設為l/21/2(等於 -3dB)而得出的,由第3式可知3dB之頻率是RLC之函數,在 上述之頻率下’此電路之嵌入損失超過3dB,且相移器損 耗較多的。 此裝置之輸入端及輸出端為一以導體形成之微帶線, 如:金設置於氧化矽層1〇上,在此區域上的矽是被移降 的,RF微機電開關是以塊狀微加工技術在一矽層上形成 的,此技術在"Micromachined Low-Loss Microwave Switches*1, Z. Jamie Yao, Shea Chen, Susan Esheman, David Dennison, and Chuck Goldsmith, IEEE Journal of Microelectromachanical Systems, Vol. 8, No· 2 June 1999 0 > · ’ 相較於第1圖,第2圖多了 1固開關S8、S9、S10及 w w u ' 〇 1 U ^ 個電谷Cl C2、C3 ’這些開關是用來切換rlc電路中ci、 C2、C3之組合電容值,以控制相位移範圍,且在任 僅有一個開關是導通的。 % Η關5 t圖不’在圖中並未顯示一與上述開關連接 ! 1 ί 且上述MEMs開關在其控制端被施加-直 控制電壓。 良 在RLC電路中之電感[是在一 (如:金)製作而成之螺旋形電感 利用商業上以銘或碎基底之小形 絕緣氧化層上以導體 ’在其他實施例中,亦可 的螺旋形電感,以環氧樹
558853
脂將電感固定於相移器基底i,再將其與基底導通。在較 佳實施例中在基底上直接製造的電感會降低寄生效應,並 使成本降低。 x 在RLC電路中之電容ci、C2、C3是以金氧半導體結構 製作的,其下層的半導體以大量離子植入的方式形成一電 ,,在其他實施例中,電容^-(^可用商業化的晶片型電 容,以環氧樹脂將電容固定於相移器基底上,再將其與基 底導通。在較佳實施例中在基底上直接製造的電容會降低 寄生效應,並使成本降低。
在RLC電路中之光電阻R( λ )是以最上層的矽層作少量 的摻雜,而形成一高黑暗狀g(dark-state)的電阻,其矽 層之摻雜通常介於之間;一低價的發光二極 體11提供高於半導體能階之光能,並以環氧樹脂將其固定 在表面soi層上,此發光二極體可提供RLC電路的光電阻所 需連續變化之光能。為了使整個裝置更小,晶片型之led 或是雷射二極體是較佳的,而且其發出之光波長必須可被 光電阻接收,以矽為例其較佳波長為400—1 000nm。
由LED11所發出之光可用一光波導或是固定之光纖來 傳遞,在第2圖所示之結構中,v形凹槽由S(H層之頂層矽 層蝕刻而成,以支撐光纖,V形凹槽1 3以溼蝕刻在結晶片 基底的結晶面上形成。為了要使光電阻與LDE的光耦合效 能提高,可採用多模光纖,以加大光纖傳輸之光量。以上 就完成小型、低價、可作連續相位移之相移器。 另一實施例則是以一光波導取代光纖,相反的,若光
1012-4608-PF(N).ptd 第13頁 558853 五、發明說明(10) 電阻之作用層是以二五族材料形成的,如坤化鎵,Led可 同時在製作光波導時製作出來,這樣本發明之體積又會更 小了。 應注意的是,傳統的RF可變相移器在頻率響應時,相 位移對頻率之斜率會P現者頻率的增加而增加,因此需以機 械的方式調整延遲線的長度,這種相移器.必須有相位移對 頻率之參數,也就是在最大延遲線長度下每度相位移所對 之單位頻率’這稱為最大相位修正(maximum phase adjust),例如:一可變相移器之最大相位修正為6〇。 /GHz,也就是假設在相同的比例範圍下,在1GHz時相位移 為60 ° ,在6GHz時相位移則為360。,另一個參數是操作 頻寬,其表示在此頻率範圍内最大相位移修正不存在,且 其嵌入扣常非常低(3dB),在上述例之中,相移器且有— 操作頻率範圍於0-1 〇GHz,在送入直流訊號時之相位移為〇 。,而在10GHz時之相位移會是60〇。。另外,在各個操作 頻率時,可藉著改變延遲線之長度而使相位移可由〇到最 大相位之間變化,在上述例子中,可變相位移在%“之 圍在0 °〜120。之間。 軌 ,反地,本發明之可變相移器在非常寬的操作頻寬 具有=可操作最大相位移之優點’其又可作相位微調 嵌入損耗、接近線性的相位對頻率比。在理想狀況下,装 在很大的頻率範圍内需要,非常高的可操作最大相位移,、 同時又具有可微調的功能,例如:若最大操作頻率 2GHz,最大相位修正則需要18〇。/GHz以上使最大相位 第14頁 1012-4608-PF(N).ptd 558853
移可以在360。以上 然而 因為相位移與頻率是線性相 二多Γ之相位移小於36〇。,若適當改變粗 相位修:遲線長度’即可得到本發明之18〇。/GHz 計制發Γ移之似類比微調方塊可作小於q. 1。之微 i 2敕 移修正可利用LED或是雷射二極體源的連續 率能力對光電阻作連續調整而達成,因此在操作頻 革範圍内可得到低於-3dB的嵌入損失。 作相i t明的較佳實施例提供所需低嵌入損耗及在所需操 作頻寬中接近直線之相位頻率響應,為了實現這個,可用 前述的方程式得出適當的R、L、c值,但上述分析是很複 雜的,故可利用一電路分析體LibraTM對RLC電路連行分 極。 睛參考第3A-3C圖及第4A-4C圖,其顯示具有頻率依存 之相位對嵌入損失關係,其中L = 3nH、c= 〇. 1, 〇· 75, 2pF、R在卜loo Q之間改變,且其頻寬範圍在2GHz。 如同模擬的資料顯示,在低於2GHz頻率狀態下,嵌入 才貝失小於3 d B。 為了要代表0°〜45°的所有相位調整範圍,以三種不 同的電容值作為試驗,整一個電容值代表〇。〜45。的一部 份範圍,因此,若以三個jjEMs開關切換這三個電容即可得 到全部的調整範圍。 如模擬結果第3A、3B、3C圖所示,電阻在兩個數量級 (1〜1 0 0 Ω )的範圍内改變,即可完全得到三個電容值的相
1012-4608-PF(N).ptd 第15頁 558853 五、發明說明(12) =範圍内的各個相位移值,第3Α〜3β圖則為模擬光電阻 頻率夕、10/100Ω及電容值為0.1、0·75、2PF之相位移對 ,率之關係圖,C值與一電感值3nH結合作 Z在H00时變動,並得到〇。,。的連電 】奋因為在廷個區段所要求的最大相位移值為45。,但 ^上=發明已超出這個要求範圍。事實上,操作 超H可/到I的相位移,但值得注意的是當光電阻 ^ΙΟΟΩ時’相位移值並不會產生多大的增加 對增加了其嵌入損失。 〜〃 4R ^器的另—個重要參數為嵌人損失,請參考第“、 圖太f ’其顯示本發明相移器之嵌入損失與頻率之關係 低;明®^目的在於使嵌入損失在任何操作頻率範圍内 ΪΪΙ / 微調區段⑽電路的低通特性,鼓入損失 者頻率增加,在h5〜2GHz的頻率範圍内,此區段之最 大相位調整範圍均可到達4 5。。 在第4A、4B、4C圖中之電容值C1、C2、C3較佳 〇位1 移rY5、2.GPF ’這些數值決定此實施例之可達成相 圍’例如:C = 2pF、操作頻率為2(?1^時,光電阻在 = ι〇〇Ω間變化可得3(r〜60。之間的相
-c = o,pF0,,^,r;fflF 根據本發明實施例’電阻的變化是因光傳導效應而產 低捭雜;^ : 質為例’黑暗效應產生100 Ω -cm的電阻可由 低4雜材質輕易得到,假設一塊狀材質長度為i、寬度為 第16頁 1012-4608-PF(N).ptd 558853 五、發明說明(13) w、深度為d,若其l/CdiiOzIcnr1,則可得其相對黑暗電阻 R0為1 0 0 Ω,且其光耦合電阻r λ可由下式得到。 RA = (hvl2)/(q η? λ βη τ ) (4) 其中hv疋光能篁’Ρλ為光導效應之光能,π為量子效 能參數,/^及!*是半導體材料的載子移動參數及壽命參 數,q是電荷量。假設載子移動參數為l〇〇〇cm2/V_s、壽命 參數為100 /zs,以接近紅外線波長之可見光光能 1.3-2.5mW照射l〇〇/zm長的矽材,在量子效能參數接近1的 狀況下’即可產生1 Ω的光電阻。因此,在〇〜2· 5mW的範圍 内改變光能即可得到連續的光電阻卜1 〇 〇 Ω,使得上述的 RLC電路可產生0。〜45。的相位移,而具有低於i Ω的光耦 合電阻,可由小於10mW的光能或是小於lmin的幾何尺寸 而得到;相對地,高於1 0 0 Ω的光耦合電阻r λ,可由大於 100 Ω-cm的黑暗效應電阻率1〇〇 Ω-cm而得到。 藉由上述結構與本發明之三位元二進位延遲線相移器 結合,可得到一個可0。〜360。變化之相移器,另外,若1 改變位於RLC電路中之電容與電感值,即可整其適用頻 寬。值付庄思的疋右降低了 RLC電路中的電容及電感值, 相移器的操作頻寬會增加’而若加大RLC電路中的電容及 電感值,相移器的操作頻寬會下降。例如,L=lnH、 C = 0.2pF,在10及7.5GHz時之最大相位移分別為55。及45 ,且其嵌入損失小於3dB ;而相移器在1〇GHz時,類比微 調區段在光電阻介於1〜100Ω之間可產生之相位移介於25 。〜55。之間。若電阻為〇· 〇5pF或是〇 · 〇lpF,其相位移則
558853 五、發明說明(14) -----
為5°〜35。之間及〇。〜20。之間。再者若操作頻率為 2GHz,整個相位移範圍則介於〇。〜55。之間,在操作 為10GHz時則可得到〇。〜36〇。之間的連續相位移,、且=率 入損失小於3dB。 ” I 除了提供連續地、大頻寬地可變RF相位移之外,本發 明之相移器另具有整合性的優點,其使得相移器小型化且 成本降低,這主要是利用在矽或是砷化鎵基材上製作rf微 機電開關及RLC電路的緣故,其中Rlc電路中之光電阻利用 低價的LED作為其光源,其亦可輕易得整合進入相移器的 製程中。 ' 雖然本發明已以較佳實施例揭露如上,然.其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。
558853 圖式簡單說明 為了讓本發明之上述和其他目的、特徵、和優點能更 · 明顯易懂,下文特舉一較佳實施例,並配合所附圖示,作 . 詳細說明如下: 第1圖為本發明相移器之方塊圖 第2圖為第1圖中相移器之立體圖 第3A-3C圖為實施例中以電容Cl、C2、C3,根據相位 所作出之波頻圖。 第4A - 4C圖為實施例中以電容Cl、C2、C3,根據嵌入 損耗所作出之波頻圖。 參 符號說明: 1 相位粗調區 2 相位微調區 S卜S10 MEMs開關 D1〜D 7延遲線 hv 光能 R( λ )光耦合電阻 L電感 C,C1〜C3 電容
1012-4608-PF(N).ptd 第19頁

Claims (1)

  1. 558853 六、申請專利範圍 1 · 一種相移器,包括: 一相位粗調區,可提供複數個不連續的相位移;以及 一相位微調區,包括: 一RLC電路,與該相位粗調區串聯,其具有一電阻、 一電感及一第一電容;以及 一光學配置,可以光學的方式改變該電阻之電阻值。 2·如申請專利範圍第丨項所述之相移器,其中該相位 粗調區包括一三位元二進位相移器。 3·如申請專利範圍第2項所述之相移器,其中該相位 粗調區提供 45。 、90。 、135。 、180。 、225。 、27〇。、 315。及360。之相位移,而該相位微調區提供額外介於〇 。至45。之間之相位移角度。 其中該相位 其中該延遲 其中該電阻 其中該電感 其中該RLC電 其中該電阻 4·如申請專利範圍第1項所述之相移器 粗調區更包括複數個延遲線。 5 ·如申請專利範圍第4項所述之相移器 線為以MEMs開關所控制之延遲線。 6 ·如申請專利範圍第1項所述之相移器 與該電感並聯後,再與該第一電容串聯。 7 ·如申請專利範圍第1項所述之相移器 以一微帶線(microstrip line)所構成。 8·如申請專利範圍第丨項所述之相移器 路更包括一第二電容及一第三電容。 與該電感並聯後,再與該第/電容、該第二電容及該第三 9·如申請專利範圍第8項所述之相移器
    1012-4608-PF(N).ptd 第20頁 558853 六、申請專利範圍 電容串聯.。 I 0 ·如申請專利範圍第9項所述之相移器,其中該第/ 電谷、δ亥第一電容及該第三電容分別透過一第一開關、^ 第二開關及一第三開關選擇性的與該電阻及該電感連接。 II ·如申請專利範圍第9項所述之相移器,其中該電感 之電感值為3ηΗ,該第一電容之電容值為0.1 PF,該第二電 谷之電容值為(K75pF,該第三電容之電容值為2pF。 1 2·如申請專利範圍第11項所述之相移器,其中該電 阻之電阻值可以光學方式在1至丨〇〇 Ω之間變化。 1 3 ·如申請專利範圍第1項所述之相移器,其中該電ρ且 之電阻值可以光學方式在1至l〇〇Q之間變化。 14·如申請專利範·圍第1項所述之相移器,其中該電感 具有可變電阻值,且該第一電容具有可變電容值。 15·如申請專利範圍第1項所述之相移器,其中該電感 為一螺旋形電感。 1 6 ·如申請專利範圍第1項所述之相移器,其中該相位 粗調區及該相位微調區是在同一S〇I(Silicon-on -insulator)基材上製作而成。 1 7 ·如申請專利範圍第丨6項所述之相移器,其中該第 一電容是以M0S 結構(metal-oxide-semiconductor)所製作 而成。 18·如申請專利範圍第1項所述之相移器,其中該光學 配置包括: 一光纖’其與該電阻光耦合;
    1012-4608-PF(N).ptd 第21頁 558853 六、申請專利範圍 〜 ----- 一發光二極體或一雷射二極體,其與該光纖光耦合。 1 9·如申請專利範圍第丨8項所述之相移器,其中該光 學配置,更包括一凹槽以支撐該光纖。 2 0 ·如申請專利範圍第丨8項所述之相移器,其中該光 纖為一多模光纖。 〃 ” 其中該相 其中該延 其中該光學 21 ·如申請專利範圍第丨8項所述之相移器 位粗調區更包括複數個延遲線。 22·如申請專利範圍第21項所述之相移器 遲線為以Μ E M s開關所控制之延遲線。 23·如申請專利範圍第1項所述之相移器 配置包括: 一光導’其與該電阻光耦合; 一發光二極體或一雷射二極體,其與該光導光耦合 24· —種連續相位調整方法,包括下列步驟: 容 提供一RLC電路,其包括一電阻、一電感及一第一電 以及 以光學的方式調整該電阻之電阻值。 法’ 315 於0 25·如申請專利範圍第24項所述之連續相位調整方 其更包括下列步驟: 提供 45。 、9〇。 、135。 、18〇。 、225。 、270。、 及360 之不連續相位移,而該RLC電路提供額外介 至45 之間之相位移角度。 26·如申請專利範圍第24項所述之連續相位調整方 其中该電感以一微帶線(microstrip line)所構成。
    1012-4608-PF(N).ptd
    第22頁 558853 六、申請專利範圍 27·如申請專利範圍第24項所述之連續相位調整方 法’該RLC電路其中該RLC電路更包括一第二電容及一第三 電容。 28·如申請專利範圍第24項所述之連續相位調整方 法,其中該電感之電感值為3nII,該第一電容之電容值為 O.lpF,該第二電容之電容值為〇 75pF,該第三電容 容值為2pF。 2 9·如申請專利範圍第24項所述之連續相位調整方 法,其中該電阻之電阻值可以光學方式在1至1 〇〇 化。 ^心間變
    1012-4608-PF(N).ptd 第23頁
TW091101974A 2001-03-08 2002-02-05 Continuously tunable MEMs-based phase shifter TW558853B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/802,151 US6509812B2 (en) 2001-03-08 2001-03-08 Continuously tunable MEMs-based phase shifter

Publications (1)

Publication Number Publication Date
TW558853B true TW558853B (en) 2003-10-21

Family

ID=25182969

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091101974A TW558853B (en) 2001-03-08 2002-02-05 Continuously tunable MEMs-based phase shifter

Country Status (5)

Country Link
US (1) US6509812B2 (zh)
EP (1) EP1368893A2 (zh)
JP (1) JP2004527946A (zh)
TW (1) TW558853B (zh)
WO (1) WO2002073798A2 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040212026A1 (en) * 2002-05-07 2004-10-28 Hewlett-Packard Company MEMS device having time-varying control
JP2006501690A (ja) * 2002-09-30 2006-01-12 ナノシス・インコーポレイテッド ナノ−イネーブルな、ナノワイヤおよびナノワイヤ混成物が組み込まれた大面積マクロエレクトロニクス基板のアプリケーション
US6873225B2 (en) * 2003-04-15 2005-03-29 Microphase Corporation Diplexers with low pass filter having distributed and non-distributed (lumped) elements
US6853476B2 (en) * 2003-04-30 2005-02-08 Hewlett-Packard Development Company, L.P. Charge control circuit for a micro-electromechanical device
US6829132B2 (en) * 2003-04-30 2004-12-07 Hewlett-Packard Development Company, L.P. Charge control of micro-electromechanical device
JP2007532060A (ja) 2004-03-31 2007-11-08 エックスコム ワイアレス インコーポレイテッド 電子制御されたデジタル/アナログ混載移相器
US7522337B2 (en) * 2004-06-10 2009-04-21 Raytheon Company Compact multi-entrance-pupil imaging optical system
US7298217B2 (en) * 2005-12-01 2007-11-20 Raytheon Company Phased array radar systems and subassemblies thereof
KR101616941B1 (ko) * 2009-09-07 2016-04-29 삼성전자주식회사 체적 탄성파 공진기를 이용한 위상 천이 장치
EA021857B1 (ru) 2009-09-15 2015-09-30 Мехмет Унлу Одновременное управление фазой и амплитудой с помощью 3-шлейфовой топологии и её реализация с помощью радиочастотной мемс технологии
US8354290B2 (en) * 2010-04-07 2013-01-15 Uchicago Argonne, Llc Ultrananocrystalline diamond films with optimized dielectric properties for advanced RF MEMS capacitive switches
JP5605142B2 (ja) * 2010-10-01 2014-10-15 セイコーエプソン株式会社 検出装置及び電子機器
CZ303147B6 (cs) * 2010-10-04 2012-05-02 Ceské vysoké ucení technické v Praze Fakulta elektrotechnická Posouvac fáze
CN102148416B (zh) * 2010-11-24 2013-08-28 南京理工大学 微波毫米波超宽带六位mmic数字移相器
IL228776A0 (en) * 2013-10-08 2014-03-31 Rabinovich Roman Converting an analog signal to digital information using spectrum compression
CN104201440A (zh) * 2014-08-21 2014-12-10 摩比天线技术(深圳)有限公司 基站电调天线的介质移相器
EP3188307A1 (en) 2015-12-29 2017-07-05 Synergy Microwave Corporation High performance switch for microwave mems
EP3188308B1 (en) 2015-12-29 2019-05-01 Synergy Microwave Corporation Microwave mems phase shifter
US9910124B2 (en) * 2016-02-04 2018-03-06 Globalfoundries Inc. Apparatus and method for vector s-parameter measurements
US9806771B1 (en) * 2016-08-01 2017-10-31 Nxp B.V. Method and system for high resolution tuning of the phase for active load modulation in a NFC system
EP3503284B1 (en) 2017-03-10 2022-05-11 Synergy Microwave Corporation Microelectromechanical switch with metamaterial contacts
US10511071B2 (en) * 2017-11-01 2019-12-17 Hughes Network Systems, Llc Low-loss, low-profile digital-analog phase shifter
US10536223B2 (en) 2018-01-24 2020-01-14 Toyota Motor Engineering & Manufacturing North America, Inc. Phase modulated optical waveguide
US10819321B1 (en) 2018-06-28 2020-10-27 University Of South Florida Switchable active balanced-to-unbalanced phase shifter
CN113728513A (zh) * 2019-02-26 2021-11-30 美波公司 用于毫米波应用的可切换反射式相移器
CN109981091B (zh) * 2019-04-03 2023-05-23 中国电子科技集团公司第三十八研究所 一种微带延时线高精度相位调节装置
US11211704B2 (en) * 2019-05-29 2021-12-28 Metawave Corporation Switched coupled inductance phase shift mechanism
US10715361B1 (en) * 2019-08-07 2020-07-14 Analog Devices International Unlimited Company Delay compensation using broadband gain equalizer
CN111525215B (zh) * 2020-05-06 2021-11-16 湖南时变通讯科技有限公司 移相单元、天线单元、相控阵列单元以及相控阵列
CN113708083B (zh) * 2021-08-30 2022-11-08 湖南国科雷电子科技有限公司 一种宽带可重构天线馈电系统及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395687A (en) * 1981-06-10 1983-07-26 Rca Corporation Adjustable phase shifter
US4663594A (en) 1984-09-13 1987-05-05 Motorola, Inc. Electronic phase shifter circuit and method
JPS6450611A (en) 1987-08-21 1989-02-27 Nec Corp Phase shifter
US4837532A (en) 1987-10-26 1989-06-06 General Electric Company MMIC (monolithic microwave integrated circuit) voltage controlled analog phase shifter
EP0462338A1 (en) 1990-06-20 1991-12-27 Hewlett-Packard Limited Phase shifting circuits
DE4129353A1 (de) * 1991-09-04 1993-06-17 Wandel & Goltermann Eichleitung zum realisieren einstellbarer gruppenlaufzeiten
US5736883A (en) * 1995-03-06 1998-04-07 Pixel Instruments Corp. Wide range phase shift with single adjustment
US5757319A (en) 1996-10-29 1998-05-26 Hughes Electronics Corporation Ultrabroadband, adaptive phased array antenna systems using microelectromechanical electromagnetic components
US5939918A (en) 1997-12-23 1999-08-17 Northern Telecom Limited Electronic phase shifter

Also Published As

Publication number Publication date
WO2002073798A2 (en) 2002-09-19
US20020186098A1 (en) 2002-12-12
JP2004527946A (ja) 2004-09-09
US6509812B2 (en) 2003-01-21
WO2002073798A3 (en) 2002-12-12
WO2002073798B1 (en) 2003-02-13
EP1368893A2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
TW558853B (en) Continuously tunable MEMs-based phase shifter
US7046895B1 (en) Active waveguides for optoelectronic devices
Hayden et al. 2-bit MEMS distributed X-band phase shifters
US10996398B1 (en) Switchable polarization splitters
TWI515952B (zh) 積體光學應用之低失真高頻寬適應性傳輸線
US8063729B2 (en) Mode-switching transformer
JP2013504927A (ja) トリプルスタブトポロジーを使用した位相および振幅の同時制御ならびにrfmems技術を使用したその実装
US20190302487A1 (en) Monolithic Electro-Optical Modulator Having Suspended Structure
JP2010517462A (ja) Rfスイッチ
EP1298857A2 (en) Matched broadband switch matrix with active diode isolation
Koirala et al. Multiband bandstop filter using an I-stub-loaded meandered defected microstrip structure
CN108631766B (zh) 具有有源器件调谐的反射型相位偏移器
CN114442224B (zh) 包括具有可调谐折射率的材料的边缘耦合器
CN112666726B (zh) 一种热光移相器及其制备方法
US7181093B2 (en) Tunable RF-lightwave modulator
Schulte et al. RF-MEMS tunable evanescent mode cavity filter in LTCC technology at Ku-band
KR100509947B1 (ko) 연속적으로 인덕턴스를 가변할 수 있는 가변 인덕터 동작 방법
JP2000151223A (ja) 半導体装置
TWI838953B (zh) 具有行波電極之三五族/矽混合金屬氧化物半導體光學調變器
EP1040574A1 (en) Artificial line
RU2321106C1 (ru) Фазовращатель свч
US20090015349A1 (en) Method and appartus for altering phase shift along a transmission line section
JP2011061484A (ja) 半導体装置および通信装置
WO2013156058A1 (en) Tunable delay line arrangement
Sekine et al. Design for a variable phase shifter using lines and variable capacitance diodes

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees