TW558755B - Method of forming multiple oxide layers with different thicknesses in a linear nitrogen doping process - Google Patents

Method of forming multiple oxide layers with different thicknesses in a linear nitrogen doping process Download PDF

Info

Publication number
TW558755B
TW558755B TW91117386A TW91117386A TW558755B TW 558755 B TW558755 B TW 558755B TW 91117386 A TW91117386 A TW 91117386A TW 91117386 A TW91117386 A TW 91117386A TW 558755 B TW558755 B TW 558755B
Authority
TW
Taiwan
Prior art keywords
region
layer
predetermined
patent application
predetermined area
Prior art date
Application number
TW91117386A
Other languages
Chinese (zh)
Inventor
June-Min Yao
Cheng-Shun Chen
Shu-Ya Hsu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW91117386A priority Critical patent/TW558755B/en
Application granted granted Critical
Publication of TW558755B publication Critical patent/TW558755B/en

Links

Abstract

Multiple oxide layers with different thicknesses are formed on a semiconductor substrate with a silicon surface, having a first and second region. A sacrificial oxide layer is formed on the silicon surface to cover both the first region and the second region, with a mask layer formed on the surface of the sacrificial oxide layer. By defining and patterning the mask layer, a first opening and a second opening, having predetermined surface areas, are formed in portions of the first and second regions of the mask layer to expose portions of the. The sacrificial oxide layer has a surface area equal to the first predetermined surface area, and portions of the sacrificial oxide layer having a surface area equal to the second predetermined surface area. A linear nitrogen doping process is then performed to simultaneously implant nitrogen ions with a first and second predetermined concentration into the first and second region, through the first opening and the second opening, respectively. Thereafter, the mask layer and the sacrificial oxide layer are removed, respectively. An oxidation process is performed to two silicon oxide layers with different thicknesses in the first and second regions.

Description

558755 五、發明說明(1) 發明之領域 本發明係提供一種同時形成不同厚度氧化層的方法, 尤指一種利用一次線性氮離子植入(丨inear nitrogen doping)以及一次氧化製程於一半導體基底上同時形成不 同厚度氧化層的方法。 背景說明 隨著晶片積集度朝高密度發展以及系統單晶片 (system-on-chip, S0C)的出現,已經有越來越多的積體 電路中需要搭配有兩種,甚至兩種以上,不同厚度之閘極 氧化層(gate oxide layer),以滿足不同操作電壓元件。 例如’一般快閃記憶體(f 1 ash memory )之記憶單元的操作 電壓為3· 3伏特,而其週邊電路(peripherai Circuit)則 需要5伏特。因此週邊電路的m〇S除了閘極通道較長之外, 其閘極氧化層的厚度也相對地較記憶單元電路中之閑 極氧^層厚,以避免高電壓所造成的電崩潰。此外,一般 的准璜記憶體(read only memory,ROM)中,也往往需要 有兩種以上不同厚度的閘極氧化層。 而 習知製作不同厚度氧化層的方式有幾種。其中,在 1 9 9 3年,Nakata等人的發明專利(U. S. Pat. No. 5, 254, 489) 中即揭露了一種製作兩種不同厚度閘極氧化層的方法’。請558755 V. Description of the invention (1) Field of the invention The present invention provides a method for forming oxide layers with different thicknesses at the same time, especially a method using a linear nitrogen ion implantation (丨 ear nitrogen doping) and a single oxidation process on a semiconductor substrate. Method for simultaneously forming oxide layers of different thicknesses. Background: With the development of high-density wafers and the emergence of system-on-chip (S0C), there are more and more integrated circuits that require two or more than two. Gate oxide layers with different thicknesses to meet different operating voltage components. For example, the operating voltage of a general flash memory (f 1 ash memory) memory cell is 3.3 volts, while its peripheral circuit requires 5 volts. Therefore, in addition to the longer gate channel of the peripheral circuit, the gate oxide layer is relatively thicker than the free oxide layer in the memory cell circuit to avoid electrical breakdown caused by high voltage. In addition, in general read only memory (ROM), two or more gate oxide layers with different thicknesses are often required. There are several ways to make oxide layers with different thicknesses. Among them, in 1993, an invention patent by Nakata et al. (U. S. Pat. No. 5, 254, 489) disclosed a method for fabricating gate oxide layers with two different thicknesses'. please

558755558755

ί ϊ : : A至圖一 D’圖一 A至圖一績示揭露於上述專利中 不同厚度開極氧化層的方法之剖面示意圖。如圖 & Μ 半導體基底1表面包含有兩由絕緣層2所隔離之 各區域内之半導體基们表面上皆具有一第一= 曰第一氧化層3係利用習知該項技藝者所熟知之方法形 ^法!如在800至丨丨5〇°C下之純氧環境中所進行的乾式氧 如圖一 B所示,接著在一氮氣環境或氨氣(amm〇nia gas)環境中對半導體基底1表面進行氮化 (nitrificati〇n)’ 以形成氮化氧化層(nitrified 〇xide laye。!·)6。其中,在氮氣環境下的氮化溫度約為1〇〇〇至 1 2 0 0°C,而在氨氣環境下的氮化溫度約為9 〇 〇至丨丨5 〇它。 接著如圖一 C所示,利用一光阻層4來遮蔽不想移除之氮化 氧化層6,並利用氩氟酸溶液來移除未被光阻層4覆蓋之氮 化氧化層6’以裸露出部份半導體基底^表面。最後,如圖 一 D所示,進行一氧化製程,以於裸露半導體基底i表面形 成一較厚之氧化層5。 然而,上述這種利用遮蔽方式分別進行氧化層製作的 方法卻會產生幾個主要的問題。首先,使用遮蔽層的方式 容易造成污染,使得需要高品質之閘極氧化層的品質不穩 定,而且氮化閘極氧化層的品質較純矽氧層差。其次,設 於遮蔽層下方之乳化層在進行其它區域的氧化時,仍然會ί ϊ:: A to FIG. 1 D ’FIG. 1 A to FIG. 1 are schematic cross-sectional views of methods disclosed in the above patents for different thicknesses of open electrode oxide layers. As shown in the figure, the surface of the semiconductor substrate 1 includes two semiconductor substrates in each area separated by the insulating layer 2. There is a first on the surface of the semiconductor substrate 1. The first oxide layer 3 is well known to those skilled in the art. The method is as follows: Dry oxygen in a pure oxygen environment at 800 to 5 ° C is shown in Figure 1B, followed by a nitrogen or ammonia gas environment. Nitriding the surface of the semiconductor substrate 1 to form a nitrided oxide layer (!) 6. Among them, the nitriding temperature in a nitrogen environment is about 1000 to 12 00 ° C, and the nitriding temperature in an ammonia gas environment is about 900 to 5500 ° C. Next, as shown in FIG. 1C, a photoresist layer 4 is used to shield the nitrided oxide layer 6 that is not to be removed, and an argon fluoride acid solution is used to remove the nitrided oxide layer 6 'not covered by the photoresist layer 4. A part of the surface of the semiconductor substrate is exposed. Finally, as shown in FIG. 1D, an oxidation process is performed to form a thicker oxide layer 5 on the surface of the bare semiconductor substrate i. However, the above-mentioned method of separately forming an oxide layer by using a shielding method has several major problems. First of all, the use of a shielding layer is liable to cause pollution, making the quality of the gate oxide layer requiring high quality unstable, and the quality of the nitrided gate oxide layer is inferior to that of the pure silicon oxide layer. Secondly, the emulsified layer provided under the shielding layer will still undergo oxidation in other areas.

558755558755

發生輕微的氧化, 再者,習知方法過 而且過於耗時,因 用,尤其當半導體 化層時。 發明概述 使得閘極氧化層厚 於几長複雜’不但 此不適合用於高產 基底上需要有三種 度的控制出現問題。 至少需要兩道光軍, 出之半導體製程上使 以上不同厚度閘極氧 次快速穩定形成不 出率。 因此’本發明之目的在提供一種一 同厚度氧化層的方法,以獲得高產品產 本發明之另一目的在提供一種只需利用一次線性氮離 子植入(linear nitrogen doping)以及一次氧化製程於一 半導體基底上同時形成不同厚度氧化層的方法,同^可 精確控制氧化層的厚度。 本發明之的方法包含有下 基底,其中該半導體基底包含 少包含有一第一區域以及一第 成一氧化犧牲層,覆蓋於該第 上,(3)於該氧化犧牲層表面 層中分別於該第一區域以及該 定面積之第一開孔暴露出與該 犧牲層表面,以及複數個第二 歹】步驟· (1)提供一半導體 有一矽表面,且該矽表面至 二區域,(2)於該矽表面形 二區域以及該第二區域之 一遮蔽層,其中該遮蔽 第二區域中包含有一第一預 第 預定面積相同之該氧化 預定面積之第二開孔平均分Slight oxidation occurs, and the conventional method is too time consuming, especially when the semiconductor layer is used. SUMMARY OF THE INVENTION Making the gate oxide layer thicker than a few layers is not only unsuitable for use in high-yield substrates, which requires three degrees of control problems. At least two light forces are required. The semiconductor process can make the gate oxides of different thicknesses quickly and stably form a failure rate. Therefore, the object of the present invention is to provide a method for forming a thick oxide layer together to obtain a high product yield. Another object of the present invention is to provide a method that requires only one linear nitrogen doping and one oxidation process. The method of simultaneously forming oxide layers of different thicknesses on a semiconductor substrate can precisely control the thickness of the oxide layers. The method of the present invention includes a lower substrate, wherein the semiconductor substrate includes a first region and a first oxide sacrificial layer, covering the first, and (3) the surface layer of the oxide sacrificial layer is respectively located on the first substrate. A region and the first opening of the predetermined area are exposed to the surface of the sacrificial layer, and a plurality of second steps) (1) providing a semiconductor with a silicon surface, and the silicon surface to two regions, (2) in The silicon surface is shaped into two regions and a masking layer in the second region, wherein the masking second region includes an average score of the second openings having the first predetermined area and the predetermined predetermined oxidation area.

558755 五、發明說明(4) 佈於該第二區域上並且暴露出與該第二預定面積相同之該 氧化犧牲層表面,(4)進行一氮離子佈植製程,同時經由 該第一開孔以及該第二開孔分別於該第一區域以及該第二 區域内之該矽表面植入一第一預定濃度之氮離子以及一第 二預定濃度之氮離子,(5)去除該遮罩層,(6)去除該氧 化犧牲層,以及(7)進行一氧化製程,同時於該第一區域 以及於該第二區域内之矽表面上分別形成一第一預定厚度 以及一第二預定厚度之矽氧層。 - 其中,該氮離子佈植係為一線性氮離子佈植製程,並 遵守以下之關係式,且式中k值為一常數: (該第一預定面積/該第二預定面積)=k (該第一預定濃度/ 該第二預定濃度)。 在本發明之較佳實施例中,該第一預定面積大於該第 二預定面積,該第一預定濃度大於該第二預定濃度,且該 第一預定厚度小於該第二預定厚度。 發明之詳細說明 請參閱圖二A以及圖二B,圖二A以及圖二B為本發明線 性氮離子植入輪廓(linear nitrogen doping profile)示 意圖。如圖二A所示,本發明是先於一半導體基底10表面558755 V. Description of the invention (4) Disposed on the second area and exposing the surface of the oxide sacrificial layer the same as the second predetermined area, (4) Performing a nitrogen ion implantation process through the first opening And the second opening is implanted with a first predetermined concentration of nitrogen ions and a second predetermined concentration of nitrogen ions on the silicon surface in the first region and the second region, respectively, (5) removing the mask layer (6) removing the oxidation sacrificial layer, and (7) performing an oxidation process, and simultaneously forming a first predetermined thickness and a second predetermined thickness on the silicon surface in the first region and the second region, respectively. Silicon oxide layer. -Wherein, the nitrogen ion implantation system is a linear nitrogen ion implantation process and adheres to the following relational formula, where k is a constant: (the first predetermined area / the second predetermined area) = k ( The first predetermined concentration / the second predetermined concentration). In a preferred embodiment of the present invention, the first predetermined area is larger than the second predetermined area, the first predetermined concentration is larger than the second predetermined concentration, and the first predetermined thickness is smaller than the second predetermined thickness. Detailed description of the invention Please refer to FIG. 2A and FIG. 2B. FIG. 2A and FIG. 2B are schematic diagrams of a linear nitrogen doping profile of the present invention. As shown in FIG. 2A, the present invention precedes the surface of a semiconductor substrate 10

558755 五、發明說明(5) _____ 上形成一光阻層12,並進行一氮離 導體基底1〇表面獲得一線性氮離 ^ 20^於半 中具有不同面積之開口 21、22以及23,分別二層12 以及A3,且AP Al,用來分 If f面積A丨、a2 積之半導體基底10。 』暴路出各開口下方相同面 如圖二B中所示’此線性氮 回火製程之後而產生的’橫轴代離表子半刀導佈趙\在底,,溫 離(lateral distance)’縱軸則代表植入^離子向距 (doping concentration)。結果顯示,在相同 入劑量下,植入半導體基底10表面利用二次離子植 (Secondary Ion Mass,SIMS)所測得之氮離子最^二儀 ((V C弘及CO與開口面積(Αρ A私及Μ)呈線性關^辰度值 A 1: A y A尸C !: C 2: C π加上如同習知該項技藝者所熟^ P 半導體基底10中植入氮離子會抑制(depress )氧彳f异的出 長速率。因此,本發明即是利用此一氮離子濃度與9 ' 口成^ 積之線性關係以及氮離子抑制機制,來有效控^ ^二片面 層的成長,並且簡化習知方法之製作流程。工 f 氧化 請參閱圖三A至圖三D,圖三A至圖D為本發明於一 ςητ ^板3 0上製作不同厚度氧化層的剖面示意圖。如圖二 不’在本發明之較佳實施例中,S〇 I基板3 〇係Λ 一 , S,所形成之商業化產品,其包含有一= 1微米之Ρ型半導體矽層以及一絕緣層(未顯示)。、'·由’於形成558755 V. Description of the invention (5) A photoresist layer 12 is formed on _____, and a nitrogen ionization conductor substrate 10 surface is obtained to obtain a linear nitrogen ionization ^ 20 ^ with openings 21, 22, and 23 of different areas in the half, respectively The second layer 12 and A3, and AP Al, are used to divide the semiconductor substrate 10 with the area of If f area A 丨 and a2. "The same surface below each opening is shown in Figure 2B. 'The horizontal axis is generated by the linear nitrogen tempering process.' The vertical axis represents the implantation ion doping concentration. The results show that at the same dose, the nitrogen ion implantation measured by the secondary ion implantation (Secondary Ion Mass, SIMS) on the surface of the semiconductor substrate 10 (VC and CO and the opening area (Αρ A And M) are linearly related. The degree of value A 1: A y A C!: C 2: C π plus nitrogen as implanted in the semiconductor substrate 10 will be suppressed (depress ) The growth rate of oxygen ions is different. Therefore, the present invention is to use the linear relationship between the concentration of nitrogen ions and the product of 9 ′ and the mechanism of nitrogen ion suppression to effectively control the growth of the two-layer surface layer, and Simplify the manufacturing process of the conventional method. Please refer to Figure 3A to Figure 3D for oxidation. Figure 3A to Figure D are schematic cross-sectional diagrams of the present invention for making oxide layers with different thicknesses on a plate ητ ^ 30. See Figure 2. No. In a preferred embodiment of the present invention, the SOI substrate 30 is a Λ, S, a commercial product formed including a P-type semiconductor silicon layer = 1 micron and an insulating layer (not shown) )., '· From' formed

558755 五、發明說明(6) SO I基板3 0的詳細步驟並非本發明之重點,因此在此不再 贅述。 本發明之第一個步驟係先進行一隔離製程,利用一絕 緣層3 2择主動區域3 6以及3 8電性隔離。此隔離製程係為習 知該項技藝者所熟知之技術,例如區域氧化法(l〇calized oxidation on si 1 icon,LOCOS)。接著於 s〇I基板 30上之 主動區域36以及38上形成一約數十至數百埃(angstr〇m, A )厚之氧化犧牲層3 4,較佳在1 5 0至2 5 0埃之間。在本發 明之較佳實施例中,氧化犧牲層34係利用一乾式熱氧化λ 法,於一 9 0 0至11 0(TC之純氧環境中形成。此外Γ本發明 並不限定於SO I基板之應用,其它半導體基板,例如矽基 板’亦包含在本發明之應用範圍中。 如圖三B所示,接著利用一黃光技術(丨i th〇graphy)於 氧化犧牲層34表面形成一圖案化(patterned)的光阻層 4 〇。光阻層4 0中包含有複數個相同面積a夂開口 4丨平均分 佈於主動區域36内之氧化犧牲層34上,以及一具有面積μ 之開口 42暴露出主動區域38。需強調的是,開口 41的面積 誤差必須控制在最小的範圍下,以達到最大可靠度。 接著進行一氮離子佈植製程5 〇,將N +或N 2離子經由開 口 41以及42並且穿過氧化犧牲層34植入s〇I基板3〇的淺表 面中’形成淺表面氮離子分佈52以及54。此氮離子佈植製558755 V. Description of the invention (6) The detailed steps of the SO I substrate 30 are not the focus of the present invention, so they will not be repeated here. The first step of the present invention is to first perform an isolation process, and use an insulating layer 32 to electrically isolate the active areas 36 and 38. This isolation process is a technique well known to those skilled in the art, such as 10-calized oxidation on si 1 icon (LOCOS). An oxide sacrifice layer 3 4 with a thickness of about several tens to several hundreds angstroms (A) is then formed on the active regions 36 and 38 on the SOC substrate 30, preferably between 150 and 250 angstroms. between. In a preferred embodiment of the present invention, the oxidation sacrificial layer 34 is formed by a dry thermal oxidation lambda method in a pure oxygen environment of 900 to 110 ° C. In addition, the present invention is not limited to SO I Application of substrates, other semiconductor substrates, such as silicon substrates, are also included in the scope of application of the present invention. As shown in FIG. 3B, a yellow light technology (ithography) is then used to form a surface on the surface of the oxide sacrificial layer 34. Patterned photoresist layer 4 0. The photoresist layer 40 includes a plurality of openings 4 of the same area a, which are evenly distributed on the oxidation sacrificial layer 34 in the active region 36, and an opening having an area μ. 42 exposes the active area 38. It should be emphasized that the area error of the opening 41 must be controlled to the minimum range to achieve the maximum reliability. Next, a nitrogen ion implantation process 50 is performed, and N + or N 2 ions are passed through The openings 41 and 42 are implanted into the shallow surface of the SOI substrate 30 through the sacrifice layer 34 to form a shallow surface nitrogen ion distribution 52 and 54. This nitrogen ion cloth is made

$ 11頁 558755 五、發明說明(7) 程5 0中所使用之氮離子能量約為1〇至40KeV,較佳為 3 0KeV,植入劑量約為1E14至1E16原子每平方公分 (atoms/cm2),氮離子佈植製程5 0的時間約數分鐘至數十 分鐘。值得注意的是,所植入的淺表面氮離子分佈5 2以及 54越接近氧化犧牲層34以及SOI基板30界面越好,因此氮 離子能量需視氧化犧牲層3 4的厚度大小而做適當調整。然 後再於一氧氣電漿環境中完全去除光阻層40。 如圖三C所示,在去除光阻層40之後,接著對經過氮 離子佈植之SOI基板30進行一約5至15分鐘之950°C回火製 程(anneal ing),以將植入於SOI基板30淺表面之氮離子橫 向擴散趨入於SOI基板3 0之中。需強調的是,回火製程的 反應時間以及溫度可視情形而改變,例如植入的氮離子劑 量大小以及RT A反應器的昇溫速率等等。基本上,回火製 程的溫度係介於7 5 0至1 1 0 0°C之間,回火的時間約介於1至 1 〇 〇分鐘之間。 在經過回火製程之後,結果在主動區域36内接近氧化 犧牲層34之SOI基底30淺表面會形成有一氮離子擴散區 62 ’在主動區域38内接近氧化犧牲層34之SOI基底30淺表 面則具有一氮離子擴散區64,其中氮離子擴散區6 4内的氮 離子滚度大於氮離子擴散區62内的氮離子濃度。如前所 述’藉由精確控制氮離子植入時,光阻層40中開口面積大 小’氮離子擴散區64以及氮離子擴散區62内的氮離子濃度$ 11 pages 558755 V. Description of the invention (7) The nitrogen ion energy used in Cheng 50 is about 10 to 40 KeV, preferably 30 KeV, and the implantation dose is about 1E14 to 1E16 atoms per square centimeter (atoms / cm2 ), The nitrogen ion implantation process 50 takes about several minutes to several tens of minutes. It is worth noting that the implanted shallow surface nitrogen ion distribution 5 2 and 54 are closer to the interface between the oxide sacrificial layer 34 and the SOI substrate 30, so the nitrogen ion energy needs to be appropriately adjusted according to the thickness of the oxide sacrificial layer 34. . Then, the photoresist layer 40 is completely removed in an oxygen plasma environment. As shown in FIG. 3C, after removing the photoresist layer 40, the SOI substrate 30 subjected to nitrogen ion implantation is then subjected to an annealing process at 950 ° C for about 5 to 15 minutes to implant the The lateral diffusion of nitrogen ions on the shallow surface of the SOI substrate 30 tends to enter the SOI substrate 30. It should be emphasized that the reaction time and temperature of the tempering process may be changed according to circumstances, such as the amount of implanted nitrogen ions and the heating rate of the RT A reactor. Basically, the temperature of the tempering process is between 75 and 110 ° C, and the tempering time is between about 1 and 1000 minutes. After the tempering process, as a result, a shallow surface of the SOI substrate 30 near the oxidized sacrificial layer 34 in the active region 36 will form a nitrogen ion diffusion region 62 '. The shallow surface of the SOI substrate 30 near the oxidized sacrificial layer 34 in the active region 38 will be formed. There is a nitrogen ion diffusion region 64, in which the nitrogen ion roll in the nitrogen ion diffusion region 64 is greater than the nitrogen ion concentration in the nitrogen ion diffusion region 62. As mentioned previously, when the nitrogen ion implantation is accurately controlled, the opening area in the photoresist layer 40 is large, and the nitrogen ion concentration in the nitrogen ion diffusion region 64 and the nitrogen ion diffusion region 62 is

第12頁 558755Page 12 558755

五、發明說明(8) 均可以被控制。此外,由於在氮離子植入過程中所植入的 ^離子能量相同,因此最大垂直濃度分佈深度在氮離子擴 f區64以及氮離子擴散區62内相當接近。以氮離子植入能 量為30KeV、氧化犧牲層34厚度約20 0埃為例,最大氮離$ 垂直濃度分佈深度約為30至50埃之SOI基底30淺表面。 如圖二D所示,對SO I基底3 0進行一熱氧化製程,以於 · 主動區域3 6以及3 8内形成一閘極氧化層。此熱氧化製程係 - 在溫,$於750至1 0 0 0°C、進行1〇分鐘至約2小時之乾式或 濕式氧氣環境下進行,較佳是在溫度8 5 〇〇c進行約2小時之 乾式純氧氧化。結果在主動區域3 6内之S〇 I基底3 〇表面形 謂 成一厚度較厚之閘極氧化層72以及在主動區域38内之s〇I 基底30表面形成一厚度較薄之閘極氧化層74。閘極氧化層 厚度約介於2 0至1 5 0埃之間,而閘極氧化層7 4的厚度約介 於20至120埃之間。如前所述,由於植入於s〇I基板3〇表面 之氮離子具有抑制SO I基底3 0表面氧化速率的傾向,而且 抑制閘極氧化層成長速率的強度與植入s〇丨基底3 〇表面的 氮離子濃度有關,因此可以藉由控制植入氮離子濃度以控 制所要形成的閘極氧化層厚度。5. Description of Invention (8) Both can be controlled. In addition, since the ion energy implanted during the nitrogen ion implantation is the same, the maximum vertical concentration distribution depth is fairly close in the nitrogen ion diffusion region 64 and the nitrogen ion diffusion region 62. Taking the nitrogen ion implantation energy of 30 KeV and the thickness of the oxide sacrificial layer 34 as about 200 angstroms as an example, the maximum nitrogen ion concentration vertical distribution depth of the shallow surface of the SOI substrate 30 is about 30 to 50 angstroms. As shown in FIG. 2D, a thermal oxidation process is performed on the SO I substrate 30 to form a gate oxide layer in the active regions 36 and 38. This thermal oxidation process is performed at a dry or wet oxygen environment at a temperature of 750 to 1000 ° C for 10 minutes to about 2 hours, preferably at a temperature of 8500 ° C. 2 hours of dry pure oxygen oxidation. As a result, a thicker gate oxide layer 72 was formed on the surface of the SOI substrate 30 in the active region 36 and a thinner gate oxide layer was formed on the surface of the soI substrate 30 in the active region 38. 74. The thickness of the gate oxide layer is between 20 and 150 angstroms, and the thickness of the gate oxide layer 74 is between 20 and 120 angstroms. As mentioned above, since the nitrogen ions implanted on the surface of the 〇〇substrate 30 have a tendency to inhibit the surface oxidation rate of the SO I substrate 30, and the strength of the growth rate of the gate oxide layer is inhibited and the strength of the implanted SiO substrate 3 The nitrogen ion concentration on the surface is related, so the thickness of the gate oxide layer to be formed can be controlled by controlling the implanted nitrogen ion concentration.

清參閱圖四^以及圖四B,圖四a以及圖四B為本發明之 另一實施例剖面示意圖。在去除光阻層之前的步驟,包括 光阻層4 0塗佈、曝光顯影以及氮離子佈植製程5 〇,皆與前 述之較佳實施例相同,在此不再贅述。圖四A顯示s〇I^底Refer to FIG. 4 and FIG. 4B. FIG. 4a and FIG. 4B are schematic cross-sectional views of another embodiment of the present invention. The steps before removing the photoresist layer, including the photoresist layer 40 coating, exposure and development, and nitrogen ion implantation process 50, are the same as the aforementioned preferred embodiments, and are not repeated here. Figure 4A shows the bottom

第13頁 558755 五、發明說明(9) 3 0在去除光阻層4 0之後,接著對經過氮離子佈植之SO I基 板3 0進行一約5至1 5分鐘之9 5 0°C回火製程,將植入於SO I 基板3 0淺表面之氮離子橫向擴散趨入於SO I基板3 0之中, 在主動區域36内形成一擴散區62以及在主動區域38内形成 一擴散岜6 4。在此實施例中,S 0 I基底3 0接著進行一濕餘 刻製程,利用一稀釋氫氟酸(diluted hydrofluoric acid)溶液去除主動區域36内以及主動區域38内之氧化犧 牲層(未顯示)。 接著如圖四B所示,同樣地,對S 0 I基底3 0進行一熱氧 化製程,以於主動區域3 6以及3 8内形成一閘極氧化層。此 熱乳化製程係在溫度介於7 5 0至1000C、進行1 〇分鐘至約2 小時之乾式或濕式氧氣環境下進行,較佳是在溫度8 5 〇°c 進行約2小時之乾式純氧氧化。結果在主動區域3 6内之s〇 j 基底3 0表面形成一厚度較厚之閘極氧化層72以及在主動區 域3 8内之SO I基底3 0表面形成一厚度較薄之閘極氧化層 74。閘極氧化層厚度約介於20至15 0埃之間,而閘極^化 層7 4的厚度約介於2 0至1 2 0埃之間。 相較於習知之的製作方法,本發明之特色可以被 如下: (1 )只需一次氮離子佈植製程以及一次的熱氧化製程; (2 )利用一次熱氧化製程同時形成不同厚度的閘極 層;Page 13 558755 V. Description of the invention (9) 30 After the photoresist layer 40 is removed, the SO I substrate 3 0 that has been implanted with nitrogen ions is subjected to a 9 5 0 ° C return for about 5 to 15 minutes. In the fire process, the lateral diffusion of nitrogen ions implanted on the shallow surface of the SO I substrate 30 is directed to the SO I substrate 30, and a diffusion region 62 is formed in the active region 36 and a diffusion is formed in the active region 38. 6 4. In this embodiment, the S 0 I substrate 30 is then subjected to a wet after-etching process, using a diluted hydrofluoric acid solution to remove the oxide sacrificial layer in the active region 36 and the active region 38 (not shown). . Next, as shown in FIG. 4B, similarly, a thermal oxidation process is performed on the S 0 I substrate 30 to form a gate oxide layer in the active regions 36 and 38. This thermal emulsification process is carried out in a dry or wet oxygen environment at a temperature of between 750 to 1000C for 10 minutes to about 2 hours, preferably a dry pure for about 2 hours at a temperature of 850 ° C. Oxygen oxidation. As a result, a thicker gate oxide layer 72 was formed on the surface of the soj substrate 30 in the active region 36 and a thinner gate oxide layer was formed on the surface of the SO I substrate 30 in the active region 38. 74. The thickness of the gate oxide layer is between 20 and 150 Angstroms, and the thickness of the gate electrode layer 74 is between 20 and 120 Angstroms. Compared with the conventional manufacturing method, the features of the present invention can be as follows: (1) Only one nitrogen ion implantation process and one thermal oxidation process are needed; (2) using a thermal oxidation process to form gates of different thicknesses at the same time Floor;

558755 五、發明說明(ίο) (3 )不同厚度的閘極氧化層可以被有效控制; (4 )所形成的閘極氧化層品質較習知技術所形成的較佳; 以及 (5 )製程簡化省時。 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明專利之涵 蓋範圍。558755 V. Description of the Invention (ίο) (3) Gate oxide layers of different thicknesses can be effectively controlled; (4) The quality of the gate oxide layer formed is better than that formed by conventional techniques; and (5) the process is simplified save time. The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application for the present invention shall fall within the scope of the invention patent.

第15頁 558755 圖式簡單說明 圖示之簡單說明 圖一 A至圖一 D顯示習知兩種不同厚度閘極氧化層製作 方法之剖面示意圖。 圖二A以及圖二B為本發明線性氮離子植入輪廓示意 圖。 圖三A至圖三D為本發明一較佳實施例之剖面示意圖。 圖四A以及圖四B為本發明之另一實施例之剖面示意 圖。 圖示之符號說明 1 半 導 體 基 底 2 絕 緣 層 3 第 一 氧 化 層 4 光 阻 層 5 氧 化 層 6 氮 化 氧 化 層 10 半 導 體 基 底 12 光 阻 層 20 氮 離 子 佈 植 2卜 22- 23 開 V 30 SOI基底 32 絕 緣 層 34 氧 化 犧 牲 層 36^ 38 主 動 區 域 40 光 阻 層 4卜 42 開 D 50 氮 離 子 佈 置 製程 52^ 54 氮 離 子 分 佈 62、64 氮 離 子 擴 散 區 Ί2、 74 閘 極 氧 化 層Page 15 558755 Brief description of the diagrams Brief description of the diagrams Figures A to D show cross-sectional schematic diagrams of two conventional methods for manufacturing gate oxide layers with different thicknesses. Figures 2A and 2B are schematic diagrams showing the outline of linear nitrogen ion implantation according to the present invention. 3A to 3D are schematic cross-sectional views of a preferred embodiment of the present invention. Figures 4A and 4B are schematic sectional views of another embodiment of the present invention. Explanation of symbols in the figure 1 semiconductor substrate 2 insulating layer 3 first oxide layer 4 photoresist layer 5 oxide layer 6 nitride oxide layer 10 semiconductor substrate 12 photoresist layer 20 nitrogen ion implantation 2 22-22 23 V 30 SOI substrate 32 Insulating layer 34 Oxidation sacrificial layer 36 ^ 38 Active region 40 Photoresist layer 4 2 42 D 50 Nitrogen ion arrangement process 52 ^ 54 Nitrogen ion distribution 62, 64 Nitrogen ion diffusion region Ί2, 74 Gate oxide layer

Claims (1)

558755558755 半導體Ϊ::以;及-次氧化製… = …且該石夕表面至少包含有-第- 乂及第一區域,該方法包含有下列步驟: 及該= 成一氧化犧牲Η蓋於該第-區域以 =該氧化犧牲層表面形成一遮蔽(mask)層; 定義並圖案化(patterning)該遮蔽層,使該遮蔽芦 分別於該第一區域以及該第二區域中包含有一第一預^ 積之第一開孔以及一第二預定面積之第二開孔,該第一 孔暴露出與該第一預定面積相同之該氧化犧牲層表面,: 該第二開孔暴露出與該第二預定面積相同之該氧化犧牲; 表面; 曰 進行一線性氮離子佈植製程,同時經由該第一開孔r 及該第二開孔分別於該第一區域以及該第二區域以 表面植入一第一預定濃度之氮離子以及一第二預定濃度 氮離子,其中(該第一預,定面積/該第二預定面積 第一預定濃度/該第二預定濃度),k值為一常數; 去除該遮罩層; 去除該氧化犧牲層;以及 、 進行一乳化製程,同時於該第一區域以及於該第二巴 域内之矽表面上分別形成一第一預定厚度以及一第二預= 厚度之矽氧層。 &Semiconductor plutonium :: with; and -sub-oxidation ... = ... and the surface of the stone eve at least contains -th-乂 and the first region, the method includes the following steps: and the = into a sacrifice of oxide to cover the first- A region is formed with a mask layer on the surface of the sacrificial sacrificial layer; the masking layer is defined and patterned so that the masking reed includes a first pre-product in the first region and the second region, respectively. A first opening and a second opening of a second predetermined area, the first hole exposing the surface of the oxide sacrificial layer that is the same as the first predetermined area, and the second opening is exposed to the second predetermined area The same area of the sacrifice of oxidation; the surface; that is, a linear nitrogen ion implantation process is performed, and a first region and a second region are implanted in the first region and the second region with a first A predetermined concentration of nitrogen ions and a second predetermined concentration of nitrogen ions, where (the first predetermined area / the second predetermined area first predetermined concentration / the second predetermined concentration), the k value is a constant; remove the Mask layer Oxidizing the sacrificial layer; and performing an emulsification process, and simultaneously forming a silicon oxide layer of a first predetermined thickness and a second pre-thickness on the silicon surface in the first region and the second bar region, respectively. & 558755 六、 申請專利範圍 2. 如申請專利範圍第1項之方法,其中該第一預定面積 大於該第二預定面積’該第一預定濃度大於該第二預定濃 度,且該第一預定厚度小於該第二預定厚度。 3. 如申請專利範圍第1項之方法,其中該氧化犧牲層厚 产係介於 15 0 至 25 0埃(angstrom, A )。 4. 如申請專利範圍第1項之方法,其中該遮蔽層係為一 光阻層。 第 圍 範 利 專。 請底 申基 如碎 - 5為 1項之方法,其中該半導體基底係 6. 如申請專利範圍第1項之方法,其中該半導體基底係 為一石夕覆絕緣(silicon-on-insulator,SOI)基底。 7 · 如申請專利範圍第1項之方法,其中該氮離子佈植製 程中所使用的氮離子係為N2+,其能量約為30KeV,劑量約 在 lE14cnr2至 iE16cm_^:間。 8 · 一種一次形成不同厚度氧化層的方法,該方法包含有 下列步驟: 提供一半導體基底,其中該半導體基底包含有一矽表 面’且該矽表面至少包含有一第一區域以及一第二區域;558755 VI. Patent Application Range 2. The method of applying for the first item of the patent scope, wherein the first predetermined area is larger than the second predetermined area 'the first predetermined concentration is greater than the second predetermined concentration, and the first predetermined thickness is less than The second predetermined thickness. 3. The method according to item 1 of the patent application, wherein the thickness of the sacrifice oxide layer is between 150 and 250 angstroms (angstrom, A). 4. The method according to item 1 of the patent application, wherein the shielding layer is a photoresist layer. Round of Fan Lizhuan. Please refer to Di Shenji as a method of item 5 in which the semiconductor substrate is 6. The method of item 1 in the scope of patent application where the semiconductor substrate is a silicon-on-insulator (SOI) Substrate. 7. The method according to item 1 of the scope of patent application, wherein the nitrogen ion system used in the nitrogen ion implantation process is N2 +, its energy is about 30KeV, and the dose is about lE14cnr2 to iE16cm_ ^ :. 8. A method of forming oxide layers of different thicknesses at one time, the method comprising the following steps: providing a semiconductor substrate, wherein the semiconductor substrate includes a silicon surface 'and the silicon surface includes at least a first region and a second region; 第18頁 558755 六、申請專利範圍 於該矽表面形成一氧化犧牲層,覆蓋於該第一區域以 及該第二區域之上; 於該氧化犧牲層表面形成一遮蔽層,其中該遮蔽層中 分別於該第一區域以及該第二區域中包含有一第一預定面 積之第一開孔暴露出與該第一預定面積相同之該氧化犧牲 層表面,以及複數個第二預定面積之第二開孔平均分佈於 該第二區域上並且暴露出與該第二預定面積相同之該氧化 犧牲層表面; 進行一氮離子佈植製程,同時經由該第一開孔以及該 第二開孔分別於該第一區域以及該第二區域内之該矽表面 植入一第一預定濃度之氮離子以及一第二預定濃度之氮離 子; 去除該遮罩層; 去除該氧化犧牲層;以及 進行一氧化製程,同時於該第一區域以及於該第二區 域内之矽表面上分別形成一第一預定厚度以及一第二預定 厚度之矽氧層。 9. 如申請專利範圍第8項之方法,其中該第一預定面積 大於該第二預定面積,該第一預定濃度大於該第二預定濃 度,且該第一預定厚度小於該第二預定厚度。 1 0.如申請專利範圍第8項之方法,其中(該第一預定面積 /該第二預定面積)=k (該第一預定濃度/該第二預定濃Page 18 558755 6. The scope of the patent application forms a sacrificial oxide layer on the silicon surface, covering the first region and the second region; forming a shielding layer on the surface of the sacrificial oxide layer, wherein the shielding layers are respectively A first opening having a first predetermined area in the first region and the second region exposes the surface of the oxide sacrificial layer the same as the first predetermined area, and a plurality of second openings having a second predetermined area. Is evenly distributed on the second area and exposes the surface of the oxide sacrificial layer the same as the second predetermined area; a nitrogen ion implantation process is performed, and the first openings and the second openings are respectively formed in the first Implanting a first predetermined concentration of nitrogen ions and a second predetermined concentration of nitrogen ions on the silicon surface in a region and the second region; removing the mask layer; removing the oxidation sacrificial layer; and performing an oxidation process, At the same time, a silicon oxide layer with a first predetermined thickness and a second predetermined thickness is formed on the silicon surface in the first region and the silicon surface in the second region, respectively. 9. The method according to item 8 of the patent application, wherein the first predetermined area is larger than the second predetermined area, the first predetermined concentration is larger than the second predetermined concentration, and the first predetermined thickness is smaller than the second predetermined thickness. 10. The method according to item 8 of the scope of patent application, wherein (the first predetermined area / the second predetermined area) = k (the first predetermined concentration / the second predetermined concentration 第19頁 558755 六、申請專利範圍 度),k值為一常數。 11.如申請專利範圍第8項之方法,其中該氧化犧牲層厚 度係介於 15 0 至 25 0埃(angstrom,A )。 1 2.如申請專利範圍第8項之方法,其中該半導體基底係 為一石夕覆絕緣(silicon-on-insulator, SOI)基底。 1 3.如申請專利範圍第8項之方法,其中該遮蔽層係為一 光阻層。 1 4.如申請專利範圍第8項之方法,其中該氮離子佈植製 程中所使用的氮離子係為N2+,其能量約為30KeV,劑量約 在 lE14cm-2至 lE16cm~之間。Page 19 558755 VI. Range of patent application), k value is a constant. 11. The method of claim 8 in which the thickness of the oxide sacrificial layer is between 150 and 25 angstroms (angstrom, A). 1 2. The method according to item 8 of the patent application, wherein the semiconductor substrate is a silicon-on-insulator (SOI) substrate. 1 3. The method according to item 8 of the patent application, wherein the shielding layer is a photoresist layer. 14. The method according to item 8 of the scope of patent application, wherein the nitrogen ion system used in the nitrogen ion implantation process is N2 +, its energy is about 30KeV, and the dosage is between lE14cm-2 to lE16cm ~. 第20頁Page 20
TW91117386A 2002-08-01 2002-08-01 Method of forming multiple oxide layers with different thicknesses in a linear nitrogen doping process TW558755B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91117386A TW558755B (en) 2002-08-01 2002-08-01 Method of forming multiple oxide layers with different thicknesses in a linear nitrogen doping process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91117386A TW558755B (en) 2002-08-01 2002-08-01 Method of forming multiple oxide layers with different thicknesses in a linear nitrogen doping process

Publications (1)

Publication Number Publication Date
TW558755B true TW558755B (en) 2003-10-21

Family

ID=32311190

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91117386A TW558755B (en) 2002-08-01 2002-08-01 Method of forming multiple oxide layers with different thicknesses in a linear nitrogen doping process

Country Status (1)

Country Link
TW (1) TW558755B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365406B2 (en) 2005-05-04 2008-04-29 Hynix Semiconductor Inc. Non-uniform ion implantation apparatus and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365406B2 (en) 2005-05-04 2008-04-29 Hynix Semiconductor Inc. Non-uniform ion implantation apparatus and method thereof
US8343859B2 (en) 2005-05-04 2013-01-01 Hynix Semiconductor Inc. Non-uniform ion implantation apparatus and method thereof

Similar Documents

Publication Publication Date Title
US4268321A (en) Method of fabricating a semiconductor device having channel stoppers
JP2508818B2 (en) Method for manufacturing semiconductor device
JPH0654781B2 (en) Method of manufacturing integrated circuit structure
US6723662B2 (en) Methods of forming gate oxide films in integrated circuit devices using wet or dry oxidization processes with reduced chloride
JPS58148445A (en) Method of producing complementary field effect transistor
WO2002037561A2 (en) Dual gate oxide process for uniform oxide thickness
JP4733912B2 (en) Manufacturing method of semiconductor device
KR100263645B1 (en) Method for forming a dual oxide
TW558755B (en) Method of forming multiple oxide layers with different thicknesses in a linear nitrogen doping process
JPH04116869A (en) Semiconductor element and its manufacture
TWI238475B (en) High temperature hydrogen annealing of a gate insulator layer to increase etching selectivity between conductive gate structure and gate insulator layer
US6316804B1 (en) Oxygen implant self-aligned, floating gate and isolation structure
US6077735A (en) Method of manufacturing semiconductor device
JPS605065B2 (en) Manufacturing method of MIS type semiconductor device
KR100280551B1 (en) Fabrication method of capacitor having high capacitance
US6561839B2 (en) Process for forming shallow isolating regions in an integrated circuit and an integrated circuit thus formed
US6703322B2 (en) Method of forming multiple oxide layers with different thicknesses in a linear nitrogen doping process
JP2001135797A (en) Semiconductor device and manufacturing method for the same
JPH0529343A (en) Manufacture of fine semiconductor device
JPH113935A (en) Semiconductor device and its manufacture
JPH01295438A (en) Manufacture of semiconductor device
JPS60200572A (en) Manufacture of semiconductor device
JP2812217B2 (en) Method for manufacturing semiconductor device
JPS6267876A (en) Manufacture of semiconductor device
JPH0427709B2 (en)

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent