TW558653B - A 1.3 mum broadband optical amplifier and wavelength tunable fiber laser with non-symmetric resonant cavity - Google Patents
A 1.3 mum broadband optical amplifier and wavelength tunable fiber laser with non-symmetric resonant cavity Download PDFInfo
- Publication number
- TW558653B TW558653B TW90131173A TW90131173A TW558653B TW 558653 B TW558653 B TW 558653B TW 90131173 A TW90131173 A TW 90131173A TW 90131173 A TW90131173 A TW 90131173A TW 558653 B TW558653 B TW 558653B
- Authority
- TW
- Taiwan
- Prior art keywords
- optical
- amplifier
- fiber
- laser
- optical amplifier
- Prior art date
Links
Landscapes
- Lasers (AREA)
- Optical Communication System (AREA)
Abstract
Description
558653 五、發明說明(l) 發明領域 本發明有關一種使用於1· 3 //m波段之寬頻光放大器, 尤其是指一種將摻镨光纖放大器(Praseodymium-Doped 卩1乜6『八11^11以61',?0?八)及多重量子井半導體光放大器 (Multiple Quantum Well Semiconductor Optical Amplifier, MQW-SOA)串接而成的一種新型寬頻帶光放大558653 V. Description of the invention (l) Field of the invention The present invention relates to a wide-band optical amplifier used in the 1 · 3 // m band, in particular to a erbium-doped fiber amplifier (Praseodymium-Doped 卩 1 『6" eight 11 ^ 11 A new type of wide-band optical amplifier formed by serially connecting 61 ',? 0? 8) and Multiple Quantum Well Semiconductor Optical Amplifier (MQW-SOA)
器。利用本發明此種寬頻帶光放大器,並配合光纖迴圈等 效鏡及波長可調式光濾波器構成非對稱式共振腔體,於是 可產生波長可調的雷射光源。 發明背景 在1 980年代初期,1310nm的波長就已使用在單模光纖 系統上,主要是技術上較1 550nm來得成熟,頻寬特性也比 -較優良且零色散。但是在摻铒光纖放大器(Erbium-DopedDevice. By using the wide-band optical amplifier of the present invention, in combination with a fiber loop equivalent mirror and a wavelength-tunable optical filter, an asymmetric resonance cavity is formed, so that a laser light source with a wavelength that can be adjusted can be generated. BACKGROUND OF THE INVENTION In the early 1980s, a wavelength of 1310 nm was used in single-mode fiber systems. It is technically more mature than 1 550 nm, and its bandwidth characteristics are also better-with better dispersion. But Erbium-Doped Fiber Amplifiers
Fiber Amplifier,EDFA)問世以後,正好落在I 550nm低損 _ 失波段,且近年來有C-band、L-band等EDFA寬頻放大器問 世,使得廠商轉向1 550nm發展。雖然1 550nm的放大器具有 許多好處,但其在1 3 1 Onm波段的光通信損耗則較大。 目前在1 · 5 // m波段的寬頻摻铒光纖放大器,若將早期_ 發展的C-band放大器加上現在正在發展的L-band放大器, 將可使光訊放大頻寬增加到70nm-80nm。 但是在區域網路WDM (Wavelength DivisionAfter the introduction of Fiber Amplifier (EDFA), it fell into the I 550nm low-loss _ loss band, and in recent years, EDFA broadband amplifiers such as C-band, L-band, etc. have been introduced, making manufacturers turn to 1 550nm development. Although the 1 550 nm amplifier has many benefits, its optical communication loss in the 1 3 1 Onm band is greater. At present, the broadband erbium-doped fiber amplifier in the 1 · 5 // m band. If the early-developed C-band amplifier is added to the L-band amplifier currently under development, the optical signal amplification bandwidth can be increased to 70nm-80nm. . But in LAN WDM (Wavelength Division
Multiplexing,分波多工)技術需求128Onm-165Onm全頻譜 光訊傳輸時將十分需要1280 nm-1380 nm的光放大器及寬頻Multiplexing (division multiplexing) technology requirements 128Onm-165Onm full spectrum Optical transmission will require 1280 nm-1380 nm optical amplifier and broadband
第6頁 558653Page 6 558653
$源而光纖在13l〇nm波段的光通信損耗比i 550nm波段 =:因此131〇nm波段的光放大器與光源之需求因此顯 分追切。 ’ $外,雷射具有頻譜高純度和高亮度的特性,雷射依 〃頻瑨可調性可分為固定波長雷射及可調波長雷射,其中 只有可調波長雷射才能使用於變換波長的WDM系統中/、 近年來在光纖通信系統中,分波多工的波長可調雷射 =研究十分熱門,傳統可調波長雷射多利用分散式的布拉反射式(Distributed Bragg Reflector,DBR)雷射研發 技術’但這種雷射的可調範圍僅約5〜1〇ηιη。 發明綜i σ因此本發明提出一種使用於1 · 3 // m波段之寬頻光放大 器’使用摻镨光纖放大器(prase〇dymium —D〇ped FiberAmplifler,pDF A )及量子井半導體光放大器 Quantum Well Semiconductor Optical Amplifier, MQW-SOA),並利用兩組放大器的光訊增益光譜疊加技術以 達到寬頻光訊放大的效果,可供丨· 3 V m波段之各類光纖 通#系統、網路中作為光放大器之用。並利用此寬頻光放 大器提出一種波長可調式雷射光源,配合光纖迴圈等效鏡 及波長可調式光濾波器,構成非對稱式共振腔體,於是產 生波長可調之雷射光源。本發明可應用於分波多工的光纖 網路、光纖感測系統及精密光電壹測系統之中。The optical communication loss of the optical fiber in the 1310nm band is higher than that in the i 550nm band =: Therefore, the demand for the optical amplifier and light source in the 1310nm band is significantly pursued. 'In addition, lasers have the characteristics of high spectral purity and high brightness. Laser tunability can be divided into fixed-wavelength lasers and adjustable-wavelength lasers. Only adjustable-wavelength lasers can be used for conversion. Wavelength tunable WDM systems // In recent years in fiber optic communication systems, multiplexed wavelength tunable laser = research is very popular, traditional tunable wavelength lasers mostly use the distributed Bragg Reflector (DBR) ) Laser R & D technology 'But the adjustable range of this laser is only about 5 ~ 10ηη. The invention i σ therefore the present invention proposes a broadband optical amplifier used in the 1 · 3 // m band 'using an erbium-doped fiber amplifier (prase〇dymium-Doped Fiber Amplifler (pDF A)) and a quantum well semiconductor optical amplifier Quantum Well Semiconductor Optical Amplifier (MQW-SOA), and the use of two sets of amplifier optical gain spectral superposition technology to achieve the effect of wideband optical signal amplification, can be used in various fiber optic # systems in the 3 V m band, the network as light Amplifier. And using this broadband optical amplifier, a wavelength-tunable laser light source is proposed, which is combined with a fiber loop equivalent mirror and a wavelength-tunable optical filter to form an asymmetric resonant cavity, so a wavelength-tunable laser light source is produced. The invention can be applied to a demultiplexed optical fiber network, an optical fiber sensing system, and a precision photoelectric one measurement system.
第7頁Page 7
558653558653
I明說明 、 本發明使用兩組不同的光放大器串接方式,設 個寬頻光放大器結構,其方塊圖如圖1所示。本發明之寬 頻光放大器由一組量子井-半導體光放大器丨及一組摻鐯光 纖放大器2串接所組成,其内部結構如圖2所示。 量子井半導體光放大器1内部包含量子井半導體光放 大器二極體11、偏壓電流源電路12、溫度控制電路13、二 氧胃化矽光纖1 4、二氧化矽光纖1 5。量子井半導體光放大器 1是利用溫度控制電路1 3控制適當溫度,利用偏壓電流源鬌H 電路12來激發量子井半導體光放大器1的光譜。 摻镨光纖放大器2内部包含摻镨光纖 PDFF(Praseodymium-Doped Fluoride Fiber)21、分波多 工光纖搞合!§( λρ/ ;ls)22、泵激雷射(Pump laser λ p ) 2 3。摻镨光纖放大器2是利用一組泵激雷射2 3來達到 居量反置(population inversion),產生光放大功用,而 分波多工光纖耦合器22可將l〇47nm波長的泵激雷射23與 1300 nm波長訊號同時耦合進入摻镨光纖 PDFF(Praseodymium Doped Fluoride Fiber)21 中,以兩 組不同放大器在不同波段ASE(受激自發性,輻射,It is clearly explained that the present invention uses two different optical amplifier series connection modes, and a broadband optical amplifier structure is provided. The block diagram is shown in FIG. 1. The broadband optical amplifier of the present invention is composed of a group of quantum well-semiconductor optical amplifiers and a group of erbium-doped fiber amplifiers 2 connected in series. The internal structure is shown in FIG. 2. The quantum well semiconductor optical amplifier 1 contains a quantum well semiconductor optical amplifier diode 11, a bias current source circuit 12, a temperature control circuit 13, a silicon dioxide fiber 14 and a silicon dioxide fiber 15 inside. The quantum well semiconductor optical amplifier 1 uses a temperature control circuit 13 to control an appropriate temperature, and uses a bias current source 鬌 H circuit 12 to excite the spectrum of the quantum well semiconductor optical amplifier 1. Erbium-doped fiber amplifier 2 contains erbium-doped fiber PDFF (Praseodymium-Doped Fluoride Fiber) 21, and split-wave multiplexed optical fiber! § (λρ /; ls) 22. Pump laser λ p 2 3. The erbium-doped fiber amplifier 2 uses a group of pump lasers 23 to achieve population inversion to generate the optical amplification function, and the demultiplexing multiplexed fiber coupler 22 can pump a laser at a wavelength of 1047 nm. 23 and 1300 nm wavelength signals are coupled into the erbium-doped fiber PDFF (Praseodymium Doped Fluoride Fiber) 21 at the same time, with two sets of different amplifiers in different bands of ASE (stimulated spontaneous, radiated,
Amplified Spontaneous Emission)之光譜疊加技術,可 在波段處獲得寬頻光訊放大的效果,而作為1.3μιη 波段之光放大器使用。 . 此外,如圖6所示,本發明並設計出一個寬頻波長可 iraHi irann 第8頁 558653Amplified Spontaneous Emission) spectral superposition technology can obtain the effect of wideband optical signal amplification at the band, and it is used as a 1.3μm band optical amplifier. In addition, as shown in Fig. 6, the present invention and design a wide-band wavelength can be iraHi irann page 8 558653
調式雷射,將一組量子井半導體光放大器丨及一組摻镨光 纖放大器2串接後’將一光纖迴圈等效鏡(〇pUcal Fi^r Loop Mirror) 4接在量子井半導體光放大器!的輸出端, 並在掺镨光纖放大器2的輸出端接上一波長可調光遽波器 (Optical Tunable Filter) 3,形成非對稱式共振腔的反 射鏡面,以調整本發明雷射的輸出波長,達到雷射波長可 調輸出的效果。 實驗結果說明: 為驗證本發明之可行性,因此以實際儀器之量測實驗4 值來分析,證實本發明之寬頻光放大器元件各部分輸出光 譜情形。在實驗中,我們利用光譜分析儀實際量測本發明 1.3 //m波段之寬頻光放大器在其ι·3 "爪波段的ASE光譜, 調整偏壓電流及泵激雷射等參數所展現特性之變化。 - 首先我們對量子井半導體光放大器1的特性做量測, 實驗架構如圖3所示,溫度控制電路1 3控制在室溫2 〇。C 時,利用偏壓電流電路12激發其ASE光譜,並在其量測端技 及量測端b利用光譜分析儀做測量以分析得到偏壓電流與 ASE光譜的相互關係。 另外利用白光當光源透過光譜分析儀來量測分波多χ 光纖耦合器22之分波多工頻譜,實驗架構如圖(4)所示。 在摻镨光纖放大器2方面,則利用先前的分波多工光 纖耦合器22,並配合一組泵激雷射23來激發 PDFF(Praseodymium Doped F1uoride Fib6r)21 的ASE 光 〜Mode laser, a series of quantum well semiconductor optical amplifiers 丨 and a group of erbium-doped fiber amplifiers 2 are connected in series, and a fiber loop equivalent mirror (〇pUcal Fi ^ r Loop Mirror) 4 is connected to the quantum well semiconductor optical amplifier !! An output end of the erbium-doped fiber amplifier 2 is connected to an optical wavelength tunable filter (Optical Tunable Filter) 3 to form a mirror surface of an asymmetric resonant cavity to adjust the output wavelength of the laser of the present invention , To achieve the effect of laser wavelength adjustable output. The experimental results show that: In order to verify the feasibility of the present invention, the measurement experiment 4 values of the actual instrument are used to analyze and confirm the output spectrum of each part of the broadband optical amplifier element of the present invention. In the experiment, we used a spectrum analyzer to actually measure the ASE spectrum of the 1.3 // m-band broadband optical amplifier of the present invention in its ι · 3 " claw band, and adjust the characteristics exhibited by parameters such as bias current and pump laser The change. -First, we measured the characteristics of the quantum well semiconductor optical amplifier 1. The experimental architecture is shown in Figure 3. The temperature control circuit 13 is controlled at room temperature. At C, the bias current circuit 12 is used to excite its ASE spectrum, and the measurement end technology and measurement end b are measured by a spectrum analyzer to analyze and obtain the correlation between the bias current and the ASE spectrum. In addition, the white light is used as the light source to pass through the spectrum analyzer to measure the multiplexed spectrum of the multiplexed fiber χ fiber coupler 22. The experimental architecture is shown in Figure (4). In terms of erbium-doped fiber amplifier 2, the previous multiplexed optical fiber coupler 22 was used in conjunction with a set of pump lasers 23 to excite the ASE light of PDFF (Praseodymium Doped F1uoride Fib6r) 21 ~
第9頁 558653 五 發明說明(5) 碏’在量測端e及量測端f利用光譜分析儀進行量測實驗架 構如圖(5)所示,以得到泵激雷射23與ASE光譜的相互關 係’以下即為氣們的實驗量測數據說明。 圖7是記錄圖3實驗架構量測端a中量子井半導體光放 大器1隨偏壓電流增加,在中心波長1 · 34从m頻段之με光 譜變化之情形,而圖8是圖3實驗架構量測端a中量子井半 導體光放大器1偏壓電流對ASE光譜功率峰值的對應曲線 圖。由此曲線可知如何調整本發明ASE頻譜之功率。Page 9 558653 Description of the five inventions (5) 碏 'The measurement experiment structure using a spectrum analyzer at measurement end e and measurement end f is shown in Figure (5) to obtain the pump laser 23 and ASE spectra. Interrelationship 'The following is a description of the experimental measurement data of the Qi. FIG. 7 is a record of the quantum well semiconductor optical amplifier 1 in the measurement end a of the experimental architecture of FIG. 3 as the bias current increases from the με spectrum at the center wavelength of 1.34, and FIG. 8 is the experimental architecture of FIG. 3 Corresponding graph of the bias current of the quantum well semiconductor optical amplifier 1 at the measurement terminal a to the peak power of the ASE spectrum. This curve shows how to adjust the power of the ASE spectrum of the present invention.
圖9是記錄圖3實驗架構量測端b中量子井半導體光放 大器1隨偏壓電流增加而在中心波長1· 34 //m頻段之ASE光 譜變化之情形。 圖10是圖3實驗架構量測端b中ASE光譜功率峰值與偏 壓電流的對應曲線,如此便可依此數據調整量子井半導體 光放大器1之輸出光譜特性。 圖11是以圖4實驗架構作白光光源之光譜量測的結 果。 圖1 2是記錄圖4實驗架構量測端c通過波段的光譜,圖 1 3是記錄圖4實驗架構量測端d通過波段的光譜,由圖1 2及Fig. 9 is a recording of the change in the ASE spectrum of the quantum well semiconductor optical amplifier 1 in the measurement end b of the experimental architecture of Fig. 3 in the center wavelength 1.34 // m band with increasing bias current. Fig. 10 is a corresponding curve of the peak value of the ASE spectral power and the bias current in the measurement terminal b of the experimental structure of Fig. 3, so that the output spectral characteristics of the quantum well semiconductor optical amplifier 1 can be adjusted based on this data. FIG. 11 is a result of spectral measurement of a white light source based on the experimental structure of FIG. 4. Fig. 12 is a record of the passband spectrum of the measurement end c of the experimental architecture of Fig. 4; Fig. 13 is a record of the passband spectrum of the measurement end d of the experimental architecture of Fig. 4;
圖1 3可知分波多工光纖耦合器22光譜穿透情形。 圖1 4是在圖5實驗架構量測端e,量測·摻镨光纖放大器 2隨泵激雷射23輸入功率變化,在中心波長左右之 ASE光譜變化之情形,圖15是在圖5實驗架構量測端e,ASE 光譜功率峰值對掺镨光纖放大器2輸入功率的對應曲線Fig. 13 shows the spectral transmission of the multiplexed optical fiber coupler 22. Fig. 14 is the measurement end e of the experimental structure of Fig. 5. The measurement and erbium-doped fiber amplifier 2 changes with the input power of the pump laser 23 and changes in the ASE spectrum around the center wavelength. Fig. 15 shows the experiment in Fig. 5 Correspondence curve of peak e, ASE spectral power versus input power of Erbium-doped fiber amplifier 2
第10頁 558653 五、發明說明(6) 圖1 6是記錄圖5實驗架構摻镨光纖放大器2量測端f在 波長1· 32 "in頻段之ASE光譜隨泵激雷射23輸入功率增加變 化之情形。 圖17貝是在圖5摻镨光纖放大器2實驗架構量測端f中 ASE光譜功率峰值對泵激雷射23輸入功率的對應曲線,由 此圖形即可知如何控制摻镨光纖放大器2的輸出光譜特 性〇Page 10 558653 V. Description of the invention (6) Figure 16 shows the experimental structure of Figure 5: Erbium-doped fiber amplifier 2 Measurement end f at the wavelength 1.32 " in band The ASE spectrum increases with the pump laser 23 input power Changing circumstances. FIG. 17B is the corresponding curve of the ASE spectral power peak against the input power of the pump laser 23 in the measurement terminal f of the erbium-doped fiber amplifier 2 experimental architecture of FIG. 5, and the graph shows how to control the output spectrum of the erbium-doped fiber amplifier 2. Characteristics
圖18為量子井半導體光放大器1光譜在偏壓電流為 50mA,溫度控制在2〇 ° C時所量測到的ASE光譜結果,圖19 則是摻镨光纖放大器2光譜在泵激雷射23輸入功率為885mW 下ASE光譜的量測結果,最後將此兩個光放大器串接如圖1 所不’其最後的輸出光譜如圖2〇所示,由此實驗結果即可 觀察發現此放大器的寬頻增加之效果。Figure 18 shows the measured ASE spectrum of the quantum well semiconductor optical amplifier 1 when the bias current is 50 mA and the temperature is controlled at 20 ° C. Figure 19 shows the spectrum of the erbium-doped fiber amplifier 2 at the pump laser 23 The measurement results of the ASE spectrum at an input power of 885mW. Finally, the two optical amplifiers are connected in series as shown in Figure 1. The final output spectrum is shown in Figure 2. From the experimental results, the amplifier's The effect of increased bandwidth.
此外’利用光譜分析儀量測本發明「非對稱共振腔式 波長可調光纖雷射」在1· 3 波段的ASE光譜,經調整偏 壓私w及杲激雷射等相關參數所展現的特性變化。首先將 置子井半導體光放大器1之偏壓電流定為50mA,溫度控制 在2〇 ° C,並將摻镨光纖放大器2光譜設定泵激雷射23輸入 功率為800mW,則此二光放大器串接後的輸出光譜如圖2〇 所不。將偏壓電流定為5〇mA、泵激雷射23輪入功率定為 800mff^是為了使非對稱共振腔式波長可調光纖雷射得到最 好的單模輸出效果,由圖21之光譜即知其為單模輸出。圖 ^ ί ί本發明非對稱共振腔式波長可調光纖雷射之動態調 整光譜圖,可明顯看出波長調整的範圍及各峰值的大小。 558653In addition, the characteristics of the ASE spectrum of the "asymmetric resonant cavity wavelength tunable optical fiber laser" of the present invention in the 1 · 3 band measured by a spectrum analyzer, and the characteristics exhibited by adjusting the bias voltage and the excitation laser are shown. Variety. First set the bias current of Chizijing Semiconductor Optical Amplifier 1 to 50mA, control the temperature at 20 ° C, and set the erbium-doped fiber amplifier 2 spectrum setting pump laser 23 input power to 800mW, then these two optical amplifier strings The subsequent output spectrum is shown in Figure 2O. The bias current is set to 50 mA, and the pumped laser power for 23 rounds is set to 800 mff ^ in order to obtain the best single-mode output effect of the asymmetric resonant cavity wavelength tunable fiber laser. That is to say, it is a single-mode output. Figure ^ The spectrum of the dynamic adjustment of the asymmetric resonator-type wavelength-tunable optical fiber laser according to the present invention can clearly see the range of wavelength adjustment and the size of each peak. 558653
五、發明說明(7) 此外,在多重量子井半導體放大器工與摻镨光纖放大 及之間可置一光隔離器5,以製成單向光放大器,使信 \僅在一個方向上放大,如圖23所示。在量子井半導體放 〇器1及摻镨光纖放大器2之間可置一光等化器6,使寬頻 放大器之頻寬或光源頻寬平坦化,如圖24所示。在量子 井半導體放大器1及摻镨光纖放大器2之間可置一光濾波器 使製成之光放大器放大頻寬得以在某些特定波段穿 透’如圖25所示。並可將本發明與分波多工器8結合,製 成1 3 /zm波段多通道光源與寬頻光源,如圖26所示。V. Description of the invention (7) In addition, an optical isolator 5 may be placed between the multiple quantum well semiconductor amplifier and the erbium-doped fiber amplifier to make a unidirectional optical amplifier, so that the signal is amplified in only one direction. As shown in Figure 23. An optical equalizer 6 may be placed between the quantum well semiconductor amplifier 1 and the erbium-doped fiber amplifier 2 to flatten the bandwidth of the wideband amplifier or the bandwidth of the light source, as shown in FIG. 24. An optical filter may be placed between the quantum well semiconductor amplifier 1 and the erbium-doped fiber amplifier 2 so that the amplified optical amplifier bandwidth can be penetrated in certain specific bands' as shown in FIG. 25. The invention can be combined with the demultiplexer 8 to produce a 13 / zm band multi-channel light source and a broadband light source, as shown in FIG.
本發明之非對稱共振腔式波長可調光纖雷射,可採用 2x2光電耦合器取代光纖迴圈等效鏡,以控制輸出光功 f。在光纖迴圈等效鏡4之迴圈中加入光隔離器9,以製成 單向可調波長雷射,使較大功率的雷射光由可調波長光濾 波器的方向輸出,如圖27所示。在雷射共振腔内置入一光 吸收式光電開關1 0,以作雷射光功率調變或製成鎖模雷 射,如圖28所示。光纖迴圈等效鏡4可用分波多工器丨丨取 代並在分波多工器11 一側任選兩條或兩條以上的光纖接In the asymmetric resonator-type wavelength-tunable optical fiber laser of the present invention, a 2x2 photocoupler can be used instead of the equivalent lens of the optical fiber loop to control the output optical power f. Add optical isolator 9 to the loop of the equivalent loop 4 of the optical fiber loop to make a unidirectional tunable wavelength laser, so that the laser light with a higher power is output from the direction of the tunable optical filter, as shown in Figure 27 As shown. A laser-absorptive photoelectric switch 10 is built in the laser resonance cavity for laser light power modulation or mode-locked laser, as shown in Figure 28. The fiber loop equivalent mirror 4 can be replaced by a demultiplexer 丨 丨 and optionally two or more optical fibers can be connected on the side of the demultiplexer 11
合成迴圈,形成一新型非對稱共振腔體,而產生雷射光輸 出,如圖2 9所示。 特點及功效: 本發明的特點為將量子井半導體光放大器1與摻镨光 纖放大器2兩種不同的放大器串接成為一種新型的寬頻光 放大器,此種光放大器最大的特點在於使用於l3vm波段The loop is synthesized to form a new type of asymmetric resonance cavity, which generates laser light output, as shown in Figure 29. Features and effects: The present invention is characterized in that two different amplifiers of quantum well semiconductor optical amplifier 1 and erbium-doped optical fiber amplifier 2 are connected in series to form a new type of broadband optical amplifier. The biggest feature of this optical amplifier is that it is used in the l3vm band.
第12頁 558653 五、發明說明(8) 且功率較一般光源強許多。 咴诒,埶、/收故入1 〇 牡1· 5 Z/m波段WDM研究告一段 洛後,勢必將整合1 · 3 μ m波段,▲ 發展,因此\路朝向WDM超寬頻光纖通信 15 波段光訊放大的特點本發明專利具有不同於現行 此外,本發明装置可作為古 ! 〇 a饥u * F爲巧功率寬頻光源以應用於 1 · 3 // m波段光纖通信光頻塑靡 @、ϋ μ - μ 應]量用之光源。除了應用於 WDM光纖通“系統兀件之測晋赤 丁心列里或光訊放大上,亦可應用於 光纖陀螺儀等感測系統,其與採 ., , ^科你用單頻雷射之光纖陀螺儀 相比,可提供更精密的測量解析度。 1 ·藉由波長可調式光濾波器並配合光纖迴圈等效鏡 而發展出一種新型的非對稱共振腔。 2·採用量子井半導體光放大器與摻镨光纖放大器之 串接方式形成一寬頻光增益元件。 =3 ·本發明此種非對稱共振腔式波長可調式光纖雷射 最大的特點為其使用於1 · 3 μ m波段。 4 ·結構簡單,不必如早期可調波長雷射必須採用機 械的方式調整光柵角度。 5·可調的波長範圍寬廣。 本發明的功效如下: 本發明漿置由兩組光放大器組成,其光源頻寬範圍或 增益範圍可以利用控制MQW-SOA之偏壓電流及PDFF之泵激 雷射光功率加以調整,且要比單一光放大器的增益高,藉 此優點而配合一些光元件,如可·調式光濾波器、極化控制Page 12 558653 V. Description of the invention (8) And the power is much stronger than ordinary light sources.咴 诒, 埶, / 故 入 牡 牡 1 · 5 Z / m wave band WDM research has been reported, and will inevitably integrate the 1 · 3 μ m band, ▲ development, so \ road towards WDM ultra-broadband optical fiber communication 15 band The characteristics of optical signal amplification The present invention patent is different from the current one. In addition, the device of the present invention can be used as an ancient! 〇aau * F is a smart power broadband light source for 1 · 3 // m-band optical fiber communication optical frequency @@ ϋ μ-μ should be used as a light source. In addition to the application of WDM fiber optic "system components to test the Chi Chi-Ding Xinli or optical signal amplification, can also be used in fiber optic gyroscope and other sensing systems, and its use. ,, ^ You use a single frequency laser Compared with the fiber-optic gyroscope, it can provide more precise measurement resolution. 1 · A new type of asymmetric resonant cavity has been developed by using a wavelength-tunable optical filter and an equivalent fiber-optic loop mirror. 2. Using a quantum well The semiconductor optical amplifier and the erbium-doped fiber amplifier are connected in series to form a broadband optical gain element. = 3 · The biggest feature of the asymmetric resonant cavity wavelength tunable optical fiber laser of the present invention is that it is used in the 1 · 3 μm band 4. Simple structure, it is not necessary to adjust the grating angle mechanically as in the early adjustable wavelength laser. 5 Wide range of adjustable wavelength. The effect of the present invention is as follows: The paste of the present invention is composed of two sets of optical amplifiers, which The bandwidth or gain range of the light source can be adjusted by controlling the bias current of the MQW-SOA and the pump laser power of the PDFF, and it has a higher gain than a single optical amplifier. Member, such as can-modulation optical filter, polarization control
第13頁 558653 五、發明說明(9) 器、光耦合器等,可以發展出許多系統與應用,對1. 3 // m 寬頻光電技術而言5有相當大的應用性。 1. 波長可調整的功能 2. 可應用於WDM分波多工光纖通信系統中 3. 可應用於光纖感測器中 4. 可應用於新型精密光電測量儀器的開發 本發明之精神與範圍僅受限於下述申請專利範圍,不受限Page 13 558653 V. Description of the invention (9) devices, optocouplers, etc., can develop many systems and applications, 5 has a considerable applicability for the 1. 3 // m wideband photoelectric technology. 1. Wavelength adjustable function 2. Can be used in WDM branched multiplex optical fiber communication system 3. Can be used in fiber optic sensor 4. Can be used in the development of new precision photoelectric measuring instruments The spirit and scope of the present invention are only limited by Limited to the scope of patent application below
第14頁 558653 圖式簡單說明 圖1為寬頻光放大器組成方塊圖。 圖2為1 · 3 μ m波段寬頻光放大器結構圖。 , 圖3為量子井半導體光放大器實驗架構圖。 · 圖4為分波多工耦合器特性量測實驗架構圖。 圖5為掺镨放大器光譜t驗架構圖。 圖6為非對稱共振腔式波長可調先纖雷射結構圖。 圖7為量子井半導體光放大器受激自發性輻射 (Amplified Spontaneous Emission; ASE)光譜量測端3之 量測結果。 圖8為量子井半導體光放大器ASE光譜量測端a之峰值 功率對偏壓電流曲線圖。 圖9為量子井半導體光放大器ASE光譜量測瑞b之量測 結果。 、 圖10為量子井半導體光放大器ASE光譜量測端b之峰值 功率對偏壓電流曲線圖。 圖11為白光光源之光譜量測結果。 圖1 2為分波多工耦合器量測端c之量測結果。 圖1 3為分波多工耦合器量測端d之量測結果。Page 14 558653 Brief description of the drawings Figure 1 is a block diagram of the composition of a broadband optical amplifier. Figure 2 shows the structure of a 1 · 3 μm-band broadband optical amplifier. Figure 3 shows the experimental architecture of a quantum well semiconductor optical amplifier. · Figure 4 is the experimental measurement diagram of the characteristics of the split-wave multiplexing coupler. FIG. 5 is a diagram of the spectrum structure of an erbium-doped amplifier. FIG. 6 is a structural diagram of an asymmetric resonator-type wavelength-tunable fiber laser. Figure 7 shows the measurement results of the quantum well semiconductor optical amplifier's stimulated spontaneous emission (Amplified Spontaneous Emission; ASE) spectrum measurement terminal 3. Figure 8 is a graph of the peak power versus bias current of the quantum well semiconductor optical amplifier ASE spectrum measurement terminal a. Fig. 9 shows the measurement results of the quantum well semiconductor optical amplifier ASE spectrum measurement. Figure 10 is a graph of the peak power vs. bias current of the quantum well semiconductor optical amplifier ASE spectrum measurement terminal b. FIG. 11 is a spectrum measurement result of a white light source. Figure 12 shows the measurement results of the measurement terminal c of the demultiplexing multiplexing coupler. Figure 13 shows the measurement results of the measurement terminal d of the demultiplexing multiplexing coupler.
圖14為摻镨光纖放大器ASE光譜量測端e之量測結果。 圖1 5為摻镨光纖放大器ASE光譜量測端e之峰值功率對 輪入功率曲線。 圖16為摻镨光纖放大器ASE光譜量測端f之量測結果。 圖1 7為摻镨光纖放大器ASE光譜量測端f之峰值功 輪入功率曲線。FIG. 14 shows the measurement results of the ASE spectrum measurement terminal e of the erbium-doped fiber amplifier. Figure 15 shows the peak power versus wheel-in power curve of the ASE spectral measurement terminal e of the Erbium-doped fiber amplifier. FIG. 16 shows the measurement results of the ase spectrum measurement terminal f of the erbium-doped fiber amplifier. Figure 17 shows the peak power input curve of the erbium-doped fiber amplifier ASE spectrum measurement terminal f.
第15頁 558653 圖式簡單說明 圖18為量子井半導體光放大器ASE光譜特性之量測結 果(Ib = 50mA,T = 20。c)。 圖19為摻镨光纖放大器ASE光譜特性之量測結果 (Pp = 0· 885W) 〇 圖2G為串接pdfa及MQW-SOA光放大器之ASE光譜疊加之 測量結果。 圖21為非對稱共振腔式波長可調光纖雷射輸出波長之 雷射光譜量測結果。 圖22為非對稱共振腔式波長可調光纖雷射之輸出雷射 連續调動波長光譜圖。 圖2 3〜2 9為本發明其他實施例之示意圖。 圖號說明 1 MQW-SOA(Multiple Quantum Well Semiconductor Optical Amplifier)量子井半導體光放大器 11量子井半導體光放大器二極體 1 2偏壓電流源電路 1 3溫度控制電路 1 4二氧化矽光纖 1 5二氧化矽光纖 2 PDFA(Praseodymium-Doped Fluoride Fiber Ampl i f ier)摻镨光纖放大器 21 摻镨光纖PDFF(Praseodymium Doped Fluoride Fiber)Page 15 558653 Brief description of the figure Figure 18 shows the measurement results of the spectral characteristics of the quantum well semiconductor optical amplifier ASE (Ib = 50mA, T = 20.c). Figure 19 shows the measurement results of ASE spectral characteristics of erbium-doped fiber amplifiers (Pp = 0 · 885W). Figure 2G shows the measurement results of ASE spectral superposition of pdfa and MQW-SOA optical amplifiers in series. Figure 21 shows the laser spectrum measurement results of the output wavelength of an asymmetric resonator-type tunable optical fiber laser. FIG. 22 is an output laser continuous-wavelength wavelength spectrum chart of an asymmetric resonator-type wavelength-tunable optical fiber laser. 2 3 to 29 are schematic diagrams of other embodiments of the present invention. Description of drawing number 1 MQW-SOA (Multiple Quantum Well Semiconductor Optical Amplifier) quantum well semiconductor optical amplifier 11 quantum well semiconductor optical amplifier diode 1 2 bias current source circuit 1 3 temperature control circuit 1 4 silicon dioxide optical fiber 1 5 2 Silica fiber 2 PDFA (Praseodymium-Doped Fluoride Fiber Ampl if ier) Erbium-doped fiber amplifier 21 Erbium-doped fiber PDFF (Praseodymium Doped Fluoride Fiber)
第16頁 558653 圖式簡單說明 22 分波多工光纖1¾合器(λρ/ As) 23 泵激雷射(Pump laser λρ) 3 波長可調光濾、波器(Opt ica 1 Tunable F i 1 ter) 4 光纖迴圈等效鏡(Loop Mirror wi th Opt ical Coupler) 41 2x2光纖主動耦合器 4 2 二氧化矽光纖 5 光隔離器 % 6 光等化器 7 光濾波器 8 分波多工器 9 光隔離器 10 光吸收式光電開關 11 分波多工器 Η 第17頁Page 16 558653 Brief description of the diagram 22 Split-wave multiplex fiber 1¾ coupler (λρ / As) 23 Pump laser λρ 3 Wavelength tunable optical filter and wave filter (Opt ica 1 Tunable F i 1 ter) 4 Loop Mirror wi th Optical Coupler 41 2x2 Fiber Optic Coupler 4 2 Silicon Dioxide Fiber 5 Optical Isolator% 6 Optical Equalizer 7 Optical Filter 8 Splitter Multiplexer 9 Optical Isolation 10 Photo-absorptive photoelectric switch 11 Split-wave multiplexer Η Page 17
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90131173A TW558653B (en) | 2001-12-17 | 2001-12-17 | A 1.3 mum broadband optical amplifier and wavelength tunable fiber laser with non-symmetric resonant cavity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90131173A TW558653B (en) | 2001-12-17 | 2001-12-17 | A 1.3 mum broadband optical amplifier and wavelength tunable fiber laser with non-symmetric resonant cavity |
Publications (1)
Publication Number | Publication Date |
---|---|
TW558653B true TW558653B (en) | 2003-10-21 |
Family
ID=32311075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90131173A TW558653B (en) | 2001-12-17 | 2001-12-17 | A 1.3 mum broadband optical amplifier and wavelength tunable fiber laser with non-symmetric resonant cavity |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW558653B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI494546B (en) * | 2012-02-23 | 2015-08-01 | Univ Nat United | The manufacturing method and the measuring configration of a novel air-gap fabry-perot fiber interferometer sensor |
-
2001
- 2001-12-17 TW TW90131173A patent/TW558653B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI494546B (en) * | 2012-02-23 | 2015-08-01 | Univ Nat United | The manufacturing method and the measuring configration of a novel air-gap fabry-perot fiber interferometer sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180083414A1 (en) | Mode-locked and wavelength tunable optical frequency comb generation through dynamic control of microresonators | |
CN103247934B (en) | Broadband tunable multi-wavelength Brillouin fiber laser | |
US20090147350A1 (en) | Amplified spontaneous emission reflector-based gain-clamped fiber amplifier | |
CN109149343A (en) | A kind of line width controllable optical fibre laser | |
JPH0846271A (en) | Channel width adjusting apparatus for multichannel optical fiber amplified light source | |
CN102608825A (en) | Method and system for realizing multi-frequency optical comb | |
CN109494555A (en) | Adjustable optic fibre laser based on cascaded fiber grating combination Sagnac ring | |
Wang et al. | Multiwavelength generation in a Raman fiber laser with sampled Bragg grating | |
TW558653B (en) | A 1.3 mum broadband optical amplifier and wavelength tunable fiber laser with non-symmetric resonant cavity | |
CN104078827A (en) | Multi-wavelength erbium-doped fiber laser with multiple tuning functions | |
Yao et al. | Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity | |
CN106207724A (en) | A kind of tunable single-frequency optical fiber laser and its implementation | |
CN113572003B (en) | Channel interval tunable multi-wavelength fiber laser based on double Sagnac rings | |
CN106911061B (en) | Tunable Brillouin's Raman multi-wavelength optical fiber laser | |
CN210379755U (en) | Single longitudinal mode laser based on micro-nano optical fiber annular junction and testing device | |
Yeh et al. | Feedback-injected erbium fiber laser with selectable tunability and constant single-longitudinal-mode characteristic | |
CN1599283B (en) | Long-wave band erbium-doped fibre-optical superflourescence light source of high-power and high-smooth | |
Cheng et al. | Tunable and switchable dual-wavelength Er-doped fiber ring laser using ASEs | |
Marconi et al. | Nearly 100 nm bandwidth of flat gain with a double-pumped fiber optic parametric amplifier | |
Sulaiman et al. | Effect of PMF length to channel spacing tunability by temperature in multiwavelength fiber laser | |
Lu et al. | Multi-wavelength fiber ring laser based on a chirped moiré fiber grating and a semiconductor optical amplifier | |
Ahmad et al. | Tunable dual-wavelength bismuth fiber laser with 37.8-GHz frequency spacing | |
CN1588151A (en) | Multiple wave length simultaneously exciting erbium blended optical fiber laser working and room temperature | |
CN113131322B (en) | Mode locking fiber laser | |
Ummy et al. | Tunable multi-wavelength SOA based linear cavity fiber laser source for optical communications applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |