TW552681B - Phase change memory and manufacturing method thereof - Google Patents

Phase change memory and manufacturing method thereof Download PDF

Info

Publication number
TW552681B
TW552681B TW91107978A TW91107978A TW552681B TW 552681 B TW552681 B TW 552681B TW 91107978 A TW91107978 A TW 91107978A TW 91107978 A TW91107978 A TW 91107978A TW 552681 B TW552681 B TW 552681B
Authority
TW
Taiwan
Prior art keywords
epitaxial layer
phase change
layer
change memory
patent application
Prior art date
Application number
TW91107978A
Other languages
Chinese (zh)
Inventor
Mu-Yi Liu
Tso-Hung Fan
Kwang-Yang Chan
Yen-Hung Yeh
Tao-Cheng Lu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW91107978A priority Critical patent/TW552681B/en
Application granted granted Critical
Publication of TW552681B publication Critical patent/TW552681B/en

Links

Abstract

The present invention provides a manufacturing method of phase change memory, which is applied in a semiconductor substrate. The method comprises firstly forming an N+ epitaxial layer and an N- epitaxial layer on the semiconductor substrate; next forming a first shallow trench isolation structure in the N+ epitaxial layer and an N- epitaxial layer to isolate the predetermined word line region, and forming a second shallow trench isolation structure in the said N- epitaxial layer to isolate the predetermined P+ doped region; then forming and defining an insulative layer and applying an N+ doping on part of the N- epitaxial layer to form an N+ epitaxial layer electrically connected to the N+ epitaxial layer, and applying P+ doping to the N+ epitaxial layer to form a P+ doped region; forming a contact plug on the N+ epitaxial layer and P+ doped region through the insulative region; forming an electrode having an upper electrode, a phase change layer and a lower electrode on each of the contact plugs.

Description

552681 五、發明說明(1) 發明領域 本發明係有關於一種記憶體,特別是有關相變化記憶 體及其製造方法。 °心 相關技術之描述552681 V. Description of the invention (1) Field of the invention The present invention relates to a memory, in particular to a phase change memory and a manufacturing method thereof. ° Heart Related Technology Description

第1圖係顯示傳統之相變化記憶體結構。此^目變化記 憶體結構包括一半導體基底1〇、一N+摻雜層12形成於半導 體基底10之上、一 N-摻雜層14形成於N +摻雜層12之上、一 N+掺雜區16形成於N-摻雜層14中、一P+摻雜區18形成於N -掺雜層14中、一絕緣層20形成於半導體基底10上,絕緣層 20可為氧化物層。接觸插塞2 2包括一障壁層24及一金屬層 26。電極28分別形成於各接觸插塞22上,電極28具有上電 極34、相變化層32及下電極30。 上述傳統相變化記憶體結構中的N+摻雜區及卜摻雜區 之厚度及掺雜濃度難以控制致使無法調整崩潰電壓 (BDV)。且相鄰P + /P+區間及相鄰字元線/字元線間易發生 擊穿(punch)。因此元件尺寸不易縮小。 發明之概述及目的 由於半導體元件朝向更大型積體電路元件發展,所以 縮小特徵線寬和多層化是必須的。 有鑑於此,本發明之目的即在提供一種相 及其製造方法其藉由使用磊晶層及STI淺溝槽隔離結構〜 (shallow trench isolation ;STI)來取代傳統之離子佈 植。使用磊晶層可增加N+摻雜區及N-摻雜區之厚度及控制 均勻之摻雜濃度以調整崩潰電壓(BDV)。使用STI$溝^隔Figure 1 shows the structure of a conventional phase change memory. The modified memory structure includes a semiconductor substrate 10, an N + doped layer 12 formed on the semiconductor substrate 10, an N-doped layer 14 formed on the N + doped layer 12, and an N + doped layer. The region 16 is formed in the N-doped layer 14, a P + doped region 18 is formed in the N-doped layer 14, and an insulating layer 20 is formed on the semiconductor substrate 10. The insulating layer 20 may be an oxide layer. The contact plug 22 includes a barrier layer 24 and a metal layer 26. Electrodes 28 are formed on the contact plugs 22, respectively. The electrodes 28 include an upper electrode 34, a phase change layer 32, and a lower electrode 30. The thickness and doping concentration of the N + doped region and the Bu doped region in the conventional phase change memory structure are difficult to control, so that the breakdown voltage (BDV) cannot be adjusted. And the adjacent P + / P + interval and the adjacent character line / character line are prone to breakdown. Therefore, the component size cannot be easily reduced. SUMMARY AND OBJECTS OF THE INVENTION As semiconductor devices are moving toward larger integrated circuit devices, it is necessary to reduce feature line widths and multilayers. In view of this, an object of the present invention is to provide a phase and a manufacturing method thereof, which replace the traditional ion implantation by using an epitaxial layer and a shallow trench isolation structure (STI). The use of an epitaxial layer can increase the thickness of the N + doped region and the N-doped region and control the uniform doping concentration to adjust the breakdown voltage (BDV). Use STI $ trench

552681552681

離結構可防止相鄰P + /P+區| 穿(punch)。因而可大幅縮y 根據上述目的,本發明 方法,適用於一半導體基底 成 N + 日日層及—n -蠢晶層 磊晶層内形成一第一淺溝槽 區及於上述N-磊晶層内形成 預定之P+摻雜區。其次,形 上述N-遙晶層施行一N +摻雜 層之N+摻雜區且對於上述N + P+摻雜區。然後,於上述N + 形成一穿過上述絕緣層之接 插塞上形成具有上電極、相 本發明另提供一種相變 底;一N+磊晶層,形成於該 形成於該N +蟲晶層上;一第 N+磊晶層及N-磊晶層内以隔 區,形成於該N-磊晶層中; 於該N-磊晶層内以隔離該p + 該N -磊晶層内且電性連接該 巧及相鄰字元線/字元線間之擊 丨、元件尺寸。 提供一種相變化記憶體的製造 ’首先於上述半導體基底上形 。接著,於上述N+羞晶層及N-隔離結構以隔離預定之字元線 一第二淺溝槽隔離結構以隔離 成及定義一絕緣層且對於部分 以形成一電性連接上述N+磊晶 磊晶層施行一P+摻雜以形成一 摻雜區及上述P+摻雜區上分別 觸插塞。最後,於各上述接觸 變化層及下電極之電極。 化記憶體,包括:一半導體基 半導體基底上;一N-磊晶層, 一淺溝槽隔離結構,形成於該 離預定之字元線區;一P+摻雜 一第二淺溝槽隔離結構,形成 摻雜區;一 N +摻雜區,形成於 M+磊晶層;接觸插塞,分別形The separation structure prevents adjacent P + / P + regions | from punching. Therefore, the method can be greatly reduced. According to the above purpose, the method of the present invention is suitable for forming a first shallow trench region in a semiconductor substrate into an N + solar layer and an -n-stupid layer epitaxial layer and in the above-mentioned N-epitaxial layer. A predetermined P + doped region is formed in the layer. Secondly, an N + doped region of an N + doped layer is applied to the above N-telecrystalline layer and the N + P + doped region is performed. Then, an upper electrode is formed on the above N + forming a plug through the insulating layer. The present invention also provides a phase change bottom; an N + epitaxial layer is formed on the N + insect crystal layer. A partition is formed in the N + epitaxial layer and the N + epitaxial layer; the P + epitaxial layer is isolated from the p + Sexually connect the device and the adjacent character line / character line, and the component size. To provide a method for manufacturing a phase change memory is first formed on the semiconductor substrate. Next, a predetermined shallow word-line isolation structure is isolated on the above N + shading layer and N-isolation structure to isolate and define an insulating layer, and for the part to form an electrical connection to the above N + epitaxial The crystal layer performs a P + doping to form a doped region and a contact plug on the P + doped region. Finally, the electrodes of each of the contact change layers and the lower electrode are used. Memory, including: a semiconductor-based semiconductor substrate; an N-epitaxial layer; a shallow trench isolation structure formed in the predetermined zigzag line region; a P + doped second shallow trench isolation structure , Forming a doped region; an N + doped region formed in the M + epitaxial layer; contact plugs, respectively

成於該N+摻雜區及P+摻雜區;以及電極,分別形成於各該 接觸插塞上’具有上電極、相變化層及下電極。該第一淺 溝槽隔離結構亦可形成於該N+磊晶層、N-磊晶層及半導體 基底内。Formed on the N + doped region and the P + doped region; and electrodes are formed on each of the contact plugs', respectively, having an upper electrode, a phase change layer, and a lower electrode. The first shallow trench isolation structure may also be formed in the N + epitaxial layer, the N- epitaxial layer, and the semiconductor substrate.

0389-7381twf(n);IDF200111334;P900527;YCCHEN>ptd 第 6 頁 552681 五'發明說明(3) 實施例 ▲ 首先,睛參照第2圖,係顯示根據本發明實施例之相 變化§己憶體結構之上視圖。此相變化記憶體結構包括一半 導體基底100 ; —絕緣層111形成於半導體基底1〇〇上,絕 緣層111可為氧化物層。此相變化記憶體結構尚,包括一 P + 摻雜區11 7、一字元線200、一位元線300、一第一淺溝槽 隔離結構106、一第二淺溝槽隔離結構11〇。 均0389-7381twf (n); IDF200111334; P900527; YCCHEN > ptd Page 6 552681 Five 'invention description (3) Examples ▲ First, referring to Figure 2, it shows the phase change according to the embodiment of the present invention. Structure top view. The phase change memory structure includes a semi-conductive substrate 100; an insulating layer 111 is formed on the semiconductor substrate 100, and the insulating layer 111 may be an oxide layer. This phase change memory structure still includes a P + doped region 11 7, a word line 200, a bit line 300, a first shallow trench isolation structure 106, and a second shallow trench isolation structure 11. . Even

第3至4圖係顯示根據第2圖之A A ’剖面圖,第5至8圖係 顯示根據第2圖之BB,剖面圖。請參照第3圖,本發明實施 例首先提供一半導體基底1〇〇,一 N +磊晶層1〇2及一 N -磊晶 層104接續形成於半導體基底1〇〇上。n +磊晶層1〇2及N-蠢 晶層104可施行選擇性磊晶法來形成,N+磊晶層102之厚度 較佳為400至600埃,而N -蠢晶層104之厚度較佳為8〇〇至 1 2 0 0 埃。 請參照第4圖,於半導體基底1〇〇、N+磊晶層1〇2及^ 磊晶層1 0 4内形成一第一淺溝槽隔離結構1 〇 6以隔離預定之 字元線區1 08。淺溝槽隔離結構的製作方法通常先選擇性 蝕刻半導體基底以形成淺溝槽,然後再將絕緣材料利用化 學氣相沈積法(chemical vapor deposition ;CVD),例如 常壓化學氣相沈積法(atmospheric pressure chemical vapor deposition ;APCVD)或次常壓化學氣相沈積法 (sub- atmospheric pressure chemical vapor deposition ; SAC VD)或是高密度電漿化學氣相沈積法 (high density plasma CVD ;HDP-CVD)將二氧化石夕等材料Figures 3 to 4 are cross-sectional views of AA 'according to Figure 2, and Figures 5 to 8 are cross-sectional views of BB according to Figure 2. Referring to FIG. 3, an embodiment of the present invention first provides a semiconductor substrate 100, an N + epitaxial layer 102 and an N-epitaxial layer 104 are successively formed on the semiconductor substrate 100. The n + epitaxial layer 102 and the N-stupid layer 104 may be formed by selective epitaxy. The thickness of the N + epitaxial layer 102 is preferably 400 to 600 Angstroms, and the thickness of the N-stupid layer 104 is smaller than Preferably it is from 800 to 12,000 Angstroms. Referring to FIG. 4, a first shallow trench isolation structure 10 is formed in the semiconductor substrate 100, the N + epitaxial layer 102 and the epitaxial layer 104 to isolate a predetermined word line region 1 08. The manufacturing method of a shallow trench isolation structure usually first selectively etches a semiconductor substrate to form a shallow trench, and then uses chemical vapor deposition (CVD) of the insulating material, such as atmospheric pressure chemical vapor deposition (atmospheric) pressure chemical vapor deposition (APCVD) or sub-atmospheric pressure chemical vapor deposition (SAC VD) or high density plasma chemical vapor deposition (HDP-CVD) Stone dioxide and other materials

552681 五、發明說明(4) 填入上述淺溝槽,然後施以化學機械研磨法(CMP)平垣化 上述二氧化矽材料,而留下淺溝槽隔離結構。 請參照第5圖,於N-磊晶層1〇4内形成一第二淺溝槽隔 離結構11 0以隔離預定之P+摻雜區1 09。第二淺溝槽隔離矣士 構110可利用上述方法來製作。 ’ " 請參照第6圖,於N-磊晶層104上形成一絕緣層丨^, 之後利用光阻11 2定義絕緣層111。絕緣層111較佳為使用 低壓化學氣相沈積法來沈積四乙基矽酸鹽552681 5. Description of the invention (4) Fill the above shallow trench, and then apply chemical mechanical polishing (CMP) to flatten the above silicon dioxide material, leaving a shallow trench isolation structure. Referring to FIG. 5, a second shallow trench isolation structure 110 is formed in the N-epitaxial layer 104 to isolate a predetermined P + doped region 109. The second shallow trench isolation trench structure 110 can be fabricated using the method described above. &Quot; Referring to FIG. 6, an insulating layer is formed on the N-epitaxial layer 104, and then the insulating layer 111 is defined by using a photoresist 112. The insulating layer 111 is preferably deposited by using a low-pressure chemical vapor deposition method.

(tetra-ethyl-ortho-silicate ;TEOS)。絕緣層 Hi 之厚 度較佳為2000至3000埃。接著使用非等向性反應離子餘刻 來餘刻絕緣層111以形成一第一開口 11 3,再經由第一開口 11 3對於N -蠢晶層1 〇 4施行一 N +摻雜以形成一電性連接n +遙 晶層102之N+摻雜區114。N+摻雜較佳為施行砷或磷離子佈 植’濃度較佳為1015至2 X 1(P atoms/cm2 ,能量較佳為 10 至30 keV。 …、 請參照第7圖,利用光阻11 5定義絕緣層丨丨丨,接著使 用非等向性反應離子蝕刻來蝕刻絕緣層丨丨1以形成一第二 開口 116 ’再經由第二開口116對於N-磊晶層丨以施行一 ^ 摻雜以形成一P+摻雜區117。!>+摻雜較佳為施行硼離子佈 植,濃度較佳為1015至1 X 1 〇i6 atomc:/ 2 从田冬 at〇ms/cm2 ,能量較佳為 1 至3 keV 〇 請參照第8圖,於第一開 入示 一 rn U 1 1 D PJ ^ 形成一接觸插塞118,接觸插塞118包括一 金屬層120。障壁層119較佳為使用化風> s ~災用化學軋相沈積法來沈積(tetra-ethyl-ortho-silicate; TEOS). The thickness of the insulating layer Hi is preferably 2000 to 3000 Angstroms. Then, anisotropic reactive ions are used to leave the insulating layer 111 to form a first opening 11 3, and then an N + doping is performed on the N-stupid crystal layer 104 through the first opening 1 13 to form a The N + doped region 114 of the n + telecrystal layer 102 is electrically connected. The N + doping is preferably performed by arsenic or phosphorus ion implantation. The concentration is preferably 1015 to 2 X 1 (P atoms / cm2, and the energy is preferably 10 to 30 keV.... Please refer to FIG. 7 and use the photoresist 11 5 define the insulating layer, and then use anisotropic reactive ion etching to etch the insulating layer. 1 to form a second opening 116 'and then to the N-epitaxial layer through the second opening 116. Doped to form a P + doped region 117! ≫ + doping is preferably performed with boron ion implantation, and the concentration is preferably 1015 to 1 X 1 〇i6 atomc: / 2 from Tiandong at 0ms / cm2, energy It is preferably 1 to 3 keV. Please refer to FIG. 8 to show a rn U 1 1 D PJ at the first opening. A contact plug 118 is formed, and the contact plug 118 includes a metal layer 120. The barrier layer 119 is preferred In order to use the chemical wind > s ~ disaster chemical deposition method for deposition

552681 五、發明說明(5) 氮化鈦。金屬層1 2 0較佳為使用物理氣相沈積法來沈積鋁 或銅。接著於接觸插塞118上形成具有上電極126、相變化 層124及下電極122之電極128。 第8圖係顯示根據本發明實施例之相變化記憶體結 構,此相變化記憶體結構包括一半導體基底1 Ο(Γ、一N+磊 晶層102、一N-磊晶層104、一第一淺溝槽隔離結構1〇6 (顯 示在第4圖)、一第二淺溝槽隔離結構11〇、一N+摻雜區 114、一 P+摻雜區117、接觸插塞118及電極128。 第一淺溝槽隔離結構106形成於半導體基底1〇〇、N+磊 晶層102及N-磊晶層104内以隔離預定之字元線區108(顯示 在第4圖)°P+摻雜區117形成於N-磊晶層104中。第二淺溝 槽隔離結構110形成於N -磊晶層1〇4内以隔離P +摻雜區 117。料摻雜區114形成於N-磊晶層1 〇4内且電性連接N+蟲 晶層102。接觸插塞118分別形成於N +摻雜區Π4及P +摻雜 區11 7上。電極1 28分別形成於各接觸插塞丨18上,電極128 具有上電極126、相變化層124及下電極122。 N+蠢晶層102之厚度較佳為4〇〇至6〇〇埃,而磊晶層 104之厚度較佳為8〇〇至1200埃。第一淺溝槽隔離結構 及第二淺溝槽隔離結構11〇可利用上述方法來製作。 本發明藉由使用磊晶層可增加“摻雜區—摻雜區之 厚度及控制均勻之摻雜濃度以調整崩潰電壓(BDV )。使用 淺溝槽隔離結構可防止相鄰p + /p+區間及相鄰字元線/ 字兀線間之擊穿(punch)。因而可大幅縮小元件尺寸。 雖然本發明已以較佳實施例揭露如上,然其並非用以552681 V. Description of the invention (5) Titanium nitride. The metal layer 120 is preferably deposited using physical vapor deposition. An electrode 128 having an upper electrode 126, a phase change layer 124, and a lower electrode 122 is formed on the contact plug 118. FIG. 8 shows a phase change memory structure according to an embodiment of the present invention. The phase change memory structure includes a semiconductor substrate 10 (Γ, an N + epitaxial layer 102, an N-epitaxial layer 104, a first Shallow trench isolation structure 106 (shown in FIG. 4), a second shallow trench isolation structure 110, an N + doped region 114, a P + doped region 117, a contact plug 118, and an electrode 128. A shallow trench isolation structure 106 is formed in the semiconductor substrate 100, N + epitaxial layer 102, and N- epitaxial layer 104 to isolate a predetermined zigzag line region 108 (shown in FIG. 4) ° P + doped region 117 Formed in the N-epitaxial layer 104. A second shallow trench isolation structure 110 is formed in the N-epitaxial layer 104 to isolate the P + doped region 117. The material doped region 114 is formed in the N-epitaxial layer. The N + worm crystal layer 102 is electrically connected within 104, and the contact plugs 118 are formed on the N + doped regions Π4 and P + doped regions 11 7. The electrodes 1 28 are formed on the contact plugs 18 and 18, respectively. The electrode 128 has an upper electrode 126, a phase change layer 124, and a lower electrode 122. The thickness of the N + stupid crystal layer 102 is preferably from 4,000 to 600 angstroms, and the thickness of the epitaxial layer 104 is preferably from 8000 to 6,000. 1200 Angstroms The first shallow trench isolation structure and the second shallow trench isolation structure 11 can be fabricated by using the above method. The present invention can increase the "doped region-the thickness of the doped region and control the uniform doping by using an epitaxial layer". The impurity concentration is used to adjust the breakdown voltage (BDV). The use of shallow trench isolation structure can prevent punching between adjacent p + / p + sections and adjacent word lines / word lines. Therefore, the component size can be greatly reduced. Although the present invention has been disclosed above in the preferred embodiment, it is not intended to

552681 五、發明說明(6) 限定本發明,任何熟習此項技藝者,在不脫離本發明之精 神和範圍内,當可作更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。552681 V. Description of the invention (6) The invention is limited. Any person skilled in the art can make changes and decorations without departing from the spirit and scope of the invention. Therefore, the scope of protection of the invention shall be regarded as the attached patent. The scope defined shall prevail.

0389-7381twf(n);IDF200111334;P900527;YCCHEN.ptd 第 10 頁 552681 圖式簡單說明 圖式之簡單說明 第1圖係顯示傳統之相變化記憶體結構的剖面圖。 第2圖係顯示根據本發明實施例之相變化記憶體結構 之上視圖。 第3至8圖係根據本發明實施例之相變化記“體的製程 剖面圖。 符號說明 100〜半導體基底; 102〜N +蠢晶層; 104〜N-磊晶層; I 0 6〜第一淺溝槽隔離結構; II 0〜第二淺溝槽隔離結構; 114〜N+摻雜區; 117〜P+摻雜區; 11 8〜接觸插塞; 1 2 8〜電極, 108〜預定之字元線區; 1 2 6〜上電極; 124〜相變化層; ¥ I 2 2〜下電極; II 9〜障壁層; 1 2 0〜金屬層; 111〜絕緣層; 2 0 0字元線;0389-7381twf (n); IDF200111334; P900527; YCCHEN.ptd Page 10 552681 Simple explanation of the diagram Simple explanation of the diagram Figure 1 is a sectional view showing the structure of a conventional phase change memory. Fig. 2 is a top view showing a phase change memory structure according to an embodiment of the present invention. Figures 3 to 8 are cross-sectional views of the fabrication process of the body according to the phase change in the embodiment of the present invention. Symbol description 100 ~ semiconductor substrate; 102 ~ N + stupid layer; 104 ~ N- epitaxial layer; I 0 6 ~ A shallow trench isolation structure; II 0 to a second shallow trench isolation structure; 114 to N + doped regions; 117 to P + doped regions; 11 8 to contact plugs; 1 2 8 to electrodes, 108 to a predetermined word Yuan line area; 1 2 6 ~ upper electrode; 124 ~ phase change layer; ¥ I 2 2 ~ lower electrode; II 9 ~ barrier layer; 1 2 0 ~ metal layer; 111 ~ insulating layer; 2 0 word line;

0389-7381twf(n);IDF200111334;P900527;YCCHEN.ptd 第 11 頁 552681 圖式簡單說明3 0 0〜位元線。 0389-7381twf(n);IDF200111334;P900527;YCCHEN.ptd 第 12 頁0389-7381twf (n); IDF200111334; P900527; YCCHEN.ptd page 11 552681 The diagram briefly explains 3 0 0 ~ bit lines. 0389-7381twf (n); IDF200111334; P900527; YCCHEN.ptd page 12

Claims (1)

552681 六、申請專利範圍 1 · 一種相變化記憶體的製造方法,適用於一半導體基 底,包括下列步驟: ι 於該半導體基底上形成一N +蠢晶層; 於該N+磊晶層上形成一n—磊晶層; 於該N+蠢晶層及該N-磊晶層内形成一第—淺'溝槽隔離 結構以隔離預定之字元線區; 曰 於該N-磊晶層内形成一第二淺溝槽隔離結構以隔離預 定之P+摻雜區;552681 VI. Application Patent Scope 1. A method for manufacturing a phase change memory suitable for a semiconductor substrate, including the following steps: ι forming an N + stupid crystal layer on the semiconductor substrate; forming an N + epitaxial layer on the semiconductor substrate n- epitaxial layer; forming a first-shallow 'trench isolation structure in the N + epitaxial layer and the N- epitaxial layer to isolate a predetermined word line region; A second shallow trench isolation structure to isolate a predetermined P + doped region; 於該N -蟲晶層上形成一絕緣詹; 疋義該絕緣層以形成一第一開口且經由該第一開口對 於該N-磊晶層施行一N+摻雜以形成一電性連接該磊晶層 之N +摻雜區; 以 日日曰 定義該絕緣層以形成一第二開口且經由該第二開口且 對於該N -磊晶層施行一 p +摻雜以形成一 p +摻雜區; 於A第開口及該第二開口内分別形成一接觸插塞; 以及 於各該接觸插塞上形成具有上電極、相變化層及下電 極之電極。An insulating layer is formed on the N-worm crystal layer; the insulating layer is defined to form a first opening and an N + doping is performed on the N- epitaxial layer through the first opening to form an electrical connection to the epitaxial layer. N + doped region of the crystal layer; define the insulating layer to form a second opening through the second opening and perform a p + doping on the N-epitaxial layer to form a p + doping through the second opening A contact plug is formed in each of the A-th opening and the second opening; and an electrode having an upper electrode, a phase change layer, and a lower electrode is formed on each of the contact plugs. 、2·如申請專利範圍第丨項所述之相變化記憶體的製造 方法’其中’該N+蠢晶層之厚度為4〇〇至6〇()埃。 、3 ·如申睛專利範圍第1項所述之相變化記憶體的製造 方法,其中,該N-磊晶層之厚度為8〇〇至12〇〇埃。 、4 ·如申请專利範圍第1項所述之相變化記憶體的製造 方法,其中,該第一淺溝槽隔離結構是形成於該卜磊晶層2. The method for manufacturing a phase change memory according to item 丨 in the scope of the patent application, wherein the thickness of the N + stupid crystal layer is 400 to 60 Å. 3. The method for manufacturing a phase change memory as described in item 1 of the Shenjing patent range, wherein the thickness of the N-epitaxial layer is 800 to 12,000 Angstroms. 4. The method for manufacturing a phase change memory as described in item 1 of the scope of the patent application, wherein the first shallow trench isolation structure is formed on the pallite layer 552681 六、申請專利範圍 ;一";— 及該N+磊晶層中。 5·如申請專利範圍第1項所述之相變化記憶體的製造 方法,其中,該第一淺溝槽隔離結構是施行乾式或渴 刻來形成。 ^ 6 ·如申請專利範圍第1項所述之相變化記憶奴的製造 方法,其中,該第二淺溝槽隔離結構是施行乾式或渴 刻來形成。 ^ 7·如申請專利範圍第1項所述之相變化記憶體的製造 方法’其中’該N+摻雜是施行砷或磷離子佈植。552681 6. Scope of patent application; a " — and the N + epitaxial layer. 5. The method for manufacturing a phase change memory as described in item 1 of the scope of patent application, wherein the first shallow trench isolation structure is formed by performing dry or thirst etching. ^ 6 The method for manufacturing a phase-change memory slave as described in item 1 of the scope of the patent application, wherein the second shallow trench isolation structure is formed by performing a dry process or an etching process. ^ 7. The method for manufacturing a phase change memory as described in item 1 of the scope of the patent application, wherein 'the N + doping is performed by arsenic or phosphorus ion implantation. 8·如申請專利範圍第丨項所述之相變化記憶體的製造 方法,其中,該N +摻雜之濃度為1〇15至2 X l〇u atoms/cm2 ,能量為 1 〇 至30 keV。 9·如申請專利範圍第1項所述之相變化記憶體的製造 方法,其中,該P+摻雜是施行硼離子佈植。 I 0 ·如申請專利範圍第1項所述之相變化記憶體的製造 方法,其中,該N+摻雜之濃度為1015至1 X 1016 atoms/cm2 ,能量為1 至3 keV。8. The method for manufacturing a phase change memory as described in item 丨 of the patent application scope, wherein the concentration of the N + doping is 1015 to 2 X 10u atoms / cm2 and the energy is 10 to 30 keV . 9. The method for manufacturing a phase change memory according to item 1 of the scope of patent application, wherein the P + doping is performed by implanting boron ions. I 0 · The method for manufacturing a phase change memory as described in item 1 of the scope of patent application, wherein the concentration of the N + doping is 1015 to 1 X 1016 atoms / cm2 and the energy is 1 to 3 keV. II ·如申請專利範圍第1項所述之相變化記憶體的製造 方法’其中’該絕緣層為四乙基梦酸鹽 (tetra-ethyl-ortho-silicate , TE0S) 〇 1 2 ·如申請專利範圍第1項所述之相變化記憶體的製造 方法,其中,該絕緣層之厚度為2000至3000埃。 1 3 · —種相變化記憶體,包括: 一半導體基底;II · Method for manufacturing phase change memory as described in item 1 of the scope of patent application 'wherein' the insulating layer is tetra-ethyl-ortho-silicate (TEOS) 〇1 2 · as patent application The method for manufacturing a phase change memory according to the first item, wherein the thickness of the insulating layer is 2000 to 3000 Angstroms. 1 3 · — a phase change memory, including: a semiconductor substrate; 0389-7381twf(n);IDF200111334;P900527;YOCHEN.ptd 第 14 頁 552681 六、申請專利範圍 N+蠢晶層’形成於該半導體基底上; 蠢晶層,形成於該N+磊晶層上; 曰@ :第一淺溝槽隔離結構,形成於該N+磊晶層及該N-磊 曰曰層内以隔離預定之字元線區; —P+摻雜區,形成於該N_磊晶層中; , 一第二淺溝槽隔離結構,形成於該N—磊晶層内以隔離 該P +摻雜區; 一N+摻雜區,形成於該N_磊晶層内且電性連接該N+磊 晶層;0389-7381twf (n); IDF200111334; P900527; YOCHEN.ptd page 14 552681 VI. Patent application scope N + stupid crystal layer 'is formed on the semiconductor substrate; stupid crystal layer is formed on the N + epitaxial layer; A first shallow trench isolation structure formed in the N + epitaxial layer and the N- epitaxial layer to isolate a predetermined word line region; a P + doped region formed in the N_ epitaxial layer; A second shallow trench isolation structure formed in the N- epitaxial layer to isolate the P + doped region; an N + doped region formed in the N_ epitaxial layer and electrically connected to the N + epitaxial layer Crystal layer 接觸插塞,分別形成於該N+摻雜區及P+摻雜區上;以 及 電極,分別形成於各該接觸插塞上,具有上電極、、相 變化層及下電極。 1 4·如申請專利範圍第1 3項所述之相變化記憶體,其 中,該N+磊晶層之厚度為4〇〇至600埃。 1 5·如申請專利範圍第丨3項所述之相變化記憶體,其 中,該N-磊晶層之厚度為8〇〇至12〇〇埃。Contact plugs are formed on the N + doped region and P + doped region, respectively; and electrodes are formed on the contact plugs, respectively, and have an upper electrode, a phase change layer, and a lower electrode. 14. The phase change memory according to item 13 of the scope of the patent application, wherein the thickness of the N + epitaxial layer is 400 to 600 Angstroms. 15. The phase change memory as described in item 3 of the patent application scope, wherein the thickness of the N-epitaxial layer is 800 to 12,000 Angstroms. 1 6 ·如申請專利範圍第1 3項所述之相變化記憶體,其 中,該第一淺溝槽隔離結構是形成於該N -蠢晶層及該N +蟲 晶層中。 1 7 ·如申請專利範圍第1 3項所述之相變化記憶體’其 中,該第一淺溝槽隔離結構是施行乾式或濕式蝕刻來形 成。 1 8 ·如申請專利範圍第1 3項所述之相變化記憶體’其16. The phase change memory as described in item 13 of the scope of the patent application, wherein the first shallow trench isolation structure is formed in the N-stupid crystal layer and the N + insect layer. 1 7. The phase change memory according to item 13 of the scope of the patent application, wherein the first shallow trench isolation structure is formed by performing dry or wet etching. 1 8 · The phase change memory described in item 13 of the scope of patent application ’ 552681 六、申請專利範圍 中,該第二淺溝槽隔離結構是施行乾式或濕式蝕刻來形 成。 1 9.如申請專利範圍第1 3項所述之相變化記憶體,其 中,該N+磊晶層是施行選擇性磊晶法來形成。 2 0.如申請專利範圍第1 3項所述之相變化記:隐體,其 中,該N-磊晶層是施行選擇性磊晶法來形成。552681 6. In the scope of patent application, the second shallow trench isolation structure is formed by dry or wet etching. 19. The phase change memory according to item 13 of the scope of the patent application, wherein the N + epitaxial layer is formed by a selective epitaxy method. 20. The phase change record as described in item 13 of the scope of patent application: hidden body, in which the N-epitaxial layer is formed by a selective epitaxial method. 0389-73811wf(η);IDF200111334;Ρ900527;YCCHEN.ptd 第 16 頁0389-73811wf (η); IDF200111334; P900527; YCCHEN.ptd page 16
TW91107978A 2002-04-18 2002-04-18 Phase change memory and manufacturing method thereof TW552681B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91107978A TW552681B (en) 2002-04-18 2002-04-18 Phase change memory and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91107978A TW552681B (en) 2002-04-18 2002-04-18 Phase change memory and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW552681B true TW552681B (en) 2003-09-11

Family

ID=31713508

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91107978A TW552681B (en) 2002-04-18 2002-04-18 Phase change memory and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW552681B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667998B2 (en) 2005-08-30 2010-02-23 Samsung Electronics Co., Ltd. Phase change memory device and method of forming the same
US9209395B2 (en) 2007-04-03 2015-12-08 Micron Technology, Inc. Variable resistance memory with lattice array using enclosing transistors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667998B2 (en) 2005-08-30 2010-02-23 Samsung Electronics Co., Ltd. Phase change memory device and method of forming the same
US9209395B2 (en) 2007-04-03 2015-12-08 Micron Technology, Inc. Variable resistance memory with lattice array using enclosing transistors
US10109347B2 (en) 2007-04-03 2018-10-23 Ovonyx Memory Technology, Llc Variable resistance memory with lattice array using enclosing transistors
US10573384B2 (en) 2007-04-03 2020-02-25 Ovonyx Memory Technology, Llc Variable resistance memory with lattice array using enclosing transistors
US11763885B2 (en) 2007-04-03 2023-09-19 Ovonyx Memory Technology, Llc Variable resistance memory with lattice array using enclosing transistors

Similar Documents

Publication Publication Date Title
TW495906B (en) Single sided buried strap
TW569451B (en) Process for fabricating a vertical bipolar junction transistor, process for fabricating an integrated circuit structure, and integrated circuit structure
TW405262B (en) A process for forming a high density semiconductor device
TW478091B (en) Method for increasing the VLSI capacitor size on bulk silicon and silicon-on-insulator (SOI) wafers and structure formed thereby
TW441128B (en) Semiconductor device and method for producing the same
CN109841680A (en) Semiconductor device
TW200423308A (en) Method for forming vertical transistor and trench capacitor
JPS6232630A (en) Formation of contact plug
TW201250935A (en) Semiconductor device and method of manufacturing the same
TW451425B (en) Manufacturing method for memory cell transistor
TWI237872B (en) A method of forming ferroelectric memory cell
TWI226106B (en) Novel method for making three-dimensional metal-insulator-metal capacitors for dynamic random access memory and ferroelectric random access memory
CN109904162A (en) A kind of ferroelectric storage unit and its manufacturing method
TWI224353B (en) Semiconductor-on-insulator (SOI) device with hyperabrupt source/drain junctions
TW466776B (en) Process for manufacturing semiconductor memory device and semiconductor memory device
US6538287B2 (en) Method and structure for stacked DRAM capacitors and FETs for embedded DRAM circuits
TW552681B (en) Phase change memory and manufacturing method thereof
JP2012059781A (en) Semiconductor device, and method of manufacturing the same
TW319911B (en) Manufacturing method of resistor by using contact hole with high aspect ratio
TW200845390A (en) Semiconductor structure including stepped source/drain region
CN1189922C (en) Manufacture of integrated self-aligned metal silicide gate of embedded DRAM
TW538500B (en) Method of manufacturing gate of field effect transistor
TW408486B (en) The manufacture method of crown shape capacitor with rough surface
TWI773086B (en) Method for forming three-dimensional memory device
CN105575783B (en) A kind of semiconductor devices and its manufacture method, electronic device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent