TW552613B - The drive of wafer stepper - Google Patents

The drive of wafer stepper Download PDF

Info

Publication number
TW552613B
TW552613B TW88112238A TW88112238A TW552613B TW 552613 B TW552613 B TW 552613B TW 88112238 A TW88112238 A TW 88112238A TW 88112238 A TW88112238 A TW 88112238A TW 552613 B TW552613 B TW 552613B
Authority
TW
Taiwan
Prior art keywords
platform
displacement
axis
friction
motion
Prior art date
Application number
TW88112238A
Other languages
Chinese (zh)
Inventor
Suo-Hung Jang
Sheng-Shian Li
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW88112238A priority Critical patent/TW552613B/en
Application granted granted Critical
Publication of TW552613B publication Critical patent/TW552613B/en

Links

Abstract

A piezoelectric-driven 2-D stage (X-Y axis) utilizing the frictional stick-slip effect and inertia force can be designed and fabricated to achieve ultra high resolution and long travel range. Based upon the principle of elastic deformation, a high resolution piezoelectric-driven micropositioner (Z-axis) is designed and fabricated. Moreover, a CD pick-up head and analog linear controller are integrated with Z-axis micropositioner to be a autofocus system. This design is based upon the requirement of the optical lithography development by using 193 nm Excimer Laser. During this special lithography process, Z-axis micropositioner is needed for the laser beam focusing. A 2-D X-Y stepper is also needed for the movement of the wafer under laser exposure. The wafer stepper is based on the step-repeat and step-scan processes.

Description

552613 五、創作說明(1) 產業上之利用領域 本創作設計一二自由度(X-Y軸)移動之長行程高精密 定位工作平台;並使用雷射光讀取頭作為一成本低廉之光 學探頭,配合Z軸壓電式平台與類比線性控制器, 光學自動聚焦系統。 景 背 ㈣3精程的不斷進步,不論是半導體產業、精密 機械工業、生物細胞領域、光電系統 程、STM、SPM堂士 π 例^々再表面工 SPM專方面,皆朝微小化、精密化 因此對於微米級戋吹與伞姐沾—a么幻万向則進, 在工f X p π ^ 未的疋位糸統需求量日增,目兑 在工業界已經使用很多精密定位的儀器。 目則 乂同精後、疋位機構是構成晶片步進機 ^ 11ί工業界已經有很多精密定位的儀器或嗖備一環,而 的儀:因為侷限於其精確度,因此總位移旦诵〜但這類 大的行程約僅達20 0〜300 ,但以丰慕二:报小,最 加工為例,八时晶圓的表;:導體工業中的晶圓 類儀哭ί : θ曰圓加工技術已逐漸成為主、流,因I —吋甚 ,益而言,精密度有餘但總行 二因此對於這 把滿足未來半導體業及精密工業的需求的疋位特性,並不552613 V. Creation description (1) Industrial application field The creative design is a long-stroke high-precision positioning work platform with 12 degrees of freedom (XY axis) movement; and a laser light reading head is used as a low-cost optical probe. Z-axis piezoelectric stage and analog linear controller, optical autofocus system. Jingbei㈣3 The continuous improvement of the precision process, whether it is the semiconductor industry, precision machinery industry, biological cell field, photovoltaic system process, STM, SPM, etc. 々 々 Resurface engineering SPM specialization, are all toward miniaturization and precision, so For micron-scale blows and umbrellas, a-magic universal moves forward, and the demand for systems in the industry f X p π ^ is increasing, and many precision positioning instruments have been used in the industry. At present, the same mechanism is used to form the wafer stepper. 11ίIn the industry, there are already many precision positioning instruments or equipment, and the instrument: because of its accuracy, the total displacement is recited ~ but This type of large stroke is only about 200 ~ 300, but take Fengmu II: report small, the most processing as an example, the table of eight o'clock wafer :: wafer type instrument in the conductor industry cry: θ said round processing Technology has gradually become the main stream, because I-inch, beneficially speaking, there is more than precision, but the head office of the second, so this nibble characteristics to meet the needs of the future semiconductor industry and precision industry is not

第5頁 552613 五、創作說明(2) 為配合193 nm準分子雷射(Excimer Laser)之光學|虫 刻微影術發展目標,必須進行高精度單自由度(Z軸)壓電 式平台,與雙自由度(X_Y軸)步進平台的設計與製造。其 中單自由度致動器乃是用於準分子雷射之聚焦應用,而光 學自動聚焦系統主要功能是使Ζ軸壓電式平台的工作平面 一直維持於準分子雷射的聚焦工作範圍内,雙自由度步進 平台乃作為重複步進投影(Step-Repeat-Projection)與步 進掃瞄投影(Step-Scan-Pro ject ion)方式蝕刻晶片應用。Page 5 552613 V. Creative Instructions (2) In order to match the development goals of 193 nm Excimer Laser's optics | worm lithography, a high precision single-degree-of-freedom (Z-axis) piezoelectric platform must be performed. Design and manufacture of step platform with two degrees of freedom (X_Y axis). The single-degree-of-freedom actuator is used for focusing applications of excimer lasers, and the main function of the optical autofocus system is to keep the working plane of the Z-axis piezoelectric platform within the focusing range of the excimer laser. The two-degree-of-freedom stepping platform is used as a step-repeat-projection and step-scan-projection method for etching wafers.

第6頁 552613Page 6 552613

構成一光學自動聚焦系統。 本創作之尚有一目的,在於揭示一種二自由度(X — Y軸 )移動之長行程高精密定位工作平台。 552613 五、創作說明(4) 圖式部分: 第一圖 第二圖 第三圖 第四圖 第五圖 第六圖 第七圖 第八圖 第九圖 第十圖 第十一 第十二 第十三 晶片步進機之組成架構圖 致動機構架構圖 摩擦機構架構圖 摩擦驅動平台運動示意圖 |a)反復移動 ⑻單向 C c)固定 w期 輸入電壓訊號與輸出位移之關係圖 (a) 鋸齒波形輸入 (b) 脈衝波形輸入 光學自動聚焦系統示意圖 ^光讀#頭之訊號處理示意@ t焦誤差訊號之S曲線圖 晶片步進機運作方塊圖 軸摩擦驅動平台位移實驗圖(脈衝波形輸入) 圖.X-Y軸摩擦驅動平台位移實驗圖 (鋸齒波形輸入) =· Z軸壓電式平台位移實驗圖(階梯波形輸入) θ ·自動聚焦系統量測試件輪廓實驗圖Constructs an optical autofocus system. The purpose of this creation is to reveal a long-stroke high-precision positioning work platform with two degrees of freedom (X-Y axis) movement. 552613 V. Creation instructions (4) Schematic part: first picture second picture third picture fourth picture fifth picture sixth picture seventh picture eighth picture ninth picture tenth picture eleventh twelfth tenth Three-chip stepper structure diagram Actuating mechanism structure diagram Friction mechanism structure diagram Friction drive platform motion diagram | a) Repeated movement ⑻ one-way C c) Relation diagram of input voltage signal and output displacement in fixed period w (a) Sawtooth Waveform input (b) Schematic diagram of pulsed waveform input optical auto-focusing system ^ Optical reading #head signal processing diagram @ t-focus error signal of S curve chart wafer stepper operation block diagram Axis friction drive platform displacement experiment chart (pulse waveform input) Fig. XY friction platform displacement experiment chart (sawtooth waveform input) = · Z axis piezoelectric platform displacement experiment chart (staircase waveform input) θ · Autofocus system volume test piece outline experiment chart

I 圖號說明 致動機構 WOl·質量塊 1002.壓電致動器I Drawing number description Actuating mechanism WOl · mass block 1002. Piezoelectric actuator

第8頁 552613 五、創作說明(5) 2. 3. 1 0 0 3·平板葉片彈簧ι〇〇4•穿透切槽 固定底座 9 運動平台 3 1 ·摩擦介面 4·導引裝置 41·交又式滾柱滑座 5 ·量測系統 5 1 ·線性光學編碼器 6 ·摩擦機構 6 3 ·夾持塊 61 ·預力施加螺絲 6 2 ·不銹鋼墊片 6 5 ·摩擦底座 64 ·光纖套筒(〇 1 as s ρ i ber Ferru 1 e) X軸摩擦驅動平台 Y軸摩擦驅動平台 83·尺護蟲 功率放大器82·類比/數位卡(AD/DA) •聚焦誤差訊號處理電路 8 5 ·類比線性控制器 9· Z轴壓電式平台 91·壓電致動器 92 Ψ ^ ^ u ^ ^ 93.穿透切槽94.位移工作9平2.台千板式葉片彈貫 1 〇.試件式件夾具9 6.電容式位移感測器 1 1 *雷射光讀取頭 lu.雷射二極體112.分光透鏡Page 8552552 V. Creative Instructions (5) 2. 3. 1 0 0 3 · Flat leaf spring ι〇〇4 · Fixed base of penetrating slot 9 Motion platform 3 1 · Friction interface 4 · Guiding device 41 · Interchange Roller slider 5 · Measuring system 5 1 · Linear optical encoder 6 · Friction mechanism 6 3 · Clamping block 61 · Prestressing screw 6 2 · Stainless steel gasket 6 5 · Friction base 64 · Fiber optic sleeve (〇1 as s ρ i ber Ferru 1 e) X-axis friction drive platform Y-axis friction drive platform 83 · Ruler insect-proof power amplifier 82 · Analog / digital card (AD / DA) • Focus error signal processing circuit 8 5 · Analog Linear controller 9. Z-axis piezo stage 91. Piezo actuator 92 ^ ^ ^ u ^ ^ 93. Penetration slot 94. Displacement work 9 level 2. Taiwan plate type blade spring 1 〇. Test piece Type fixture 9 6. Capacitive displacement sensor 1 1 * Laser light reading head lu. Laser diode 112. Beamsplitter lens

$ 9頁 552613 五、創作說明(6)$ 9 pages 552613 V. Creative Instructions (6)

I 11 3 ·平行透鏡 1 1 4.像散透鏡 , 1 1 5.四分割光檢測器 11 6 ·物鏡 12· 光學避震平台 創作之詳細說明I 11 3 · Parallel lens 1 1 4. Astigmatic lens, 1 1 5. Quadruple light detector 11 6 · Objective lens 12 · Optical suspension platform

本創作使用現有之積層式壓電陶瓷作為位移致動器, 配合摩擦滯滑現象與慣性作用力,設計並製造一二自由度 (X-Y軸)移動之長行程高精密定位工作平台。另外依據材 料彈性變形的原理,設計並製造一單自由度(z軸)高位移 解析度之壓電式平台,並使用雷射光讀取頭作為一成本低 廉之光學探頭,配合z軸壓電式平台與類比線性控制器, 構成一光學自動聚焦系統。 Μ Υ =之晶片步進機分為三個子系…統進行論述,分別 為X、Υ軸摩擦驅動平台、Ζ轴壓電式平台與 系統。-種晶片步進機包含: 子目動來焦 底部了χ:電;ί;=Π(7、8),設置於晶片步進機之 轴之獨立運動 動其中之致動器’帶動平台作X軸及γ //χ ^ ^ « 擦驅動平台上方,故可完成χ,=,因^置於Χ-Υ軸磨This creation uses the existing multi-layer piezoelectric ceramics as a displacement actuator, and designs and manufactures a long-stroke high-precision positioning work platform with one or two degrees of freedom (X-Y axis) movement in conjunction with friction hysteresis and inertial forces. In addition, based on the principle of elastic deformation of materials, a single-degree-of-freedom (z-axis) high displacement resolution piezoelectric platform is designed and manufactured, and a laser light reading head is used as a low-cost optical probe in conjunction with the z-axis piezoelectric type The platform and the analog linear controller constitute an optical autofocus system. The wafer stepper of Μ Υ = is divided into three sub-systems ... All of them are discussed, which are X, Z axis friction drive platform, Z axis piezoelectric platform and system. -A kind of wafer stepper includes: sub-eye movement to focus the bottom χ: electricity; =; (Π, 7,8), the independent movement set on the axis of the wafer stepper moves the actuator 'to drive the platform to work X axis and γ // χ ^ ^ «Rub over the drive platform, so χ, = can be completed, because ^ is placed on the X-Χ axis grinding

第10頁 一軸方向之獨立運動 552613 五、創作說明(7) , 光學自動聚焦系統,設置於Z軸平台上方,其中之 光源與光感測器可投射光源至晶片上,及偵測晶片上之反 射光作光束聚焦信號之處理; /Z轴平台固定於χ — γ軸磨擦驅動平台之上,光學自動聚 焦系統固定於一高於晶片之另一底座上,光學自動聚焦系 、先=才又,光束至晶片表面上’晶片之反射光投射於光學自' 動聚焦系統内之光感測器,經聚焦誤差訊號處理電路(84) 及類比線性控制器(85),作訊號及閉路回饋控制以調整Ζ 車^平口贡動Ζ軸平台上之晶片,帶動ζ軸方向之運動,以 達到光束聚焦於晶片上。 本創作之各子系統概述·· 進m ί查委員能對於本案之結構、功效及優點有更 丄因ί將本創作之晶片步進機分為三個子ί 台與Ξ二動;隹ίχέ、γί摩擦驅動平台、ζ軸壓電式平 ”子 來......統,茲配合圖示詳細說明如後: % 動平台 請參照圖一所示,Y k # 動平台⑴之結構相同轴可摩八擦,動/台⑺與γ軸摩擦驅 構⑴、摩擦機構6、導引::二五個部分’分別為致動機 裝置(4)、量測系統(5)與控制系Page 10 Independent motion in one axis direction 552613 5. Creation instructions (7) The optical autofocus system is set above the Z-axis platform, where the light source and light sensor can project the light source onto the chip, and detect the light on the chip. Reflected light is used to process the beam focusing signal; / Z-axis stage is fixed on the χ — γ-axis friction drive stage, and the optical auto-focusing system is fixed on another base higher than the wafer. , The light beam is reflected on the surface of the wafer. “The light reflected from the wafer is projected on the optical auto-focusing system. The light sensor in the auto-focusing system passes the focus error signal processing circuit (84) and the analog linear controller (85) for signal and closed-loop feedback control. The Z-axis platform is used to adjust the Z-axis and move the wafer on the Z-axis platform to drive the movement in the z-axis direction so that the beam is focused on the wafer. An overview of the subsystems of this creation. The investigating committee members can have a better understanding of the structure, efficacy and advantages of this case. The wafer stepper of this creation is divided into three sub-stages and two secondary movements; γί Friction-driven platform, ζ-axis piezo-electric flat ”, and the detailed description is shown below:% Moving platform please refer to Figure 1. The structure of Y k # The shaft can be rubbed and rubbed, and the motion / stage ⑺ and γ-axis friction drive ⑴, friction mechanism 6, guidance: two or five parts' are the actuator device (4), the measurement system (5) and the control system

第11頁 552613 五、創作說明(8) 統。請參照圖二所示,致動機構(1 )包含質量塊(1001)、 壓電致動器(1 0 0 2 )、平板葉片彈簧(丨〇 〇 3 )與穿透切槽( 1 0 04 )等部份。請參照圖三所示,摩擦機構(6 )則包含預 2施加螺絲(61)、不銹鋼墊片(62)、夾持塊(63)、光纖套 筒(Glass Fiber Ferrule,64)與摩擦底座(65)。導引裝 置(曰4)則為高直線度、低摩擦係數之交叉式滾柱滑座(4ij 。量測系統(5)則使用超高解析度之線性光學編碼器(51) 及其電子式分割控制器,並於實驗中輔以雷射干涉儀及精 密電容式測微儀作為線性光學編碼器(51)的量測驗證。 制糸統包含個人電腦、類比/數位卡(AD/DA,82)盥驅^ 2致動器( 1 002 )之功率放大器⑻)等,並利用〇語 寫輸入電壓波形,經由線性光學編碼器(5)傳回之座找值 平H體方式來控制X軸摩擦驅動平台⑺與γ軸摩驅 千台(8)的位移解析度與定位精確度。 哥 致動器一端與運動平台連接,致動器另一端 連接,平板葉片彈簧一端與運動平台連接、鬼 另-端與質量塊連接,運動平台與交3滾:;=彈箸 :性光學編碼器裝置於運動平台與固定底座間;動^丄 二磨擦機構連接,磨擦機構與固定底座連接;春 =口 :驅動源中有一微分不連續點(即斷折: 速運動,f量塊與運動平台均承受相等的慣性快 此慣性作用力大於摩擦介面的最大靜摩擦 2,當 與固令泛& «V Βθ π ;^ 運動平厶 552613 五、創作說明(9) 叉式滾柱滑 緩缓移動至 過摩擦機構 所提供的摩 平台的單步 到連續位移 行程並沒有 ,可隨時偵 移解析度之 應用。 座引導,成為一 原長度時,運動 的最大靜摩擦力 擦力靜止於固定 步進位移,若此 的功能,以摩擦 限制,搭配長行 測其位移行程; 直線步進運動的 直線位移,當驅動 平台承受的慣性作 ,此時運動平台藉 底座上’此一運動 一運動程序不斷進 驅動原理設計的平 程、高精度之線性 其主要功能為達成 目標,以作為光學 源使致動器 用力不會超 由摩擦機構 程序可達成 行,即可達 台’其運動 光學編碼器 長行程向位 蝕刻晶片的 作之^軸摩擦驅動平台與Y軸摩擦驅動平台 電致動哭=電致動器(1〇〇2)作為動力來源,採用的壓 快、升:最低式壓電陶£,其具有體積小、反應 UOOU二ϋ砧:制容易等多方面優點,雖然壓電致動器 入線遲滞現象的影•,在位移上並非呈現完 ΐΐ 但經迴授控制後,都能使I電致動器( η”佳的精度,加之以解析度高、推力大,因此 Ρ 所採用。壓電致動器(1 0 0 2 )可隨外加電壓波形Page 11 552613 V. Creation Instructions (8) System. Please refer to FIG. 2, the actuating mechanism (1) includes a mass (1001), a piezoelectric actuator (1002), a flat leaf spring (丨 〇〇3), and a penetrating slot (104) ) And so on. Please refer to FIG. 3, the friction mechanism (6) includes a pre-2 application screw (61), a stainless steel washer (62), a clamping block (63), a fiber optic sleeve (Glass Fiber Ferrule, 64) and a friction base ( 65). The guide device (say 4) is a high-linearity, low-friction coefficient cross roller slide (4ij. The measurement system (5) uses a ultra-high-resolution linear optical encoder (51) and its electronic type The controller is divided, and the laser interferometer and precision capacitive micrometer are used as the measurement verification of the linear optical encoder (51) in the experiment. The system includes a personal computer, analog / digital card (AD / DA, 82) Wash the drive ^ 2 actuator (1 002) power amplifier ⑻), etc., and use the 0 language to write the input voltage waveform, and pass the linear optical encoder (5) back to the seat to find the value of the flat H body to control X The displacement resolution and positioning accuracy of the shaft friction drive platform ⑺ and γ-axis friction drive thousands (8). One end of the actuator is connected to the motion platform, the other end of the actuator is connected, one end of the flat leaf spring is connected to the motion platform, the other end is connected to the mass block, and the motion platform is connected to the cross section. The device is installed between the moving platform and the fixed base; the two friction mechanisms are connected, and the friction mechanism is connected to the fixed base; spring = port: there is a differential discontinuity point in the drive source (ie, broken motion: fast motion, f gauge block and motion The platforms are subject to the same inertia. This inertia force is greater than the maximum static friction of the friction interface. 2 and solid order pan & «V Βθ π; ^ Movement level 厶 552613 5. Creation instructions (9) Fork roller is slow There is no single-step to continuous displacement stroke when moving to the friction platform provided by the over-friction mechanism, and the application of resolution can be detected at any time. When the seat guide becomes an original length, the maximum static frictional force of the movement is at a fixed step. Displacement. If this function is used, friction is limited and its displacement stroke is measured with a long line. The linear displacement of the linear stepping movement, when the inertia of the driving platform is acting, the movement is flat at this time. The platform uses the 'movement and movement program' on the base to continuously drive. The principle of linear motion and high accuracy designed by the driving principle is to achieve its goal. As an optical source, the actuator is not forced to exceed the friction mechanism program. , It can reach Taiwan's motion optical encoder long-stroke orientation etching of the wafer ^ axis friction drive platform and Y axis friction drive platform electrically actuated cry = electric actuator (1002) as a source of power, Fast pressing and rising: the lowest piezoelectric ceramic, which has a small volume and responds to the advantages of UOOU two anvils: easy to make, etc. Although the effect of the hysteresis of the piezoelectric actuator on the line is not significant, the displacement is not After the presentation, but after feedback control, I electric actuator (η) can be made with high accuracy, coupled with high resolution and high thrust, so P is used. Piezoelectric actuator (1 0 0 2) With external voltage waveform

Waveform)的不同而達成不同之運動形式, 動平台⑻產生連择的ck-siip Effect) ’能使運 運々的步進位移,並於平台上裝置超高解 r d 2 ί編碼器(5) ☆為位移感測器,利用電腦的 式控制方式來進行χ-γ轴的迴授定位控制,高位移解析Different waveforms can be used to achieve different forms of motion. The moving platform will generate a continuous ck-siip Effect) 'It can make the stepping movement of the operation platform and install an ultra-high solution on the platform. 2 Encoder (5) ☆ It is a displacement sensor, which uses the computer-based control method to perform feedback positioning control of the χ-γ axis.

第13頁 552613 五、創作說明(10) 度與長行程定位能力並存是本創作的最大特|點Page 13 552613 V. Creation Instructions (10) The coexistence of degree and long-stroke positioning ability is the biggest feature of this creation.

藉由壓電致動器(1 0 〇 2 )可隨週期性電壓訊號而伸縮 特性’可使其作為運動平台(3 )之動力來源,隨著外加雷 壓波形的不同,可改變壓電致動器的運動狀態,進而与= 摩擦機構(6)中之不銹鋼墊片(62)與光纖套筒之摩柊 ,藉由摩擦滯滑現象的作用,可使χ、γ軸摩擦驅動^台、 7、8)在不同波形、振幅與頻率的電壓輪入下,會有不 的位移表現,若驅動電壓為週期性的波形輸入,&運動^ 台3便能夠連續作微量的步進位移。 對於X、Υ轴摩擦驅動平台(7、8)而言,只需探討單軸 1運動原理即可,其步進運動的示意圖如圖四所示。請參 照圖四(a),並搭配圖一之各項元件,壓電致動器(i〇〇f 連接質量塊(1001)與運動平台(3),運動平台藉由不銹鋼 墊片(62)與光纖套筒(64)之接觸摩擦力而靜止於固定底座 (2)上,若輸入電壓使壓電致動器(1 00 2 )快速運動,質量 塊(1〇〇1)與運動平台(3)均承受相等的慣性作用力,當此 慣性作用力大於不銹鋼墊片(62)與光纖套筒(64)之間的最 大靜摩擦力時,運動平台3與固定底座(2)之間便有相對位 f的情形發生,如圖四(b)所示;若輸入電壓使壓電致動 器( 1 002 )緩缓移動至原長度時,運動平台(3)承受的慣性 作用力不會超過不銹鋼墊片(62)與光纖套筒(64)之間的最 大靜摩擦力,因此運動平台(3)會靜止於固定底座(2)上,The piezoelectric actuator (1002) can expand and contract with the periodic voltage signal, which can be used as the power source of the motion platform (3). With the difference of the external lightning pressure waveform, the piezoelectric actuator can be changed. The movement state of the actuator and the friction between the stainless steel washer (62) and the fiber sleeve in the friction mechanism (6) can cause the χ and γ axes to frictionally drive the 台, 7. 8) In the case of voltages with different waveforms, amplitudes, and frequencies, there will be non-displacement. If the driving voltage is a periodic waveform input, & Motion 3 can continuously make a small amount of step displacement. For the X and Y axis friction drive platforms (7, 8), it is only necessary to discuss the principle of single axis 1 motion, and the schematic diagram of its step motion is shown in Figure 4. Please refer to Figure 4 (a) and match the components of Figure 1. The piezoelectric actuator (i0f connects the mass (1001) and the motion platform (3). The motion platform uses a stainless steel gasket (62). The contact friction with the optical fiber sleeve (64) is stationary on the fixed base (2). If the input voltage causes the piezoelectric actuator (1002) to move rapidly, the mass (1001) and the motion platform ( 3) Both bear the same inertial force. When the inertial force is greater than the maximum static friction between the stainless steel gasket (62) and the fiber sleeve (64), there is a gap between the moving platform 3 and the fixed base (2). The relative position f occurs, as shown in Figure 4 (b); if the input voltage causes the piezoelectric actuator (1 002) to slowly move to its original length, the inertial force on the moving platform (3) will not exceed The maximum static friction between the stainless steel gasket (62) and the optical fiber sleeve (64), so the motion platform (3) will be stationary on the fixed base (2).

552613 五、創作說明(11) 如圖四(C )所示,此一 台(7、8)的單步步進 王序可達成X、Y軸摩擦驅動平 可達到連續位移的功/ =此一運動程序不斷進行,即 運動行程並沒有限制。摩擦驅動原理設計的平台,其 對於X、Υ軸摩擦驅動 討最具代表性的鋸齒波形 五(a)所示。當輪入波形 (1 0 0 2 )的位移速率較快時 用力會大於摩擦滯滑現象 X、Y軸摩擦驅動平台(7、 動平台(3)與固定底座(2) (1 〇 〇 1)傳來的慣性作用力 擦的情形發生,也產生了 平台(7、8)的動作說明,本文探 作為輸入電壓訊號,其原理如圖 的切線斜率較大,即壓電致動器 運動平台(3)所承受的慣性作 的臨界力。由於慣性作用力對於 8)的運動具有決定性的影響,運 間的摩擦力若無法抵柝由質量塊 ’因此運動平台(3)會有滑動摩 單步的位移。552613 V. Creation Instructions (11) As shown in Figure 4 (C), the single-step stepping Wang Xu of this one (7, 8) can achieve the work of continuous displacement of the X, Y axis friction drive / = this A motion program is continuously performed, that is, the motion stroke is not limited. The platform designed by the principle of friction drive, which is the most representative sawtooth waveform for X, Z axis friction drive, is shown in Figure 5 (a). When the wheel-in waveform (1002) has a fast displacement rate, the force will be greater than the friction hysteresis phenomenon. The X and Y-axis friction drive platforms (7, the moving platform (3), and the fixed base (2) (1 〇〇1) The situation of the inertial force rubbing occurred, and the action description of the platform (7, 8) also occurred. This paper probes into the input voltage signal. Its principle is shown in the figure. The slope of the tangent line is larger, that is, the piezoelectric actuator motion platform ( 3) The critical force caused by inertia. Because the inertia force has a decisive effect on the movement of 8), if the friction between the transport can't resist the mass, the moving platform (3) will have a single step of sliding friction Of displacement.

命孩ΐϊ入波形的切線斜率較小,壓電致動器(1002)纪 m低時,則質量塊⑽υ所擁有的慣性作用力4 =滯滑現象的臨界力’因此運動平台⑺會靜止於固 二二上(2) ±。至此完成了步進運動的一個週期,如果不 斷輸入週期的電壓波形,則可以達成連續的步進運動。割 ^輸入波形而t ’亦彳利用其他的驅動電壓波形來驅動歷 電致動以1 002) ’而平台的位移表現會有極大的差異,如 脈衝波形(Impulse WaVeform)、超越函數波形(Trans _The tangent slope of the life wave is small. When the piezoelectric actuator (1002) has a low m, the inertial force of the mass ⑽υ 4 = the critical force of the hysteresis phenomenon. Therefore, the motion platform 静止 will be stationary at On the solid two two (2) ±. This completes one cycle of step motion. If the voltage waveform of the input cycle is continuously input, continuous step motion can be achieved. Cut the input waveform and t 'also use other driving voltage waveforms to drive the electric actuation to 1 002)', and the displacement performance of the platform will be greatly different, such as pulse waveform (Impulse WaVeform), transcendence function waveform (Trans _

第15頁 552613 五、創作說明(12) f cendental Waveform)或擺線波形(Cycloidal Waveform) 等。脈衝波形的運作方式如圖五(b ) 所示。由圖中可清楚 看出若輸入波形中有一微分不連續點(即斷折點),且此點 兩側的斜率具有極大的差異,則在波形尖點處即是驅動平 台運動的主要部份'。當輸入電壓經過驅動波形之尖點部份 時(如脈衝波形),由於質量塊(1 〇 〇 1 )動量變化太大,因此 運動平台(3)承受很大的慣性作用力,不銹鋼墊片(62)與 光纖套筒(64)的接觸面無法提供足夠的摩擦力固定運動平 台(3 ),每一脈衝波形均可達成單步的步進位移,若不斷 輸入脈衝電壓波形,則可進行連續的步進運動,而達成所 需之長行程定位的目標。 、.示上所述,X、Y軸摩擦驅動平台(7、8)之設計可改進 = 系統行程限制的缺點,提供-種達到長行程 :ίϊ 而完全不影響其定位精度的精密長行程定 =動造簡單、易於使用且不易丄 且相當精簡,因此不易損壞而人玖2兀成, 、精密機械、光學領域、可命長,不論在半導體 AFM等儀器應用方s,相:y〜工程、或STM、SPM、 % L S此有很好的表現。Page 15 552613 V. Creative Instructions (12) f cendental Waveform) or Cycloidal Waveform. The operation mode of the pulse waveform is shown in Figure 5 (b). It can be clearly seen from the figure that if there is a differential discontinuity point (ie, a broken point) in the input waveform, and the slopes on both sides of this point are greatly different, the sharp part of the waveform is the main part of the driving platform movement. '. When the input voltage passes through the sharp point of the driving waveform (such as a pulse waveform), the momentum of the mass (1000) changes too much, so the motion platform (3) receives a large inertial force. The stainless steel gasket ( 62) The contact surface with the fiber optic sleeve (64) cannot provide sufficient friction to fix the motion platform (3), and each pulse waveform can achieve a single step step displacement. If the pulse voltage waveform is continuously input, continuous operation is possible. Stepping motion to achieve the desired long-stroke positioning goal. As shown above, the design of the X and Y axis friction drive platforms (7, 8) can be improved = the shortcomings of the system stroke limitation, providing-a kind of precise long stroke setting that achieves long strokes without affecting its positioning accuracy at all = Simple manufacturing, easy to use, not easy to use and quite streamlined, so it is not easy to be damaged, and it is easy to be damaged. It can be used in the field of precision machinery, optics, and long life, regardless of the application of semiconductor AFM and other instruments. , Or STM, SPM,% LS has very good performance.

2. Z軸壓電式平台(9)的 組成結構如圖 一所示,包含有壓 552613 五、創作說明(13) 電致動器(91)、平板葉片彈簧(92)、穿透切槽 工作平台(94)與試件夾具(95)。z軸壓電式平台(=移 電致動1§ ( 9 1)作為驅動裝置,並運用平板葉片彈簧(, 變的運動方式(即材料彈性變形)而 析(: 目標。Z軸壓電式平台(9)㈣ 多 (二ϊ”類比線性控制器進行閉迴路定;控制: =南精禮、疋位的目的。試件夾具(95)主要用於夾持試 :晃:避免試件因X、γ軸摩擦驅動平台(7、8)的步進運動 称=器:端與固定底座連接,致動器另-端與位移工 接端:板葉片彈菁一端與固定底座連择,平板葉片 2育另一鈿與位移工作台連接,位移工作台内部有一電容 ^4立移感測器;當致動器受驅㈣,提供位移及作用力, ί生it移經平板η彈簧的導引,產生—位移效果於位 +σ,造成工作平台與固定底座的相對運動,此相對 二動由電容式位移感測器量測,,經由線性類比控制器進行 閉迴路定位控制。 ζ軸壓電式平台(9)採用積層式壓電陶 其具有體積小、反應快、升熱最低、控制面優 點,加之以軸向推力大及位移解析度高,並且藉由歷電致 :f優異的動態特性,&其可隨週期性電壓訊‘而作微量 的動態位移,因此非常適合作為z轴麼電式平台 致動 第17頁 552613 五、創作說明(14) "~'~ f 器’,雖然壓電致動器(9 1 )受本身材料遲滯現象的影響,在 位移上與輸入電壓之間並非呈現完全線性的表現,但經由 閉迴路控制,可提高Z軸壓電式平台(9)的定位精度。、 Z軸壓電式平台(9)的致動機構並非採用傳統連桿機構 的製造方式,而是利用線切割機(wire Electro-Discharge-Machine)將平台的致動機構一體成型切叫完 成,並以切割製造之平板葉片彈簧(92)模擬傳統連桿機g 的運動,使位移工作平台(94)在微位移的範疇上有極佳的 表現,由於機構的形變均發生於平板葉片彈簧(92)之處, 因此沒有間隙,僅有分子之間的内摩擦,因此能量的二耗 亦非常少,並可以達到極高的分辨率。線切割機的加工精 度南達10//m,因此Ζ軸壓電式平台(9)的直線運動並 傳統機構在組裝上造成的裝配誤差,其運動直線度相當2. The composition structure of the Z-axis piezoelectric platform (9) is shown in Figure 1. It contains the pressure 552613. V. Creation instructions (13) Electric actuator (91), flat leaf spring (92), penetrating slot Working platform (94) and test fixture (95). Z-axis piezoelectric platform (= mobile actuation 1§ (9 1) as a driving device, and using a flat leaf spring (, variable motion mode (that is, elastic deformation of the material) to analyze (target. Z-axis piezoelectric type Platform (9) ㈣ more (two ϊ) analog linear controller for closed-loop setting; control: = the purpose of Nan Jingli, 的 position. The test fixture (95) is mainly used to hold the test: shaking: to avoid the cause of the test piece X, γ axis friction drive platform (7, 8) stepping motion scale = device: the end is connected to the fixed base, the other end of the actuator is connected to the displacement end: one end of the plate blade elastic Jing and the fixed base are selected, flat The blade 2 is connected to a displacement table. There is a capacitor ^ 4 vertical displacement sensor inside the displacement table. When the actuator is driven, it provides displacement and force. It moves through the guide of the plate η spring. Induced, produced-displacement effect in position + σ, resulting in relative movement of the working platform and the fixed base, the relative two movements are measured by a capacitive displacement sensor, and closed-loop positioning control is performed via a linear analog controller. Ζ Axial pressure The electric platform (9) uses multilayer piezoelectric ceramics, which has a small volume, fast response, The lowest heat, the advantages of the control surface, coupled with the large axial thrust and high resolution of the displacement, and the excellent dynamic characteristics caused by the electric f: & it can make a small amount of dynamic displacement with the periodic voltage signal, so Very suitable as z-axis electric platform actuation page 17 552613 V. Creative Instructions (14) " ~ '~ f device', although the piezoelectric actuator (9 1) is affected by its own material hysteresis, in The displacement and input voltage are not completely linear, but the closed-loop control can improve the positioning accuracy of the Z-axis piezoelectric platform (9). The actuation mechanism of the Z-axis piezoelectric platform (9) is not The traditional link mechanism manufacturing method is adopted, but the wire actuator (wire Electro-Discharge-Machine) is used to integrate the platform's actuation mechanism into a complete cut, and the flat leaf spring (92) manufactured by cutting is used to simulate the traditional link The movement of the machine g makes the displacement work platform (94) perform extremely well in the category of micro-displacement. Since the deformation of the mechanism occurs at the flat leaf spring (92), there is no gap, only the intermolecular Internal friction Therefore, the energy consumption is also very small, and it can reach a very high resolution. The processing accuracy of the wire cutting machine is up to 10 // m, so the linear movement of the Z-axis piezoelectric platform (9) and the traditional mechanism in assembly Assembly error caused by its straightness of movement

本創作晶片步進機其中之光學自動聚焦系統,包括 一雷射光讀取頭; 一聚焦誤差訊號處理電路; 一類比控制器等; 偏光分光鏡、稜鏡等 中線性範圍的聚焦誤 雷射光讀取頭包含雷射光源、物鏡、 光學元件;利用雷射光讀取頭s曲線The optical auto-focusing system in this creative wafer stepper includes a laser light reading head; a focus error signal processing circuit; an analog controller; etc .; a linear range focusing error laser light reading in a polarizing beam splitter, chirp, etc. The pick-up head includes a laser light source, an objective lens, and an optical element; the laser head is used to read the s-curve of the head

第18頁 552613 五、創作說明(15) n(F〇cus Error Signai)、經聚焦誤差訊號處理:電路 )乍為類比控制器控制迴路之誤差訊號,以控制2軸 定位平台之位移維持於雷射光讀取頭聚焦範圍内; 為使Z軸平台帶動晶片維持於光學聚焦工作範圍内。此Page 18552613 V. Creative Instructions (15) n (Focus Error Signai), after processing the focus error signal: circuit) It is the error signal of the analog controller control loop at first, in order to control the displacement of the 2-axis positioning platform to maintain the thunder Within the focusing range of the light reading head; in order to keep the Z-axis platform to drive the wafer within the optical focusing working range. this

對:觀察微小的結構而t•’通常採用光學系統來輔助 如一般的顯微鏡,但是顯微鏡的缺點是高解析 ς a要求較難以達成,隨著光電技術的發展,可以 „與電子技術把影像顯示在榮光幕上 J unr程得到進一步的發展。光學自動聚焦= 顯微鏡更高的解析度’因此成為觀察微細 的碟;ΐ在快速旋轉的碟片上,利用其伺服系統 接收的訊息。光碟機上的雷射光讀取= 上==機上雷射光讀取頭心 平台(9)的亩r&lgIlal)所構成的S曲線,搭配Ζ軸壓電式 試件移而組成光學自動聚焦系統,作為量測 台(7 高度’並同時進行Χ、Υ軸摩擦驅動平 、 的千面步進掃瞄。 的部分 雷射光讀取頭(11)是聚焦伺服系統中最重要 第19頁 552613Right: Observing tiny structures and t • 'usually use optical systems to assist ordinary microscopes, but the disadvantage of microscopes is that high resolution is difficult to achieve. With the development of optoelectronic technology, it is possible to display images with electronic technology The Junr process has been further developed on the glorious screen. Optical autofocus = higher resolution of the microscope 'so it becomes a fine disc for observation; ΐ On a fast-rotating disc, use the information received by its servo system. On the disc drive Laser light reading = upper == on-board laser light reading head core platform (9 acre r & lgIlal) S-curve, combined with the Z-axis piezoelectric test specimen to form an optical autofocus system, as Measuring table (7 heights) and simultaneous scanning of thousands and thousands of planes with X and Y axis friction drive. Part of the laser light reading head (11) is the most important in the focus servo system. Page 19 552613

其内部包含光學元件、物鏡、驅動物鏡的致動器、四分割 光檢測器等,由於不同的雷射光讀取頭(1 1 )使用的聚焦誤 差原理不同,因此本案以市面上最常使用的像散法聚^誤 差修正系統作為例子,其工作原理如圖六所示。由圖^可 知’點光源由雷射二極體(Laser D i ode)發出,經^平行 透鏡(Collimating Lens)的處理使點光源變成平行光束, 並經過分光透鏡與物鏡而到達光碟片或試件的反光面上, 反射光束再經物鏡與分光透鏡而到達像散透鏡( Astigmatic Lens)上,經過像散透鏡的處理後進入四分割 光檢測器(Quad Detect or)的感光面上。 像散透鏡是一種擁有兩個聚焦平面的特殊透鏡,其最 常見的幾何外形為半圓柱狀。請參照圖七,當試件表^的 位置在物鏡的聚焦平面上,反射光經由像散透鏡的處理會 在光檢測器上形成一個圓形光區域;若試件表面位於物^ 的非聚焦區域,則經過像散透鏡處理後的反射光在光檢測 器上形成的形狀為橢圓形。It contains optical elements, objective lenses, actuators that drive objective lenses, quad-segment photodetectors, etc. Due to different focusing error principles used by different laser light reading heads (1 1), this case uses the most commonly used on the market. Astigmatism focusing error correction system as an example, its working principle is shown in Figure 6. It can be seen from the figure that the point light source is emitted by a laser diode, and processed by the collimating lenses to turn the point light source into a parallel beam, and passes through the beam splitter lens and the objective lens to reach the optical disc or test. The reflected surface of the component passes through the objective lens and beam splitter lens to reach the astigmatic lens (Astigmatic Lens). After the astigmatic lens is processed, it enters the photosensitive surface of the Quad Detect or. An astigmatic lens is a special lens with two focusing planes. The most common geometric shape is a semi-cylindrical shape. Please refer to Figure 7. When the position of the test piece is on the focal plane of the objective lens, the reflected light is processed by the astigmatic lens to form a circular light area on the photodetector. Area, the shape of the reflected light processed by the astigmatic lens on the photodetector is elliptical.

當試件表面位於圖六之A的非聚焦位置時,經像散透 鏡處理後的反射光在光檢測器會形成鉛直橢圓形光圈,如 圖七A所示,光檢測器信號經由自製的聚焦誤差處理電路 (84)處理後為正電壓輸出,如圖八之a區域所示;當試件 表面位於圖六之B的聚焦位置時’反射光在光檢測器上形 成正圓形光圈,如圖七B所示,光檢測器信號經聚焦誤差When the surface of the test piece is located at the unfocused position in Figure 6A, the reflected light processed by the astigmatic lens will form a vertical elliptical aperture in the photodetector. As shown in Figure 7A, the photodetector signal passes through the homemade focus. The error processing circuit (84) produces a positive voltage output, as shown in area a of Figure 8; when the surface of the test piece is located at the focus position of Figure 6B, the reflected light forms a positive circular aperture on the photodetector, such as As shown in Figure 7B, the focus error of the photodetector signal

第20頁 552613 五、創作說明(17) ί理=(:ί)的處理後為零電壓輸出,如圖: 试件表面位於圖六之c❸非聚隹^八之β點所 =器上形成水平橢圓形光圈,如圖tc置時’反射光在 1唬經聚焦誤差處理電路(84 :示,光檢測 如圖八之c區域所示。 处後為負電壓輸出, 圖八所示之曲線即為光學自Page 20 552613 V. Creation instructions (17) ί 理 = (: ί) is treated as a zero voltage output, as shown in the figure: The surface of the test piece is formed on the device of the β point of c❸ 非 聚 隹 ^ 八 之 in Figure 6 The horizontal elliptical aperture is set as shown in Figure tc. The reflected light passes through the focus error processing circuit (84: shown in Figure 8). The light detection is shown in area c of Figure 8. After that, it is a negative voltage output. The curve shown in Figure 8 Optical self

曲線,圖中A、3與0之區域分別對應圖、七系1中最重要的S 訊號處理圖形。I隹 # 之Α、β與C三個 % ; 聚焦祆差曲線中的線性區域可作A # # θ 测之用,為-動、靜態特性均優良之作為位移置 性部分極佳,其具有漂亮直線的良好特性5 =中 伺服控制的中間區域(饲服 、,可用於 =讀寫頭而言,其飼服控::致圍二^^^ 鏡的位置’使雷射光一直聚焦在 】 ί:;!的設計上’作法是將物鏡固定,並搭配ζ軸壓電ί *二()作為試件(1〇)的載具,將試件(1〇)表面移 : =讀取頭(⑴之物鏡聚焦平面上而構成一套 : 自動聚焦系統’試件(10)的位移量則以2軸壓電式 ^ 上之電容式位移感測器(9 6)來讀取。 、本創作所設計之晶片步進機一共包含三個子系統,八 別為X、Υ軸摩擦驅動平台(7、8)、ζ轴壓電式平台(9)與: 學自動聚焦系統,必須將三個子系統整合在一起才可^捏 晶片步進機的功能。整合後的架構如圖九所示,圖中&含Curves. The areas A, 3, and 0 in the figure correspond to the most important S signal processing graphics in the figure and the seven series 1. I 隹 # of Α, β and C three%; The linear area in the focus difference curve can be used for A # # θ measurement. It is excellent in both dynamic and static characteristics as a displacement displacement component. Good characteristics of beautiful straight line 5 = middle area controlled by servo (feeding, can be used = for reading and writing heads, its feeding control :: 致 围 二 ^^^ The position of the mirror 'keeps the laser light focused on] ί:;! The design method is to fix the objective lens with ζ-axis piezoelectric ί * two () as the carrier of the test piece (10), move the surface of the test piece (10): = reading head (The objective lens on the focusing plane constitutes a set: The displacement amount of the autofocus system 'test piece (10) is read by a capacitive displacement sensor (9 6) on a 2-axis piezoelectric type ^. The wafer stepper designed by the creative consists of three subsystems. The X-axis and Z-axis friction drive platforms (7, 8), the ζ-axis piezoelectric platform (9), and: The functions of the chip stepper can be pinched together after the system is integrated. The integrated architecture is shown in Figure 9 and the &

第21頁Page 21

552613552613

兩個閉迴路控制系 則為鉛直光學自動 統’ 一為水平二維定位控制系統 聚焦定位控制系統。 另一 8〉、水平二維定位控制系統包含X、Y軸摩擦驅動平台(7、 、f性光學編碼器(5)、類比轉數位/數位轉類比(⑽/ 程十t個人電腦及功率放大器等元件。由個人電腦撰寫 二h έ並透過DA卡來控制輸出電壓之波形、振幅與頻·’、 ,此輪入訊號經由功率放大器的放大後輸入壓電致動器 0〇2)中,X、γ軸摩擦驅動平台(7、8)會依照 二 勁原理達成步進位移,架設於χ、γ軸摩擦驅動平台(7、 )上的線性光學編碼器(5)可量測平台在X方向與γ =里’並以數位資料方式傳回個人電腦中,經由程式的 數子運异與邏輯判斷再決定下一次的輸入訊號,此一閉迴 路控制可精確達成X、γ軸摩擦驅動平台(7、8)二維(2 位的目標。 錯直光學自動聚焦定位控制系統包含Ζ軸壓電式平台 (9)、雷射光讀取頭(11)、聚焦誤差訊號處理電路(84)、 微分控制器(PID)、或擬似微分控制器(PDF)類比線性控制 | 器(85)及功率放大器(81)等元件。雷射光讀取頭(11)之雷零 射光源打在試件(10)表面,傳回之反射光由光學頭内之光 感測裔所接收,經由聚焦誤差訊號處理電路(8 4 )的信號處 理’可得知試件(10)表面是否處於聚焦位置,此信號輸入 微分控制器(PID)或擬似微分控制器(PDF)類比線性控制電Two closed-loop control systems are vertical optical automatic systems ’and one is a horizontal two-dimensional positioning control system. A focus positioning control system. Another 8>, horizontal two-dimensional positioning control system including X, Y-axis friction drive platform (7, f optical encoder (5), analog to digital / digital to analog (⑽ / 程 十 t personal computer and power amplifier And other components. Written by a personal computer and control the waveform, amplitude, and frequency of the output voltage through the DA card. This round of input signal is amplified by the power amplifier and input into the piezoelectric actuator 0 2), The X and γ-axis friction drive platforms (7, 8) will achieve stepping displacements according to the principle of two forces. The linear optical encoder (5) installed on the χ and γ-axis friction drive platforms (7,) can measure the platform at X The direction and γ = li 'are transmitted to the personal computer in the form of digital data, and the next input signal is determined by the numerical operation and logical judgment of the program. This closed-loop control can accurately achieve the X and γ axis friction drive platform (7, 8) Two-dimensional (2-position target. Straight-line optical auto-focus positioning control system includes Z-axis piezoelectric stage (9), laser light reading head (11), focus error signal processing circuit (84), Differential controller (PID), or pseudo-differential controller PDF) Analog linear control | device (85) and power amplifier (81) and other components. The laser zero light source of the laser light reading head (11) hits the surface of the test piece (10), and the reflected light returned by the optical head Received by the light sensor, through the signal processing of the focus error signal processing circuit (8 4), it can be known whether the surface of the test piece (10) is in the focus position. This signal is input to the differential controller (PID) or pseudo-differential controller. (PDF) Analog Linear Control Circuit

552613 五、創作說明(19) 路中’再經由功率放大器的電壓放大後輸入壓電致動器( 91)中’藉由Z軸壓電式平台(9)的運動使試件(1〇)表面一 直處於聚焦位置,此即構成一個完整之閉迴路控制系統。 架設於Z軸壓電式平台(9)内的電容式位移感測器(96) 可以量測位移工作平台(94)在作聚焦運動時的位移量,此 一位移量測值為電壓之類比訊號,經由AD卡的轉換以數位 方式傳回個人電腦内,並將此位移值記錄下來。552613 V. Creative Instructions (19) In the road, 'The voltage is amplified by the power amplifier and input into the piezoelectric actuator (91)'. The test piece (1〇) is made by the movement of the Z-axis piezoelectric platform (9). The surface is always in focus, which constitutes a complete closed-loop control system. Capacitive displacement sensor (96) built in Z-axis piezoelectric platform (9) can measure the displacement of the displacement working platform (94) during focusing movement. This displacement measurement is analogous to voltage. The signal is digitally transmitted back to the personal computer through the conversion of the AD card, and the displacement value is recorded.

作為深紫外光光學微影術(DUV Lithography)之晶片 步進機的應用時,為配合Wafer與Mask之對準及多次重複 曝照,即作為重複步進投影(Step —Repeat Pr〇je(?ti〇n)* 步進掃瞄投影(Step-Scan Projection)的用途,X、γ軸摩When used as a wafer stepper for deep ultraviolet optical lithography (DUV Lithography), in order to match the alignment of Wafer and Mask and multiple repeated exposures, it is used as a repeating step projection (Step —Repeat PrOje ( ? ti〇n) * Use of Step-Scan Projection, X, γ axis rubbing

擦驅動平台(7、8)的平面定位能力可作為性能優良的晶片 步進機,由於Excimer雷射(Excimer Laser)於晶元表面 光阻層上的聚焦工作範圍僅有丨# m,但是X、γ軸摩擦驅動 平台(7、8)在長距離的位移時並不能保證晶片在2方向的 位移量會小於1 #πι,因此Z軸壓電式平台(9)與雷射光讀取 頭(Π)組成的光學自動聚焦系統正好可以將晶片表面的光 阻層長時間定位於Excimer雷射(Excimer Laser)的聚隹 工作範圍内。 ^ 實驗結果:The planar positioning capability of the wiper driving platform (7, 8) can be used as a wafer stepper with excellent performance. As Excimer Laser focuses on the photoresist layer on the wafer surface, the working range is only 丨 # m, but X, The γ-axis friction drive platform (7, 8) does not guarantee that the displacement of the wafer in 2 directions will be less than 1 # π when the distance is long. Therefore, the Z-axis piezoelectric platform (9) and the laser light reading head (Π The optical autofocus system formed by) can precisely locate the photoresist layer on the surface of the wafer within the working range of Excimer Laser for a long time. ^ Experimental results:

第23頁 552613 五、創作說明(20) ---- 利用精密電容式測微儀作為χ、γ軸摩擦驅動平台(7、 H彳位=量測工具,當輸入脈衝波形至Χ、Υ摩擦驅動 口 日、,其位移反應如圖十所示,圖形上半部為輪 入之脈衝電壓波形,下半部則為平台的步進位移曲線了由 圖中可以觀察出平台的單步步進位移為25nm,而其步進位 移相當-I,可知平台每—步進行程的重複度相#高,因 此可預測平台的位移性能非常優異,並由實驗結果可得苴 最南位移解析度為7· 5 nm。若輸入χ、γ軸摩擦驅動平台& 、8 一)的電壓訊號為鋸齒波形,則平台的位移曲線如圖十一 所示,圖形上半部為鋸齒波形電壓輸入,下半部為平台的 步進位移曲線,其單步的步進位移為1〇〇 。 口 圖十二顯示以階梯電壓波形(圖形上半部)輸入z軸壓 電式平台(9)所量測之位移反應(圖形下半部),利用電容 式位移感測器(96)量測位移工作平台(94)的位移量,其位 移曲線為12 nm/step。由圖中可看出位移工作平台(94^的 位移曲線幾乎沒有背隙的發生,因此平台在開迴路的定位 控制中已有極佳的位移性能,若要達到更高的位移解析度 ,=須對實驗環境及電子訊號的干擾進行更嚴袼的控制。 由實驗量測結果得知,Z軸壓電式平台的最高位移解析度 為3 nm/step ° 在晶片 光柵(Grati 步進機的工作性能驗證上,採用週期為2 的 ng)试件作為測試光學自動聚焦系統與χ、γ轴Page 23 552613 V. Creation Instructions (20) ---- Using a precision capacitive micrometer as the χ and γ axis friction drive platform (7, H 彳 position = measuring tool, when the pulse waveform is input to the Υ, Υ friction The displacement response of the drive port is shown in Figure 10. The upper half of the figure is the pulse voltage waveform of the wheel in, and the lower half is the step displacement curve of the platform. The single step of the platform can be observed from the figure. The displacement is 25nm, and its step displacement is equivalent to -I. It can be seen that the repeatability of each step of the platform is relatively high, so it can be predicted that the displacement performance of the platform is very good. From the experimental results, the resolution of the southernmost displacement is 7.5 nm. If the voltage signals of the χ and γ-axis friction drive platforms & 8) are sawtooth waveforms, the displacement curve of the platform is shown in Figure 11, and the upper part of the graph is the sawtooth waveform voltage input. The half is the step displacement curve of the platform, and the single-step step displacement is 100. Figure 12 shows the displacement response (bottom half of the graph) measured by inputting the z-axis piezoelectric platform (9) with the step voltage waveform (top half of the graph), and measured by a capacitive displacement sensor (96). The displacement of the displacement working platform (94), its displacement curve is 12 nm / step. It can be seen from the figure that the displacement working platform (the displacement curve of 94 ^ has almost no backlash, so the platform has excellent displacement performance in the open-loop positioning control. To achieve a higher displacement resolution, = The experimental environment and the interference of electronic signals must be controlled more strictly. From the experimental measurement results, it is known that the maximum displacement resolution of the Z-axis piezoelectric platform is 3 nm / step ° in the wafer grating (Grati stepper's In the verification of the working performance, a test piece with a period of 2 (ng) was used as the test optical autofocus system and the χ and γ axes.

第24頁 552613 五、創作說明(21) 摩擦驅動平台u、8)的性能。 : 台(7)在進行步進位移時,光學圖十一嘴貞不X軸摩擦驅動平 電式平台(9)的位移情开,,由:.動上焦糸統運作下2軸壓 期恰為2 p,且位移曲線之/吉中二^水平位移曲線的週 的深度相同,因此本創/之之/。片直;\度^匕與G如叫試件 證。 則作之日日片步進機的工作性能得到驗 本案設 解析度 陶瓷, 方面優 經迴授 用光碟 上,作 上較前 的滯滑 的步進 器作為 的迴授 此設計 位移 壓電 等多 ,但 係利 圓片 性能 擦力 連續 編碼 XY軸 存是 度(Z軸)高 器是積層式 、控制容易 現象的影響 聚焦之感測 雷射光於晶 為本機構在 構,藉由摩 作平台產生 之線性光學 方式來進行 定位能力並 計f自動聚焦機構所採用之單自由 之壓電平台,由於採用的壓電致動 其具有體積小、反應快、升熱最低 點,雖然壓電元件受本身材料遲滯 控制後,可獲致極佳的改善,自動 機之雷射讀取頭,直接投射He —N〆 晶圓片與光源間等距離之調整,此 者優越之處。本案在χγ轴之傳動機 現象(St ick-SI ip Ef f ect),使工 位移,並於平台上裝置超高解析度 位移感測器,利用電腦的程式控制 定位控制,高位移解析度與長行程 的最大特點。 本創作之晶片步進機未見有雷同或近似之產品揭露於 世’故符合新穎性及實用性之專利申請要件,爰依法提出 申請,懇請貴審查委員惠予審查,並賜准專利實感德便Page 24 552613 V. Creative Note (21) Performance of Friction Driven Platform u, 8). : When the stage (7) is performing stepwise displacement, the displacement of the X-axis friction-driven flat-electric platform (9) in the optical diagram of the ellipse is not affected by: It is exactly 2 p, and the depth of the circumference of the displacement curve is the same as that of the horizontal displacement curve. The film is straight; \ degree ^ dagger and G are called test coupons. The working performance of the day-to-day film stepper has been verified in this case. Resolution ceramics have been designed, and the feedback is best on the disc used for feedback. The design of the previous stepper stepper is used as a feedback for this design. There are many, but the performance of the wafer is continuously encoded. The XY axis is stored in degree (Z axis). The high-level device is a multi-layer type, which is easy to control. The effect of focusing is on the sensing laser light. The linear optical method generated by the platform is used to perform the positioning capability and the single-free piezoelectric platform used in the f auto-focusing mechanism. Because of the piezoelectric actuation, it has a small volume, fast response, and the lowest temperature rise. After being controlled by its own material hysteresis, it can achieve excellent improvement. The laser read head of the automatic machine directly projects the adjustment of the equal distance between the He-N〆 wafer and the light source, which is superior. In this case, the transmission mechanism phenomenon (Stick-SI ip Ef fect) on the χγ axis makes the work displacement, and installs an ultra-high-resolution displacement sensor on the platform, and uses computer programs to control the positioning control. The biggest feature of long stroke. The wafer stepper of this creation has not seen similar or similar products exposed to the world, so it meets the requirements for patent applications that are novel and practical. Apply for the application in accordance with the law, and ask your reviewing committee to review it and give you a sense of quasi-patent To

第25頁 552613 五、創作說明(22) 。惟,以上所述僅係本創作之一較佳實施例而已,故舉凡 應用於本創作說明書及申請專利範圍所為之等效結構變化 者,理應包含於本創作之專利保護範疇。Page 25 552613 V. Creation Instructions (22). However, the above is only one of the preferred embodiments of this creation. Therefore, any equivalent structural changes applied to the description of this creation and the scope of patent application should be included in the scope of patent protection of this creation.

第26頁Page 26

Claims (1)

552613 MM 88112238 六、申請專利範圍 a 一致動器 一運動 一平板 平台; 葉片彈簧 固定底座; 式滾柱滑 光學梅碼 機構等; 一交叉 一線性 一摩擦 座 器 致動器一端與運動平台連接,致動器另一端 彈簧一端舆運動平台 運動平台與 置於運動平 ’摩擦機構 接,平 另一端 接,線 動平台 當驅動 點), 相等的 大靜摩 的情形 i線位 動平台 力,此 固定底 移,若 能,以 制,搭 板葉片 與質量 性光學 离摩擦 致動器 使致動 憤性作 擦力時 發生, 移,當 承受的 時運動 塊連接< 編瑪器裝 機構連接 之驅動源 器快速運 用力,當 ,運動平 此滑動藉 驅動參使 慣性作用 平台藉由 座上,此一運動 此一動程序不斷 擦騍動原理設奸 酰長行程、高精 中有一微分 動,質量塊 此性作用力 台與固定底 由交又式滾 致動器緩緩 力不會超過 摩擦機構所 程序可達成 進行,即可 的平台,其 度之線性光 連接,爭 交又式滚 台與固定 與固定底 不連續點 與運動平 大於摩擦 座之間便 柱滑座引 移動至原 擦機構的 提供的摩 平台的單 達到連續 連動行程 學編碼器 與質量塊連 板葉月彈簧 枉滑座連 底座間,運 座連接; (即 斷折 台均承 受 介面的最 有滑動摩擦 導,成為一 長度時;運 最大靜摩擦 擦力靜止於 步步進位 位移的? 並沒有限 ’可隨時偵552613 MM 88112238 6. Scope of patent application a. Actuator-moving a flat platform; leaf spring fixed base; type roller sliding optical plummeting mechanism; etc .; one end of a cross-linear-friction seat actuator is connected to the motion platform. At the other end of the actuator, one end of the spring, the motion platform, the motion platform is connected to the moving flat friction mechanism, and the other end is connected, and the linear motion platform is the driving point). Fixed bottom movement, if it can, according to the system, the lapping blade and the quality optical ion friction actuator make the actuation force friction, movement, when the movement block connection < knitting device mounting mechanism connection The driving source uses the force quickly. When the motion is flat, the driving parameter is used to make the inertial action platform pass through the seat. This motion and this motion program are constantly rubbing. The principle is set to have a long stroke. There is a differential motion in high precision. The mass of the force block and the fixed bottom can be achieved by the cross-type rolling actuator. Line, that is, the platform, its linear light connection, the reciprocating roller table and the fixed and fixed bottom discontinuity point and the movement level is larger than the friction seat. The platform's single-stroke continuous motion encoder is connected to the mass block plate and leaf spring spring slide seat connected to the base, and the carriage is connected; (that is, the broken and broken platform all bears the most sliding friction guide of the interface, which becomes a length; Is the static friction and friction static at the stepwise displacement? There is no limit. 第28頁 2002,10· 〇7· 007 552613 —-^_ 案號88112238 _年月 S 铬正 _ 六、申請專利範® 測其位行程;其主要功能為達成長行程高位移解析度之 直線步進運動的目標,以作為光學蝕刻晶片的應用0Page 28 2002, 10 · 〇7 · 007 552613 —- ^ _ Case No. 88112238 _Year S Chromium _ VI. Patent Application Fan® Measure its position stroke; its main function is to achieve a straight line with long stroke and high displacement resolution The goal of step motion for the application of optically etched wafersZero 3·如申請專利範圍第二項之晶片步進機,其中所述之驅動源所提供之 輪入波形中有一微分不連續點(即斷折點),且此點兩側的斜率具有 極大的差異,平台則於波形尖點處發生最大位移之運動,輸入如此 驅動波形,則可以達成連續的步進運動,對於輸入波形而言,可選 自脈衝波形(Impulse Waveform)及超越函數波形(Transcendental Waveform)及擺線波形(Cycloidal Waveform)等。 4.如申請專利範圍第一項之晶片步進機,其中所述之X 一 Y軸摩擦驅動平^台,所包括之致動器,可選自產電材 料,及磁致伸縮材科及電磁馬達及形狀記憶合金及其他 以光、電、熱及磁能驅動之致動器° 5.如申請專利範園第一項之晶片步進機,其中所述之Z 軸致動平台,包括:3. The wafer stepper according to the second item of the patent application, wherein the in-round waveform provided by the driving source has a differential discontinuity point (ie, a breakpoint), and the slopes on both sides of this point have extremely large slopes. The difference is that the platform has the movement with the maximum displacement at the point of the waveform. If you input the driving waveform in this way, you can achieve continuous step motion. For the input waveform, it can be selected from the pulse waveform (Impulse Waveform) and the transcendental function waveform (Transcendental Waveform) and Cycloidal Waveform. 4. The wafer stepper as described in the first item of the patent application, wherein the X-Y-axis friction drive stage is included, and the actuators included may be selected from the materials of electric power generation, and the magnetostrictive materials and Electromagnetic motors, shape memory alloys, and other actuators driven by light, electricity, heat, and magnetic energy ° 5. As described in the patent application for the first stepper of the wafer park, the Z-axis actuation platform includes: 一致動器: -乎板葉片弹簧; 一位移工作台; 一固定底座; 一電容式位務感測器等;Actuator:-almost leaf spring; a displacement table; a fixed base; a capacitive position sensor, etc .; 552613 -—~~12238 六、申請專利範® t 月日 條正 致動器一端與固定底座連接,致動器另一端與位 工作^連接,平板葉片彈簧一端與固定底座連接, “ 平板葉片彈簧另一端與位移工作台連接,位移工 7 σ内部有一電容式位移感測器;當致動器受驅動後, 提供位移及作用力,產生之位移經平板葉片彈簧的導 引 產生一位移效果於位移工作台,造成工作平台固定 底座的相對運動,此相對運動由電容式位移感測器量 測’經由線性類比控制器進行閉迴路定位控制。 6·如申請專利範圍第一項之晶片步進機,其中所述之Ζ 轴致動平台,所包括之致動器,可選自壓電材料,及磁 致伸縮材料及電磁馬達及形狀記憶合金及其他以光、 電、熱及磁能動之致動器,以達到高精密家位的目的。 了.如申請專利範圍第一項之晶片步進機,其中所述之光 學自動聚焦系統,包括: 一雷射光讀取頭: 一聚焦誤差訊號處理電路; 一類比控制器等; 雷射光讀取頭包含雷射光源、物鏡、偏光分光 鏡、稜鏡等光學元4 ;利用雷射光讀取頭s曲線中線性 範圍的聚焦誤差訊號(F〇eus Error Signal)經聚焦誤 差訊號處理電路作為類比控制器控制迴路之誤差訊號, 以控制Z軸微定位平台之位移維持於雷射光讀取頭焦範552613 --- ~~ 12238 VI. Patent Application Fan t one side of the positive actuator is connected to the fixed base, the other end of the actuator is in position ^ connection, one end of the flat leaf spring is connected to the fixed base, "flat leaf spring The other end is connected to a displacement table. There is a capacitive displacement sensor inside the displacement 7 σ. When the actuator is driven, it provides displacement and force. The displacement generated is guided by the flat leaf spring to produce a displacement effect. Displacement of the workbench results in relative movement of the fixed base of the work platform, which is measured by a capacitive displacement sensor and controlled by closed-loop positioning via a linear analog controller. Machine, wherein the Z-axis actuation platform, the actuators included may be selected from piezoelectric materials, and magnetostrictive materials, electromagnetic motors, shape memory alloys, and other optical, electrical, thermal, and magnetic energy Actuator to achieve the purpose of high-precision home. As the first step of the patent application of the wafer stepper, the optical autofocus system, including : A laser light reading head: a focus error signal processing circuit; an analog controller, etc .; the laser light reading head contains laser light sources, objective lenses, polarizing beam splitters, chirps and other optical elements 4; using a laser light reading head The focus error signal in the linear range of the s-curve (Foous Error Signal) is processed by the focus error signal processing circuit as an error signal of the analog controller control loop to control the displacement of the Z-axis micro-positioning platform at the focal range of the laser light reading head. 第30頁 2002.10.07. 009 552613 _ 案號88112238 年月日 修正 六、申請專利範園 圍内丨其功能為使Z轴平台動晶片維持於光學聚焦工作 範圍内。Page 30 2002.10.07. 009 552613 _ Case No. 88112238 Amendment VI. Within the scope of patent application 丨 Its function is to maintain the Z-axis platform moving chip within the optical focus working range. 第31頁 2002.10.0Ϋ. 010Page 31 2002.10.0Ϋ. 010
TW88112238A 1999-07-19 1999-07-19 The drive of wafer stepper TW552613B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88112238A TW552613B (en) 1999-07-19 1999-07-19 The drive of wafer stepper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88112238A TW552613B (en) 1999-07-19 1999-07-19 The drive of wafer stepper

Publications (1)

Publication Number Publication Date
TW552613B true TW552613B (en) 2003-09-11

Family

ID=31713340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88112238A TW552613B (en) 1999-07-19 1999-07-19 The drive of wafer stepper

Country Status (1)

Country Link
TW (1) TW552613B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104467526A (en) * 2014-12-01 2015-03-25 苏州大学 Inertia stick-slip cross-scale motion platform capable of achieving unidirectional movement
CN111198285A (en) * 2018-11-16 2020-05-26 杭州海康微影传感科技有限公司 Wafer test probe station

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104467526A (en) * 2014-12-01 2015-03-25 苏州大学 Inertia stick-slip cross-scale motion platform capable of achieving unidirectional movement
CN111198285A (en) * 2018-11-16 2020-05-26 杭州海康微影传感科技有限公司 Wafer test probe station

Similar Documents

Publication Publication Date Title
Shimizu et al. Design and construction of the motion mechanism of an XY micro-stage for precision positioning
US6459473B1 (en) Drive of a wafer stepper
CN104730293B (en) A kind of caliberating device of white light interference atomic force scan-probe and scaling method thereof
US4464030A (en) Dynamic accuracy X-Y positioning table for use in a high precision light-spot writing system
Fan et al. Design and verification of micro/nano-probes for coordinate measuring machines
CN105242074B (en) One white light interference atomic force probe of can tracing to the source is automatically positioned workpiece method
Fan et al. A displacement spindle in a micro/nano level
Matsukuma et al. Closed-loop control of an XYZ micro-stage and designing of mechanical structure for reduction in motion errors
Weidenfeller et al. Development of laser positioning system of high accuracy in the nanometer range
Xu et al. Novel stereolithography system for small size objects
TW552613B (en) The drive of wafer stepper
Stauffenberg et al. Nanopositioning and-fabrication using the Nano Fabrication Machine with a positioning range up to Ø 100 mm
Cui et al. Fabrication of high precision grating patterns with a compliant nanomanipulator-based femtosecond laser direct writing system
Kirchner et al. A combined laser scanning and DLW tool for measuring and fabrication tasks with NPMM
CN113405471B (en) Optical displacement sensor and optical displacement detection system
JP2017133892A (en) Rotation angle detector and rotation angle detection method
CN110243290B (en) Three-degree-of-freedom nanometer positioning platform capable of reading displacement rotation information in real time through optical interference method
Lee et al. A calibrated atomic force microscope using an orthogonal scanner and a calibrated laser interferometer
JPH1047931A (en) Two-dimensional measuring device
Jäger et al. Nanometrology–Nanopositioning-and Nanomeasuring Machine with Integrated Nanopobes
Manske et al. Nanopositioning and nanomeasuring machine for high accuracy measuring procedures of small features in large areas
Zheng et al. Defocusing detection based on asymmetric placement of dual-quadrant detector
Liu et al. Motion performance measurement and optimization of motorized stages using tightly focused laser marking
Manske et al. Advances in traceable nanometrology with the nanopositioning and nanomeasuring machine
JP2004028684A (en) System and method for measuring profile

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees