TW552434B - Color filter and liquid display element - Google Patents

Color filter and liquid display element Download PDF

Info

Publication number
TW552434B
TW552434B TW091111040A TW91111040A TW552434B TW 552434 B TW552434 B TW 552434B TW 091111040 A TW091111040 A TW 091111040A TW 91111040 A TW91111040 A TW 91111040A TW 552434 B TW552434 B TW 552434B
Authority
TW
Taiwan
Prior art keywords
area
color filter
color
reflection
transparent
Prior art date
Application number
TW091111040A
Other languages
Chinese (zh)
Inventor
Hideyuki Kojima
Tetsuo Yamashita
Shigetaka Kasai
Ikumi Hada
Masahiro Yoshioka
Original Assignee
Toray Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries filed Critical Toray Industries
Application granted granted Critical
Publication of TW552434B publication Critical patent/TW552434B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

The present invention relates to a color filter having pixels in red, green and blue colors, wherein at least one pixel is formed by the same material and has transmitting area and reflective area, one part of the reflective is a transparent area having no color layer, and the transparent are has one or more sub-area, the surface area of the whole sub-area being in the range of 20 mum<2> to 2000 mum<2>. According to the present invention, in a liquid display element carrying out both transmittance display and reflection display, the brightness and chromaticity between the two has little difference and the surface step difference is little, and a low-cost color filter is provided.

Description

552434 五、發明說明(1 ) 技術領域 --本明係有II 一種使用於透射顯示、反射顯示兩者的 液曰日顯不兀件用之滤色片。 先前技術 目前,液晶顯示元件具有輕量、薄型、低消費電力等 特性、且使用於筆記簿型PC、攜帶型資料終端機、數據照 相機等各種用途。使用背景燈之液晶顯示元件中爲進行低 消耗電力化、以提高背景燈之利用效率。因此,要求濾色 片之筒透射率化。另外,年年提高濾色片之透射率,企求 藉由提局爐色片之透射率、大幅降低液晶顯示元件消耗電 力。 因此’最近進行開發不需電力消耗量大的背景光源之 反射型液晶顯示元件,發表與透射型液晶顯示元件相比可 大幅減低約1 / 7之消耗電力的液晶顯示元件(日經微裝置 別冊平板·顯不器1998、P.126)。 反射型液晶顯示元件與透射型液晶顯示元件相比具有 低消耗電力、於屋外之視認性優異的優點,無法確保充分 環境光源強度時顯不變暗,會有視認性極端不佳的問題。 此處,爲即使在昏暗的環境下視認顯示時,設置(1 )背景 燈、加入欠缺部分反射膜、部分爲透射型顯示方式、部分 爲反射型顯示方式之液晶顯示元件(即半透射半反射型顯 示方式、文獻中例如法因工程技術日本’99、專門技術學 會試驗AS )、( 2 )試驗設有前端燈之液晶顯示元件等。 552434 五、發明說明(2) 一般半透射型液晶顯示元件之典型圖如第3圖所示。 第3圖係表示利用背景燈進行顯示之透射型與利用環境光 源進行顯示之反射型。該型之彩色液晶顯示元件存在有透 射用區域8與反射用區域7、且進行透射顯示時顯示透射 用區域之顏色、進行反射顯示時顯示反射用區域之顏色。 進行透射顯示時背景燈光對1次透射濾色片之透射用區域 (6 )而言,以反射顯示使環境光源透射入射時4與反射時5 的2次濾色片之反射區域。換言之,由於以透射顯示與反 射顯示透射濾色片之次數不同,透射用區域與反射用區域 之顏色材料相同時顯示的顏色濃度、即顏色純度及明亮度 以透射顯示與反射顯示時大爲不同。而且,由於透射顯示 時光源爲背景燈光、以反射顯示時光源爲自然光,故不僅 色純度且透射顯示與反射顯示產生變化。 使透射用區域與反射用區域之顯示顏色相同的方法, 係如第5圖所示使透射用區域與反射用區域以不同的顏色 構成等。然而,使用現在主流的微影術時,以3色塗覆材 料6次予以形成,故成本增大。 使透射顯示與反射顯示之濃度(色再現性)相同的方 法,係在反射用區域中形成空間部、在透射用區域與反射 用區域變化著色層之膜厚,例如日本特開200卜33778號 公報中所記載。第6圖係爲習知構成之半透射型液晶顯示 元件用濾色片之截面圖的典型圖。反射用區域7上形成透 明樹脂層1 4、反射用區域7之著色層膜厚,與透射用區域 552434 五、發明說明(3) 8之著色層1的膜厚相比極薄。然而,藉由變化顏色材料 之膜厚、且以透射顯示之光源爲背景光源、以反射顯示之 光源爲環境光,無法修正色調之變化。因此,僅使反射用 區域7之著色層膜厚變薄時,可得顏色純度、明亮度不會 大爲不同者、各以紅、綠、藍等單色之反射顯示色調與以 透射顯示之色調不同。反射顯示與透射顯示中會有觀察不 同的問題。 爲提供一種解決上述問題、透射顯示與反射顯示之明 亮度及顏色差少、且低價的濾色片時,例如特開2000 -1 1 1 902號公報中在反射用區域中設置透明區域的光孔型濾 色片。該發明藉由設置透明區域,具有與著色層之膜厚變 薄時相同的效果。該方法無法以附有一色之一次加工完 成,係以與一般濾色片相同工程數加工,會有製造成本變 高等之問題。 第1圖係表示光孔型濾色片之構成(截面圖)。該濾色 片在一色畫素中存在有透射用區域8與反射用區域7。在 一晝素內可具有兩個區域、亦可以在一畫素內僅存在任何 一方、在數種畫素存在兩個區域。形成有反射膜2之基板 可以爲濾色片側基板、對向於濾色片之基板。在濾色片側 上形成反射膜時,畫素區域9中形成反射膜2之區域爲反 射用區域7,在畫素區域9中不會形成反射膜2之區域爲 透射用區域8。在對向於濾色片之基板上形成反射膜時、 對應於該基板之反射膜形成區域的畫素區域爲反射用區域 552434 五、發明說明(4) 7,對應於不會形成該基板之反射膜2區域的畫素區域爲 透射用區域8。在反射用區域7中包含透明區域10與著色 區域11。透明區域10具體而言爲沒有存在著色層1之區 域。在反射用區域7中包含透明區域1 〇,濾色片具相同膜 厚之相同著色層、且與使膜厚改變成透射用區域8時具有 相同的效果。 然而,光孔之濾色片的問題係爲因設有無著色層之透 明區域、在濾色片表面上產生階差。液晶顯示元件之顯示 性能受到嚴重影響的基本性能爲晶胞間隙,由於濾色片表 面之階差直接使晶胞間隙產生變化,故以階差儘可能小者 較佳。而且,階差大時因濾色片之平坦性不佳、使配向處 理時產生問題,爲液晶顯示板時恐會產生顯示不佳的問 題。 反射用區域內之著色區域與透明區域的階差藉由塗覆 表塗層,可得某種程度的平坦化。然而,於特開2000-249824號公報中使用顏料紅209之典型具有喹吖酮架構的 顏料作爲主顏料時,提高濾色片之色純度與色特性時由於 畫素之膜厚變厚、階差變大、即使塗覆表塗層時仍不易處 理該階差問題。 另外,光孔之濾色片在透明區域之面積控制係視顯示 特性而定極爲重要。然而,其加工性不佳時會導致處理性 降低、濾色片之製造成本上昇。 本發明之目的係提供一種可解決上述問題、且透射顯 -6- 552434 五、發明說明(5) 示與反射顯示之明亮度及顏色差異小、表面階差小、且低 _價之濾色片。____ 發明之掲不 以下述方法可達成本發明之目的。 本發明之濾色片,其具有紅、綠、藍之3色畫素,其 中至少一色的畫素係由相同材料形成且具有的透射用區域 與反射用區域,其特徵爲反射用區域中有一部分爲沒有著 色層的透明區域,且透明區域中有一個以上副區域,全部 副區域之面積爲20μπι2〜2000μπι2。 較佳例如申請專利範圍第1項之濾色片,其中副區域 之形狀可以爲圓形、一邊爲5μιη以上之正方形、或短邊爲 5 μηι以上之長方形中任一種。 圖式簡簞說明 第1圖係表示本發明液晶顯示元件例之構成圖(簡略截 面圖)。 第2圖係表示本發明液晶顯示元件例之構成圖(簡略平 面圖)。 第3圖係表示習知液晶顯示元件例之構成圖(簡略截面 圖)。 第4圖係表示本發明之長方形透明區域面積計算方法 例的簡略圖。 第5圖係表示習知液晶顯示元件例之構成圖(簡略截面 圖)。 552434 五、發明說明(6 ) 第6圖係表示習知液晶顯示元件例之構成圖(簡略截面 圖)。 —_________________ 符號說明 1 :色材料 2 :反射膜 3 :背景光源 4 :自然光 5 ·反射顯不光 6 :透射顯示光 7 :反射用區域 8 :透射用區域 9 :畫素區域 1 〇 :透明區域 1 1 :著色區域 1 2 ·副區域 1 3 :副區域間距離 1 4 :透明樹脂層 發明之實施形熊 於下述中更詳細地說明本發明。 本發明之濾色片係以數十〜數百μιη間距之數種顏色的 畫素重複之構成。濾色片至少存在有2色以上畫素,通常 濾色片由紅(R)、綠(G)、藍(Β)等3色畫素所成。 本發明濾色片之畫素反射用區域係由著色區域與透明 552434 五、 發明說明(7) 區 域 所 成。此處所指的透明區 域,具體而言爲在可 視 光 區 域下平均透射率爲80%以上之 區域。畫素之反射 用 區 域 中 包 含 透 明區域,本發明之濾色 片爲相同膜厚之相 同 顏 色 材 料 且 透射用區域具有與膜厚經改變的濾色片 相 同 的 效 果 〇 透 明區域所存在的顏色爲 至少一色時,由於 Μ J\\\ 法增加 工 程 數 、透明顯示與反射顯示 之差較小,故可發 揮 本 發 明 之 效 果 。其他顏色可與習知在 透射用區域與反射 用 區 域 中 兀 全 相 同顏色的材料,藉由在 透射用區域中形成 透 明 樹 脂 層 可 在透射用區域與反射用區域內改變顏色 材料 之 膜 厚 〇 基 板上之反射用區域內形 成透明樹脂層時, 爲 在反射 用 丨品 域 內形成透明樹脂層部分 之膜厚分凸,在透 射用 域 與 反 射 用區域相比形成低部分 突出的基板。在有 突 出 的 基 板 上 塗 覆非感光性彩色漿料及 :/或感光性彩色光 阻形成 著 色 層 時 ,透射用區域之著色層 膜厚藉由非感光性 彩 色 漿 料 或 感 光性彩色光阻予以平坦化 (水平化)時,與形成凸 部 之 反 射 用 區域的膜厚相比係較厚 。藉由該平坦化手 法 Λ 可改 變 反 射 用區域之著色與透射用 區域之著色。有關 形成 透 明 樹 脂 層 之顏色沒有特別的限制 ,可以爲紅畫素、 綠 蚩 里 素 、 藍 畫 素 。惟爲提高反射區域之 顏色特性時,由於 綠 室 里 素 中 形 成 透 明樹脂層時可提高反射 顯示之明亮度,故 較 佳 0 而 且 爲 提高反射區域之顏色特性時,在藍色畫素 中 形成 透 明 樹 脂 層時可提高反射顯示之 白色平衡性,故較佳 〇 本發明之透明樹脂層具體而言係爲可視光區 -9- 域 之 平 均552434 V. Description of the Invention (1) Technical Field-The present invention is a type II color filter for liquid crystal display elements used in both transmission display and reflection display. Prior art At present, liquid crystal display elements have characteristics such as light weight, thinness, and low power consumption, and are used in various applications such as notebook PCs, portable data terminals, and data cameras. In the liquid crystal display element using the backlight, the power consumption is reduced to improve the utilization efficiency of the backlight. Therefore, it is required to make the tube transmittance of the color filter. In addition, the transmittance of color filters is increased every year, and the power of liquid crystal display elements is greatly reduced by improving the transmittance of color filters. Therefore, 'recently developed a reflective liquid crystal display element that does not require a background light source with a large power consumption, and has released a liquid crystal display element that significantly reduces power consumption by about 1/7 compared with a transmissive liquid crystal display element (Nikkei Micro Devices Sep. Flat Panel Monitor 1998, P.126). Compared with a transmissive liquid crystal display element, a reflective liquid crystal display element has the advantages of low power consumption and excellent visibility outside the room. It cannot ensure sufficient ambient light source intensity to be dimmed, and has extremely poor visibility. Here, in order to visually display even in a dim environment, a liquid crystal display element (ie, transflective and semi-reflective) is provided (1) with a backlight, a partially reflective film, a transmissive display, and a reflective display. Type display method, literature such as law engineering Japan '99, Special Technical Society test AS), (2) test liquid crystal display elements with front-end lights, etc. 552434 V. Description of the invention (2) A typical diagram of a general transflective liquid crystal display element is shown in Fig. 3. Fig. 3 shows a transmissive type for display using a backlight and a reflective type for display using an ambient light source. This type of color liquid crystal display element includes a transmissive area 8 and a reflective area 7 and displays the color of the transmissive area when the transmissive display is performed and the color of the reflective area when the transmissive display is performed. In the case of transmissive display, the background light is used for the transmissive area (6) of the primary transmissive filter, and the reflective area of the secondary filter of the transmissive 4 and the transmissive 5 when the ambient light source is transmitted through the reflective display. In other words, because the number of transmission filters is different between the transmission display and the reflection display, the color density, that is, the color purity and brightness, displayed when the color material of the transmission area and the reflection area are the same are different between the transmission display and the reflection display. . In addition, since the light source is the background light during the transmission display and the natural light is used for the reflection display, not only the color purity but also the transmission display and the reflection display are changed. The method of making the transmission area and the reflection area have the same display color is to form the transmission area and the reflection area with different colors as shown in FIG. 5. However, when the current mainstream lithography is used, a three-color coating material is formed six times, so the cost is increased. The method of making the transmission display and reflection display the same density (color reproducibility) is to form a space portion in the reflection area and change the film thickness of the colored layer between the transmission area and the reflection area. Documented in the bulletin. Fig. 6 is a typical view of a cross-sectional view of a color filter for a semi-transmissive liquid crystal display element having a conventional structure. The thickness of the colored layer of the transparent resin layer 14 and the reflective area 7 formed on the reflective area 7 is extremely thin compared with the thickness of the colored layer 1 of the transmissive area 552434 5. Invention Description (3) 8. However, by changing the film thickness of the color material, using the light source for transmission display as the background light source, and the light source for reflection display as the ambient light, the change in hue cannot be corrected. Therefore, when only the thickness of the colored layer of the reflection region 7 is reduced, the color purity and brightness are not significantly different, and the reflection display hue of each color, such as red, green, and blue, and the transmission display are obtained. Different shades. There are different observation problems in reflective and transmissive displays. In order to provide a low-cost color filter that solves the above-mentioned problems, and has less brightness and color difference between the transmission display and the reflection display, for example, in JP 2000-1 1 1 902, a transparent area is provided in a reflection area. Light-hole type color filter. By providing a transparent region, the present invention has the same effect as when the film thickness of the coloring layer is reduced. This method cannot be completed in one process with one color attached, and it is processed with the same number of processes as a general color filter, which causes a problem that the manufacturing cost becomes higher. FIG. 1 shows the configuration (cross-sectional view) of a light hole type color filter. This color filter includes a transmission region 8 and a reflection region 7 in one-color pixels. There can be two regions in one day, or there can be only one side in one pixel, and two regions in several pixels. The substrate on which the reflection film 2 is formed may be a color filter-side substrate or a substrate facing the color filter. When a reflection film is formed on the color filter side, a region where the reflection film 2 is formed in the pixel region 9 is a reflection region 7, and a region where the reflection film 2 is not formed in the pixel region 9 is a transmission region 8. When a reflective film is formed on a substrate facing a color filter, the pixel area corresponding to the reflective film formation area of the substrate is a reflective area 552434 V. Description of the invention (4) 7 corresponds to the area where the substrate will not be formed The pixel region in the reflection film 2 region is the transmission region 8. The reflection region 7 includes a transparent region 10 and a colored region 11. The transparent region 10 is specifically a region where the colored layer 1 does not exist. The reflection region 7 includes a transparent region 10, and the color filter has the same colored layer with the same film thickness and the same effect as when the film thickness is changed to the transmission region 8. However, a problem with the color filter of the light hole is that a step is generated on the surface of the color filter because a transparent area without a colored layer is provided. The basic performance of the liquid crystal display element whose display performance is seriously affected is the cell gap. Since the step difference on the surface of the color filter directly changes the cell gap, it is better to use the step as small as possible. In addition, when the step is large, the flatness of the color filter is not good, which causes a problem in the alignment process. In the case of a liquid crystal display panel, a poor display problem may occur. The level difference between the colored area and the transparent area in the reflection area can be flattened to some extent by applying a surface coating. However, when the pigment having a quinacridone structure, which is a typical pigment of Pigment Red 209, is used as the main pigment in Japanese Patent Application Laid-Open No. 2000-249824, the color purity and color characteristics of the color filter are improved because the film thickness of pixels becomes thicker, The difference becomes large, and it is not easy to deal with the step problem even when the surface coating is applied. In addition, the area control of the color filter of the light hole in the transparent area is extremely important depending on the display characteristics. However, when the workability is not good, the handleability is reduced and the manufacturing cost of the color filter is increased. The object of the present invention is to provide a color filter that can solve the above problems and has a transmission display-6-552434. 5. Description of the invention (5) The brightness and color difference of the display and reflection display is small, the surface step is small, and the price is low. sheet. ____ The invention can not be achieved by the following methods. The color filter of the present invention has three color pixels of red, green, and blue, wherein at least one color pixel is formed of the same material and has a transmission region and a reflection region, and is characterized in that: One part is a transparent region without a colored layer, and there are one or more sub-regions in the transparent region, and the area of all the sub-regions is 20 μm 2 to 2000 μm 2. Preferably, for example, the color filter of the first patent application range, wherein the shape of the sub-region may be any of a circle, a square with one side of 5 μm or more, or a rectangle with a short side of 5 μm or more. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a structural diagram (schematic sectional view) showing an example of a liquid crystal display element of the present invention. Fig. 2 is a configuration diagram (schematic plan view) showing an example of a liquid crystal display element of the present invention. Fig. 3 is a configuration diagram (schematic sectional view) showing an example of a conventional liquid crystal display element. Fig. 4 is a schematic diagram showing an example of a method for calculating the area of a rectangular transparent area according to the present invention. Fig. 5 is a configuration diagram (schematic sectional view) showing an example of a conventional liquid crystal display element. 552434 V. Description of the invention (6) FIG. 6 is a structural diagram (a simplified cross-sectional view) showing an example of a conventional liquid crystal display element. --_________________ Symbol description 1: Color material 2: Reflective film 3: Background light source 4: Natural light 5 Reflective display light 6: Transmission display light 7: Reflection area 8: Transmission area 9: Pixel area 1 〇: Transparent area 1 1: Colored area 1 2 · Sub-area 1 3: Distance between sub-areas 1 4: Implementation of transparent resin layer invention The present invention will be described in more detail below. The color filter of the present invention has a structure in which pixels of several colors with a pitch of several tens to several hundreds of μm are repeated. The color filter has at least two colors of pixels. Usually, the color filters are made of three colors of red (R), green (G), and blue (B). The pixel reflection area of the color filter of the present invention is formed by the colored area and the transparent area. 552434 V. Description of the invention (7) area. The transparent area referred to here is specifically an area having an average transmittance of 80% or more in a visible light area. The reflective area of the pixel includes a transparent area. The color filter of the present invention is the same color material of the same film thickness, and the transmission area has the same effect as the color filter with a changed film thickness. The color of the transparent area is For at least one color, the effect of the present invention can be exerted because the M J \\\ method increases the number of processes, and the difference between the transparent display and the reflective display is small. Other colors can be the same as those of conventional materials in the transmissive area and the reflective area. By forming a transparent resin layer in the transmissive area, the film thickness of the color material can be changed in the transmissive area and the reflective area. When the transparent resin layer is formed in the reflection region on the substrate, in order to form a film thickness of the transparent resin layer portion in the reflection region, the substrate having a lower portion is formed in the transmission region than the reflection region. When a non-photosensitive color paste is coated on a substrate with a protrusion and / or a photoresist is used to form a coloring layer, the film thickness of the coloring layer in the transmission area is determined by the non-photosensitive color paste or photoresist. In the flattening (horizontalization), the thickness is thicker than the film thickness of the reflection region forming the convex portion. By this flattening method Λ, the coloring of the reflection area and the coloring of the transmission area can be changed. There are no particular restrictions on the color of the transparent resin layer, which can be red, green, and blue. However, in order to improve the color characteristics of the reflective area, the brightness of the reflective display can be improved when the transparent resin layer is formed in the green chamber. Therefore, it is better to form the blue pixels in order to improve the color characteristics of the reflective area. When the transparent resin layer is used, the white balance of the reflective display can be improved. Therefore, the transparent resin layer of the present invention is specifically an average of the visible light region -9-domain.

552434 五、 發明說明 ( 8: ) 透 射 率 爲8 0 %以 上 之 樹 脂 層 。反 射 用區域 所 形成 的 透 明 樹 脂 層 之 膜厚 考 慮 與 不 同 光 源 時, 以 使反射 用 域 與 透 射 用 區 域 之 色純 度 明 売 度 色 調差 小 下選擇 〇 透 明 樹 脂 脂 膜 厚 愈 厚 時, 因 平 坦 化在反射用區 域 與透射 用 丨品 域 中 所形成 的 著 色 層之 膜 厚 差 愈 厚 5 使 透射 用 區域與 反 射 用 域 之色 純 度 明売 度 色 調 差 小的 效果 變 大。透 明 樹 脂 層 之 膜 厚 相 當 大 時, 濾 色 片 表 面 之 階 差變 大 、對液 晶 配 向 產 生 不 良 影 響 、 顯示 品 質 惡 化 故 透 明樹 脂 層之膜, 厚, 以 5 μπι 以 下 較 佳 〇 於本發明中有關至少- -色之: 畫: 素藉由 以 由 透 射 用 1E 域 與 反射 用區 域 不 同 的 著 色 暦 所成 可使以 反 射 顯 示 之色 純 度 、 色 調與 以 透 明 顯 示 之 色 純度 Λ 色調相近 且 可 得 企求 的 色 純 度、 明 亮 度 〇 本發明之透明樹脂層可使用! 感; 光性光 阻 劑 形 成 〇 感 光 杏 樹 之 材料 可 使 用 聚 醯 亞 胺 系樹 脂 、環氧 系 樹 脂 \ 丙 烯 酸 系 樹 脂 、聚 胺 基 甲 酸 酯 系 樹 脂、 聚 酯系樹 脂 聚 烯 烴 系 樹 脂 等 之 材料 , 以 丙 烯 酸 系 樹 脂較 佳 。感光性 丙 嫌 酸 系 樹 脂 由 於 具 有感 光性 具 有 至 少含丙 烯 酸系聚 合 物 、 丙 烯 酸 系 多 官 能 單體 或 寡 聚 物 、 光 聚 合起 始 劑之構 成 者 一 般 可以加 入 環 氧 單體 % 即 爲 丙 烯 酸 環 氧樹 脂 。使透 明 樹 脂 層 以 感 光 性光 阻 劑形 成 時 以 微 影 加 工之 曝 光工程 改 變 曝 光光 罩 與 形 成 透 明樹 脂 層 之 基 板 的 距 離, 可 控制透 明 樹 脂 層 表 面 之 圓 形或平坦 性 〇 - 10- 552434 五、發明說明(9) 本發明之透明樹脂層可使用非感光性漿料形成。非感 一光-性—樹卫r一使用聚醯亞胺系撞^ ^樹脂、丙瘦 酸系樹脂、胺基甲酸酯系樹脂、聚酯系樹脂。聚烯烴系樹 脂等之材料,以聚醯亞胺系樹脂較佳。使透明樹脂層以非 感光性漿料形成時,透明樹脂層之上部表面成平坦的構 成、可形成較小面積之透明樹脂層。 反射用區域所形成的透明樹脂層中亦包含爲光繞射之 粒子。藉由在透射樹脂中含有光繞射粒子,藉由正反射成 分押入顯示之不齊性,可得良好的顯示特性,且藉由透射 用區域中沒有存在透明樹脂層、可使用不會使光繞射下有 效的背景燈。爲使光繞射之粒子以使用二氧化矽、氧化 鋁、氧化鈦等之無機氧化物粒子、金屬粒子、丙烯酸、苯 乙烯、聚矽氧烷、含氟之聚合物等樹脂粒子等材料,以使 用二氧化矽較佳。光繞射粒子之粒徑使用〇 . 1〜1 ΟμίΏ。光 繞射粒子直徑爲透明樹脂層之厚度以下時以透明樹脂層平 坦更佳。 本發明之濾色片亦包含由透射用區域與反射用區域不 同著色層所成的畫素。此處所指的同一著色層係指顏料組 成、顏料與樹脂重量比相同的著色層。而且,不同著色層 係指顏料組成、顏料與樹脂之重量比皆不同的樹脂層。有 關透射用區域與反射用區域不同所成著色層形成的畫素沒 有特別的限制,可以爲紅畫素、綠畫素、藍畫素中任一 種。爲提高在反射區域之顏色特性時,以使綠畫素之著色 -1 1 - 五、發明說明(1〇) 層在透射用區域與反射用區域不同下提高反射顯示之明亮 佳。而乱,爲提高反射區域之顏色特性時,只要使藍 畫素之著色層在透射用區域與反射用區域不同時’以可提 高反射顯示之白色平衡更佳。 第2圖係爲本發明液晶顯示元件之平面圖。如此所 示,透明區域1 0亦可分割成數份。經分割的透明區域中 各一個稱爲副區域1 2。此時,一畫素內之各副區域的合計 面積作爲透明區域之面積。分割微細的程度可以任意,惟 由於加工時存在有精度臨界線,以相當微細分割時副區域 之形成不佳。此時,處理性降低、且爲高價濾色片。另 外,相當大時,著色區域與透明區域之階差變大,故不爲 企求。此處所指階差係指透明區域之總膜厚差。總膜厚係 爲自基板至濾色片最表面之膜厚,爲表塗層與透明導電層 等時亦包含此等。以上述理由,副區域之面積必須爲20〜 2000μπι2。而且,更佳者爲70〜1 500μπι2。 可以使透明區域爲任意形狀,基本上可以爲任何形 狀。惟包含相當微細部分的形狀時,該部分無法良好地形 成,故以圓形、正方形或長方形等不含微細部分之形狀較 佳。正方形或長方形之短邊方向小於5 μπι時,由於會產生 加工性問題、故以短邊方向之長度爲5μηι以上較佳。此 外,如第4圖所示爲長方形時實際上角度不完全爲直角、 帶有圓形的痕跡形狀、沒有問題。透明區域必須如面積所 設計、係爲十分重要,故透明區域可得與企求長方形面積 12- 552434 五、發明說明(11) 相同面積。例如第4圖所示之痕跡形狀時,可進行下式之 一面農計—算___ S=yX(X-y)+πχ(y/2)2 使透明區域之副區域在反射用區域內配置位置可以爲 任意。基本上可以任意配置,惟不可使副區域集中、全體 普遍配置者,就顯示均勻性而言較佳。另外,就加工性而 言爲避免副區域間互相干擾,自副區域之一端至鄰接的副 區域一端之距離1 3 (以下稱爲副區域距離)相距1 Ομηι以上 較佳。更佳者爲20μιη以上。若爲20μπι以下時,副區域間 之著色部分與一般的著色層部分相比、總膜厚變薄、產生 階差。 爲減少著色區域與透明區域之階差時,以在著色層上 形成表塗層作爲平坦化層較佳。表塗層之材質例如環氧 膜、丙烯酸環氧膜、丙烯酸膜、聚矽氧烷聚合物系膜、聚 醯亞胺膜、含矽之聚醯亞胺膜、聚醯亞胺聚矽氧烷膜等。 藉由表塗層、透明區域以某種程度表層塗覆塡充,以減少 濾色片之階差。考慮階差時,表塗層之膜厚以厚者較佳。 然而,若過厚時,作成平板時過於柔軟、容易產生晶胞間 隙斑、會有容易產生氣泡的問題。實質上以1 · 〇〜4 . ΟμίΏ 較佳。 反射用區域中著色區域與透明區域之階差爲〇 · 5 μιη以 下較佳。薄膜轉換器(TFT)驅動之扭轉向列(ΤΝ)型式,由 於要求約0.4μπι之平坦性,以〇 . 4μηι以下更佳。著色層之 552434 五、發明說明 (12) 膜厚 變厚時 ,即使使用表塗層埋入仍不易著色區 域 與 透 明 區域 之階差 ,著色層之膜厚以0.6〜1.5μπι較佳 〇 反射用 區域 內著色 區域與透明區域之階差變大時,會引 起 液 晶 之 配向 不佳(向列性)、且以反射顯示時白色之明亮 度 極 丄U4 m 降 低。 或於反 射顯示之黑顯示中會引起光漏情形、 且 導 致 液 晶顯 示元件 之對比降低問題。 糸] [畫素以在反射用區域中含有透明區域較 佳 綠 畫 素、 藍畫素 沒有特別的限制,皆包含透明區域、 或 此 等 可 包含 透明區 域。加入所使用的背景光源與環境光 源 之 特 性 差、 且反射 顯示與透射顯示之色度差變小下,決定反射 區 域與 透射區 域較佳。C光源之ΧΥΖ表色系色度圖 中 紅 畫 素 之透 射用區 域的色度X以0.4&lt;χ&lt;0.6較佳。 更 佳 者 爲 0.45 &lt; X &lt; 0 .58,最佳者爲 0.50&lt;χ&lt;0.58。 有關透象 ί用區域之C光源中ΧΥΖ表色系色度 (Χι 〇,y〇)與 反射 用區域 之C光源中ΧΥΖ表色系色度(x,y) 之 色 度 差 5, 係至少 二色滿足下式較佳。 δ=| -x〇)2+(y_y〇)2‘ 3χΐ〇·3 另外 ,以滿 足下式更佳。 δ=&lt; U-x〇)2+(y-y〇)2S lxlO-3 此處所指的透射用區域色度係爲自使上述濾 色 片 透 射 區域 以顯微 分光光度計測定所得的分光光譜所求 得 者 〇 反 射用 區域色 度係爲該區域中著色區域之分光光譜 透 明 區 域之 分光光 譜以各波長相乘,且著色區域與透明 區 域 之 面 -14- 552434 五、發明說明(13) 積係藉由取得加重平均所求得者。 _色_度_51_ 5十昇由於可考慮光源不同時,透射用區域可以 藉由C光源、2波長型光源、3波長型光源中任何一種, 反射用區域以D6 5光源進行較佳。此處所指的2波長型 LED光源例如組合藍色LED與黃色螢光或黃綠色螢光物、 使白色光發光的LED光源。而且,3波長型光源例如組合 3波長螢光管、紫外LED與紅、藍、綠螢光物之白色LED 光源、紅、藍、綠各色之白色LED光源、組合紅、藍、綠 各色LED的白色LED光源、有機電子感應器光源等。 於本發明之濾色片中,含有透明區域之畫素係對透明 區域面積之反射用區域全體面積而言比例(以下稱爲「透 明區域率」)係極重要。含有透明區域之色畫素爲數種 時,透明區域率以綠 &gt; 紅=藍之順序大小較佳。具體而 _ ’綠畫素係透明區域率爲15 %〜35%、紅色晝素爲5%〜 20%、藍色畫素爲20以下較佳。另外,更佳的綠畫素之透 明區域率爲20%〜30%、紅畫素爲8%〜16%、藍畫素爲5%〜 16%。使用2波長型LED光源時,透明區域率係以紅 &gt; 藍 之順序大小較佳。自上述區域中透明區域率脫離狹窄方向 時,反射顯示時無法得到色鮮的顯示。 本發明之基板實質上爲透明、具有剛性者之材質即 可,任何一種皆可使用。例如使用無鹼玻璃、鹼玻璃、塑 膠基板等。而且,可在驅動元件側基板上形成著色層。 本發明之著色層以具有任意顏色之光透射性能的材料 -15- 552434552434 V. Description of the invention (8:) The resin layer with a transmittance of 80% or more. When considering the film thickness of the transparent resin layer formed in the reflection area and different light sources, choose a value such that the color purity and brightness difference between the reflection area and the transmission area is small. The thicker the thickness of the transparent resin grease film, the flatter it is. The thicker the thickness difference between the colored layer formed in the reflection area and the transmission area, the larger the thickness difference between the color purity and brightness of the transmission area and the reflection area becomes. When the film thickness of the transparent resin layer is relatively large, the step on the surface of the color filter becomes large, which adversely affects the alignment of the liquid crystal, and the display quality is deteriorated. Therefore, the thickness of the transparent resin layer is preferably 5 μm or less. In the present invention, Regarding at least-color: painting: The color purity, hue, and hue are similar to those of transparent display, and the color purity can be achieved by using different coloring areas for the 1E field for transmission and the reflection field. The desired color purity and brightness can be obtained. The transparent resin layer of the present invention can be used! Sensitivity; Photoresist is formed. The material of the photosensitive apricot tree can use polyimide resin, epoxy resin, acrylic resin, polymer As the material of the urethane-based resin, the polyester-based resin, and the polyolefin-based resin, an acrylic resin is preferable. Photosensitive acrylic resins have a photosensitive composition that contains at least an acrylic polymer, an acrylic polyfunctional monomer or oligomer, and a photopolymerization initiator. Generally, an epoxy monomer% can be added to form an acrylic ring. Oxygen resin. When the transparent resin layer is formed with a photosensitive photoresist, the exposure process of lithography processing is used to change the distance between the exposure mask and the substrate forming the transparent resin layer, and the circularity or flatness of the surface of the transparent resin layer can be controlled. 0-10552552 5. Description of the invention (9) The transparent resin layer of the present invention can be formed using a non-photosensitive paste. Non-sensing-Photo-resistance-Shu Wei r-using polyimide resin ^ ^ resin, acrylic resin, urethane resin, polyester resin. Polyolefin resins are preferred for materials such as polyolefin resins. When the transparent resin layer is formed of a non-photosensitive paste, the upper surface of the transparent resin layer has a flat structure, and a transparent resin layer with a small area can be formed. The transparent resin layer formed in the reflection region also contains particles that are diffracted by light. By including light diffractive particles in the transmissive resin, the display inhomogeneity is pushed in by the specular reflection component, and good display characteristics can be obtained. Since the transparent resin layer does not exist in the transmissive area, it can be used without light. Effective background light with diffraction. In order to make the light diffracting particles, materials such as inorganic oxide particles such as silicon dioxide, alumina, and titanium oxide, metal particles, resin particles such as acrylic, styrene, polysiloxane, and fluorine-containing polymers are used. The use of silicon dioxide is preferred. The particle diameter of the light diffracting particles is 0.1 to 10 μL. When the diameter of the light diffracting particles is equal to or less than the thickness of the transparent resin layer, it is more preferable that the transparent resin layer is flat. The color filter of the present invention also includes pixels formed of different colored layers for the transmission area and the reflection area. The same colored layer referred to here means a colored layer having a pigment composition and the same weight ratio of pigment to resin. The different colored layers are resin layers having different pigment compositions and different weight ratios of pigment and resin. There are no particular restrictions on the pixels formed by the colored layer formed by the difference between the transmission area and the reflection area, and any of red pixels, green pixels, and blue pixels may be used. In order to improve the color characteristics in the reflective area, in order to make the color of green pixels -1 1-V. Description of the invention (10) The layer has better reflection reflection performance under the difference between the transmission area and the reflection area. In order to improve the color characteristics of the reflection area, if the coloring layer of the blue pixel is different from the reflection area and the reflection area, it is better to improve the white balance of the reflection display. Fig. 2 is a plan view of a liquid crystal display element of the present invention. As shown, the transparent area 10 can also be divided into several portions. Each of the divided transparent regions is called a secondary region 12. At this time, the total area of the sub-regions in one pixel is taken as the area of the transparent region. The degree of fine division can be arbitrarily, but because there is a critical line of precision during processing, the formation of the sub-region is not good when the fine division is quite fine. In this case, the handleability is reduced and the color filter is an expensive filter. In addition, when it is relatively large, the step difference between the colored area and the transparent area becomes large, so it is not desirable. The step difference mentioned here refers to the total film thickness difference of the transparent area. The total film thickness is the film thickness from the substrate to the outermost surface of the color filter, and it is also included when it is a surface coating layer or a transparent conductive layer. For the above reasons, the area of the sub-region must be 20 to 2000 μm 2. Furthermore, it is more preferably 70 to 1,500 μm 2. The transparent area can be of any shape, and can basically be of any shape. However, when the shape includes a relatively fine portion, the portion cannot be formed well, so a shape that does not include a fine portion such as a circle, a square, or a rectangle is preferable. When the short side direction of the square or rectangle is less than 5 μm, workability problems may occur. Therefore, the length in the short side direction is preferably 5 μm or more. In addition, when the rectangle is shown in Fig. 4, the angle is not exactly right, and the shape of the trace is round, so there is no problem. The transparent area must be designed as the area is very important, so the transparent area can have the same area as the rectangular area 12-552434. V. Description of the invention (11). For example, when the shape of the trace shown in Figure 4 is used, one of the following formulas can be calculated: S = yX (Xy) + πχ (y / 2) 2 so that the sub-region of the transparent region is arranged in the reflection region Can be arbitrary. Basically, it can be arbitrarily arranged, but the sub-area can not be concentrated and the whole is generally arranged. It is better in terms of display uniformity. In addition, in terms of workability, in order to avoid mutual interference between the sub-regions, a distance 13 (hereinafter referred to as a sub-region distance) from one end of the sub-region to one end of an adjacent sub-region is preferably at least 10 μm. It is more preferably 20 μm or more. When the thickness is 20 μm or less, the total film thickness becomes thinner and a step difference occurs in the coloring portion between the sub-regions compared with the general coloring layer portion. In order to reduce the step between the colored area and the transparent area, it is preferable to form a surface coating layer on the colored layer as a planarization layer. Surface coating materials such as epoxy film, acrylic epoxy film, acrylic film, polysiloxane polymer film, polyimide film, polyimide film containing silicon, polyimide polysiloxane Film, etc. The surface coating and transparent areas are filled with a certain degree of surface coating to reduce the step difference of the color filter. When the step difference is considered, the thicker the film thickness of the surface coating is, the better. However, if it is too thick, it is too soft when the flat plate is made, and it is easy to produce interstitial spots, and there is a problem that bubbles are liable to be generated. Essentially, 1 · 〇 ~ 4. ΟμίΏ is preferred. The step difference between the colored area and the transparent area in the reflection area is preferably 0.5 μm or less. The thin-film converter (TFT) -driven twisted nematic (TN) type requires a flatness of about 0.4 μm, and is preferably less than 0.4 μm. 552434 of the colored layer V. Description of the invention (12) When the film thickness becomes thick, the step difference between the colored area and the transparent area is not easy even if the surface coating layer is buried. The thickness of the colored layer is preferably 0.6 ~ 1.5μm. For reflection When the step difference between the colored area and the transparent area in the area becomes larger, it will cause poor alignment of the liquid crystal (nematicity), and the brightness of white will be extremely reduced by U4 m when displayed in reflection. Or in the black display of the reflective display, light leakage may be caused, and the contrast of the liquid crystal display element may be reduced.糸] [It is better to include transparent areas in the reflection area. Green pixels and blue pixels are not particularly limited. They all include transparent areas, or these may include transparent areas. The characteristics of the background light source and the ambient light source used are poor, and the chromaticity difference between the reflective display and the transmissive display becomes smaller, and it is better to determine the reflection area and the transmission area. The chromaticity X of the transmission area of the red pixel in the XYZ color chart of the C light source is preferably 0.4 &lt; χ &lt; 0.6. The better is 0.45 &lt; X &lt; 0.58, and the best is 0.50 &lt; χ &lt; 0.58. The chromaticity difference between the chromaticity (X, 0, y) of the XYZ color in the C light source in the area for transmission and the chromaticity (x, y) of the XYZ, the chromaticity (x, y) in the C light source in the reflection area, is at least 5 It is better that the two colors satisfy the following formula. δ = | -x〇) 2+ (y_y〇) 2 '3χΐ〇 · 3 In addition, it is better to satisfy the following formula. δ = &lt; Ux〇) 2+ (yy〇) 2S lxlO-3 The chromaticity of the transmission region referred to here is determined from a spectroscopic spectrum obtained by measuring the transmission region of the color filter with a microspectrophotometer. 〇The reflection area chromaticity is the spectral spectrum of the colored area in this area. The spectral spectrum of the transparent area is multiplied by each wavelength, and the surface of the colored area and the transparent area is -14- 552434. 5. Description of the invention (13) Obtained by obtaining a weighted average. _ 色 _ 度 _51_ 5 ten liters. When considering different light sources, the transmission area can be any of C light source, 2 wavelength light source, and 3 wavelength light source. The reflection area is preferably D6 5 light source. The two-wavelength type LED light source referred to here is, for example, an LED light source that combines blue LED with yellow fluorescent light or yellow-green fluorescent light and emits white light. In addition, the three-wavelength light source is, for example, a combination of a three-wavelength fluorescent tube, a UV LED and red, blue, and green fluorescent white LED light sources, a red, blue, and green white LED light source, a combination of red, blue, and green LED White LED light source, organic electronic sensor light source, etc. In the color filter of the present invention, the ratio of the pixels containing the transparent region to the total area of the reflection region of the transparent region area (hereinafter referred to as "transparent area ratio") is extremely important. When there are several kinds of color pixels with transparent areas, the transparent area ratio is preferably in the order of green &gt; red = blue. Specifically, it is preferable that the green pixel system has a transparent area ratio of 15% to 35%, a red day pixel is 5% to 20%, and a blue pixel is preferably 20 or less. In addition, the transparent area ratio of green pixels is preferably 20% to 30%, red pixels is 8% to 16%, and blue pixels is 5% to 16%. When using a two-wavelength type LED light source, the transparent area ratio is preferably in the order of red & blue. When the transparent area ratio is out of the narrow direction from the above-mentioned area, a vivid display cannot be obtained in reflective display. The substrate of the present invention may be made of substantially transparent and rigid materials, and any of them may be used. For example, alkali-free glass, alkali glass, plastic substrate, etc. are used. Further, a colored layer can be formed on the substrate on the driving element side. The coloring layer of the present invention is a material having a light transmitting property of any color -15- 552434

五、發明說明(14) 時’其材質可以爲任意者。著色層之具體材質係以顏料及 m分高分子膜、染色處理的pVA (聚乙烯醇)、僅^ 任意光透射下膜厚控制的s i 02膜等,惟以顏料分散的高分 子膜較佳’高分子膜以聚醯亞胺樹脂膜或丙烯酸樹脂膜更 佳。此等樹脂可與以其他材料形成著色層相比時同等或較 簡便的工程形成著色層、且耐熱性、耐光性、耐藥品性較 爲優異。其中,聚醯亞胺樹脂膜係圖樣加工性佳、對透明 區域之形成有利。使用顏料或染料分散的高分子膜作爲著 色層時,均勻塗覆漿料狀之著色層,再進行含曝光、顯像 等之微影加工以形成圖案。 構成畫素者爲以所定圖案形成的著色層。有關圖案形 狀例如條狀、海島形狀等,沒有特別的限制。有關著色層 之形成方法例如微影法、印刷法、電熔法等,沒有特別的 限制。考慮圖案形成性等時,以微影法進行更佳。現在主 流以顏料分散的高分子膜作爲著色層時,由於著色層藉由 微影加工圖案形成,透明區域形成係使用形成透明區域之 光罩。 本發明之顏料沒有特別的限制,於顏料中以耐光性、 耐熱性、耐藥品性優異者較佳。典型顏料之具體例如以係 彩色指數(ci)數表示。 黃色顏料例如顏料黃13、17、20、24、83、86、93、 94、109、110、117、125、137、138、139、147、148、 150、153、154、166、173、180等。橙色顏料例如顏料橙 552434 五、發明說明(π) 13、31、36、38、40、42、43、51、55、59、61、64、 65、7丄紅色顏料例如顏料紅9、97、122、123、 144、 149、 166、 168、 177、 180、 192、 206、 207、 209、 215、216、224、242、2 54等。紫色顏料例如顏料紫19、 23、29、32、33、36、37、38等。藍色顏料例如顏料藍 15( 15 : 3、15 : 4、15 : 6 等)、21、22、60、64 等。綠色 顏料例如顏料綠7、1 0、36、47等。 展頁料視其所需可使用施有松香處理、酸性處理、鹼性 處理等之表面處理者。而且,PR (顏料紅)、ρ γ (顏料黃)、 PV(顏料紫)、P0(顏料橙等),彩色指數(c. ;[ · : The Society of Dyers and Colour i st s 公司發行)之記號,正 式者在前頭上附有C · I ·者(例如C · I · PR254等)。此係以染 料或染色標準爲規定者。而且,下述本發明之說明中原則 爲上述C · I .之表記爲簡稱(例如c . I . PR254爲PR254 )。 本發明濾色片之紅色畫素中爲使膜厚〇 . 6〜丨.5 // m區 域內色度爲〇.4&lt;x&lt;〇.6時,以含有PR2 54較佳。而且, 以含有具喹吖酮架構之顏料更佳。PR254係爲以下述構造 式(1)所示的化合物。 -17- 5524345. Description of the invention (14) The material may be any one. The specific material of the colored layer is a pigment and m polymer film, dyed pVA (polyvinyl alcohol), si 02 film with film thickness control under any light transmission, etc., but a polymer film dispersed with a pigment is preferred. 'The polymer film is preferably a polyimide resin film or an acrylic resin film. These resins can form the colored layer in the same or simpler process as when the colored layer is formed of other materials, and have excellent heat resistance, light resistance, and chemical resistance. Among them, the polyimide resin film pattern has good processability and is advantageous for the formation of transparent regions. When a pigment- or dye-dispersed polymer film is used as the coloring layer, a paste-like coloring layer is uniformly coated, and then lithographic processing including exposure, development, and the like is performed to form a pattern. Those who constitute pixels are colored layers formed in a predetermined pattern. There are no particular restrictions on the shape of the pattern, such as a strip shape, an island shape, and the like. The method for forming the colored layer, such as a lithography method, a printing method, and an electrofusion method, is not particularly limited. In the case where the pattern formability is taken into consideration, the lithography method is more preferable. When a pigment-dispersed polymer film is mainly used as the colored layer, since the colored layer is formed by a lithography process pattern, the transparent area is formed by using a mask that forms the transparent area. The pigment of the present invention is not particularly limited, and among the pigments, those having excellent light resistance, heat resistance, and chemical resistance are preferred. The details of a typical pigment are represented, for example, by a color index (ci) number. Yellow pigments such as pigment yellow 13, 17, 20, 24, 83, 86, 93, 94, 109, 110, 117, 125, 137, 138, 139, 147, 148, 150, 153, 154, 166, 173, 180 Wait. Orange pigments such as pigment 552434 V. Description of the invention (π) 13, 31, 36, 38, 40, 42, 43, 51, 55, 59, 61, 64, 65, 7 Red pigments such as pigment red 9, 97, 122, 123, 144, 149, 166, 168, 177, 180, 192, 206, 207, 209, 215, 216, 224, 242, 2 54 and so on. Purple pigments are, for example, Pigment Violet 19, 23, 29, 32, 33, 36, 37, 38, and the like. Blue pigments include pigment blue 15 (15: 3, 15: 4, 15: 6, etc.), 21, 22, 60, 64, and the like. The green pigment is, for example, Pigment Green 7, 10, 36, 47, and the like. The leaflets can be surface treated with rosin treatment, acid treatment, alkaline treatment, etc. as required. Moreover, PR (Pigment Red), ρ γ (Pigment Yellow), PV (Pigment Purple), P0 (Pigment Orange, etc.), Color Index (c .; [·: Issued by The Society of Dyers and Colour Is St s) Mark, formal person with C · I · person in front (for example, C · I · PR254, etc.). This is based on dyeing or dyeing standards. In addition, in the following description of the present invention, the principle that the above-mentioned C · I. Is abbreviated (for example, c. I. PR254 is PR254). In the red pixels of the color filter of the present invention, when the film thickness is 0.6 to 5. 5 // m, the chromaticity in the m area is 0.4 <x &lt; 0.6, and it is preferable to contain PR2 54. Moreover, pigments having a quinacridone structure are more preferred. PR254 is a compound represented by the following structural formula (1). -17- 552434

552434 五、發明說明(17) R6係爲綠原子,h、r2、r4、r5、r7、r8係爲氫原子,參 —歴A造式(3 ))更佳1含有PR209時,與僅由PR254所構成 的濾色片相比,可保持其明亮度、較爲紅色之色相,故較 佳。 【化3】552434 V. Description of the invention (17) R6 is a green atom, h, r2, r4, r5, r7, and r8 are hydrogen atoms. Refer to 歴 A formula (3)). 1 When PR209 is contained, the Compared with the color filter composed of PR254, it can maintain its brightness and more red hue, so it is better. [Chemical 3]

本發明中紅色畫素係PR254以包含30〜100重量%較 佳。更佳者爲40〜90重量%。具有喹吖酮架構之顏料209 以全部顏料之1〜60重量%較佳。若顏料量在上述區域時 無法達成目標色度,無法製得色鮮的顯示、且畫素之膜厚 變厚,故著色區域與透明區域之階差變大。 本發明之濾色片係爲組合半透射型液晶顯示元件予以 使用。此處,半透射型液晶顯示元件具備有反射膜與背景 光源兩者、可以反射顯示與透射顯示兩種顯示之液晶顯示 元件。反射膜可以使部分入射光反射者。通常可使用鋁之 薄膜、銀•鉑•銅合金之薄膜等。本發明之濾色片可以使 用液晶顯示元件之驅動方法、顯示方式沒有特別的限制, 可使用活性矩陣方式、排除矩陣方式、TN型式、STN型 式、ECB型式、OCB型式等各種液晶顯示元件。另外,本 發明之濾色片可使用液晶顯示元件之構成、例如偏光板之 552434 五、發明說明(18) 數、繞射物之位置等沒有限制者。 ^^^說明有關本發明濾色片之製作方法例。 首先,形成含有透明區域之著色畫素。在透明基板上 塗覆至少由聚醯亞胺前驅體、著色劑、溶劑所成的彩色漿 料後,藉由風乾、加熱乾燥、真空乾燥等形成聚醯亞胺前 驅體著色被膜。爲加熱乾燥時,使用烤箱、熱板等、在50 〜180°C下進行1分〜3小時較佳。其次,在該所得的聚醯 亞胺前驅體著色被膜上藉由一般的濕式蝕刻形成圖案。首 先,在聚醯亞胺前驅體著色被膜上塗覆正型光阻劑、且形 成光阻被膜。然後,使含有爲在光阻被膜上形成透明區域 形成透明區域之圖案的光罩放置,使用光阻劑照射紫外 線。於曝光後藉由正型光阻劑用鹼顯像液、同時進行光阻 劑被膜與聚醯亞胺前驅體著色被膜之蝕刻。於鈾刻後剝離 不需的光阻被膜。 聚醯亞胺前驅體著色被膜在藉由加熱處理,變換成聚 醯亞胺著色被膜。加熱處理通常在空氣中、氮氣氣氛中、 或真空中等、在150〜3 50°C、較佳者爲180〜250°C之溫 度下連續或分段式進行〇 . 5〜5小時。 視其所需,在反射用區域形成透明樹脂層,形成反射 膜區域與透射用區域之著色層膜厚不同畫素的著色層。此 時,於形成含有透明區域之著色畫素前,在反射用區域使 透明樹脂層製膜。使透明樹脂層製膜的透明基板上全面塗 覆由聚醯胺酸與溶劑所成的非感光性漿料,且使用熱板、 -20· 552434 五、發明說明(19 ) 在60〜200°C下加熱乾燥1〜60分鐘。然後,製得在該所 得的聚醯__胺_酸被膜上塗覆正形光阻劑,且使用熱板在60〜 1 50°C下加熱乾燥1〜30分鐘。使用曝光裝置,照射紫外 線、燒付目的圖案,鹼顯像、在企求的位置上以企求的圖 案製得透明樹脂層。透明樹脂層在200〜300 °C下加熱硬 而且,使透明樹脂層製膜的透明基板上塗覆至少由丙 烯酸系聚合物、丙烯酸系多官能單體、光聚合起始劑所成 的感光性丙烯酸樹脂、與著色劑、溶劑所成的感光性彩色 光阻劑後,藉由風乾、加熱乾燥、真空乾燥等,形成感光 性丙烯酸著色被膜。爲加熱乾燥時以使用烤箱、熱板等、 在6 0〜2 0 0 °C下進行1〜3小時較佳。然後,在感光性丙嫌 酸著色被膜上使用光罩與曝光元件以圖案狀照射紫外線。 於曝光後藉由鹼顯像液進行感光性丙烯酸著色被膜之倉虫 刻。 此外,視其所需有關一色畫素係形成透射膜區域與反 射用區域不同的著色層。使至少由聚醯亞胺前驅體、著色 劑、溶劑所成的彩色漿料、至少由聚醯亞胺前驅體、著色 劑、溶劑所成的彩色漿料、或至少由丙烯酸系聚合物、丙 烯酸系多官能單體、光聚合起始劑、著色劑、溶劑所成的 感光性彩色光阻劑塗覆後,藉由風乾、加熱乾燥、真空乾 燥等形成著色被膜。爲加熱乾燥時使用烤箱、熱板等、在 50〜200°C下進行1〜3分鐘較佳。 -21 - 五、發明說明(20) 著色被膜爲聚醯亞胺前驅體時,塗覆正形光阻劑以形 成_光阻被膜。然後,使含有爲形成透射區域時圖案的光罩 放置,使用曝光元件照射紫外線。於曝光後,藉由正型光 阻劑用鹼顯像液、同時進行光阻被膜與聚醯亞胺前驅體著 色被膜之鈾刻。於蝕刻後,使不需的光阻劑被膜剝離。聚 醯亞胺前驅體著色被膜在藉由加熱處理變換成聚醯亞胺著 色被膜。 著色被膜爲感光性丙烯酸樹脂時,在感光性丙烯酸著 色被膜上使用光罩與曝光元件以圖案狀照射紫外線。於曝 光後藉由鹼顯像液進行感光性丙烯酸著色被膜之蝕刻。感 光性丙烯酸著色被膜另進行加熱硬化。加熱硬化通常在空 氣中、氮氣氣氛中、或真空中等、在150〜350 °C、較佳者 180〜250°C之溫度下連續或階段式進行0.5〜5小時。其 次,與形成透射區域相同地在反射用區域內形成著色塗 有關紅、綠、藍之濾色漿料、視其所需黑色之彩色漿 料進行上述工程時,可製作液晶顯示元件用濾色片。 在各畫素間可形成黑色基體。此係以提高液晶顯示裝 置之對比爲目的時遮光區域。黑色基體通常使用Cr、A1、 Ni等之金屬薄膜(厚度約0.1〜0.2μηι)或樹脂中分散遮光 材所成的樹脂黑色基體,使用於本發明時對反射區域而言 爲遮光膜下,一般使用不會反射的樹脂黑色基體。樹脂就 耐熱性、耐藥品性而言以聚醯亞胺或丙烯酸較佳。作爲遮 •22- 552434 五、發明說明(21) 光材之黑色顏料例如顏料黑7 (碳黑)、鈦黑等,惟不受此 I逝一限各種顏料。而且,_輯_1£11其所需可使用 施有松香處理、酸性基處理、鹼性基處理等之表面處理 者。 濾色片之最上部通常行成有透明導電膜。透明導電膜 係經由浸漬法、化學氣相成長法、真空蒸熔法、濺射法、 離子分布法等方法製作。如典型的透明導電膜之具體例所 示,可使用銦錫氧化物(I TO )、氧化鋅、氧化錫等及其合 金。該透明導電膜之厚度在不會損及彩色顯示下較佳,以 0.5μπι以下較佳。 而且,視其所需亦可在濾色片上配置突起狀柱。突起 狀柱爲積層型與後附型。突起狀柱之形狀沒有特別的限 制,自平面觀察時以採用圓形、正方形、長方形等之形狀 較佳。截面形狀通常使用台形時上部比下部小的形狀。柱 之配置只要是在數種畫素中一個等以一定間距配置即可, 可以完全無規配置。 然後,說明使用該濾色片所作成的液晶顯示元件例。 在上述濾色片上形成透明保護膜、且於其上使ΙΤ0膜等之 透明電極製膜。其次,經由爲使另在此等基板上設置形成 有金屬蒸溶膜等反射電極的反射電極基板之液晶配向的施 有基層處理之液晶配向膜、及爲保持晶胞間隙之空間’對 向貼合。而且,在反射電極基板上除反射電極外,尙設有 光擴散用突起物、薄膜轉換器(TFT)元件或薄膜二極管 - 23- 552434 五、發明說明(22) (TFT)元件、及掃描線、信號等,可作成TFT液晶顯示元 j二或TFD液晶顯示元件然^二^設於密封部所設的注 入口注入液晶後’將注入口密封。繼後,藉由實裝I c傳 動器等以完成模件。 實施例 於下述中使用較佳的實施形態更具體地說明本發明, 惟本發明之效力不受實施形態所限制。 實施例1 (濾色片之設計) 於紅畫素、綠畫素、藍畫素中在反射用區域 ( = 15100μπι2)中形成透明區域、且各使透明區域率爲 8%( 1 208μηι2)、15%( 2290μιη2)、6%( 906μΐΏ2)。透明區域之副 區域係組合紅:2〇μηι0 (=314μηι2)與 13μιΐ)(/) ( = 133μπι2)之組 合、綠:38μηι0 ( = 1134μπι2)、藍:20μηι&lt;/) ( = 314μιη2)與 5μηι 0 (=20μπι2)之組合圓形。副反應係於反射用區域中形成無 規。副區域間距離爲1 Ομηι。 (樹脂黑色基體用黑色漿料之作成) 使3,3 ’,4,4 ’ -聯苯基四羧酸二酐、4,4 ’ -二胺基二苯 醚、及雙(3 -胺基丙基)四甲基二環己烷與作爲溶劑之Ν -甲 基-2 -吡咯烷酮反應,製得聚醯亞胺前驅體(聚醯胺酸)溶 液。使混合有碳黑與聚醯亞胺前驅體溶液之碳黑基體、使 用均混器以7000ppm分散30分鐘,使玻璃珠過濾、製得 碳黑基體,使其以聚醯亞胺前驅體溶液吸釋、作爲黑色漿 -24- 552434 五、發明說明(23) 料。 ---層形成用著色漿料之作成)___ a .聚醯胺酸溶液之作成 加入95.1克4,4’-二胺基二苯醚、及6.2克雙(3-胺基 丙基)四甲基二矽氧烷、525克r -丁內酯、220克N-甲基-2-吡咯烷酮、添加144.1克3,3’,4,’-聯苯基四羧酸二 酐,在70°C下反應3小時後添加3 · 0克酞酸酐,另在70 °C下反應2小時、製得2 5重量%聚醯胺酸溶液(PAA )。 B .聚合物分散劑之合成 加入161.3克4,4’-二胺基苯并苯胺、176.7克3,3’-二 胺基苯基碾、及18.6克雙(3 -胺基丙基)四甲基二矽乙 烷、2667克7 - 丁內酯、527克N -甲基-2-吡咯烷酮、且添 加439 . 1克3,3’,4,4’-聯苯基四羧酸二酐,在70°C下反應 3小時後,添加2.2克酞酸酐,另在70°C下反應2小時 後,製得20重量%聚醯亞胺溶液之聚合物分散劑(PD)。 C .非感光性彩色漿料之作成 將2.5克顏料綠PR2 54、22.5克聚合物分散劑(PD)與 42.8克r -丁內酯、20.2克3-甲氧基-3-甲基-1-丁烷、及 90克玻璃珠,使用均混器、以7000ΡΡΙΏ分散5分鐘後,使 玻璃珠過濾、除去。如此製得由PR254所成的分散液5%溶 液(RD ) 〇 在51克分散液(rd)中添加混合24克聚醯胺溶液(PAA) 以120克τ -丁內酯稀釋的溶液,製得紅色彩色漿料(RPI- -25- 552434 五、發明說明(24) 1 )。同樣地,以表1所示比例製得紅漿料(RPI-2、RPI-3、RPI-4、RPI-5)、綠漿料(GPI - 1、GPI _2)、藍漿料 (BPI- 1、BPI-2)。 D .感光性彩色光阻劑之製作 將3 5.2克顏料綠PB-15 : 6加入50克3-甲基-3-甲氧 基丁烷、使用均混器、以7000 rpni分散5小時後,使玻璃 珠過濾、製得分散液。製得在35.00克丙烯酸共聚物溶液 (賴西魯(譯音)化學工業股份公司製”賴克魯馬(譯音)-P、 ACA- 2 5 0”4 3重量%溶液)、15.00克作爲多官能單體之季戊 四醇四甲基丙烯酸酯、7.50克作爲光聚合起始劑之千葉· 特殊•化學股份公司製”衣魯卡其亞(譯音)3 69”中加入 1 30.00克環戊酮之濃度20重量%感光性丙烯酸樹脂溶液 (AC-1)。加入10克藍色分散液與22.4克感光性丙烯酸樹 脂溶液,製得藍色光阻劑(GAC - 1 )。 【表1】 漿料號碼 顏料組成(重量比) 顏料/樹脂(重量比) RPI-1 PR254=100 23/77 RPI-2 PR254/PR209=60/40 30/70 RPI-3 PR209=100 90/10 RPI-4 PR209=100 40/60 RPI-5 PR209/P038=85/15 40/60 GPI-1 PG36/PY138=70/30 40/60 GPI-2 PG36/PY138二55/45 15/85 BPI-1 PB15:6=100 25/75 BPI-2 PB15:6/PV23-96/4 12/88 BAC-1 PB15:6=100 25/75 -26- 552434 五、發明說明(25) (透明樹脂層所使用的非感光性漿料之作成) _ 使16.0克聚醯胺酸溶液(PA A )以3 4.0克r -丁內酯稀 釋、製得非感光性透明漿料(TPI - 1 )。 (彩色濾色片之製作) 在無鹼玻璃基板(克寧谷(譯音)日本股份公司製” 1 73 7”) 上圖案形成氧化鋁反射膜之基板上,以簾幕流動塗覆器塗 覆黑色漿料、且使其以熱板在130°C下乾燥10分鐘以形成 黑色樹脂塗膜。使正型光阻劑(西普雷•法·衣史頓(譯音) 股份公司製”SRC-100”)以可逆輥塗覆器塗覆,以熱板在 l〇〇°C下預烘烤5分鐘,使用大日本螢幕製造股份公司製 曝光機”XG- 500”、經由光罩、照射l〇〇mJ / cm2紫外線予以 曝光。然後,使用2.25%四甲銨氫氧化物水溶液、同時進 行光阻劑之顯像與樹脂塗膜之蝕刻、形成圖案,使其以甲 基溶纖劑乙酸酯剝離光阻劑、以熱板在290°C下加熱1 〇分 鐘予以醯亞胺化、形成黑色基體。測定黑色基體之膜厚時 爲 1 . ΙΟμπι、0D 値爲 3 . 0。 其次,在樹脂黑色基板上以簾幕流動塗覆器塗覆紅色 漿料(RPI - 1 ),且以熱板在13〇°C下乾燥10分鐘,形成上 述紅色樹脂塗膜。然後’與黑色漿料時相同地使正型光阻 劑以可逆輥塗覆器塗覆,以熱板在1 〇〇。&lt;3下預烘烤5分 鐘。其次’與預烘烤時相同地使用曝光機、在形成有紅色 漿料與光阻劑之樹脂黑色基體基板上、經由在反射用區域 中形成有透明區域之光罩、照射l00roJ/cm2之紫外線予以 -2 7- 552434 五、發明說明(26) 曝光。然後,使用2.2 5 %四甲銨氫氧化物水溶液、同時進 行光阻劑之顯像與樹脂塗膜之蝕刻,形成圖案、且以甲基 溶纖劑乙酸酯剝離光阻劑、以熱板在280°C下加熱1 0分鐘 予以醯亞胺化,形成紅色畫素。測定紅色畫素之膜厚時爲 1 . 1 μΐΏ。測定透射區域之C光源的色度(X,y )時爲(〇 . 5 1 1, 0.286)。 水洗後、在樹脂黑色基體上形成有紅色畫素之基板上 塗覆上述綠漿料、且與紅畫素時相同地圖案加工以形成綠 畫素。測定透射區域之C光源的色度(X,y )時爲(0.304, 0 . 508 )。此外,水洗後、在樹脂黑色基體層上形成有紅、 綠畫素之基板上塗覆上述藍漿料、且同樣地圖案加工以形 成藍畫素。測定透射區域之C光源的色度(X,y )時爲 (0.146,0.178)。最後,藉由r -胺基丙基甲基二乙氧基 矽烷之加水分解物與3,3 ’,4,4 ’ -二苯甲酮羧酸二酐反應所 得的硬化性組成物溶液、在基板上以260°C下熱處理10分 鐘,在畫素外區域形成膜厚1 . 5μπι之表塗層。 最後,使I TO膜以膜厚0 . 1 μιη下濺射。如此所得的濾色 片的副區域大小、畫素膜厚、反射用區域內著色區域與透 明區域之階差、反射區域與透射區域之色度差5如表2所 示。而且,以D65光源之反射區域色度與以2波長型LED 光源之透射區域色度如表3所示。 -28- 552434 五、發明說明(27) 【表2】In the present invention, the red pixel type PR254 is preferably contained in an amount of 30 to 100% by weight. More preferably, it is 40 to 90% by weight. Pigment 209 having a quinacridone structure is preferably 1 to 60% by weight of the total pigment. If the pigment amount is in the above-mentioned areas, the target chromaticity cannot be achieved, a vivid display cannot be obtained, and the film thickness of the pixels becomes thick, so the step difference between the colored area and the transparent area becomes large. The color filter of the present invention is used in combination with a semi-transmissive liquid crystal display element. Here, the semi-transmissive liquid crystal display element includes both a reflective film and a background light source, and a liquid crystal display element capable of both reflective display and transmissive display. The reflective film can reflect a part of the incident light. Generally, thin films of aluminum, thin films of silver, platinum, and copper alloys can be used. The color filter of the present invention can use a driving method and a display method of a liquid crystal display element, and there are no particular restrictions, and various liquid crystal display elements such as an active matrix method, an exclusion matrix method, a TN type, an STN type, an ECB type, and an OCB type can be used. In addition, the color filter of the present invention can use a structure of a liquid crystal display element, for example, 552434 of a polarizing plate. 5. The number of the invention (18), the position of a diffractive substance, and the like are not limited. ^^^ An example of a method for manufacturing the color filter of the present invention will be described. First, colored pixels containing transparent areas are formed. The transparent substrate is coated with a color paste made of at least a polyimide precursor, a colorant, and a solvent, and then a polyimide precursor colored coating film is formed by air-drying, heat drying, and vacuum drying. For heating and drying, it is preferable to use an oven, a hot plate, etc. at 50 to 180 ° C for 1 minute to 3 hours. Next, a pattern is formed on the obtained polyfluorene imide precursor coloring film by general wet etching. First, a polyimide precursor colored coating was coated with a positive photoresist and a photoresist coating was formed. Then, a photomask containing a pattern for forming a transparent region on the photoresist film is placed, and ultraviolet rays are irradiated with a photoresist. After the exposure, the photoresist film and the polyimide precursor coloring film were etched simultaneously with an alkali developer using a positive photoresist. Unwanted photoresist film after uranium engraving. The polyimide precursor colored film is transformed into a polyimide colored film by heat treatment. The heat treatment is usually carried out continuously or in stages at a temperature of 150 to 3 50 ° C, preferably 180 to 250 ° C in the air, a nitrogen atmosphere, or a vacuum for 0.5 to 5 hours. If necessary, a transparent resin layer is formed in the reflective region, and a colored layer having a pixel thickness different from that of the colored layer in the reflective film region and the transmissive region is formed. In this case, a transparent resin layer is formed on the reflective area before the colored pixels containing the transparent area are formed. The transparent substrate formed with a transparent resin layer is coated with a non-photosensitive paste made of polyamic acid and a solvent, and a hot plate is used. -20 · 552434 V. Description of the invention (19) 60 ~ 200 ° Heat and dry at C for 1 to 60 minutes. Then, the obtained polyfluorene-amine-acid coating was coated with a positive photoresist, and dried using a hot plate at 60 to 150 ° C for 1 to 30 minutes. Using an exposure device, a transparent resin layer was produced by irradiating ultraviolet rays, firing a target pattern, alkali development, and a desired pattern at a desired position. The transparent resin layer is heated at 200 to 300 ° C, and the transparent substrate on which the transparent resin layer is formed is coated with at least a photosensitive acrylic acid made of an acrylic polymer, an acrylic polyfunctional monomer, and a photopolymerization initiator. A photosensitive color photoresist formed by a resin, a coloring agent, and a solvent is then air-dried, heat-dried, and vacuum-dried to form a photosensitive acrylic coloring film. For heating and drying, it is preferable to use an oven, a hot plate, etc. at 60 to 200 ° C for 1 to 3 hours. Then, the photosensitive acrylic colored film was irradiated with ultraviolet rays in a pattern using a mask and an exposure element. After exposure, the worms of the photosensitive acrylic colored coating were etched with an alkali developing solution. In addition, a one-color pixel is used to form a coloring layer that is different from the transmissive film region and the reflective region depending on the color pixels. A color paste made of at least a polyimide precursor, a colorant, and a solvent, a color paste made of at least a polyimide precursor, a colorant, and a solvent, or at least an acrylic polymer and acrylic acid. After coating a photosensitive color photoresist made of a multifunctional monomer, a photopolymerization initiator, a colorant, and a solvent, a colored film is formed by air-drying, heat-drying, and vacuum-drying. For heating and drying, use an oven, hot plate, etc., and it is better to carry out at 50 ~ 200 ° C for 1 ~ 3 minutes. -21-V. Description of the invention (20) When the colored coating is a polyimide precursor, a positive photoresist is applied to form a photoresist coating. Then, a mask containing a pattern for forming a transmission region is placed, and ultraviolet rays are irradiated using an exposure element. After the exposure, uranium engraving of the photoresist film and the polyimide precursor coloring film was performed simultaneously with an alkali developing solution using a positive photoresist. After the etching, the unnecessary photoresist coating is peeled off. The polyimide precursor coloring film is transformed into a polyimide coloring film by heat treatment. When the colored coating is a photosensitive acrylic resin, the photosensitive acrylic colored coating is irradiated with ultraviolet rays in a pattern using a mask and an exposure element. After the exposure, the photosensitive acrylic colored film was etched with an alkali developing solution. The photosensitive acrylic colored film is additionally heat-hardened. The heat hardening is usually carried out continuously or stepwise at a temperature of 150 to 350 ° C, preferably 180 to 250 ° C in air, nitrogen atmosphere, or vacuum for 0.5 to 5 hours. Next, similar to the formation of the transmissive region, a color filter paste for red, green, and blue is formed in the reflection region, and a color paste for the required black color can be used for the above process to produce a color filter for a liquid crystal display element. sheet. A black matrix can be formed between each pixel. This is a light-shielded area for the purpose of improving the contrast of liquid crystal display devices. The black substrate is usually made of a metal thin film (thickness of about 0.1 to 0.2 μm) such as Cr, A1, Ni, or a resin black substrate formed by dispersing a light-shielding material in the resin. When used in the present invention, it is under the light-shielding film for the reflective area. Use a non-reflective resin black base. The resin is preferably polyimide or acrylic acid in terms of heat resistance and chemical resistance. As a cover • 22-552434 V. Description of the invention (21) Black pigments of light materials such as pigment black 7 (carbon black), titanium black, etc., but not limited to various pigments. In addition, ___1_111 can be used with a surface treatment such as rosin treatment, acid-based treatment, and alkaline-based treatment. The uppermost part of the color filter is usually formed with a transparent conductive film. The transparent conductive film is produced by a dipping method, a chemical vapor growth method, a vacuum evaporation method, a sputtering method, or an ion distribution method. As shown in a specific example of a typical transparent conductive film, indium tin oxide (I TO), zinc oxide, tin oxide, etc., and alloys thereof can be used. The thickness of the transparent conductive film is preferably not detrimental to the color display, and is preferably 0.5 μm or less. Furthermore, if necessary, a protruding column may be arranged on the color filter. The protruding columns are laminated and post-attached. The shape of the protruding column is not particularly limited, and a circular, square, rectangular, etc. shape is preferred when viewed from a plane. When the cross-sectional shape is generally a mesa shape, the upper part is smaller than the lower part. The arrangement of the columns is only required to be arranged at a certain distance among one of several pixels, and the arrangement can be completely random. Next, an example of a liquid crystal display element produced using this color filter will be described. A transparent protective film is formed on the color filter, and a transparent electrode such as an ITO film is formed thereon. Secondly, via a base layer-treated liquid crystal alignment film for the liquid crystal alignment of a reflective electrode substrate on which another reflective electrode such as a metal vapor-deposition film is formed on the substrate, and a space for maintaining the cell gap Together. Furthermore, in addition to the reflective electrode, a reflective electrode substrate is provided with a light diffusion protrusion, a thin film converter (TFT) element, or a thin film diode-23- 552434 V. Description of the Invention (22) (TFT) element and scanning line , Signal, etc., it can be made into TFT liquid crystal display element j or TFD liquid crystal display element. However, after the liquid crystal is injected into the injection port provided in the sealing part, the injection port is sealed. Subsequently, the module is completed by mounting an IC driver or the like. EXAMPLES The present invention will be described in more detail below using preferred embodiments, but the effectiveness of the present invention is not limited by the embodiments. Example 1 (Design of color filter) A transparent region is formed in a reflection region (= 15100 μm 2) in each of the red pixel, the green pixel, and the blue pixel, and each of the transparent regions is 8% (1 208 μm 2), 15% (2290 μm 2), 6% (906 μm 2). The sub-areas of the transparent area are a combination of red: 20 μm 0 (= 314 μm 2) and 13 μmΐ) (/) (= 133 μm 2), green: 38 μm 0 (= 1134 μm 2), blue: 20 μm &lt; /) (= 314 μm 2) and 5 μm 0 (= 20μπι2) combined circle. The side reactions are random in the reflection area. The distance between the sub-regions was 10 μηι. (Resin black matrix made of black paste) 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 4,4'-diaminodiphenyl ether, and bis (3-amine group The propyl) tetramethyldicyclohexane is reacted with N-methyl-2-pyrrolidone as a solvent to prepare a polyfluorene imine precursor (polyamino acid) solution. The carbon black matrix mixed with the carbon black and the polyimide precursor solution was dispersed at 7000 ppm for 30 minutes using a homomixer, the glass beads were filtered, the carbon black matrix was prepared, and the carbon black matrix was absorbed by the polyimide precursor solution. Release, as a black paste -24-552434 V. Description of the invention (23). --- Preparation of colored paste for layer formation) ___ a. Preparation of polyamic acid solution Add 95.1 g of 4,4'-diaminodiphenyl ether and 6.2 g of bis (3-aminopropyl) tetram Methyldisilazane, 525 g of r-butyrolactone, 220 g of N-methyl-2-pyrrolidone, and added 144.1 g of 3,3 ', 4,'-biphenyltetracarboxylic dianhydride at 70 ° After reacting at C for 3 hours, 3.0 g of phthalic anhydride was added, and the reaction was performed at 70 ° C for 2 hours to prepare a 25% by weight polyamidic acid solution (PAA). B. Synthesis of polymer dispersant Add 161.3 g of 4,4'-diaminobenzoaniline, 176.7 g of 3,3'-diaminophenyl mill, and 18.6 g of bis (3-aminopropyl) tetra Methyldisiloxane, 2667 g of 7-butyrolactone, 527 g of N-methyl-2-pyrrolidone, and 439.1 g of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride added After reacting at 70 ° C for 3 hours, 2.2 g of phthalic anhydride was added, and after reacting at 70 ° C for 2 hours, a polymer dispersant (PD) of 20% by weight polyfluorene imine solution was prepared. C. Preparation of non-photosensitive color paste: 2.5 grams of pigment green PR2 54, 22.5 grams of polymer dispersant (PD), 42.8 grams of r-butyrolactone, 20.2 grams of 3-methoxy-3-methyl-1 -Butane and 90 g of glass beads. After dispersing for 5 minutes with 7000 PPII using a homomixer, the glass beads were filtered and removed. In this way, a 5% solution (RD) of a dispersion liquid made of PR254 was prepared. A solution of 24 g of polyamidoamine solution (PAA) diluted with 120 g of τ-butyrolactone was added to 51 g of dispersion (rd) to prepare A red colored paste was obtained (RPI-25-552434 V. Description of the invention (24) 1). Similarly, red paste (RPI-2, RPI-3, RPI-4, RPI-5), green paste (GPI-1, GPI_2), and blue paste (BPI- 1. BPI-2). D. Production of photosensitive color photoresist After adding 3 5.2 grams of pigment green PB-15: 6 to 50 grams of 3-methyl-3-methoxybutane, using a homomixer and dispersing at 7000 rpni for 5 hours, The glass beads were filtered to obtain a dispersion. 35.00 g of an acrylic copolymer solution ("Laikruma-P, ACA- 2 50 0" 4 3% by weight solution, manufactured by Laixiru Chemical Industry Co., Ltd.), 15.00 g as a multifunctional Monomer pentaerythritol tetramethacrylate, 7.50 g of Chiba as a photopolymerization initiator · Special Chemical Co., Ltd. "Irukhaki (transliteration) 3 69" added 1 30.00 g of cyclopentanone at a concentration of 20 weight % Photosensitive acrylic resin solution (AC-1). 10 g of a blue dispersion liquid and 22.4 g of a photosensitive acrylic resin solution were added to prepare a blue photoresist (GAC-1). [Table 1] Paste number pigment composition (weight ratio) Pigment / resin (weight ratio) RPI-1 PR254 = 100 23/77 RPI-2 PR254 / PR209 = 60/40 30/70 RPI-3 PR209 = 100 90 / 10 RPI-4 PR209 = 100 40/60 RPI-5 PR209 / P038 = 85/15 40/60 GPI-1 PG36 / PY138 = 70/30 40/60 GPI-2 PG36 / PY138 2 55/45 15/85 BPI -1 PB15: 6 = 100 25/75 BPI-2 PB15: 6 / PV23-96 / 4 12/88 BAC-1 PB15: 6 = 100 25/75 -26- 552434 5. Description of the invention (25) (transparent resin Preparation of non-photosensitive paste used for the layer) _ 16.0 g of polyamic acid solution (PA A) was diluted with 3 4.0 g of r-butyrolactone to obtain a non-photosensitive transparent paste (TPI-1). (Manufacturing of color filters) On a substrate having an aluminum oxide reflective film patterned on an alkali-free glass substrate ("King Valley"), coated with a curtain flow coater The black paste was dried on a hot plate at 130 ° C. for 10 minutes to form a black resin coating film. A positive-type photoresist ("SRC-100" manufactured by Hipley-Fair Eston) was pre-baked at 100 ° C with a hot plate at a reversible roll coater. For 5 minutes, exposure was performed using an exposure machine "XG-500" made by Dainippon Screen Manufacturing Co., Ltd. at 100 mJ / cm2 through a photomask. Then, using a 2.25% tetramethylammonium hydroxide aqueous solution, the photoresist is developed and the resin coating film is etched and patterned at the same time, and the photoresist is stripped with methylcellosolve acetate, and the hot plate is removed. The fluorene was imidized by heating at 290 ° C for 10 minutes to form a black matrix. When the film thickness of the black substrate was measured, it was 1.0 μm, and OD was 3.0. Next, the red slurry (RPI-1) was coated on a resin black substrate with a curtain flow coater, and dried on a hot plate at 13 ° C for 10 minutes to form the red resin coating film. Then, as in the case of the black paste, a positive-type photoresist was applied with a reversible roll coater and a hot plate at 100 ° C. &lt; Pre-bake for 3 minutes at 5 minutes. Secondly, the same as in the pre-baking, using an exposure machine, on a resin black base substrate on which a red paste and a photoresist are formed, through a mask having a transparent region formed in a reflection region, and irradiating ultraviolet rays of 100 roJ / cm2 Give-2 7- 552434 V. Description of Invention (26) Exposure. Then, using a 2.25% tetramethylammonium hydroxide aqueous solution, the photoresist was developed and the resin coating film was etched at the same time to form a pattern. The photoresist was stripped with methyl cellosolve acetate, and the hot plate was removed. It was heated at 280 ° C for 10 minutes to fluorenimide to form red pixels. When measuring the film thickness of red pixels, it was 1.1 μΐΏ. When the chromaticity (X, y) of the C light source in the transmission region was measured, it was (0.51 1, 0.286). After washing with water, the above-mentioned green paste was coated on a substrate on which a red pixel was formed on a resin black substrate, and patterned in the same manner as in the case of red pixel to form a green pixel. When measuring the chromaticity (X, y) of the C light source in the transmission area, it was (0.304, 0.508). In addition, after washing with water, the above-mentioned blue paste was coated on a substrate on which a red and green pixel was formed on a resin black substrate layer, and patterned in the same manner to form a blue pixel. The chromaticity (X, y) of the C light source in the transmission region was measured to be (0.146, 0.178). Finally, the hardened composition solution obtained by reacting the hydrolysate of r-aminopropylmethyldiethoxysilane with 3,3 ', 4,4'-benzophenonecarboxylic acid dianhydride, A heat treatment was performed on the substrate at 260 ° C for 10 minutes to form a surface coating with a film thickness of 1.5 μm in the outer region of the pixel. Finally, the I TO film was sputtered at a film thickness of 0.1 μm. Table 2 shows the size of the sub-region, the pixel film thickness, the step difference between the colored region and the transparent region in the reflection region, and the chromaticity difference between the reflection region and the transmission region. Moreover, the chromaticity of the reflection area with the D65 light source and the chromaticity of the transmission area with the 2-wavelength LED light source are shown in Table 3. -28- 552434 V. Description of the invention (27) [Table 2]

B孖科 -透明區-¾率 副區域大小 1 娜用紙 內階差 -mm •次數 mmM · 之色度差δ 實施例1 R RPI-1 8% 314 &quot; m2(20/i m 负)' 79/i m2(10/i m 0) 3.11Ε-06 · G GPI-1 15¾ 1134/im2(38/im0) 1.78Ε-03 B BPM 6¾ 314//m2(20//m.^)x20//m2(5//m(i) 1.53Ε-04 ;實_2 R RPI-1 8% ' 600//m2(50/imxl2/im) 3.11Ε-06 , G GP1-1 15% 1140/im2(76/imX 15/im) 3次 1.78Ε-03 已 BPH 6% 300/im2(60//mX5//m) 1.53Ε-04 實施例3 R RPI-2 8%· 600/im2(50//mXl2// m) 5.29Ε-06 G GPH 15% 1140//m2(76/i m X 15/im) 1.78Ε-03 B BPI-1 6¾ 300//m2(60//mX 5//m) i i II rr\ 0.2 &quot;m 1.53Ε-04 實施例4 R RPI-1 8% 600/im2(50//mX 12//m) \9 \ μ fn 3.11Ε-06 G GPI-1.2 - —· 4.29Ε-05 B •BPH 6¾ · 300 U m2( 60 // m x 5 // m) 1.53Ε-04 實施例5 R RPH 8% 600//m2(50//mx 12//m) 3.ΠΕ-06 G GPI-1 • 15» 1140/im2(76//mX 15//m) 4次 1.78Ε-03 B BP 卜 1,2 - ·· - 4.34Ε-05 實施例6 R. RPH 8% 600//m2(50/imXl2//m) .3.11Ε-06 G GPH 15% 1140/im2(76//mXl5//m) 1.78Ε-03 B BAC-1 - , - · ’ 1.08Ε - 04 色材料 透明區域率 副區域大小 躉素膜厚 [.反射用區域 內階差 光咖工 反射/透射 之色度差(5 比較例1 R RPI-1 1134//m2(38//m0)» 12.6//m2(4/im0) - G GPI-1 加工不良 1O75//m2(37//m0K 12.6//m2(4^m0) 加工不良 - Β BRI-1 707/im2(30//m(i) J2.6/im2(4//m(i) - 比較例2 R RP1-1 - 2.51 E-03 G GPH 15Χ 2290//m2 (54; 0.7&quot; m 1.78E-03 - Β ΒΡΙ-1 · • * ' 2.56E-03 比較例3 R RPH 284/im2(71//mX4/i*m) J8/im2(6^mX3/im) &lt; — G GPI-1 加工不良 268 // m2 (67 // m X 4// m) % 18 // m2 (6 // m X 3 // m) 1.1 &quot;ίη 加工不良 - Β ΒΡΗ 208//m2(52//mX4//m) J8j[/m2(6//m&gt;&lt;3j[/m) 比較例4 R •RPH 1134^/m2(38//m0)J2.6jL/m2(4//m0) - G GPI-1 加工不良 1075//m2(37//m0)s 12.6/im2(4/im0). 加工不良 3次 一 Β ΒΡΙ-1 707//m2(30//m&lt;i) J2.6//m2(4//m&lt;/i) - 比較例5 R RPI-3 加工不良 1134//m2 (3812.6//m2(4/im0) - G GPI-1 (細碎) 1〇75/im2(37^m0) J2.6//m2(4/im0) .加工不良 ,- Β ΒΡΙ-1 7Q7jt/m2(30/imii) - 比較例6 R RPI-4 1134/im2(38^m.0), 12.6/im2(4/im0) * 2.9//m 0.9//m · - G GPI-1 加工不良 107 5 &quot; m 2 (3 7//m ζί))、12.6//m 2 (4/i m 么) •1.1 μ m 0.2//m - Β ΒΡΙ-1 707jUm2(30 以 m&lt;ih 12.6&quot;m2(4&quot;m(i) 1.1/im 0.2//m - _比較例7 R RPH •— - 6.56E-03 G GPH 一 -. • 1.11E-02 Β .ΒΡΗ - - 1.1//m 0.0//m 1.22E-03 比較例8 R RPI-1,5 - - 3.70E-05 G GPI-1,2 - — 6次 4.29E-05· Β ΒΡΙ-1,2 - - 4.34E-05 -29- 552434 五、發明說明(28 【表3】 一(實施例1、2 ) 透射區域色度(2波長LE D光源) 反射區域色度(D65光源) X y Y 色再現區域 X y Y 色再現區域 0.536 0.329 31.7 R 0.534 0.328 27.6 0.332 0.502 66.7 31% G 0.291 0.497 58.8 32% 0.147 0.172 23.0 B 0.158 0.167 20.1 W 0.318 0.334 40.5 W 0.305 0.330 35.5 # 而且,透射率、色座標係使用大塚電子股份有限公司 製顯微分光光度計” MCPD- 2000”、藉由使與在濾色片上製 膜者相同的條件製作的ITO製膜的玻璃作爲精緻鏡片予以 測定。 此處所指的透射區域色度係使上述濾色片透射區域以 顯微分光光度計等測定時所得的分光光譜求得者。反射區 域色度係爲使該區域中著色區域之分光光譜、透明區域之 分光光譜以各波長自乘、且藉由取得著色區域與透明區域 面積之加重平均所求得者。 此外,階差之評估係使用東京精密股份有限公司製膜 厚測定器”洒夫克姆(譯音H 500A”、針壓lOmg/cm2、掃描 速度以10μηι/ sec進行。 (突起狀柱之形成) 使3,3’,4,4’-聯苯基四羧酸二酐、4,4’-二胺基二苯 醚、及雙(3 -胺基丙基)四甲基二環己烷與作爲溶劑之N -甲 30- 552434 五、發明說明(29) 基-2 -吡咯烷酮反應,製得作爲柱材料之聚醯亞胺前驅體 醯胺酸)溶液。使該聚醯亞胺前驅體溶液塗覆、在90°C 下熱風乾燥15分鐘、在125t下半硬化20分鐘。然後, 以旋轉器塗覆正型光阻劑(西普雷•法·衣史頓(譯音)股 份公司製”SRC- 100”)後,在80°C下乾燥20分鐘。使用光 罩曝光、使基板浸漬於鹼顯像液(西普雷•法·衣史頓(譯 音)股份公司製”Mi cropo sit ”351)、同時使基板搖動、同 時進行正形光阻劑之顯像及聚醯亞胺前驅體之蝕刻。其 次,使正形光阻劑以甲基溶纖劑乙酸酯剝離,另在30(TC 下硬化30分鐘。樹脂層之膜厚爲5. 2μπι。藉由該圖案化、 在畫面內與框邊緣上、畫面外之黑色基體的土台上形成 柱。 畫面內樹脂柱的上面積約爲ΙΙΟμηι2、下面積約爲120 #m2。畫面外之樹脂柱的上面積約爲10000μηι2(大小爲110 ΧΙΙΟμηι)、樹脂層之下面積約爲1 2000μπι2(大小爲110Χ ΙΙΟμπι)。柱高爲6μιη。而且,畫面內之柱在3畫素中以1 個比例設置。 (液晶顯示元件之作成) 在濾色片上設置聚醯亞胺系配向膜、施予基層處理。 而且,作成具備薄膜轉換器元件之透明電極具備反射膜之 對向基板,同樣地設置聚醯亞胺系配向膜、施予積層處 理。設有配向膜之濾色片與具備薄膜轉換器元件之透明電 極基板使用密封劑貼合後,自設於密封部之注入口注入。 -31 - 552434 五、發明說明(3〇) 液晶之注入係使空晶胞在減壓下放置後,使注入口浸漬於 液晶槽中、且回復至常壓予以進行。使液晶注入後,將注 入口密封、且使偏光板朝基板外側貼合以製作晶胞。 實施例2 除使透明區域之副區域爲紅5 Ομηι X 1 2 // m ( = 6 0 0 // in2): 綠:76μΐΏ&gt;&lt;15μΓη( = 1140μπι2)、藍:60μΐΏ&gt;&lt;5μΓη( = 300μπι2)長方 形外,其他與實施例1相同。加工的圖案在長方形之角部 分爲帶圓形之形狀,由於透明區域爲重要的面積、與設計 的面積相同時沒有問題。具體而言以如第4圖所示方法評 估面積、且與長方形相同的面積。 比較例1 除使紅色畫素之副區域爲組合38μιη ρ ( = 1134μιη2)與 4μπι ρ ( = 12 . 6μπι2)之圓形、綠色畫素之副區域爲組合37μιη φ ( = 1 075μπι2)與4μΐΏ9 ( = 12·6μπι2)之圓形、藍色畫素之副 區域爲組合 30μΐΏ(Μ=707μηι2)與 4μΐΏ(Μ = 12·6μπι 2)之圓形 外,其他與實施例1相同。 比較例2 除使紅色畫素、綠色畫素、藍色畫素之副區域爲5 4μπι ρ (=2 2 90μιη2)之圓形外,其他與實施例1相同。 比較例3 使紅色晝素之副區域係組合7141!1&gt;&lt;44111( = 28441112)之長方 形與6μπι&gt;&lt;3//ηι( = 18μπι2)之長方形,綠色晝素之副區域係組 合 67pmx4pni(=268Km2)之長方形與 6μπιχ3μηι( = 18μπι2)之長 -32- 552434 五、發明說明(31) 方形,藍色畫素之副區域係組合52μιιιχ4μπι(=208μπι2)之長 方形與6μΐΏχ3// πι( = 18μιτι2)之長方形,其他與實施例2相 同。 比較例4 除形成各色畫素之副區域間的距離爲〇.8μηι外’其他 與比較例1相同。 實施例1,2與比較例1〜4進行比較如表2所示。 實施例1,2可得透射與反射明亮度及色度差小的濾色 片。而且,工程數不會較習知濾色片增加。換言之,可得 顯示特性及加工性優異的濾色片。 比較例1中各色畫素之副區域過小、或有圖案之加工 性問題。 比較例2中副區域過大、反射區域內表面之階差爲 0.5 μπι以上。而且,會產生顯示特性的問題。 比較例3中由於各色畫素之副區域形狀過細,會有加 工性問題。 比較例4中副區域間距離爲1 Ομιη以下,無法使透明區 域以正確形狀、大小加工。另外,各色畫素之副區域過小 時,會有圖案加工性問題。 實施例3 除使由綠色漿料RPI-2作爲紅漿料外,與實施例1相 同地製作濾色片。紅漿料RP Ϊ - 2係包含PR2 5 4與具有喹吖 酮架構之PR209的重量比爲PR254 /PR209 = 60 / 40比例之漿 -33- 552434 五、發明說明(32) 料。測定所得紅畫素之膜厚時爲1 , 1 μιη。在反射區域以C 光源測定色度U,y )時爲(0 · 5 1 1,0 · 290 )。所得濾色片之副 區域大小、畫素膜厚、反射用區域內著色區域與透明區域 差、反射區域與透射區域之色度差5如表2所示。此外, 以D65光源之反射區域色度與以2波長型LED光源之透射 區域色度如表4所不。 【表4】 (實施例3) 透射區每 K色度(2波長LED光源) 反射區域色度(D65光源) X y Y 色再現區域 X y Y 色再現區域 R 0.537 0.326 32.1 R 0.535 0.327 28.5 G 0.332 0.502 66.7 32% G 0.291 0.497 58.8 33% B 0.147 0.172 23.0 B 0.158 0.167 20.1 W 0.320 0.334 40.6 W 0.307 0.330 35.8 比較例5 除使由紅色漿料RPI - 3外,與比較例1相同地製作濾 色片。紅色漿料RPI - 3係爲包含反射型濾色片中主要使用 僅具有的喹吖酮架構之PR209作爲顏料成分,使顏料與樹 脂成分可微影加工的重量比爲90/10之漿料。測定所得紅 畫素之膜厚時,與實施例1相同爲1 · 1 μπι。在透射區域以 C光源測定色度U,y )時爲(〇 · 5 11,0 · 290 ) ’係爲與實施例 1相同程度的色純度。而且,於微影加工時畫素內大多會 產生破裂,I TO膜亦同樣地會產生破裂。此外,各畫素之 -34- 552434 五、發明說明(33) 副區域過小時,會有圖案之加工性問題。 比較例6_____ 除使用RPI - 4作爲紅色漿料外,與比較例1相同地製 作濾色片。紅色漿料RPI - 4係爲包含反射型濾色片中主要 使用僅具有的喹吖酮架構之PR209作爲顏料成分,使顏料 與樹脂成分可微影加工的重量比爲40/60之漿料。在與實 施例1相同程度的色純度下塗覆彩色漿料時,畫素膜厚爲 2 · 9 μπι。在透明區域以 C光源測定色度(X,y )時爲 (0.511,0.290 )。而且,塗覆表塗層後反射區域內之畫素 階差爲0 · 9μπι。此外,各色畫素之副區域過小時,會有圖 案之加工性問題。 實施例3之濾色片與實施例1、2相同地可得透射與反 射之明亮度極色度差小的濾色片。而且,以透射顯示的紅 色調可的比紅色鮮豔的顯示。而且,工程數不會比習知濾 色片增加。換言之,可爲顯示特性及加工性極爲優異的濾 色片。 比較例5由於紅畫素之昏暗性,故液晶顯示元件無法 使用。 比較例6中反射用區域內表面之階差爲〇 . 5μΐΏ以上。 而且,會產生顯示特性之問題。 實施例4 除使由綠漿料GPI-1所形成的著色層在透射用區域製 膜、由綠漿料GPI-2所形成的著色層在反射膜區域製膜 -35- 552434 五、發明說明(34) 外,與實施例1相同地製作濾色片。所得綠畫素之膜厚在 诱射區域、反射區域皆爲1 . 1 μηι。在反射區域以C光源測 __^------ 定色度(X,y )時爲(0 · 326,0 · 421 )。所得濾色片之副區域大 小、畫素膜厚、反射用區域內著色區域與透明區域差、反 射區域與透射區域之色度差5如表2所示。此外,以D65 光源之反射區域色度與以2波長型LED光源之透射區域色 度如表5所示。 【表5】 (實施例4) 透射區域色度(2波長LE] D光源) 反射區域色度(D65光源) X y Y 色再現區域 X y Y 色再現區每 R 0.536 0.329 31.7 R 0.534 0.328 27.6 G 0.332 0.502 66.7 31% G 0.326 0.502 75.0 31% Β 0.17 0.172 23.0 B 0.158 0.167 20.1 W 0.318 0.334 40.5 W 0.319 0.347 40.9 實施例5 除使由藍漿料BPI-1所形成的著色層在透射用區域內 製膜、藍漿料BPI-2所形成的著色層在反射用區域內製膜 外,與實施例1相同地製作濾色片。所得藍畫素之膜厚在 透射區域、反射區域皆爲1 . 1 μπι。測定以反射區域之C光 源的色度(x,y)時爲(0· 185,0.223 )。所得濾色片之副區 域大小、畫素膜厚、在反射用區域內著色區域與透明區域 之階差、反射區域與透射區域之色度差δ如表2所示。而 -36- 552434 五、發明說明(35) 且,以D65光源之反射區域色度與以2長度型LED光源之 透射區域色度如表 6所示。 【表6】 (實施例5) 透射區域色度(2波長LED光源) 反射區域色度(D65光源) X y Y 色再現區域 X y Y 色再現區域 R 0.536 0.329 31.7 R 0.534 0.328 27.6 G 0.332 0.502 66.7 31% G 0.291 0.497 58.8 32% Β 0.147 0.172 23.0 B 0.146 0.179 23.3 W 0.318 0.334 40.5 W 0.296 0.330 36.6 實施例6 與實施例1相同地製作的附有黑色基體之玻璃基板上 以旋轉器塗覆非感光性漿料(TPI -1 )。 使該塗膜以120°C之烤箱中乾燥20分鐘,且於其上塗 覆正型光阻劑(東京應化工業股份有限公司製”OFPR-800”),在90°C下烤箱乾燥10分鐘。使用肯農(譯音)股份 有限公司製曝光機”PLA-501F”、經由光阻光罩圖案、在 紅、綠、藍等各畫素之反射用區域中殘留有透明樹脂層下 以60m;f/cm2 ( 365nm之紫外線強度)曝光。曝光後、浸漬於 由四甲銨氫氧化物之1.6%水溶液所成的顯像液中,同時進 行光阻劑之顯像、聚醯胺酸之塗膜蝕刻。於蝕刻後以丙酮 剝離除去不需的光阻層,且在240°C下熱處理30分鐘,在 各畫素之反射用區域中製得透明樹脂層。此時之透明層膜 厚爲 1 . 5μπι。 -37- 552434 五、發明說明(36) 然後,與實施例1相同地形成紅畫素與綠畫素。測定 紅畫素之著色層膜厚時,反射用區域、透射用區域皆爲 1 . 1 μ m。而且,測定綠畫素之著色層膜厚時,反射用區 域、透射用區域皆爲1 . 1 μηι。在塗覆有透明樹脂層、紅畫 素、綠畫素之玻璃基板上以旋轉器塗覆藍色光阻劑(BAC-1),使該塗膜在80°C之烤箱中熱處理10分鐘。使用紫外 線曝光機、在藍畫素之透射用區域與反射用區域經由鉻製 光罩透射光,以100m:f/cm2 ( 3 6 5nm之紫外線強度)曝光。 曝光後浸漬於由四甲銨氫氧化物之1 . 6%水溶液所成的顯像 液中,使著色層顯像。顯像後在240°C之烤箱中熱處理30 分鐘、製得藍畫素。在透射用區域之畫素中央膜厚爲 Ι.ΙμίΏ,使C光源通過時色度(x,y)爲(0.146,0.178)。此 外,反射區域與透射區域之色度差(5如表2所示。另外, 以D65光源之反射區域色度與以2波長型LED光源之透射 區域色度如表7所示。 【表7】 (實施例6) 透射區域色度(2波長L ED光源) 反射區域色度(D65光源) X y Y 色再現區域 X y Y 色再現區域 R 0.536 0.329 31.7 R 0.534 0.328 27.6 G 0.332 0.502 66.7 31% G 0.291 0.497 58.8 33% B 0.147 0.172 23.0 B 0.137 0.169 20.4 W 0.18 0.334 40.5 W 0.297 0.331 35.6 比較例7 -38- 552434 五、發明說明(37) 除沒有在紅畫素、綠畫素、藍畫素之反射區域中形成 透明區壤外,與實施例1相同地製作濾色片。所得濾色片 之反應區域與透射區域的色度差(5如表2所示。而且,以 D65光源之反射區域色度與2波長型LED光源之透射區域 色度如表8所示。 【表8】 (比較例7) 透射區域色度(2波長LED光源) 反射區域色度(D65光源) X y Y 色再現區域 X y Y 色再現區域 R 0.536 0.329 31.7 R 0.617 0.328 21.9 G 0.332 0.502 66.7 31% G 0.278 0.592 52.6 61% B 0.147 0.172 23.0 B 0.133 0.140 15.4 W 0.318 0.334 40.5 W 0.303 0.339 29.9 比較例8 以與實施例1相同的工程,在由紅漿料RPI-1所形成 的著色層在透射用區域製膜、由紅色漿料RPI - 5所形成的 著色層在反射用區域製膜。而且,由綠漿料GP1-1所形成 的著色層在透射用區域製膜、由綠漿料GPI-2所形成的著 色層在反射用區域製膜、且由藍漿料BPI - 1所形成的著色 層在反射用區域製膜。所得的各色畫素之膜厚在透射區 域、反射區域皆爲1 · 1 μΐΏ。以紅畫素、綠畫素、藍畫素之 C光源測定反射區域色度U,y)時,各爲(0.441,0.293 )、 -39- 552434 五、發明說明(38) ( 0.328,0.421)、(0.185,0.22 3 )。所得濾色片之反射區 或_^|度_^1_姐_表2所示。而且,以D - 6 5光 源之反射領域色度與以2波長型LED光源之透射區域色度 如表9所示。 【表9】 (比較例8) 透射區域色度(2波長L. ED光源) 反射區域色度(D65光源) X y Y 色再現區域 X y Y 色再現區域 R 0.536 0.329 31.7 R 0.534 0.323 30.8 G 0.332 0.502 66.7 31% G 0.326 0.502 75.0 32% B 0.147 0.172 23.0 B 0.146 0.179 23.3 W 0.318 0.334 40.5 W 0.316 0.344 43.0 實施例4之濾色片與實施例1、2相同地可得透射與反 射之明亮度極色度差小的濾色片。而且,使用實施例4之 濾色片製作的液晶顯示元件液反射之白色顯示比實施例1 〜3較爲明亮、視認性佳。而且,工程數僅自習知濾色片 增加1工程。換言之,可以爲極優異的濾色片。 實施例5、6之濾色片與實施例1、2相同地製得透射 與反射之明亮度及色度差小的濾色片。使用實施例5、6 之濾色片製作的液晶顯示元件以反射之白色顯示比實施例 1〜3較爲明亮、色調爲較自然的白色、視認性良好。而 且,工程數僅自習知濾色片增加1工程。換言之,係爲極 優異的濾色片。 -40- 552434 五、發明說明(39) 另外,比較例7之濾色片的透射與反射之明亮度及色 度差大爲不同。使用比較例7之濾色片製作的液晶顯示元 件以反射顯示之明亮度非常昏暗、視認性極爲不佳。 比較例8之濾色片係與實施例1、2相同地透射與反射 之明亮度及色度差小的濾色片。然而,著色層之微影工程 必須爲6次,爲價格高者。 發明之效果B-Tech-Transparent area-¾Rate sub-area size 1 Nano step difference in paper-mm • Times mmM · Color difference δ Example 1 R RPI-1 8% 314 &quot; m2 (20 / im negative) '79 / i m2 (10 / im 0) 3.11E-06 · G GPI-1 15¾ 1134 / im2 (38 / im0) 1.78E-03 B BPM 6¾ 314 // m2 (20 // m. ^) x20 // m2 (5 // m (i) 1.53E-04; solid_2 R RPI-1 8% '600 // m2 (50 / imxl2 / im) 3.11E-06, G GP1-1 15% 1140 / im2 (76 / imX 15 / im) 3 times 1.78E-03 BPH 6% 300 / im2 (60 // mX5 // m) 1.53E-04 Example 3 R RPI-2 8% 600 / im2 (50 // mXl2 // m) 5.29E-06 G GPH 15% 1140 // m2 (76 / im X 15 / im) 1.78E-03 B BPI-1 6¾ 300 // m2 (60 // mX 5 // m) ii II rr \ 0.2 &quot; m 1.53E-04 Example 4 R RPI-1 8% 600 / im2 (50 // mX 12 // m) \ 9 \ μ fn 3.11E-06 G GPI-1.2--4.29E -05 B • BPH 6¾ · 300 U m2 (60 // mx 5 // m) 1.53E-04 Example 5 R RPH 8% 600 // m2 (50 // mx 12 // m) 3.ΠE-06 G GPI-1 • 15 »1140 / im2 (76 // mX 15 // m) 4 times 1.78E-03 B BP BU 1,2-·-4.34E-05 Example 6 R. RPH 8% 600 / / m2 (50 / imXl2 // m) .3.11E-06 G GPH 15% 1140 / i m2 (76 // mXl5 // m) 1.78E-03 B BAC-1-,-· '1.08E-04 Color material Transparent area ratio Sub-area size Element film thickness Chromaticity difference between reflection / transmission (5 Comparative Example 1 R RPI-1 1134 // m2 (38 // m0) »12.6 // m2 (4 / im0)-G GPI-1 Poor processing 1O75 // m2 (37 / / m0K 12.6 // m2 (4 ^ m0) Poor processing-Β BRI-1 707 / im2 (30 // m (i) J2.6 / im2 (4 // m (i)-Comparative Example 2 R RP1-1 -2.51 E-03 G GPH 15 × 2290 // m2 (54; 0.7 &quot; m 1.78E-03-Β ΒΡΙ-1 · • * '2.56E-03 Comparative Example 3 R RPH 284 / im2 (71 // mX4 / i * m) J8 / im2 (6 ^ mX3 / im) &lt; — G GPI-1 Poor machining 268 // m2 (67 // m X 4 // m)% 18 // m2 (6 // m X 3 // m) 1.1 &quot; ίη Poor processing-Β ΒΡΗ 208 // m2 (52 // mX4 // m) J8j [/ m2 (6 // m &gt; &lt; 3j [/ m) Comparative example 4 R • RPH 1134 ^ / m2 (38 // m0) J2.6jL / m2 (4 // m0)-G GPI-1 Poor processing 1075 // m2 (37 // m0) s 12.6 / im2 (4 / im0). Poor processing 3 Next time B ΒΡΙ-1 707 // m2 (30 // m &lt; i) J2.6 // m2 (4 // m &lt; / i)-Comparative Example 5 R RPI-3 Poor processing 1134 // m2 (3812.6 / / m2 (4 / im0) -G GPI-1 (finely divided) 1〇75 / im2 (37 ^ m0) J2.6 // m2 (4 / im0). Poor processing,-Β ΒΡΙ-1 7Q7jt / m2 (30 / imii)-Comparative Example 6 R RPI-4 1134 / im2 (38 ^ m.0), 12.6 / im2 (4 / im0) * 2.9 // m 0.9 // m ·-G GPI-1 Poor processing 107 5 &quot; m 2 (3 7 / / m ζί)), 12.6 // m 2 (4 / im?) • 1.1 μm 0.2 // m-Β ΒΡΙ-1 707jUm2 (30 with m &lt; ih 12.6 &quot; m2 (4 &quot; m (i) 1.1 / im 0.2 // m-_ Comparative Example 7 R RPH • —-6.56E-03 G GPH I —. • 1.11E-02 Β .ΒΡΗ--1.1 // m 0.0 // m 1.22E-03 Comparative Example 8 R RPI-1,5--3.70E-05 G GPI-1,2--6 times 4.29E-05 · Β ΒΡΙ-1,2--4.34E-05 -29- 552434 V. Description of the invention (28 [Table 3] (Examples 1 and 2) Chromaticity of transmission area (2-wavelength LED light source) Chromaticity of reflection area (D65 light source) X y Y color reproduction area X y Y color reproduction area 0.536 0.329 31.7 R 0.534 0.328 27.6 0.332 0.502 66.7 31% G 0.291 0.497 58.8 32% 0.147 0.172 23.0 B 0.158 0.167 20.1 W 0.318 0.334 40.5 W 0.305 0.330 35.5 # In addition, the transmission and color coordinates use Otsuka Electronics Co., Ltd. Co., Ltd. made a micro spectrophotometer "MCPD-2000", and made ITO-coated glass made under the same conditions as those used for coating on a color filter as a delicate lens. The chromaticity of the transmission region referred to here is a spectroscopic spectrum obtained by measuring the transmission region of the color filter with a microspectrophotometer or the like. The chromaticity of the reflection region is obtained by multiplying the spectral spectrum of the colored region and the spectral spectrum of the transparent region by the respective wavelengths in the region, and by obtaining the weighted average of the areas of the colored region and the transparent region. In addition, the step difference was evaluated using a film thickness measuring instrument "Safuke" (transliteration H 500A) made by Tokyo Precision Co., Ltd., a needle pressure of 10 mg / cm2, and a scanning speed of 10 μm / sec. (Formation of protruding columns) 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 4,4'-diaminodiphenyl ether, and bis (3-aminopropyl) tetramethyldicyclohexane with N-methyl 30-552434 as a solvent V. Explanation of the invention (29) The reaction of 2-pyrrolidone to prepare a solution of polyimide precursor (amidic acid) as a column material. The polyfluorene imide precursor solution was coated, dried by hot air at 90 ° C. for 15 minutes, and semi-hardened at 125 t for 20 minutes. Then, a positive type photoresist ("SRC-100" manufactured by Hipley-Fair Yiston Co., Ltd.) was applied with a spinner, and then dried at 80 ° C for 20 minutes. Expose with a photomask, immerse the substrate in an alkali developer solution ("Mi cropo sit" 351 manufactured by Hipley-Fish Yiston (Transliteration) Co., Ltd.), shake the substrate, and perform the photoresist Imaging and etching of polyimide precursors. Next, the orthophotoresist was stripped with methyl cellosolve acetate, and cured at 30 ° C for 30 minutes. The film thickness of the resin layer was 5.2 μπι. By the patterning, the frame and the frame were framed. Columns are formed on the edge of the black substrate on the edge and outside the screen. The upper area of the resin column in the screen is about 110 μm2, and the lower area is about 120 # m2. The upper area of the resin column outside the screen is about 10000μη2 (the size is 110 × ΙΙΟμηι) The area under the resin layer is about 1 2000 μm 2 (the size is 110 × ΙΟ 10 μm). The column height is 6 μm. Moreover, the columns in the screen are set at a ratio of 3 pixels. (Made by liquid crystal display elements) On the color filter A polyimide-based alignment film is provided and a base layer process is provided. Further, a counter substrate having a transparent electrode including a thin-film converter element and a reflective film is provided, and a polyimide-based alignment film is provided and a lamination process is similarly provided. The color filter with the alignment film and the transparent electrode substrate with a thin film converter element are bonded with a sealant and injected from an injection port provided in the sealing portion. -31-552434 V. Description of the invention (3〇) Note on liquid crystal After the empty cell is placed under reduced pressure, the injection port is immersed in the liquid crystal tank and returned to normal pressure. After the liquid crystal is injected, the injection port is sealed and the polarizing plate is bonded to the outside of the substrate to produce Unit cell Example 2 Except that the sub-area of the transparent region is red 5 Ομηι X 1 2 // m (= 6 0 0 // in2): Green: 76 μΐΏ &gt; &lt; 15 μΓη (= 1140 μπι2), Blue: 60 μΐΏ &gt; &lt; 5μΓη (= 300μπι2) except for the rectangle, the other is the same as in Example 1. The pattern of the processing is rounded in the corner of the rectangle, because the transparent area is an important area, and there is no problem when it is the same as the designed area. Specifically, Let us use the method shown in Figure 4 to evaluate the area and the same area as the rectangle. Comparative Example 1 Except that the sub-region of the red pixel is a circle with a combination of 38μιη ρ (= 1134μιη2) and 4μπι ρ (= 12.6μπι2) The sub-region of green pixels is a circle with a combination of 37μιη φ (= 1 075μπι2) and 4μ = 9 (= 12 · 6μπι2), and the sub-region of a blue pixel is a combination of 30μΐΏ (Μ = 707μηι2) and 4μΐΏ (Μ = 12 · 6μπι 2) outside the circle, He is the same as Example 1. Comparative Example 2 is the same as Example 1 except that the sub-regions of the red pixels, green pixels, and blue pixels are made into a circle of 54 μm (ρ = 2 2 90 μm 2). Example 3 The combination of the subregions of the red celestial line 7141! 1> &lt; 44111 (= 28441112) and the rectangle of 6μm &gt; &lt; 3 // ηι (= 18μπ2) is the combination of the subareas of the green celestial line 67pmx4pni = 268Km2) rectangle and 6μπιχ3μηι (= 18μπι2) length -32- 552434 V. Description of the invention (31) The sub-area of square, blue pixels is a combination of 52μιιχ4μπι (= 208μπι2) rectangle and 6μΐΏχ3 // πι (= 18μιτι2 ) And other rectangles are the same as in the second embodiment. Comparative Example 4 The same as Comparative Example 1 except that the distance between the sub-regions forming the pixels of each color was 0.8 µm. Tables 1 and 2 are compared with Comparative Examples 1 to 4. In Examples 1 and 2, color filters having small differences in transmittance and reflection brightness and chromaticity were obtained. Moreover, the number of processes does not increase compared to the conventional color filters. In other words, a color filter excellent in display characteristics and processability can be obtained. In Comparative Example 1, the sub-regions of the pixels of each color are too small, or there is a problem with the workability of the pattern. In Comparative Example 2, the sub-region was too large, and the step on the inner surface of the reflection region was 0.5 μm or more. Furthermore, a problem arises in display characteristics. In Comparative Example 3, since the shape of the sub-regions of the pixels of each color is too small, there is a problem in workability. In Comparative Example 4, the distance between the sub-regions was 10 μm or less, and the transparent region could not be processed with the correct shape and size. In addition, when the sub-regions of the pixels of each color are too small, there is a problem of pattern workability. Example 3 A color filter was produced in the same manner as in Example 1 except that a green paste RPI-2 was used as a red paste. Red paste RP Ϊ-2 is a paste containing PR2 5 4 and PR209 with quinacridone structure in a weight ratio of PR254 / PR209 = 60 / 40. -33- 552434 5. Description of the invention (32). When the film thickness of the obtained red pixel was measured, it was 1.1 μm. When the chromaticity U, y is measured with a C light source in the reflection area, it is (0 · 5 1 1,0 · 290). Table 2 shows the size of the sub-region, the pixel film thickness of the obtained color filter, the difference between the colored region and the transparent region in the reflection region, and the chromaticity difference between the reflection region and the transmission region. In addition, the chromaticity of the reflection area of the D65 light source and the chromaticity of the transmission area of the 2-wavelength LED light source are shown in Table 4. [Table 4] (Example 3) Chromaticity per K in the transmission area (2-wavelength LED light source) Chromaticity in the reflection area (D65 light source) X y Y color reproduction area X y Y color reproduction area R 0.537 0.326 32.1 R 0.535 0.327 28.5 G 0.332 0.502 66.7 32% G 0.291 0.497 58.8 33% B 0.147 0.172 23.0 B 0.158 0.167 20.1 W 0.320 0.334 40.6 W 0.307 0.330 35.8 Comparative Example 5 A color filter was produced in the same manner as in Comparative Example 1 except that red paste RPI-3 was used. sheet. Red paste RPI-3 is a paste containing PR209 mainly used in reflective color filters, which has only a quinacridone structure, so that the weight ratio of the pigment to the resin component can be lithographically processed to 90/10. When the film thickness of the obtained red pixel was measured, it was 1.1 μm as in Example 1. When the chromaticity U, y) was measured with a C light source in the transmission region, it was (0.51, 0,290), which is the same degree of color purity as in Example 1. In addition, cracks often occur in pixels during lithographic processing, and the I TO film also cracks in the same manner. In addition, the number of pixels is -34- 552434 5. Invention Description (33) If the sub-region is too small, there will be a problem with the processability of the pattern. Comparative Example 6_____ A color filter was produced in the same manner as in Comparative Example 1 except that RPI-4 was used as the red paste. The red paste RPI-4 is a paste containing mainly quinacridone-based PR209 in the reflective color filter as the pigment component, and the pigment / resin component can be lithographically processed at a weight ratio of 40/60. When the color paste was applied at the same color purity as in Example 1, the pixel film thickness was 2 · 9 µm. When the chromaticity (X, y) was measured with a C light source in a transparent area, it was (0.511, 0.290). In addition, the pixel step in the reflection area after the surface coating was applied was 0 · 9 µm. In addition, if the sub-region of each color pixel is too small, there will be a problem with the processability of the pattern. The color filter of Example 3 is the same as that of Examples 1 and 2, and a color filter having a small difference in transmittance and reflection brightness and extreme chromaticity can be obtained. Moreover, the red hue of transmission display can be more vivid than that of red. Moreover, the number of processes does not increase over the conventional color filters. In other words, it can be a color filter having excellent display characteristics and processability. Comparative Example 5 was unable to use a liquid crystal display element because of the dim nature of red pixels. The step of the inner surface of the reflection region in Comparative Example 6 was 0.5 μΐΏ or more. Furthermore, a problem arises in display characteristics. Example 4 Except that the colored layer formed by the green paste GPI-1 is formed in the transmission region, and the colored layer formed by the green paste GPI-2 is formed in the reflective film region -35- 552434 5. Description of the invention (34) Except that, a color filter was produced in the same manner as in Example 1. The film thickness of the obtained green pixel was 1.1 μm in the irradiating region and the reflecting region. Measured in the reflection area with a C light source. __ ^ ------ When fixed chromaticity (X, y) is (0 · 326, 0 · 421). Table 2 shows the size of the sub-region, the pixel film thickness of the obtained color filter, the difference between the colored region and the transparent region in the reflection region, and the chromaticity difference between the reflection region and the transmission region. In addition, the chromaticity of the reflection area of the D65 light source and the chromaticity of the transmission area of the 2-wavelength LED light source are shown in Table 5. [Table 5] (Example 4) Transmission area chromaticity (2-wavelength LE) D light source) Reflection area chromaticity (D65 light source) X y Y color reproduction area X y Y color reproduction area R 0.536 0.329 31.7 R 0.534 0.328 27.6 G 0.332 0.502 66.7 31% G 0.326 0.502 75.0 31% B 0.17 0.172 23.0 B 0.158 0.167 20.1 W 0.318 0.334 40.5 W 0.319 0.347 40.9 Example 5 Except that the colored layer formed by the blue paste BPI-1 is in the transmission area The coloring layer formed by film formation and blue paste BPI-2 was film-formed outside the reflection area, and a color filter was produced in the same manner as in Example 1. The film thickness of the obtained blue pixels was 1.1 μm in both the transmission region and the reflection region. When the chromaticity (x, y) of the C light source in the reflection area was measured, it was (0,185, 0.223). The sub-region size, pixel film thickness of the obtained color filter, the step difference between the colored region and the transparent region in the reflection region, and the chromaticity difference δ between the reflection region and the transmission region are shown in Table 2. -36- 552434 V. Description of the invention (35) Table 6 shows the chromaticity of the reflection area of the D65 light source and the transmission area of the 2-length LED light source. [Table 6] (Example 5) Transmission area chromaticity (2-wavelength LED light source) Reflection area chromaticity (D65 light source) X y Y color reproduction area X y Y color reproduction area R 0.536 0.329 31.7 R 0.534 0.328 27.6 G 0.332 0.502 66.7 31% G 0.291 0.497 58.8 32% B 0.147 0.172 23.0 B 0.146 0.179 23.3 W 0.318 0.334 40.5 W 0.296 0.330 36.6 Example 6 A glass substrate with a black substrate produced in the same manner as in Example 1 was coated with a spinner. Photosensitive paste (TPI -1). The coating film was dried in an oven at 120 ° C for 20 minutes, and a positive-type photoresist ("OFPR-800" manufactured by Tokyo Chemical Industry Co., Ltd.) was applied thereon, and the oven was dried at 90 ° C for 10 minutes. . Using an exposure machine "PLA-501F" made by Kennon Co., Ltd., 60 m below the transparent resin layer in the reflection area of each pixel such as red, green, and blue through a photoresist mask pattern; f / cm2 (ultraviolet intensity of 365nm) exposure. After exposure, it was immersed in a developing solution made of a 1.6% aqueous solution of tetramethylammonium hydroxide, and the photoresist was developed and the polyamic acid coating film was etched at the same time. After etching, the unnecessary photoresist layer was stripped off with acetone, and heat treated at 240 ° C for 30 minutes to prepare a transparent resin layer in the reflection area of each pixel. The thickness of the transparent layer at this time was 1.5 μm. -37- 552434 5. Description of the invention (36) Then, red pixels and green pixels are formed in the same manner as in Example 1. When the film thickness of the colored layer of the red pixel was measured, both the reflection area and the transmission area were 1.1 μm. In addition, when the film thickness of the colored layer of green pigment was measured, both the reflection area and the transmission area were 1.1 μm. A blue photoresist (BAC-1) was coated on a glass substrate coated with a transparent resin layer, red pixels, and green pixels by a spinner, and the coating film was heat-treated in an oven at 80 ° C for 10 minutes. Using an ultraviolet exposure machine, light was transmitted through the chromium mask in the blue pixel transmission and reflection areas and exposed at 100 m: f / cm2 (ultraviolet intensity of 36 nm). After exposure, it was immersed in a developing solution made of a 1.6% aqueous solution of tetramethylammonium hydroxide to develop a colored layer. After development, heat treatment was performed in an oven at 240 ° C for 30 minutes to obtain blue pixels. The central film thickness of the pixels in the transmission area is 1.1 μL, and the chromaticity (x, y) when the C light source is passed is (0.146, 0.178). In addition, the chromaticity difference between the reflection area and the transmission area (5 is shown in Table 2. In addition, the chromaticity of the reflection area of the D65 light source and the chromaticity of the transmission area of the 2-wavelength LED light source are shown in Table 7. [Table 7 [Example 6] Chromaticity of transmission area (2 wavelength L ED light source) Chromaticity of reflection area (D65 light source) X y Y color reproduction area X y Y color reproduction area R 0.536 0.329 31.7 R 0.534 0.328 27.6 G 0.332 0.502 66.7 31 % G 0.291 0.497 58.8 33% B 0.147 0.172 23.0 B 0.137 0.169 20.4 W 0.18 0.334 40.5 W 0.297 0.331 35.6 Comparative example 7 -38- 552434 V. Description of the invention (37) Except that there is no red picture, green picture, or blue picture A transparent filter was formed in the reflective region of the element, and a color filter was produced in the same manner as in Example 1. The chromaticity difference between the reaction region and the transmission region of the obtained color filter (5 is shown in Table 2). The chromaticity of the reflection area and the chromaticity of the transmission area of the 2-wavelength LED light source are shown in Table 8. [Table 8] (Comparative Example 7) The chromaticity of the transmission area (2-wavelength LED light source) The chromaticity of the reflection area (D65 light source) X y Y color reproduction area X y Y color reproduction area R 0.536 0. 329 31.7 R 0.617 0.328 21.9 G 0.332 0.502 66.7 31% G 0.278 0.592 52.6 61% B 0.147 0.172 23.0 B 0.133 0.140 15.4 W 0.318 0.334 40.5 W 0.303 0.339 29.9 Comparative Example 8 In the same process as in Example 1, The colored layer formed by the material RPI-1 is formed in the transmission area, and the colored layer formed by the red paste RPI-5 is formed in the reflection area. In addition, the colored layer formed by the green paste GP1-1 is Films for transmissive areas, a colored layer formed of green paste GPI-2 is formed for the reflective area, and a colored layer formed of blue paste BPI-1 is formed for the reflective area. Pixels of each color obtained The film thickness is 1.1 μm in both the transmission area and the reflection area. When the C light source of red pixels, green pixels, and blue pixels is used to measure the chromaticity U, y in the reflection area, each is (0.441, 0.293), -39- 552434 5. Description of the invention (38) (0.328, 0.421), (0.185, 0.22 3). The reflection area of the obtained color filter or _ ^ | degree_ ^ 1_ister_Table 2 is shown in Table 2. Table 9 shows the chromaticity of the reflection area of the D-6 light source and the transmission area of the 2-wavelength type LED light source. [Table 9] (Comparative Example 8) Chromaticity of transmission area (2 wavelength L. ED light source) Chromaticity of reflection area (D65 light source) X y Y color reproduction area X y Y color reproduction area R 0.536 0.329 31.7 R 0.534 0.323 30.8 G 0.332 0.502 66.7 31% G 0.326 0.502 75.0 32% B 0.147 0.172 23.0 B 0.146 0.179 23.3 W 0.318 0.334 40.5 W 0.316 0.344 43.0 The brightness of transmission and reflection can be obtained in the same manner as in Examples 1 and 2. Color filter with extremely small chromaticity difference. In addition, the white display reflected by the liquid crystal display element liquid produced using the color filter of Example 4 is brighter and has better visibility than Examples 1 to 3. In addition, the number of processes is only increased by one process from the color filter. In other words, it can be an extremely excellent color filter. The color filters of Examples 5 and 6 were prepared in the same manner as in Examples 1 and 2 to obtain color filters with small differences in brightness and chromaticity in transmission and reflection. The liquid crystal display elements produced using the color filters of Examples 5 and 6 exhibited a more reflective white display than those of Examples 1 to 3, and the hue was more natural white and had better visibility. In addition, the number of processes is only 1 process since the color filter is known. In other words, it is an excellent color filter. -40-552434 5. Explanation of the invention (39) In addition, the transmittance and reflection of the color filter of Comparative Example 7 differ greatly in brightness and chromaticity. The liquid crystal display element produced using the color filter of Comparative Example 7 exhibited extremely dim brightness in reflection display and extremely poor visibility. The color filter of Comparative Example 8 is a color filter with small brightness and chromaticity differences in transmission and reflection in the same manner as in Examples 1 and 2. However, the lithography process of the colored layer must be performed six times, which is the higher price. Effect of the invention

本發明係提供一種藉由在反射用區域中形成透明區域, 可使透明用區域與反射用區域之明亮度或色差的差、及表 面階差小、且可抑制工程數增加、低價的濾色片。The present invention is to provide a transparent region in a reflective region, which can reduce the difference in brightness or chromatic aberration between the transparent region and the reflective region, and reduce the surface level difference, and can suppress an increase in the number of processes and a low-cost filter. Color film.

-41 --41-

Claims (1)

552434 六、申請專利範圍 桌9 1 1 1 1 0 4 0號「濾色片及液晶顯示元件」專利案 552434 六、申請專利範圍 8 .如申請專利範圍第7項之濾色片,其中具有喹吖酮架構 之顏料爲C. I .顏料紅209。 9 .如申請專利範圍第1項之濾色片,其中反射用區域內著 色區域與透明區域之階差爲0.5 μΐΏ以下。 1 〇 .如申請專利範圍第1項之濾色片,其中在反射區域 中,基板與著色層之間具有透明樹脂層,且至少含有 一色反射用區域與透射用區域之著色層膜厚不同的畫 素。 1 1 ·如申請專利範圍第1項之濾色片,其中含有由透射用 區域與反射用區域不同的著色層所成的至少一色之畫 素。 1 2 ·如申請專利範圍第1項之濾色片,其中最上部形成突 起狀柱。 13·如申|靑專利範圍第1至12項中任一*項之爐色片,其中 至少二色係透射用區域之色度(X(),y())與反射用區域之 色度(x,y)的色度差5滿足下式, δ = (χ-x0)2+(y_y〇)2S 3xl〇.3。 1 4 · 一種液晶顯示元件,其特徵爲使用如申請專利範圍第 1至1 3項中任一項之濾色片。552434 VI. Patent application table 9 1 1 1 1 0 4 0 "Color filter and liquid crystal display element" patent case 552434 VI. Application patent scope 8. For example, the color filter of item 7 of the patent scope, which has quinine The acetone pigment is C.I. Pigment Red 209. 9. The color filter according to item 1 of the scope of patent application, wherein the step difference between the colored area and the transparent area in the reflection area is 0.5 μΐΏ or less. 1 〇. The color filter according to item 1 of the scope of patent application, wherein in the reflection area, a transparent resin layer is provided between the substrate and the coloring layer, and at least one color of the coloring layer of the reflection area and the transmission area has different thicknesses. Pixels. 1 1 · The color filter according to item 1 of the patent application scope, which contains at least one color pixel formed by a coloring layer different from the transmission area and the reflection area. 1 2 · The color filter according to item 1 of the patent application scope, wherein the uppermost part forms a protruding column. 13 · Rushen | 靑 The furnace color chip of any one of the items 1 to 12 in the patent scope, wherein at least two colors are the chromaticity of the area for transmission (X (), y ()) and the chromaticity of the area for reflection The chromaticity difference 5 of (x, y) satisfies the following formula, δ = (χ-x0) 2+ (y_y〇) 2S 3x103. 1 4 · A liquid crystal display element characterized by using a color filter according to any one of claims 1 to 13 of the scope of patent application.
TW091111040A 2001-06-04 2002-05-24 Color filter and liquid display element TW552434B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001167810 2001-06-04
JP2001202045 2001-07-03

Publications (1)

Publication Number Publication Date
TW552434B true TW552434B (en) 2003-09-11

Family

ID=26616263

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091111040A TW552434B (en) 2001-06-04 2002-05-24 Color filter and liquid display element

Country Status (8)

Country Link
US (2) US7068334B2 (en)
EP (1) EP1265082B1 (en)
KR (1) KR100919727B1 (en)
CN (1) CN1389745B (en)
AT (1) ATE336016T1 (en)
DE (1) DE60213712T2 (en)
SG (1) SG129224A1 (en)
TW (1) TW552434B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW552434B (en) * 2001-06-04 2003-09-11 Toray Industries Color filter and liquid display element
JP4111717B2 (en) * 2002-01-29 2008-07-02 富士フイルム株式会社 Reflective color filter and manufacturing method thereof
JP2004145275A (en) * 2002-08-27 2004-05-20 Seiko Epson Corp Color layer material, color filter substrate, electro-optic apparatus, electronic appliance, method for manufacturing color filter substrate and method for manufacturing electro-optic apparatus
JP4175299B2 (en) * 2003-07-23 2008-11-05 セイコーエプソン株式会社 Color filter and display device
JP3953053B2 (en) 2003-08-28 2007-08-01 セイコーエプソン株式会社 Discharge method, color filter substrate manufacturing method, liquid crystal display device manufacturing method, and electronic device manufacturing method
JP4623701B2 (en) * 2003-08-29 2011-02-02 株式会社 日立ディスプレイズ Coloring composition for color filter and display device using color filter formed with this coloring composition
CN100357767C (en) * 2004-03-31 2007-12-26 东洋油墨制造株式会社 Color filter and liquid crystal display device provided with the same
WO2006008901A1 (en) * 2004-06-23 2006-01-26 Sharp Kabushiki Kaisha Liquid crystal display and method for manufacturing same
KR20070010676A (en) * 2005-07-19 2007-01-24 삼성전자주식회사 Liquid crystal display
US20080055455A1 (en) * 2006-08-31 2008-03-06 Micron Technology, Inc. Imbalance determination and correction in image sensing
KR101304410B1 (en) * 2006-09-19 2013-09-05 삼성디스플레이 주식회사 Liquid crystal display device
TW200923499A (en) * 2007-11-28 2009-06-01 Au Optronics Corp Liquid crystal display
TWI521266B (en) * 2008-04-03 2016-02-11 友達光電股份有限公司 Liquid crystal display
TWI391744B (en) * 2009-01-23 2013-04-01 Au Optronics Corp High color expression display device and method for adjusting displayed color
US8384851B2 (en) * 2010-01-11 2013-02-26 3M Innovative Properties Company Reflective display system with enhanced color gamut
US9929379B2 (en) * 2013-06-11 2018-03-27 Konica Minolta, Inc. Method for producing organic electroluminescent element
CN106873228A (en) * 2015-12-11 2017-06-20 中华映管股份有限公司 Semi-penetrating and semi-reflective liquid crystal display panel
CN105622938B (en) * 2016-04-06 2018-10-30 京东方科技集团股份有限公司 Polyimides, its composition and preparation method, alignment film, display device

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762723B2 (en) 1985-04-04 1995-07-05 セイコーエプソン株式会社 Liquid crystal display
JPH0832320B2 (en) * 1990-01-30 1996-03-29 出光興産株式会社 Thin film manufacturing method
JP3485997B2 (en) 1995-04-14 2004-01-13 シチズン時計株式会社 Liquid crystal display
US5658697A (en) * 1996-04-17 1997-08-19 Industrial Technology Research, Institute Method for producing color filters by the use of anionic electrocoats
US6140019A (en) * 1997-07-24 2000-10-31 Jsr Corporation Radiation sensitive composition
US6195140B1 (en) * 1997-07-28 2001-02-27 Sharp Kabushiki Kaisha Liquid crystal display in which at least one pixel includes both a transmissive region and a reflective region
WO1999028782A1 (en) * 1997-12-04 1999-06-10 Flat Panel Display Co. (Fpd) B.V. Display device
JPH11183891A (en) 1997-12-22 1999-07-09 Casio Comput Co Ltd Liquid crystal display element
JP3738549B2 (en) * 1997-12-22 2006-01-25 カシオ計算機株式会社 Liquid crystal display element
US6215538B1 (en) * 1998-01-26 2001-04-10 Sharp Kabushiki Kaisha Liquid crystal display including both color filter and non-color filter regions for increasing brightness
JP3335130B2 (en) * 1998-01-26 2002-10-15 シャープ株式会社 Liquid crystal display
JPH11217514A (en) * 1998-02-03 1999-08-10 Toray Ind Inc Red paste for color filter, and color filter using the same, liquid crystal display device
KR100755201B1 (en) * 1998-02-04 2007-09-05 세이코 엡슨 가부시키가이샤 Liquid crystal device and electronic device
JP3361451B2 (en) * 1998-03-24 2003-01-07 出光興産株式会社 Color filter for reflective liquid crystal display device and reflective liquid crystal display device using the same
US6654090B1 (en) * 1998-09-18 2003-11-25 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of manufacturing thereof
JP2000305089A (en) * 1999-04-20 2000-11-02 Nec Corp Liquid crystal display device
JP3940523B2 (en) * 1999-04-27 2007-07-04 セイコーエプソン株式会社 Resin composition for inkjet color filter, color filter, and method for producing color filter
EP1411091B1 (en) * 1999-07-09 2009-10-14 Basf Se Process for the preparation of pigments having improved colouristic properties
JP3714044B2 (en) * 1999-07-15 2005-11-09 セイコーエプソン株式会社 LIQUID CRYSTAL DISPLAY DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
US6280890B1 (en) * 1999-08-27 2001-08-28 Toyo Ink Mfg. Co., Ltd. Color filter and color liquid crystal display device
KR100613437B1 (en) * 1999-10-27 2006-08-18 엘지.필립스 엘시디 주식회사 transflective liquid crystal display device
US7002659B1 (en) * 1999-11-30 2006-02-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal panel and liquid crystal projector
JP4196505B2 (en) * 1999-12-13 2008-12-17 ソニー株式会社 Display device, manufacturing method thereof, and color filter
US6295106B1 (en) * 2000-01-12 2001-09-25 International Business Machines Corporation Energy-efficient full-color liquid crystal display
JP4132528B2 (en) * 2000-01-14 2008-08-13 シャープ株式会社 Manufacturing method of liquid crystal display device
US6999139B2 (en) * 2000-02-29 2006-02-14 Lg.Philips Lcd Co., Ltd. Method for fabricating transflective color LCD device and the transflective color LCD device
KR100667537B1 (en) * 2000-07-03 2007-01-10 엘지.필립스 엘시디 주식회사 Color filter of LCD and fabrication method thereof
KR100684579B1 (en) * 2000-07-04 2007-02-20 엘지.필립스 엘시디 주식회사 Transflective liquid crystal display device and manufacturing method thereof
JP3992922B2 (en) * 2000-11-27 2007-10-17 シャープ株式会社 LIQUID CRYSTAL DISPLAY SUBSTRATE, ITS MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY DEVICE EQUIPPED WITH THE SAME
JP3941481B2 (en) * 2000-12-22 2007-07-04 セイコーエプソン株式会社 Liquid crystal display device and electronic device
JP3875125B2 (en) * 2001-04-11 2007-01-31 シャープ株式会社 Liquid crystal display
TW552434B (en) * 2001-06-04 2003-09-11 Toray Industries Color filter and liquid display element
JP4026415B2 (en) * 2001-06-04 2007-12-26 東レ株式会社 Color filter and manufacturing method thereof, and liquid crystal display element and manufacturing method thereof

Also Published As

Publication number Publication date
EP1265082B1 (en) 2006-08-09
EP1265082A3 (en) 2003-01-22
KR100919727B1 (en) 2009-09-29
SG129224A1 (en) 2007-02-26
DE60213712D1 (en) 2006-09-21
ATE336016T1 (en) 2006-09-15
US20060088775A1 (en) 2006-04-27
EP1265082A2 (en) 2002-12-11
KR20020092810A (en) 2002-12-12
US20030071942A1 (en) 2003-04-17
DE60213712T2 (en) 2007-09-13
CN1389745B (en) 2010-04-28
US8031297B2 (en) 2011-10-04
US7068334B2 (en) 2006-06-27
CN1389745A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
TW552434B (en) Color filter and liquid display element
TW200301372A (en) Color filter, liquid crystal device and process for production of color filter
JP6287209B2 (en) Color filter and display device
JP4742789B2 (en) Photosensitive transparent resin composition for alkali development and transflective liquid crystal display device
TW200307834A (en) Color-filter for a liquid crystal display device and a semi-transmission liquid crystal display device
KR101929276B1 (en) Colour filter and display device
TW460714B (en) Color filter and liquid crystal display device
JP2004279765A (en) Color filter for liquid crystal display device and liquid crystal display device
JP4099983B2 (en) Color filter for transflective liquid crystal display device and transflective liquid crystal display device
JP4192501B2 (en) Color filter for liquid crystal display device and transflective liquid crystal display device
JP2003098337A (en) Color filter and liquid crystal display device
JP4465650B2 (en) Color filter for liquid crystal display and liquid crystal display device using the same
JP2007271898A (en) Color filter for transflective liquid crystal display device and its manufacturing method, and transflective liquid crystal display device using the same
JP4001001B2 (en) Color filter for liquid crystal display device, liquid crystal display device, and method for producing color filter for liquid crystal display device
JP2002365420A (en) Color filter and liquid crystal display device
JP2008191201A (en) Color filter for liquid crystal display, and liquid crystal display using it
JP2007065118A (en) Color filter for liquid crystal display and liquid crystal display using same
JP2002365421A (en) Color filter and liquid crystal display device
JP2004020779A (en) Color filter for liquid crystal display, and liquid crystal display using the same
JP4300853B2 (en) Color filter for liquid crystal display device and liquid crystal display device
JP2003075821A (en) Color filter for liquid crystal display device and liquid crystal display device
JP2004184664A (en) Color filter for liquid crystal display device, and method for manufacturing liquid crystal display device and color filter therefor
JP2002365418A (en) Color filter for liquid crystal display element, liquid crystal display device using the same and method for manufacturing the color filter
JP2004354845A (en) Color filter for liquid crystal display device, and liquid crystal display device
JP2003107239A (en) Color filter for liquid crystal display device and the liquid crystal display device using the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees