TW550647B - System and method to control radial delta temperature - Google Patents

System and method to control radial delta temperature Download PDF

Info

Publication number
TW550647B
TW550647B TW91114419A TW91114419A TW550647B TW 550647 B TW550647 B TW 550647B TW 91114419 A TW91114419 A TW 91114419A TW 91114419 A TW91114419 A TW 91114419A TW 550647 B TW550647 B TW 550647B
Authority
TW
Taiwan
Prior art keywords
temperature
slope
patent application
set point
maximum allowable
Prior art date
Application number
TW91114419A
Other languages
Chinese (zh)
Inventor
Cole Porter
Alan L Starner
Original Assignee
Asml Us Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/068,127 external-priority patent/US6901317B2/en
Priority claimed from US10/095,974 external-priority patent/US6864466B2/en
Application filed by Asml Us Inc filed Critical Asml Us Inc
Application granted granted Critical
Publication of TW550647B publication Critical patent/TW550647B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

A system and method of minimizing stress related to the ramp rate of a variable by limiting the ramp rate as a function of the current value of the variable is provided. More specifically, the present invention provides a system and method of maintaining the radial delta temperature of a semiconductor substrate or other heated body below the crystal slip curve by dynamically controlling the temperature ramp rate during processing.

Description

550647 A7 B7 五、發明説明() 1 相關申請案前後參照 本申請案請求對2 0 0 2年2月6日所申請之美國專 利申請案號10/068,127,及2002年3月8 曰所申請之案號10/095,974的優先權,其中, 整體上藉由參考,據此納入案號10/068,127之 發表。 發明領域 本發明通常是有關於在製程期間使與一控制變數之斜 率有關之應力達到最小之一種系統及方法,該製程例如, 諸如在處理基底期間之半導體基底溫度或晶圓。更明確地 說’本發明藉由在處理期間控制溫度之斜率,提供一種將 處理期間一晶圓之徑向溫度差(r D T )維持在一過熱應 力曲線之下的增強式系統及方法。在半導體工業中,於基 底之溫度循環期間,預期要在基底中待到溫度均一性。溫 度均一性爲包含薄膜沈積,氧化物生長及摻雜劑擴散之溫 度觸動步驟提供基底上之均一處理輸出,如層厚度,電阻 係數,及接面深度。此外,要防止如歪曲,缺陷及晶石結 構滑脫 之熱應力引起之晶圓傷害,基底中之溫度均一 性是必要的。 發明背景 製造及其它處理系統一向深及改變一或更多控制變數 之値’該變數包含,但未限於,溫度,壓力,氣體流動率 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) !5 -- (請先閱讀背面之注意事項再填寫本頁)550647 A7 B7 V. Description of the Invention (1) References to this application before and after related applications request US Patent Application No. 10 / 068,127 filed on February 6, 2002, and March 8, 2002 The priority of the filed case No. 10 / 095,974, of which, by reference in its entirety, is hereby incorporated into the publication of case number 10 / 068,127. FIELD OF THE INVENTION The present invention is generally related to a system and method for minimizing stress related to the slope of a control variable during a process, such as, for example, a semiconductor substrate temperature or a wafer during substrate processing. More specifically, the present invention provides an enhanced system and method for maintaining a radial temperature difference (r D T) of a wafer during processing below an overheating stress curve by controlling the slope of temperature during processing. In the semiconductor industry, temperature uniformity is expected to be achieved in a substrate during a temperature cycle of the substrate. Temperature uniformity is a temperature-triggering step that includes film deposition, oxide growth, and dopant diffusion to provide uniform processing output on the substrate, such as layer thickness, resistivity, and junction depth. In addition, to prevent wafer damage caused by thermal stresses such as distortion, defects, and spar structure slippage, temperature uniformity in the substrate is necessary. BACKGROUND OF THE INVENTION Manufacturing and other processing systems have traditionally deepened and changed one or more of the control variables. The variables include, but are not limited to, temperature, pressure, and gas flow rate. This paper is sized to the Chinese National Standard (CNS) A4 specification (210X297). %)! 5-(Please read the notes on the back before filling in this page)

、1T 經濟部智慧財產局員工消費合作社印製 -4- 550647 A7 B7 五、發明説明(2) (請先閱讀背面之注意事項再填寫本頁) ,濃度,張力,電壓,施力,及位置。一控制變數從一啓 始値改變至一終止値之比率爲斜率或該變數之一次微分, 通稱爲斜率。例如,斜率或位置對時間之一次微分(如d χ/d t )爲速度。常預期在一程序中要使應力達到最小 ,其中之設備及/或產品是曝露於該應力中。超出之應力 會造成程序之效率降低或造成設備或產品之過早故障。在 許多系統中,應力爲一或更多控制變數之斜率函數。可降 低斜率將應力保持在一可接受之臨界値之下。然而,因不 必要嚴苛的斜率限制使程序之總處理量變慢,故亦非預期 想要的。由半導體處理系統引出這觀念之一圖解說明實例 。然而,應注意到的是斜率相關之問題對於此處所詳細討 論之申請案並非唯一。而是,該實例之意只是說明而已且 決不受任何限制。 經濟部智慧財產局員工消費合作社印製 半導體與積體電路製造中之一重要觀點爲處理期間半 導體晶圓所受到之溫度變化及値。兩重要限制適用於半導 體晶圓之加熱及冷卻:1 )溫度斜率之加速及減速無法比 晶圓所允許之熱慣性更快速且2 )應將晶圓中心與外緣間 之溫度差保持得夠小,防止對晶圓之熱擴張傷害。熱慣性 說明一質量從一穩定狀態溫度或零斜率狀態立即跳到一有 限之非零斜率並再回到穩定狀態之阻抗。在這些理想化要 求下需要加熱或冷卻之溫度斜率中,真實物體是無法立即 且無限、、加速及減速〃的。溫度之加速或減速爲溫度之二 次微分。只就一質量靜止時之位置加速與減速而言,溫度 之加速與減速率無法爲無限制。 本紙張尺度適用中國國家標準(CNS ) A4規格(210x297公釐) -5- 550647 A7 ___B7 五、發明説明(3) (請先閱讀背面之注意事項再填寫本頁) 在如一半導體晶圓處理系統之火爐內,當從一溫度加 熱或冷卻至另一溫度時,要在最小時間量內達到預期設定 點溫度常是重要的。傳統上,火爐將使用一所控制之線性 斜坡,從一溫度設定點走至另一點。成爲線性斜坡受兩缺 點所苦:由被加熱中之基底在達成預期溫度斜率之延遲; 及基底溫度超過預期設定點且然後在達到一穩定狀態溫度 前在設定點溫度前後振盪之傾向。在共同審查中之美國專 利申請案號1 0/0 6 8,1 2 7中說明使用實際上可達 成溫度斜率加速及減緩階段之這種問題的解決方案,此處 藉由參考加以納入其本文。 經濟部智慧財產局員工消費合作社印製 由於物體內超過之內部溫度梯度,額外重要的是限制 最大溫度斜率加以保護對物體或加熱中物體之負面熱效應 。迫尤其與半導體晶圓處理系統有關,在該系統中,重要 之製造觀點爲處理期間半導體晶圓所受到之溫度變化與値 。尤其是,因相對於其中心之一晶圓外緣之過度加熱及冷 卻造成可能使晶圓無法使用或導致由晶圓所製造之半導體 晶片之早期故障的實際及/或化學傷害,故在快速熱處理 火爐或其匕類似設備之處理期間,晶圓中心與外緣間之溫 度差是顯著的。外緣之中心溫度差稱爲徑向溫度差,或徑 向差一 T ( R D T )。該問題尤其影響到對一堆晶圓外緣 外側加熱之一批火爐。在以如阻抗加熱圈或一放熱燈之輻 射性熱源加熱期間,因輻射熱傳導在晶圓外緣最大,故晶 圓外緣有時比晶圓中心熱幾度(或甚至數拾度)。相反地 在冷卻期間,外緣經由輻射性冷卻受到更快速之熱量損耗 ^紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -6 - 550647 A7 B7 五、發明説明(4) 且因此實際上比晶圓中心涼。在高溫下,這R D T可在晶 圓上引起晶石滑脫。 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 早已熟知限制溫度斜率使對半導體基底之熱擴張應力 引起之晶石滑脫傷害達最小的優點。預期在處理期間使 RD T達最小,使發生在基底上之過熱應力達最小。處理 期間之溫度斜率爲決疋R D T之主要因素。當施加至外緣 之熱量未立即傳導至基底中心時,以較高之斜率,加熱中 基底之熱慣性可進一步使其外緣與中心間之溫度變化加重 。在較低溫度下,因矽原子對原子之結合較強並在較低溫 度下經得起更熱之應力,故能容許較大之RDT而不會造 成過熱應力。因此,預期橫跨基底提供一用以控制R D T 之系統及方法。爲避免超出對一晶圓之最大可允許熱應力 ,習知技術有賴固定斜率之手動規劃順序。如以上所提到 的,因欲避免RDT所引起熱應力之傷害之實行最大可允 許斜率隨溫度而變,故這方法防止製程,使其在整個加熱 或冷卻程序中不在最大可能之斜率時加以運作。而且,這 分段斜率外形亦造成對一指定溫度而言,超出可允許最大 R D T之斜率。以非連續溫度斜坡外形加以加熱,因此脫 離理想之最大斜率曲線。 因此需要一溫度控制之進式系統及方法,管理作爲本 體溫度或加熱中或冷卻中基底之函數的斜率。 發明槪述 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -7- 550647 A7 ____B7 五、發明説明(c) 5 (請先閱讀背面之注意事項再填寫本頁) 本發明之一目的在提供一種增進式系統及方法,當它 在處理期間藉控制溫度斜率而加熱時,用以限制對一基底 之徑向溫度差。明確地說,本發明利用動態可變化之溫度 斜率’提供一種橫跨一基底,控制徑向溫度差(R D T ) 之系統及方法。通常,當本體溫度增加時,溫度斜率下降 。更尤其是,本發明提供一種控制製程中所熱基底之徑向 溫度差的增進式系統及方法,該製程爲,但未限於,半導 體晶圓處理及設備。 本發明一實施例提供一種限制變數斜率之方法。以該 變數之目前設定點値計算該變數之最大可允許斜率。直到 達到控制下變數之下一設定點値時,該變數之斜率才大於 迫最大可允許之斜率。 經濟部智慧財產局R工消費合作社印製 在本發明另一實施例中,提供利用溫度控制演算法將 一收納在溫度控制火爐加熱室中之本體溫度從一啓始溫度 改變至一終止溫度之一種方法。提供來自加熱室中一或更 多溫度感應裝置之溫度資料及一溫度設定點作爲溫度控制 演算法之輸入,該演算法控制電力輸送至火爐中之一或更 多可控制加熱元件。一最大可允許之溫度斜率是以設定點 溫度之函數加以計算。以一有限加速率,從啓始溫度對溫 度設定點加速,直到達成對目前溫度設定點之所計算之最 大可允許溫度斜率。以一有限減速率對溫度設定點減速, 直到達到終止溫度,使得本體溫度平穩達到終止來設定點 溫度,未實質上超過或在終止溫度前後振盪。 本發明額外之實施例提供一火爐,該火爐根據以上所 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -8 - 550647 A7 ______B7_Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs of the Ministry of Economic Affairs -4- 550647 A7 B7 V. Description of the invention (2) (Please read the notes on the back before filling this page), concentration, tension, voltage, force, and location . The rate at which a control variable changes from a start to a stop is the slope or a derivative of the variable, which is commonly called the slope. For example, the first derivative of slope or position versus time (such as d χ / d t) is velocity. It is often expected that stress will be minimized in a process in which equipment and / or products are exposed to the stress. Excessive stress can result in reduced process efficiency or premature equipment or product failure. In many systems, stress is a function of the slope of one or more control variables. The slope can be reduced to keep the stress below an acceptable threshold. However, unnecessarily severe slope restrictions slow the overall throughput of the program and are not expected. One of the concepts elicited by semiconductor processing systems illustrates examples. It should be noted, however, that slope-related issues are not unique to the applications discussed in detail here. Rather, the example is meant to be illustrative and in no way restrictive. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives. One of the important points in semiconductor and integrated circuit manufacturing is the temperature change and temperature fluctuations experienced by semiconductor wafers during processing. Two important restrictions apply to the heating and cooling of semiconductor wafers: 1) the acceleration and deceleration of the temperature slope cannot be faster than the thermal inertia allowed by the wafer and 2) the temperature difference between the center of the wafer and the outer edge should be maintained enough Small to prevent thermal expansion damage to the wafer. Thermal inertia describes the impedance of a mass that immediately jumps from a steady-state temperature or zero-slope state to a finite non-zero slope and returns to a steady-state state. In these idealized temperature slopes that require heating or cooling, real objects cannot be instantly and infinitely accelerated, decelerated, and decelerated. The acceleration or deceleration of temperature is the second derivative of temperature. As far as the acceleration and deceleration of the position when a mass is stationary, the temperature acceleration and deceleration rate cannot be unlimited. This paper size applies to the Chinese National Standard (CNS) A4 specification (210x297 mm) -5- 550647 A7 ___B7 V. Description of the invention (3) (Please read the precautions on the back before filling this page) In Ruyi Semiconductor Wafer Processing System In a furnace, when heating or cooling from one temperature to another, it is often important to reach the desired setpoint temperature in a minimum amount of time. Traditionally, the furnace will use a controlled linear ramp to move from one temperature setpoint to another. Becoming a linear slope suffers from two shortcomings: the delay in reaching the expected temperature slope by the substrate being heated; and the tendency of the substrate to exceed the expected set point and then oscillate around the set point temperature before reaching a steady state temperature. A solution to this problem is described in the co-examined U.S. Patent Application Nos. 10/0 6 8 and 1 2 7 which use the temperature slope acceleration and mitigation phase which can actually be achieved, which is incorporated herein by reference. . Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Due to the internal temperature gradient exceeded in the object, it is also important to limit the maximum temperature slope to protect the negative thermal effects on the object or objects under heating. This is particularly relevant to semiconductor wafer processing systems, in which an important manufacturing point of view is the temperature change and temperature experienced by the semiconductor wafer during processing. In particular, due to excessive heating and cooling relative to the outer edge of one of the wafer's centers, actual and / or chemical damage that may render the wafer unusable or cause early failure of semiconductor wafers manufactured by the wafer is rapidly increasing. During the processing of a heat treatment furnace or similar equipment, the temperature difference between the wafer center and the outer edge is significant. The center temperature difference of the outer edge is called the radial temperature difference, or the radial difference of one T (R D T). This problem particularly affects a batch of furnaces that heat the outside of a stack of wafers. During heating with a radiant heat source such as an impedance heating coil or an exothermic lamp, the outer edge of the wafer is sometimes a few degrees (or even several degrees) hotter than the center of the wafer because radiant heat transfer is greatest at the outer edge of the wafer. Conversely, during cooling, the outer edge is subjected to faster heat loss through radiative cooling ^ Paper size applies Chinese National Standard (CNS) A4 (210X297 mm) -6-550647 A7 B7 V. Description of the invention (4) and therefore Actually cooler than the wafer center. At high temperatures, this R D T can cause crystals to slip on the wafer. (Please read the precautions on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs It is well known that limiting the temperature slope minimizes the spar slip damage caused by thermal expansion stress on the semiconductor substrate. It is expected that the RD T will be minimized during processing and the overheating stresses occurring on the substrate will be minimized. The temperature slope during processing is a major factor in determining R D T. When the heat applied to the outer edge is not immediately transmitted to the center of the substrate, with a higher slope, the thermal inertia of the substrate during heating can further increase the temperature change between the outer edge and the center. At lower temperatures, because the silicon atom-to-atom bond is stronger and can withstand hotter stress at lower temperatures, larger RDTs can be tolerated without causing overheating stress. Accordingly, it is contemplated to provide a system and method for controlling R D T across the substrate. To avoid exceeding the maximum allowable thermal stress on a wafer, conventional techniques rely on a manual planning sequence with a fixed slope. As mentioned above, because the maximum allowable slope of the thermal stress caused by RDT is to be avoided as a function of temperature, this method prevents the process from being applied at the maximum possible slope during the entire heating or cooling process. Operation. Moreover, this segmented slope profile also results in a slope that exceeds the maximum allowable R D T for a given temperature. It is heated in a discontinuous temperature ramp profile, so it deviates from the ideal maximum slope curve. Therefore, a temperature controlled progressive system and method is needed to manage the slope as a function of body temperature or substrate during heating or cooling. Description of the invention This paper applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -7- 550647 A7 ____B7 V. Description of the invention (c) 5 (Please read the notes on the back before filling this page) An object is to provide an enhanced system and method for limiting the radial temperature difference to a substrate when it is heated by controlling the temperature slope during processing. Specifically, the present invention provides a system and method for controlling a radial temperature difference (R D T) across a substrate using a dynamically changeable temperature slope '. Generally, as the body temperature increases, the temperature slope decreases. More particularly, the present invention provides an enhanced system and method for controlling a radial temperature difference of a heated substrate in a manufacturing process, which process is, but is not limited to, semiconductor wafer processing and equipment. An embodiment of the present invention provides a method for limiting the slope of a variable. Calculate the maximum allowable slope of the variable based on the current set point of the variable. Until the set point below the variable under control is reached, the slope of the variable is greater than the maximum allowable slope. Printed by the Intellectual Property Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. In another embodiment of the present invention, a temperature control algorithm is used to change the temperature of a body stored in a temperature-controlled furnace heating chamber from an initial temperature to an end temperature. a way. Temperature data from one or more temperature sensing devices in the heating chamber and a temperature set point are provided as inputs to a temperature control algorithm that controls power delivery to one or more controllable heating elements in the furnace. A maximum allowable temperature slope is calculated as a function of the set-point temperature. Accelerate at a finite acceleration rate from the starting temperature to the temperature setpoint until the calculated maximum allowable temperature slope for the current temperature setpoint is reached. The temperature setpoint is decelerated with a finite deceleration rate until the end temperature is reached, so that the body temperature reaches the end smoothly to set the point temperature, which does not substantially exceed or oscillate around the end temperature. An additional embodiment of the present invention provides a stove, which is in accordance with the above paper size applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -8-550647 A7 ______B7_

五、發明説明(J 6 摘要之方法,在火爐內部改變一本體之溫度。 (請先閱讀背面之注意事項再填寫本頁) 這些方法適用於需要精確控制程序變數之各種系統。 這種變數如,溫度設定點。氣體流動率,濃度,壓力,張 力,電壓,施力,及位置。在一圖解實施例中,在一半導 體處理中所用之多區帶中實行本發明之系統與方法。 圖示簡單說明 一讀取本發明及以下所提供之附加申請專利範圍之詳 細說明,以及參考圖示後,本發明之其它目的與優點將變 得明顯,其中: 第1圖爲半導體製造中所使用火爐之一實例的簡圖, 其中,該半導體之製造可使用本發明之系統與方法。 第2圖爲從方程式1所得到之一矽基底最大徑向溫度 差對晶圓外緣溫度之圖表。 第3圖爲一說明本實施例方法之一實施例的流程圖。 第4圖表示:(i )成斜坡之設定點,且(i i )所 有區帶之晶圓溫度加權平均。 經濟部智慧財產局員工消費合作社印製 第5圖表示(i )所有區帶之實際中心與外緣溫度; (i i )所有區帶之R D T値;且(i i i )根據本發明 一實施例之各區帶隨著時間之火爐電力。 第6圖說明:(i ) 一半導體基底晶圓上中心及外緣 溫度(2 1 3外緣+ 1 / 3中心)之加權平均,通常使用 該加權平均代表整體晶圓溫度;(i i )所有區帶之 RDT値;且(i i i )根據本發明一實施例之各區帶隨 I紙張尺度適用中國國家標準(CNS ) A4規格(210Χ297公釐) ' -9- 550647 A7 B7 五、發明説明(7) 經濟部智慧財產局員工消費合作社印製 著 時 間 之 火 爐 電 力 〇 第 7 圖 : ( i ) 表 示 第 之 特 寫 , 且 ( i i ) 顯 示 根 之 加 權 平 均 〇 第 8 圖 表 示 • ( i ) 溫 2 〇 °C / 分 之 所 有 區 帶 之 實 對 各 斜 率 之 各 區 帶 R D Τ R D T 控 制 方 法 下 5 對 各 斜 的 火 爐 電 力 〇 主 要 元 件 對 照 表 1 〇 火 爐 1 2 加 熱 器 元 件 1 4 帶 1 6 加 熱 室 2 〇 晶 圓 2 2 訊 號 2 6 溫 度 控 制 器 3 0 溫 度 控 制 軟 m πϋ 3 2 程 序 控 制 軟 體 3 4 尖 點 熱 耦 3 6 外 形 熱 親 發 明 詳 細 說 明 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 5圖中所示晶圓溫度外形頂部 據本發明一實施例之所有區帶 度斜率爲5, 1〇, 15, 際晶圓中心與外緣;(i i ) 且(1 1 i )在沒有本發明 率隨著時間成爲斜坡之各區帶 (請先閲讀背面之注意事項再填寫本頁) -10- 550647 A7 B7 五、發明説明() 8 (請先閲讀背面之注意事項再填寫本頁) 如上述,預期要使徑向溫度差或橫跨,例如,諸如一 半導體基底或晶圓之本體的RDT達到最小,避免在本體 上發生過熱應力或晶石、、滑脫〃。本發明之方法一般亦可 適用於任何程序,在該程序中限制一控制變數之最大斜率 而使一系統中之應力達最小。根據本發明一實施例,藉由 控制溫度斜率將R D T維持在過熱應力曲線之下。這最大 可允許之熱應力曲線爲溫度之函數。本發明提供的是,最 大溫度斜率隨溫度而變,將過熱壓力曲線維持在加熱中本 體之目前溫度的最大可允許値之下。 經濟部智慧財產局員工消費合作社印製 在較低溫度下,如半導體晶圓之本體比在較高溫度下 較不易受RD T所引起之過熱應力傷害。因火爐中溫度之 斜率(如第1圖中所示)爲決定RDT之主要驅動因素, 藉由限制最大可允許溫度斜率,加以控制一火爐中在加熱 中或冷卻中一本體之RDT,作爲火爐中目前溫度之函數 。在較低溫度下,允許較大之斜率。當溫度上升時,斜率 逐漸減小。這逐漸減小之溫度斜率產生一實質上平順,連 續之溫度曲線,作爲時間之函數。依此方式,本發明備有 一可變之最大可允許溫度斜率。藉由以這種方式控制斜率 ,本發明使本體或基底從一溫度爬升至另一溫度所需之時 間直達到最小而未對基底造成過重應力或傷害。 本發明一實施例中,一方法備有限制最大斜率,一控 制變數-本實例中爲溫度-增加或減小該斜率。如第1圖 中之說明可在一半導體火爐上加以實行本發明。第1圖中 之火爐1 0包含一具有五個別區帶1 4之加熱器元件1 2 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) " -11 - 550647 A7 B7 五、發明説明(Q) y (請先閱讀背面之注意事項再填寫本頁) ,及一容納或一更多半導體基底晶圓2 0之加熱室1 6。 在各區帶1 4中個別控制一電力命令或訊號2 2。加熱器 元件1 2之目的在將晶圓2 0加熱至一預期溫度2 4。具 溫度控制軟體3 0及程序控制軟體3 2之溫度控制器2 6 ,將電力支配訊號2 2傳送至火爐加熱器元件1 2。雖然 表示一具有五個區帶1 4之一特定半導體火爐1 〇,那些 精於該技術者了解本發明之系統與方法可使用其它型式之 火爐,且進一步可以其它型式之半導體設備或其它設備加 以實施,其中,將其它設備設計成從一設定點溫度可掌控 地將一本體或目標之溫度改變至另一設定點溫度。本發明 未限於所示之特定實例。例如,本發明可用在具有不同數 量區帶之火爐中。同樣地,這可適用於任何其它程序或系 統,在該系統中藉由限制一控制變數之斜率加以控制應力 ,作爲該變數之函數。此外,藉由限制一或更多變數之斜 率,作爲那些一或更多變數之函數,可應用該方法加以控 制應力。 經濟部智t財產局8工消費合作社印製 本發明之一實施例中,溫度控制器2 6包含溫度控制 軟體3 0,該溫度控制軟體3 0例如爲被建置成維持控制 火爐1 0之P I D控制軟體。隨溫度與最終設定點而定, 設定點之爬坡即改變並在爬坡當中彎曲。更明確地說,斜 率爲設定點溫度之坡度。因半導體基底容許較高之RD T ,使其在低溫(一向爲小於6 0 0 °C )時比高溫時(如在 約6 0 0 °C至1 2 0 0 °C之範圍中)較不受到熱擴張傷害 ’當溫度相當低時將本發明建置成使設定點更快速開始爬 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -12- 五、 發明説明( 升。當溫度上升 加時斜率變緩。 緩。本發明動態 函數。這最大斜 爲溫度之函數或 大斜率作爲溫度 °在製表値間之 允許R D T作爲 數,將最大可允 A7 B7 時,最大可容許R D T降低,故當溫度增 基底或晶圓之溫度愈高,所用之斜率則愈 地改變最大斜率,作爲目前設定點溫度之 率可得自最大可允許RDT之查詢表,作 得自某些其它規劃函數,該函數設有一最 之函數。表1中提供這種查詢表之一實例 溫度,以內插法求得一平順變化之最大可 溫度之函數。使用以實驗所決定之比例因 許之R D T轉換成最大溫度斜率。這比例 因數可爲一常數或其本身可爲溫度之函數。對3 0 Omm 因數最好是每分每°C2RDT爲〇 . 5°C 率表,使最好建置實行本發明之軟體,允 晶圓而言,比例 。可使用不同斜 許在程序秘訣中選取這些斜率表。另外,可將溫度與最大 斜率間之關係規劃成一系列之溫度的一或更多數學函數。 經由實驗加以預 產生以下方程式 定最大可允許之斜率對溫度函數,該實驗 使最大ΛΤ爲溫度之函數: (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 ΔΓ 2 .4928^ ft ⑴ 其中,f ε / f t爲伸張率,E爲楊氏(young 模數5. Description of the invention (J 6 abstract method, change the temperature of a body inside the furnace. (Please read the precautions on the back before filling this page) These methods are suitable for various systems that require precise control of program variables. Such variables are as , Temperature set point. Gas flow rate, concentration, pressure, tension, voltage, force, and location. In one illustrative embodiment, the system and method of the present invention are implemented in multiple zones used in a semiconductor process. The following shows a brief description of the present invention and the detailed description of the scope of additional patent applications provided below, and the other objects and advantages of the present invention will become apparent after referring to the illustrations, where: Figure 1 is used in semiconductor manufacturing A simplified diagram of an example of a furnace, wherein the semiconductor can be manufactured using the system and method of the present invention. Figure 2 is a graph of the maximum radial temperature difference of a silicon substrate obtained from Equation 1 versus the temperature of the outer edge of the wafer. Figure 3 is a flowchart illustrating one embodiment of the method of the present embodiment. Figure 4 shows: (i) the set point of the slope, and (ii) the Circle temperature weighted average. Figure 5 printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs indicates (i) the actual center and outer temperature of all zones; (ii) the RDT of all zones; and (iii) according to the present invention The furnace power of each zone over time in an embodiment. Figure 6 illustrates: (i) the weighted average of the center and outer edge temperature (2 1 3 outer edge + 1/3 center) of a semiconductor substrate wafer, usually The weighted average is used to represent the overall wafer temperature; (ii) the RDT of all zones; and (iii) each zone according to an embodiment of the present invention applies the Chinese National Standard (CNS) A4 specification (210 × 297 mm) with the paper size. (%) '-9- 550647 A7 B7 V. Description of the invention (7) The stove electricity printed by time is printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 7: (i) shows the close-up of the number, and (ii) shows the root The weighted average is shown in Fig. 8. • (i) The temperature of all zones of 20 ° C / min. The actual pairs of slopes of each zone RD Τ RDT control method 5 pairs of slopes Furnace power 〇 Main components comparison table 1 〇 Stove 1 2 Heater element 1 4 Belt 16 Heating chamber 2 〇 Wafer 2 2 Signal 2 6 Temperature controller 3 0 Temperature control software m πϋ 3 2 Program control software 3 4 tip Point thermocouple 3 6 Shape thermophilic invention Detailed description This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 5 Wafer temperature shown in the figure Top of the figure According to all zones of an embodiment of the present invention The slope is 5, 10, 15, and the center and outer edge of the wafer; (ii) and (1 1 i) in the absence of the present invention, the zones will become slopes over time (please read the precautions on the back before filling This page) -10- 550647 A7 B7 V. Description of the invention () 8 (Please read the precautions on the back before filling this page) As mentioned above, it is expected to make a radial temperature difference or span, for example, such as a semiconductor substrate or The RDT of the wafer body is minimized to avoid overheating stress or crystal on the body 〃 ,, slippage. The method of the present invention is also generally applicable to any program in which the maximum slope of a control variable is limited so that the stress in a system is minimized. According to an embodiment of the present invention, the R D T is maintained below the superheat stress curve by controlling the temperature slope. This maximum allowable thermal stress curve is a function of temperature. The present invention provides that the maximum temperature slope varies with temperature and maintains the superheat pressure curve below the maximum allowable temperature of the current temperature of the body during heating. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. At lower temperatures, the body of a semiconductor wafer is less susceptible to overheating stress caused by RDT than at higher temperatures. Because the slope of the temperature in the furnace (as shown in Figure 1) is the main driving factor for determining the RDT, by limiting the maximum allowable temperature slope, the RDT of a body in the furnace during heating or cooling is controlled as a furnace As a function of current temperature. At lower temperatures, larger slopes are allowed. As the temperature rises, the slope gradually decreases. This decreasing temperature slope produces a substantially smooth, continuous temperature profile as a function of time. In this way, the present invention has a variable maximum allowable temperature slope. By controlling the slope in this manner, the present invention minimizes the time required for the body or substrate to climb from one temperature to another without causing excessive stress or injury to the substrate. In one embodiment of the present invention, a method is provided with a limited maximum slope, and a control variable-in this example, temperature-increases or decreases the slope. The invention can be implemented on a semiconductor furnace as illustrated in FIG. The stove 10 in the figure 1 contains a heater element with five individual zones 1 4 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) " -11-550647 A7 B7 V. Description of the invention (Q) y (please read the precautions on the back before filling out this page), and a heating chamber 16 containing one or more semiconductor substrate wafers 20. A power command or signal 22 is individually controlled in each zone 14. The purpose of the heater element 12 is to heat the wafer 20 to a desired temperature 24. The temperature controller 2 6 with temperature control software 30 and program control software 32 transmits power control signal 2 2 to the stove heater element 12. Although a specific semiconductor furnace 10 having one of five zones 14 is shown, those skilled in the art who understand the system and method of the present invention may use other types of furnaces, and further may use other types of semiconductor equipment or other equipment. Implementation, where other equipment is designed to controllably change the temperature of one body or target from one setpoint temperature to another setpoint temperature. The invention is not limited to the specific examples shown. For example, the present invention can be used in furnaces having different number of zones. Likewise, this can be applied to any other program or system in which the stress is controlled by limiting the slope of a control variable as a function of that variable. In addition, by limiting the slope of one or more variables as a function of those one or more variables, the method can be applied to control stress. In an embodiment of the present invention, printed by an industrial and commercial cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the temperature controller 26 includes temperature control software 30. The temperature control software 30 is, for example, built to maintain a control furnace 10 PID control software. Depending on the temperature and the final set point, the set point climb changes and bends during the climb. More specifically, the slope is the slope of the set-point temperature. Because the semiconductor substrate allows a higher RD T, it is less effective at low temperatures (always less than 600 ° C) than at high temperatures (such as in the range of about 60 ° C to 12 0 ° C). Damaged by thermal expansion 'When the temperature is relatively low, the present invention is built so that the set point starts to climb faster. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) -12- V. Description of the invention (liter When the temperature rises, the slope becomes slower. Slow. The dynamic function of the present invention. This maximum slope is a function of temperature or a large slope as the temperature. The allowable RDT between the tabs is the number. When the maximum allowable A7 B7, the maximum The RDT is allowed to decrease, so as the temperature of the substrate or wafer increases, the slope used will change the maximum slope more. The current set-point temperature rate can be obtained from a query table of the maximum allowable RDT. Some other planning functions, this function is provided with a best function. Table 1 provides an example temperature of such a look-up table, and the function of a smooth change of the maximum temperature can be obtained by interpolation. Use the ratio determined by experiments. RDT Change to the maximum temperature slope. This proportionality factor can be a constant or it can be a function of temperature itself. For a factor of 30 Omm, it is better to use a rate table of 0.5 ° C per minute per ° C 2RDT, so that it is best to implement The software of the present invention allows the ratio of wafers. These slope tables can be selected in the program recipe using different slopes. In addition, the relationship between temperature and maximum slope can be planned as a series of one or more mathematical functions of temperature The following equation is used to pre-generate the maximum allowable slope as a function of temperature through experiments. This experiment makes the maximum ΔΤ a function of temperature: (Please read the precautions on the back before filling out this page) System ΔΓ 2 .4928 ^ ft ⑴ where f ε / ft is the elongation and E is the young's modulus

E 9 0E 9 0

N -2 ^爲基底(本例 中爲矽)熱擴張係數,c與η爲數値常數(c = 4 . 5χ l〇14Nm~~2且η = 2·9),尺爲菠茨曼( Boltzmann )常數(k = l . 38x10 23JK —丄) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -13- 550647 A7 B7 五、發明説明( (請先閲讀背面之注意事項再填寫本頁) 且Τ爲基底外緣之絕對溫度,在g亥基底下假設熱梯度爲最 高。這方程式與半徑無關且因此適用於任何尺寸之基底。 第2圖中表示這最大計算結果ΔΤ。 表1 :最大斜率查詢表 溫度設定點,°c 最大可允許RDT,°C 600 80 — 700 60 800 44 900 34 — 1000 26 1100 22 1200 18 經濟部智慧財產局員工消費合作社印製 更明確地說,第3圖中說明本發明方法之一實施例。 第3圖爲一說明本發明方法之一實施例的流程圖。這方法 啓自步驟4 0並在步驟4 2作斜坡查詢。如決定爲否’在 步驟4 4使用先前設定點。如決定爲是,則在步騾S 4 6 查詢是否爲開始對斜率減緩之時候。如在步驟4 6之決定 爲是,則這方法在步驟4 8計算減緩率。如在步驟4 6之 決定爲否,則演算法確認斜率目前是否在減緩中。在步驟 5 0中,如斜率在減緩中,則根據在步驟3 2之減緩率加 以計算設定點並完成該方法(步驟5 4 )。在步驟5 0如 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -14- 550647 A7 B7 五、發明説明(12) 發現斜率未減緩則在步驟5 6,如有需要則以查表及內插 法決定目前溫度之最大RDT。而且在步驟5 6,利用一 (請先閲讀背面之注意事項再填寫本頁) 比例因數,將從查表所返回之最大r D T値轉換成一最大 斜率。 接著’在步驟5 8查詢斜率是否低於最大斜率。如爲 否’則在步驟6 0使用最大斜率加以計算新設定點。如爲 是’則在步驟6 0將斜率朝最大斜率向上加速。 第4中以圖表示所形成曲線設定點之圖解說明施行。 實際上,本發明之這實施例可經由以下觀念步驟加以施行 :如以上說明,對目前設定點溫度加以計算一最大可允許 之溫度斜率並以一未超過這最大可允許斜率之速率使設定 點溫度成一斜坡。 經濟部智慧財產局員工消費合作社印製 根據本發明進一步之實施例,使溫度設定點彎曲,而 在啓始溫度從零增加或加速斜率至最大斜率且然後在終止 溫度從最大斜率降低或減緩坡度回到零,在加熱或冷卻程 序之穩定狀態(零斜率)及爬坡階段之間提供平順之變遷 。斜率加速達到最大並向下減緩直到一有限之最終設定點 及實際之達成率,使相對於設定點溫度之實際本體溫度振 盪達到最小。在本發明一較佳實施例中,以一線性加速及 減緩率對溫度坡度加以加速及減緩(溫度設定點對時間之 二次微分爲一常數)。然而,在某些情況下最好可爲非線 性之減緩。 饋入溫度控制器之設定點斜率遵循以下較不重要者: a )動態地從R D T對溫度表及目前設定點溫度之比例因 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -15- 550647 A7 _______B7 五、發明説明(j (請先閲讀背面之注意事項再填寫本頁) 數所得到之最大可允許斜率溫度曲線,b )由設定點曲線 所提供之斜率,以及C )可由火爐所達成,直到設定點溫 度接近終設定點之最大斜率。然後平順減緩設定點斜率, 符合最後終止溫度。本發明之方法以保持r D T在滑脫曲 線以下之最快可能速率將晶圓送到預期溫度。 經濟部智慧財產局員工消費合作社印製 在這實施例中,如第1圖中所示之溫度測量最好使用 兩組熱耦:一或更多尖點熱耦3 4及一或更多外形熱耦 3 6。尖點熱耦3 4較接近加熱器元件繞線(未示出), 並對控制輸入之回應較快。外形熱耦3 6較接近晶圓2 0 ’且因此比較好代表其溫度。具有溫度控制軟體3 0之溫 度控制器2 6從具有程序控制軟體之程序控制器3 2接收 預期溫度2 4之設定點,並讀取熱耦之量測溫度3 8。以 數學運算組合量測溫度3 8,產生預估晶圓2 0溫度之控 制溫度(未示出)。控制溫度最好爲由尖點熱耦3 4及外 形熱耦3 6所測量之加權平均溫度。該加權是以溫度之函 數優先加以變化,溫度愈高尖點熱耦3 4溫度之加權愈強 。在進一步較佳實施例中,量測溫度3 8之數學運算組合 亦包含一或更多之溫度補償。這些補償可爲靜態或動態。 在一實例中,使用靜態補償加以修正控制溫度在晶圓或其 它加熱中本體溫度與熱耦溫度間之溫差。這些補償可使用 以熱耦爲器具之晶圓,以實驗方式加以決定。根據控制演 算法及所輸入之控制與設定點溫度,溫度控制器2 6決定 要施加至火爐加熱器元件1 2之各區帶的電量。 當指定一斜率時,設定點將以所選取速率爬升。在一 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -16- 550647 A7 B7 五、發明説明(j (請先閱讀背面之注意事項再填寫本.I) 較佳實施例中,設定點平順彎曲至接近設定點爬坡階段末 端之最終設定點。在設定點朝最終設定點彎曲期間’斜率 以線性減緩。在坡面末端優先使用這彎曲之規劃溫度設定 點。然而,這亦有利地被應用到坡面之初’避免電力需求 之大震盪。 經濟部智慧財產局員工消費合作社印製 當在本發明方法之下以最大溫度斜率加以爬升時,立 即之溫度設定點不像如p I D系統所普通使用之溫度控制 器立即跳至最終設定點。而是,以一有限及實際可達成之 速率對設定點加速,直到它達到該區帶與設定點之最大可 達成斜率,或目前溫度之最大可允許斜率,其中,目前溫 度得自表1中目前設定點溫度之最大可允許RD T與比例 因數之乘積。作爲目前設定點溫度函數之最大可允許溫度 斜率是即時得自徑向溫差對溫度之函數與比例因數之乘積 。R D T對溫度之函數是設成一種數學運算關係,或如先 前實施例中所述設成一查詢表。如使用一查詢表則將軟體 建置成在未提供表列値之溫度點以內插法求得最大可允許 之RD T。將一指定溫度下最大可允許之RD T轉換成一 最大可允許斜率,作爲一溫度函數之比例因數可爲常數或 其本身亦可爲一溫度函數。 在一額外實施例中亦設有一種系統,其中,使用本發 明之方法控制溫度控制火爐中設定點溫度之斜率。 在另一實施例中,設有一種系統,在該系統中組合本 發明之方法與共同審查中之美國專利申請案號1 〇/ 068,127中所述之溫度控制方法,整體上,藉由參 1紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) " -17- 550647 A7 ____ B7 五、發明説明(15) 考,據此納入該項發表。 (請先閱讀背面之注意事項再填寫本頁) 實驗性 對利用一類似於第1圖中所示之火爐並使用以熱耦爲 器具之晶圓(具內建熱耦之半導體晶圓,該熱耦提供不同 晶圓區之溫度資料)之本發明的系統與方法實施數種測試 。第4至7圖表示以熱耦爲器具之晶圓溫度資料及對圖解 說明實驗之火爐電力輸送,在該實驗中將溫度斜率作線性 加速與減速並控制最大斜率,維持R D T在最大可允許熱 應力曲線之下。在這些情況下將以熱耦爲器具之晶圓從6 0 0°C加熱至9 5 0 °C。第5圖爲在這實驗中所收集之資 料圖,表示:(i )所有區帶之實際中心與外緣溫度;( 1 i)所有區帶之RDT値;以及(i i i)各區帶隨著 時間之火爐電力。第6 ( i )圖表示對本實驗中以熱耦爲 器具之晶圓的中心與外緣溫度之加權平均(2 / 3外緣+ 1/3中心),且第7圖表示第5中坡面頂端之特寫,及 所有區帶之加權平均。 經濟部智慧財產局員工消費合作社印製 在另一實驗中以具有如第1圖中所示之五區帶的快速 垂直處理(R V P )型火爐加以實施本發明之系統與方法 。第4圖表示具坡度之設定點,加上對所有區帶所測量之 晶圓溫度加權平均。該圖展示實際晶圓溫度多麼順應溫度 設定點曲線。 第8圖表示一線性坡面測試之結果,在該測試中斜率 非由本發明所控制。除了在坡面頂部彎曲外,設定點是以 本紙張尺度適用中國國家標準(CNS ) A4^見格(210X297公釐) ' -18- 550647 A7 _B7 五、發明説明(jN -2 ^ is the thermal expansion coefficient of the substrate (silicon in this example), c and η are numerical constants (c = 4.5 × 1014Nm ~~ 2 and η = 2 · 9), and the ruler is Spinzmann ( Boltzmann) constant (k = l. 38x10 23JK — 丄) This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) -13- 550647 A7 B7 V. Description of the invention ((Please read the precautions on the back before (Fill in this page) and T is the absolute temperature of the outer edge of the substrate. The thermal gradient is assumed to be the highest under the ghai substrate. This equation is independent of the radius and is therefore applicable to substrates of any size. Figure 2 shows the maximum calculation result ΔΤ. Table 1: Maximum slope query table Temperature set point, ° C Maximum allowable RDT, ° C 600 80 — 700 60 800 44 900 34 — 1000 26 1100 22 1200 18 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Fig. 3 illustrates an embodiment of the method of the present invention. Fig. 3 is a flowchart illustrating an embodiment of the method of the present invention. This method starts from step 40 and performs a slope query at step 42. If determined as No 'use the previous setpoint at step 4 4. If decided If yes, then step S 4 6 is to check whether it is time to start slope mitigation. If the decision at step 4 6 is YES, then the method calculates the mitigation rate at step 4 8. If the decision at step 4 6 is no, Then the algorithm confirms whether the slope is currently slowing. In step 50, if the slope is slowing, calculate the set point based on the slowing rate in step 32 and complete the method (step 5 4). In step 5 0 If this paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) -14- 550647 A7 B7 V. Description of the invention (12) If the slope is not slowed down, go to step 5 6; The interpolation method determines the maximum RDT of the current temperature. And in step 5 and 6, use the (read the precautions on the back before filling this page) scale factor to convert the maximum r DT 値 returned from the lookup table into a maximum slope. 'Query in step 5 8 whether the slope is lower than the maximum slope. If not' then use the maximum slope to calculate the new set point in step 60. If yes' then in step 60 accelerate the slope upwards towards the maximum slope. Section 4 In the figure A graphical illustration of the set point is implemented in practice. Actually, this embodiment of the present invention can be implemented through the following conceptual steps: As explained above, calculate the maximum allowable temperature slope for the current set point temperature and The rate of the maximum allowable slope makes the setpoint temperature a slope. The Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs prints a further embodiment of the present invention to bend the temperature setpoint and increase or accelerate the slope to zero from the initial temperature The slope and then decrease from the maximum slope or slow down the slope to zero at the termination temperature, providing a smooth transition between the steady state (zero slope) of the heating or cooling process and the climbing phase. Slope acceleration reaches maximum and slows down until a finite final set point and actual reach rate minimize the actual bulk temperature oscillations relative to the set point temperature. In a preferred embodiment of the present invention, the temperature gradient is accelerated and slowed with a linear acceleration and mitigation rate (the second derivative of the temperature setpoint with respect to time is a constant). However, non-linear mitigation may be desirable in some cases. The setpoint slope of the feed temperature controller follows the less important of the following: a) The ratio of the RDT to the thermometer and the current setpoint temperature is dynamically based on the Chinese paper standard (CNS) A4 specification (210X297 mm) ) -15- 550647 A7 _______B7 V. Description of the invention (j (please read the notes on the back before filling this page) the maximum allowable slope temperature curve obtained from the number, b) the slope provided by the set point curve, and C ) Can be achieved by the furnace until the set point temperature approaches the maximum slope of the final set point. The setpoint slope is then slowly smoothed to meet the final termination temperature. The method of the present invention sends the wafer to the desired temperature at the fastest possible rate to keep r D T below the slip curve. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. In this embodiment, the temperature measurement shown in Figure 1 is best using two sets of thermocouples: one or more cusp thermocouples 3 4 and one or more shapes. Thermal coupling 3 6. The cusp thermocouple 34 is closer to the heater element winding (not shown) and responds faster to the control input. The shape thermocouple 36 is closer to the wafer 2 0 ′ and therefore better represents its temperature. The temperature controller 2 6 with temperature control software 30 receives the set point of the expected temperature 2 4 from the program controller 3 2 with the program control software, and reads the measured temperature 38 of the thermocouple. The temperature is measured by a mathematical operation combination of 38, and a control temperature (not shown) for generating an estimated wafer temperature of 20 is generated. The control temperature is preferably a weighted average temperature measured by the cusp thermocouple 34 and the shape thermocouple 36. The weighting is a function of temperature that changes preferentially. The higher the temperature is, the higher the temperature is. In a further preferred embodiment, the mathematical operation combination for measuring temperature 38 also includes one or more temperature compensations. These compensations can be static or dynamic. In one example, static compensation is used to correct the temperature difference between the temperature of the control body and the temperature of the thermocouple during wafer or other heating. These compensations can be determined experimentally using wafers with thermal coupling as the instrument. Based on the control algorithm and the input control and setpoint temperatures, the temperature controller 26 determines the amount of power to be applied to each zone of the stove heater element 12. When a slope is specified, the setpoint will climb at the selected rate. Applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) on a paper scale -16- 550647 A7 B7 V. Description of the invention (j (Please read the notes on the back before filling in this. I) In the preferred embodiment The set point bends smoothly to the final set point near the end of the set point climbing phase. The slope decreases linearly during the set point bending toward the final set point. The curved temperature set point is preferentially used at the end of the slope. However, this It is also advantageously applied to the beginning of the slope, 'to avoid large shocks in electricity demand. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, when the maximum temperature slope is climbed under the method of the present invention, the immediate temperature set point does not The temperature controller commonly used in the p ID system immediately jumps to the final set point. Instead, it accelerates the set point at a finite and achievable rate until it reaches the maximum achievable slope of the zone and the set point, Or the maximum allowable slope of the current temperature, where the current temperature is derived from the product of the maximum allowable RD T of the current setpoint temperature in Table 1 and the scaling factor The maximum allowable temperature slope as a function of the current setpoint temperature is the product of the function of the radial temperature difference versus temperature and the proportionality factor. The function of RDT on temperature is set as a mathematical operation relationship, or as in the previous embodiment. The description is set as a look-up table. If a look-up table is used, the software is built to obtain the maximum allowable RD T by interpolation at the temperature point where the column 値 is not provided. Set the maximum allowable RD T at a specified temperature Converted to a maximum allowable slope, the proportionality factor as a function of temperature may be constant or it may be a function of temperature. In an additional embodiment, a system is also provided in which the method of the present invention is used to control the temperature control furnace Slope of the set-point temperature in another embodiment. In another embodiment, a system is provided in which the method of the present invention is combined with the temperature control described in the co-examined US Patent Application No. 10 / 068,127. The method, on the whole, applies the Chinese National Standard (CNS) A4 specification (210X297 mm) by referring to the paper size. -17- 550647 A7 ____ B7 V. Description of the invention (15) The test is based on this publication. (Please read the precautions on the back before filling out this page.) Experimental use of a furnace similar to the one shown in Figure 1 and the use of thermally coupled wafers (The semiconductor wafer with a built-in thermocouple, which provides temperature data of different wafer regions) The system and method of the present invention perform several tests. Figures 4 to 7 show the temperature of the wafer using the thermocouple as an instrument. Data and electric power transmission to the furnace that illustrate the experiment. In this experiment, the temperature slope is linearly accelerated and decelerated and the maximum slope is controlled to maintain the RDT below the maximum allowable thermal stress curve. In these cases, thermal coupling will be used as an appliance The wafer was heated from 600 ° C to 95 ° C. Figure 5 is a map of the data collected in this experiment, indicating: (i) the actual center and outer temperature of all zones; (1 i) the RDT 値 of all zones; and (iii) each zone follows Stove power of time. Figure 6 (i) shows the weighted average of the center and outer edge temperature of the wafer with thermal coupling as the instrument in this experiment (2/3 outer edge + 1/3 center), and Figure 7 shows the fifth middle slope surface Close-up on top and weighted average of all zones. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs In another experiment, the system and method of the present invention was implemented using a rapid vertical processing (R V P) type furnace with five zones as shown in FIG. 1. Figure 4 shows the setpoints with a slope, plus the weighted average of the wafer temperature measured across all zones. This figure shows how the actual wafer temperature fits the temperature setpoint curve. Fig. 8 shows the results of a linear slope test in which the slope is not controlled by the present invention. Except for bending on the top of the slope, the set point is based on the paper standard applicable to the Chinese National Standard (CNS) A4 ^ see the grid (210X297 mm) '-18- 550647 A7 _B7 V. Description of the invention (j

線性成爲斜坡的。第8圖以下列斜率·· 5,1 0,1 5 & 2 0 t m i η _ 1表示所有區帶之實際晶圓中心與外緣溫 度。第8圖之第(i i )部分表示晶圓之RDT而第 (i i i )部分表示作爲時間函數之所施電力。如第8圖 所示,在缺乏R D T式斜率控制下增加斜率會比當中使用 本發明方法之第4與5圖中所觀察者引導至更大之RD T 本發明之系統與方法提供預期之效能。爲圖解及說明 起見,已提出本發明特定實施例與實例之前項說明,且雖 然已經以某些先前實例對本發明加以說明,不能因此而解 釋爲而受限。本意非在詳盡一切或限制本發明在所發表之 精確形式,鑒於以上傳授,顯然許多的修飾,實施例及變 更是可能的。預期本發明之範圍包含如此間所發表之一般 範圍,與到此爲止所附加之申請專利範圍及其對等範圍。 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -19-Linear becomes ramped. Figure 8 shows the actual wafer center and outer edge temperatures in all zones with the following slopes: 5, 10, 15 & 2 0 t m i η _ 1. Part (i i) of FIG. 8 represents the RDT of the wafer and part (i i i) represents the applied power as a function of time. As shown in Figure 8, increasing the slope in the absence of RDT-type slope control leads to a larger RD T than the observers in Figures 4 and 5 using the method of the present invention. The system and method of the present invention provide the expected performance . For the purposes of illustration and description, the preceding descriptions of specific embodiments and examples of the present invention have been presented, and although the present invention has been described with some previous examples, it should not be interpreted as being limiting. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. In view of the above teachings, obviously many modifications, examples, and changes are possible. It is expected that the scope of the present invention shall include the general scope published as such, the scope of patent applications appended hereto, and their equivalents. (Please read the precautions on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -19-

Claims (1)

550647 A8 B8 C8 D8 六、申請專利範圍 1 1 . 一種限制變數斜率之方法,包含以下步驟: 計算該變數現値之最大可允許斜率;以及 (請先閲讀背面之注意事項再填寫本頁) 限制該變數之斜率,使其不超過該最大可允許之斜率 〇 2 .如申請專利範圍第1項之方法,其中,該變數爲 一加熱中本體之一設定點溫度。 3 .如申請專利範圍第2項之方法,其中,加熱中之 該本體爲一或更多半導體基底。 4 .如申請專利範圍第3項之方法,其中,該最大可 允許斜率爲在一目前溫度下,對一晶圓之最大徑向溫度差 之函數。 5 . —種使用溫度控制演算法將一收納在溫度控制火 爐加熱室中之本體溫度從一啓始溫度改變至一終止溫度之 方法,包含以下步驟: 從該加熱室中之一或更多溫度感應裝置及一溫度設定 點提供溫度資料作爲該溫度控制演算法之輸入,該演算法 控制電力輸送至該火爐內之一或更多可控制之加熱元件; 經濟部智慧財產局員工消費合作社印製 以一溫度函數計算一最大可允許溫度斜率; 以一有限加速率,從該啓始溫度對該溫度設定點加速 ,直到達到對目前溫度設定點値之該最大可允許溫度斜率 ;以及 以一有限減緩率對該溫度設定點減速,直到達到該終 止溫度’使得該本體溫度平順達到該終止設定點溫度而實 質上無過頭或在該終止溫度前後振盪。 本$張尺度適用中關家標準(CNS ) A4^ ( 21GX297公釐)' -20- 550647 A8 B8 C8 D8 C、申請專利範圍 2 6 ·如申請專利範圍第5項方法,其中,該可控制之 加熱元件是選自由輻射放熱燈及加熱線圈所組成之族群。 (請先閲讀背面之注意事項再填寫本頁) 7 .如申請專利範圍第5項之方法,其中,該溫度感 應裝置爲一或更多熱耦,該熱耦對各該一或更多可控制之 加熱元件提供一或更多溫度。 8 ·如申請專利範圍第7項之方法,其中,一控制溫 度爲該溫度控制演算法之一輸入,該控制溫度爲該一或更 多熱耦溫度之數學運算組合。 9 .如申請專利範圍第8項之方法,其中,進一步將 該控制溫度界定具有一來自該熱耦溫度之已知補償。 1 〇 ·如申請專利範圍第9項之方法,其中,該溫度 補償爲靜態補償,該靜態補償修正該本體溫度與該熱耦溫 度間之該控制溫度差。 1 1 ·如申請專利範圍第5項之方法,其中,該本體 爲一半導體基底。 1 2 · —種用以改變一本體溫度之溫度控制火爐,包 含: 經濟部智慧財產局員工消費合作社印製 一收納一或更多可控制加熱元件之加熱室,及一或更 多溫度感應裝置;以及 一被建構成加以實行申請專利範圍第1項方法之溫度 控制器。 1 3 . —種用以改變一本體溫度之溫度控制火爐,包 含: 一收納一或更多可控制加熱元件之加熱室,及一或更 本紙張尺度適用中國國家梂f ( CNS ) A4規格(210X297公着) "" -21 - 8 8 8 8 ABCD 550647 六、申請專利範圍 3 多溫度感應裝置;以及 一被建構成加以實行申請專利範圍第5項方法之溫度 控制器。 (請先閎讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -22-550647 A8 B8 C8 D8 VI. Patent application scope 1 1. A method for limiting the slope of a variable, including the following steps: Calculate the maximum allowable slope of the variable's current value; and (Please read the precautions on the back before filling this page) Restrictions The slope of the variable is such that it does not exceed the maximum allowable slope of 02. The method of item 1 in the scope of patent application, wherein the variable is a set point temperature of a body during heating. 3. The method according to item 2 of the patent application, wherein the body under heating is one or more semiconductor substrates. 4. The method of claim 3, wherein the maximum allowable slope is a function of the maximum radial temperature difference to a wafer at a current temperature. 5. A method for changing the temperature of a body contained in a heating chamber of a temperature-controlled furnace from an initial temperature to an ending temperature using a temperature control algorithm, including the following steps: From one or more temperatures in the heating chamber The induction device and a temperature set point provide temperature data as input to the temperature control algorithm, which controls the power transmission to one or more controllable heating elements in the furnace; printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Calculate a maximum allowable temperature slope as a function of temperature; accelerate the temperature set point from the starting temperature at a finite acceleration rate until the maximum allowable temperature slope is reached for the current temperature set point; and a finite The slowdown rate decelerates the temperature setpoint until the termination temperature is reached, so that the body temperature smoothly reaches the termination setpoint temperature without substantial overshoot or oscillating around the termination temperature. This $ Zhang scale is applicable to the Zhongguanjia Standard (CNS) A4 ^ (21GX297 mm) '-20- 550647 A8 B8 C8 D8 C, patent application scope 2 6 · If the method of patent application scope No. 5 method, which can be controlled The heating element is selected from the group consisting of a radiation heat lamp and a heating coil. (Please read the precautions on the back before filling out this page) 7. If the method of the scope of patent application is No. 5, wherein the temperature sensing device is one or more thermocouples, A controlled heating element provides one or more temperatures. 8. The method according to item 7 of the scope of patent application, wherein a control temperature is an input of the temperature control algorithm, and the control temperature is a mathematical operation combination of the one or more thermocouple temperatures. 9. The method according to item 8 of the patent application, wherein the control temperature is further defined to have a known compensation from the thermocouple temperature. 10. The method according to item 9 of the scope of patent application, wherein the temperature compensation is static compensation, and the static compensation corrects the control temperature difference between the body temperature and the thermocouple temperature. 1 1 · The method of claim 5 in which the body is a semiconductor substrate. 1 2 · —A temperature control stove for changing the temperature of a body, including: printed by a consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, a heating chamber containing one or more controllable heating elements, and one or more temperature sensing devices ; And a temperature controller constructed to implement method 1 of the scope of patent application. 1 3. — A temperature-controlling stove for changing the temperature of a body, comprising: a heating chamber containing one or more controllable heating elements, and one or more paper sizes applicable to China's national 梂 f (CNS) A4 specification ( (210X297) -21-8 8 8 8 ABCD 550647 VI. Patent application range 3 Multiple temperature sensing devices; and a temperature controller that is constructed to implement the fifth method of the patent application range. (Please read the precautions on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper size applies to China National Standard (CNS) A4 (210X297 mm) -22-
TW91114419A 2002-02-06 2002-06-28 System and method to control radial delta temperature TW550647B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/068,127 US6901317B2 (en) 2001-02-06 2002-02-06 Inertial temperature control system and method
US10/095,974 US6864466B2 (en) 2001-03-08 2002-03-08 System and method to control radial delta temperature

Publications (1)

Publication Number Publication Date
TW550647B true TW550647B (en) 2003-09-01

Family

ID=31720008

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91114419A TW550647B (en) 2002-02-06 2002-06-28 System and method to control radial delta temperature

Country Status (1)

Country Link
TW (1) TW550647B (en)

Similar Documents

Publication Publication Date Title
US7723648B2 (en) Temperature controlled substrate holder with non-uniform insulation layer for a substrate processing system
TW522292B (en) Inertial temperature control system and method
US8084720B2 (en) High rate method for stable temperature control of a substrate
US8450657B2 (en) Temperature controlled substrate holder having erosion resistant insulating layer for a substrate processing system
US7297894B1 (en) Method for multi-step temperature control of a substrate
TW523835B (en) Method for determining control condition of heat treatment device
US6191399B1 (en) System of controlling the temperature of a processing chamber
JP4553266B2 (en) Heat treatment apparatus, automatic control constant adjustment method, and storage medium
JP4285759B2 (en) Substrate processing apparatus and substrate processing method
US5809211A (en) Ramping susceptor-wafer temperature using a single temperature input
JP2004510338A (en) System and method for controlling movement of a workpiece in a heat treatment system
CN103811335B (en) Silicon oxide film preparation method, oxide thickness control device and oxidation furnace
JP3836696B2 (en) Semiconductor manufacturing system and semiconductor device manufacturing method
CN101533282B (en) System and method for controlling multi-route temperature control channel
US6864466B2 (en) System and method to control radial delta temperature
TW550647B (en) System and method to control radial delta temperature
US6169271B1 (en) Model based method for wafer temperature control in a thermal processing system for semiconductor manufacturing
EP1328966A2 (en) System and method to control radial delta temperature
TW416094B (en) Automatic control system and method using same
JP2019530632A (en) Method of pulling a single crystal made of a semiconductor material from a melt contained in a crucible
JP2022046103A (en) Apparatus and method heating substrate
JP4455856B2 (en) Semiconductor manufacturing system and semiconductor manufacturing method
KR20020094016A (en) System and method to control radial delta temperature
JP2001237186A (en) Semiconductor manufacturing equipment
JP2002257479A (en) Heat treatment furnace and its heating controller

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees