548749 Δ7 Α7 __ Β7 經濟部智慧財產局員工消費合作社印製 五、發明説明(/ ) 一 【發明領域】 本發明係錢於-餘速能量傳輸回火裝置及方法,特 般具有-可快速吸收歧能量、快速升溫並釋出熱能之能 量板及一恆溫散熱板之快速能量傳輪回火裝置及方法。匕 【發明背景】 將薄膜電晶體(TFT)驅動元件及細太陽電池签合於一 玻璃或-歸基板储-代細電晶體(TFT)平面顯示器及 缚膜太陽電池之-項基本需求,由於低溫多晶石夕一 temperature polysilic〇n,簡稱LTps)可整合於一玻璃或一歸 基板,且因具有較非晶矽(amorphous silicon)高出一至二個 數量級之電子遷移率,可有效改善薄膜電晶體驅動元件特 I*生低/皿夕日日石夕成為目前新一代平面顯示器薄膜電晶體(丁FT) 驅動元件及薄膜太陽電池之重要材料。 薄膜液晶顯示器之多晶矽(pdysilic〇n)薄膜電晶體(TFT) 面板之多晶⑪薄膜部分’目前業界通常使用以下兩種方法製 作。 第一種方法使用雷射回火技術,一般係於一玻璃(或塑膠) 基板上,先沉積一二氧化矽緩衝層,續於二氧化石夕參衝層上, 沉積一非晶矽(amorphous silicon)薄膜層;由於近紫外光能 $可被非晶矽有效吸收,雷射回火技術係以一近紫外光準分 子雷射所發射出之光子自上方以間隔短脈衝方式依序加熱沉 積於玻璃(或塑膠)基板上之一非晶石夕(啦哪^祕siiicon) 薄膜表面及淺層區域,藉具有ArF: 193 nm、248肺及 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 、1Τ 548749 A7 B7 五、發明説明(>) 經 濟 部 智 慧 財 產 局548749 Δ7 Α7 __ Β7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (/) 1 [Field of the invention] The present invention is a device and method for energy transmission and tempering at excess speed, and generally has-fast absorption Ambivalent energy, energy plate for rapid heating and release of thermal energy, and rapid energy transfer tempering device and method for a constant-temperature heat-dissipating plate. [Background of the invention] The combination of thin film transistor (TFT) driving elements and thin solar cells on a glass or-substrate storage-generation of thin transistor (TFT) flat display and film solar cells-basic requirements, because Low temperature polysilicon (LTps) can be integrated into a glass or a substrate, and because it has an electron mobility one to two orders of magnitude higher than that of amorphous silicon, it can effectively improve the film. The transistor driving element is particularly important for the current generation of thin-film transistor (TFT) driving elements and thin-film solar cells. The polycrystalline silicon thin film portion of a thin-film liquid crystal display (TFT) panel of a thin film liquid crystal display is currently manufactured in the industry using the following two methods. The first method uses laser tempering technology. Generally, it is deposited on a glass (or plastic) substrate. A silicon dioxide buffer layer is deposited first, and then an amorphous silicon (amorphous silicon) is deposited on the silicon dioxide. silicon) thin film layer; because near-ultraviolet light energy can be effectively absorbed by amorphous silicon, laser tempering technology uses a near-ultraviolet excimer laser to emit photons from above and sequentially heat the deposition in short pulses On the glass (or plastic) substrate, one of the amorphous stone (La Ne ^ siiicon) film surface and shallow areas, with ArF: 193 nm, 248 lungs and this paper size applies Chinese National Standard (CNS) A4 specifications (210X297 mm) (Please read the notes on the back before filling out this page), 1T 548749 A7 B7 V. Description of Invention (>) Intellectual Property Bureau, Ministry of Economic Affairs
XeCl·· 308 nm等近紫外光成份之一稀有氣體鹵素準分子雷射 (rare-gas halogen excimer laser)所發射出的近紫外光高能量光 子以間隔短脈衝照射,瞬間將非晶矽薄膜加熱至14〇〇qc左右 南溫,產生之快速熱回火(rapid thermal annealing)效應,非 晶矽薄膜層可快速熔解,因脈衝時間很短熱量下移擴散不會 太深,藉二氧化矽緩衝層之隔熱保護,殘餘熱量擴散不會造 成玻璃基板軟化,惟雷射回火技術存在下列缺點: 準分子雷射回火裝置設備十分昂貴。 一發雷射與另一發雷射間之能量密度常有不穩定 之現象。 掃瞄式回火處理大面積基板,費時費工。 結晶區(grain)之間由於成長推擠效應,形成部分 區域隆起'部分區域下陷之狀況,導致多晶矽薄膜 層表面粗链度南及均勻度欠佳之缺失。 •種方法係以爐管回火(furnace annealing)固.相結晶 (solid phase crystallization)技術,其係將一沉積於一玻璃(或塑 膠)基板上之一非晶石夕(amorphous siiicon)薄膜層於一 400 C-600 C之爐管内進行一兩小時至數十小時之回火過 矛王’於回火過程中’非晶石夕(am〇_〇ussilic〇n)薄膜層吸收 爐管溫度提供之能量,緩慢地轉換為一多晶矽薄膜層,惟爐 管回火固相結晶(solid phase crystallization)技術存在下列缺 1· 2. 3. 4. 第 點: (請先閲讀背面之注意事項再填寫本I) 消 費 合 作 社 印 製 1· 由於溫度較低(400°C-600°C),爐管回火方式製作多 晶矽薄膜層之各別結晶區成長速率(growth rate) 本紙張尺度適用中國國家標準(CNS ) A4規格(21¾X297公董) 548749 A7 B7 五、發明説明( 十曼,產能受限。 2. 由於溫度較低(400。〇600。〇,提供之能量較低,爐 管回火方式製作多晶石夕薄膜層之各別結晶區成長 速率(growth rate)慢,各別結晶區較小,導電性低於 以雷射回火方式製作之多晶矽薄膜層。 爐管回火之另一態樣為一種爐管回火金屬誘發結晶 (metal induced crystallization)技術或金屬誘發橫向結晶(metal induced lateral crystallization)技術,與爐管回火固相結晶技術 不同者係於非晶矽薄膜層上沉積或蒸鍍一金屬催化層,在金 屬催化作用下可降低非晶矽薄膜層轉換成多晶矽所需之爐管 溫度及回火時間,惟此爐管回火金屬誘發結晶或金屬誘發橫 向結晶技術製作之多晶矽薄膜層,除具有爐管回火固相結晶 技術兩項缺點外,金屬原子擴散(diffusion)現象會導致金屬殘 留於多晶矽薄膜層之污染問題。 【習用技術之描述】 / 針對上述兩類習用技術製作多晶矽薄膜層之缺點,之後 已發展出習用技術快速熱回火(rapid thermal annealing,簡稱 RTA)技術,使用一玻璃基板,於玻璃基板上依次沉積一二氧 化石夕層及一非晶石夕薄膜層,並使用一嫣絲鹵素燈源(加吗贫邱 halogen lamp),其係於一含鹵素之燈泡内電性導通之一鶴 絲’利用鎢絲升高溫度放出黑體輻射,根據文氏位移定律 (Wien’s displacement law), λ pe〇kT =常數,λ peak 為峰值波 長,T為絕對溫度fK),而鎢絲鹵素燈源峰值波長為約1000 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) 548749 A7 B7 經 濟 部 智 慧 財 產 局 消 費 合 作 社 印 製 五、發明説明( nm之紅外光;快速熱回火技術係藉鎢絲鹵素燈源自上方朝非 晶石夕薄膜層、二氧化矽層及玻璃基板進行高光強度直接照 射’使非晶矽薄膜層回火成多晶矽薄膜層,惟高光強度照射 需使非晶矽薄膜超過600。(:以上且持續約數十秒的高溫方能 有效結晶成多晶矽,此高溫超過60CTC之玻璃軟化溫度,極 易使玻璃基板受損。 改進習用技快速熱回火技術之方法稱為脈衝快速熱回 火(pulsed rapid thermal annealing,簡稱 PRTA)技術,使用一 玻璃基板,於玻璃基板上依次沉積一二氧化矽層及一非晶矽 薄膜層,並使用一鎢絲鹵素燈源,其係於200。〇600。(:範圍 内之一基準溫度,加入如650。0850。(:之短暫高溫脈衝,提 供非晶矽薄膜層較多之能量回火,由於短暫高溫脈衝時間很 短,可避免損壞玻璃基板。 由於非晶矽薄膜層、二氧化矽層及玻璃基板三者對鎢絲 鹵素燈源紅外光子之吸收係數很小,吸收效果甚差,故習用 技術快速熱回火(RTA)及脈衝快速熱回火(PRTA)技術以紅外 光子直接照射非晶矽薄膜層所產生之回火效果實際上並不顯 著。 一些研究機構採用脈衝快速熱回火(pulsed rapid thermal annealing,簡稱PRTA)技術,並分別發表相關研究論文,茲 臚列如下: 1)如Leung等發表於電子電機工程師協會2〇〇1年電子元件 會議會刊(Electron Devices Meeting,2001 Proceedings,2001 IEEE Hong Kong,93 ·96)之論文,以鎳誘發橫向結晶及脈 本紙張尺度適用中國國家標準(CNS ) Α4規格(2!0Χ 297公釐) (請先閲讀背面之注意事項再填寫本頁) 548749 A7 B7 五、發明説明( (請先閲讀背面之注意事項再填寫本頁) 衝快速熱回火製作多晶矽薄膜,(Poly Silicon Film Formation by Nickel^nduced-Lateral-Crystallization and Pulsed Rapid Thermal Annealing); 2) 如Yuen等發表於電子電機工程師協會2000年電子元件會 議會刊(Electron Devices Meeting, 2000 Proceedings, 2000 IEEE Hong Kong,72 -75 )之論文,以脈衝快速熱回火在金 屬誘發橫向結晶多晶矽薄膜上製作薄膜電晶體,(TFT Fabrication on MILC poly silicon film with pulsed rapid thermal annealing); 3) 如Kuo等發表於應用物理短文(Appl. Phys. Lett. 69⑻,19 August 1996,1092-1094)之論文,以脈衝快速熱回火將非 晶石夕製作成多晶石夕,(Polycrystalline silicon formation by pulsed rapid thermal annealing of amorphous silicon); 4) 如Zhao等發表於太陽能材料及太陽電池期刊(Solar Energy & Solar Cells 62 (2000) 143-148)之論文,以改進 之脈衝快速熱回火製作多晶石夕薄膜,(Polycrystalline silicon films prepared by improved pulsed rapid thermal annealing); 經濟部智慧財產局員工消費合作社印製 5) 如Wang等發表於應用表面科學期刊(Applied Surface Science 135 (1998) 205-208)之論文,以脈衝快速熱回火 使非晶石夕薄膜產生固相結晶及雜質活化,(Solid phase crystallization and dopant activation of amorphous silicon films by pulsed rapid thermal annealing); 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 548749 Α7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明説明(L) 6)如Wang等發表於材料研究協會1998年會議會刊(Mat. Res. Soc· Symp. Pro. Vol. 507 (1998) 975-980)之論文,以 脈衝快速熱程序製作之多晶矽薄膜的結構性質, (Structural properties of polycrystalline silicon films formed by pulsed rapid thermal processing)。 以上苐1)及弟2)篇有關脈衝快速熱回火(pUisecj哪记 thermal annealing)之研究論文係將一非晶石夕薄膜沉積於一單 晶矽(crystalline silicon,簡稱C_Si)基板上,單晶矽基板與非 晶矽薄膜層之間加入一二氧化石夕層,在非晶矽薄膜層、上方鍍 上鎳金屬層作為誘發結晶用,並使用一鎢絲鹵素燈源 (tungsten halogen lamp),其係於一含鹵素之燈泡内電性導通 之一鎢絲,利用鎢絲升高溫度放出黑體輻射,根據文氏位移 定律(Wien,s displacement law), λpeakT =常數,又喊為峰 值波長,T為絕對溫度(°κ),而鎢絲齒素燈源峰值波長為約 1000 nm之紅外光;藉鎢絲鹵素燈源自上方直接朝試片進行 脈衝式照射,由於鎳金屬層很薄,而非'晶矽薄膜層及二氧化 矽層對鎢絲齒素燈源紅外光子的吸收係數很小,吸收效果甚 是,而單晶矽基板之吸收效果卻頗佳,因此大部分的鎢絲鹵 素,源紅外光子穿透各層後,其紅外光子能量被單晶石夕基板 ^里吸收,導致單晶石夕基板溫度上升,同時釋出熱能,經二 氧化=層傳導至非晶㈣膜層,該二篇研究論文所採用的是 般白Ί用的回火方法,即由鶴絲岐燈源所發射出之紅外光 子直接照射試片的方法,而實際上非晶石夕薄膜層無法有效吸 收,使非晶石夕薄膜層轉換成之多晶石夕薄膜之能量確係來自吸 (請先閲讀背面之注意事項再填寫本頁) 衣' 、11 »丨XeCl · · 308 nm and other near-ultraviolet light components, a rare gas halogen excimer laser (rare-gas halogen excimer laser), emits high-energy photons of near-ultraviolet light in short pulses, which instantly heats the amorphous silicon film To the south temperature around 1400qc, the rapid thermal annealing effect produced, the amorphous silicon thin film layer can be quickly melted, because the pulse time is short, the heat will not spread too deep, and it will be buffered by silicon dioxide. Insulation protection of the layer, the residual heat diffusion will not cause the glass substrate to soften, but the laser tempering technology has the following disadvantages: Excimer laser tempering device equipment is very expensive. The energy density between one laser and another is often unstable. Scanning and tempering large substrates is time-consuming and labor-intensive. Due to the growth and squeezing effect between the grains (grains), a partial area bulges and a partial area sags, which results in the lack of coarse chains and poor uniformity on the surface of the polycrystalline silicon thin film layer. • One method is to use furnace annealing solid phase crystallization (solid phase crystallization) technology, which is an amorphous siiicon thin film layer deposited on a glass (or plastic) substrate Tempering in a 400 C-600 C furnace tube for one to two hours to tens of hours. During the tempering process, the amorphous stone eve (am〇_〇ussilic〇n) film layer absorbs the furnace tube temperature. The energy provided is slowly converted into a polycrystalline silicon thin film layer, but the furnace tube tempering solid phase crystallization (solid phase crystallization) technology has the following shortcomings: 1. Please read the precautions on the back before Fill out this I) Printed by a consumer cooperative 1. Due to the low temperature (400 ° C-600 ° C), the growth rate of the individual crystalline regions of the polycrystalline silicon thin film layer produced by the tempering of the furnace tube (growth rate) This paper scale is applicable to China Standard (CNS) A4 specification (21¾X297 public directors) 548749 A7 B7 V. Description of invention (10 Man, limited production capacity. 2. Due to the lower temperature (400.〇600.〇, the energy provided is low, the furnace tube is tempered Ways to make the individual junctions of polycrystalline stone thin film layers The growth rate of the zone is slow, the individual crystalline zones are small, and the conductivity is lower than that of the polycrystalline silicon thin film layer produced by laser tempering. Another aspect of furnace tube tempering is a furnace tube tempering metal-induced crystallization (metal induced crystallization) technology or metal induced lateral crystallization technology, which is different from the furnace tube tempered solid phase crystallization technology, deposits or vaporizes a metal catalyst layer on the amorphous silicon thin film layer, and Under the action, the temperature and tempering time of the furnace tube required for the conversion of the amorphous silicon thin film layer into polycrystalline silicon can be reduced. However, the furnace tube is tempered by the metal-induced crystallization or metal-induced lateral crystallization technology. In addition to the two shortcomings of solid-phase crystallization technology, the diffusion phenomenon of metal atoms will cause the contamination of the metal remaining on the polycrystalline silicon thin film layer. [Description of Conventional Technology] / The disadvantages of making polycrystalline silicon thin film layers against the two types of conventional technologies mentioned above have been Developed the conventional technology rapid thermal annealing (RTA) technology, which uses a glass substrate. A dioxide stone layer and an amorphous stone film layer are sequentially deposited on the substrate, and a Yansi halogen lamp source (Jiaqiang Qiu halogen lamp) is used, which is one of the electrical conduction in a halogen-containing bulb Hesi 'uses a tungsten wire to raise the temperature to emit black body radiation. According to Wien's displacement law, λ pe〇kT = constant, λ peak is the peak wavelength, and T is the absolute temperature fK), and the tungsten halogen light source The peak wavelength is about 1000. This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 548749 A7 B7. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention (nm infrared light; fast thermal tempering technology) The tungsten halogen lamp is used to directly illuminate the amorphous silicon film layer, the silicon dioxide layer and the glass substrate from above with a high light intensity. 'Temper the amorphous silicon film layer into a polycrystalline silicon film layer. The crystalline silicon film exceeds 600. (: The above-mentioned high temperature lasting about tens of seconds can effectively crystallize into polycrystalline silicon. This high temperature exceeds the glass softening temperature of 60CTC, which easily damages the glass substrate. The method of improving the conventional rapid thermal tempering technology is called pulse rapid thermal. Tempering rapid thermal annealing (PRTA) technology uses a glass substrate, a silicon dioxide layer and an amorphous silicon thin film layer are sequentially deposited on the glass substrate, and a tungsten halogen lamp source is used, which is based on 200 〇600. (: A reference temperature within the range, such as 650.0850. (: The short-term high-temperature pulse, provides more energy tempering of the amorphous silicon thin film layer, because the short-term high-temperature pulse time is short, can avoid damage Glass substrate. Since the amorphous silicon film layer, silicon dioxide layer, and glass substrate have a small absorption coefficient for infrared photons of tungsten halogen light sources, the absorption effect is very poor, so rapid thermal tempering (RTA) and pulses are used. The rapid thermal tempering (PRTA) technology using infrared photons to directly illuminate the amorphous silicon thin film layer is actually not significant. Some research institutions use pulsed rapid thermal tempering (pul Sed rapid thermal annealing (PRTA) technology and published related research papers, which are listed below: 1) For example, Leung and others published in the 2001 Journal of the Institute of Electronic and Electrical Engineers (Electron Devices Meeting, 2001 Proceedings) , 2001 IEEE Hong Kong, 93 · 96), nickel-induced lateral crystallization and vein paper size apply Chinese National Standard (CNS) A4 specification (2! 0 × 297 mm) (Please read the notes on the back before filling (This page) 548749 A7 B7 V. Description of the invention ((Please read the precautions on the back before filling in this page) Red Polycrystalline Film Formation by Nickel ^ nduced-Lateral-Crystallization and Pulsed Rapid Thermal Annealing); 2) For example, Yuen et al. Published a paper in Electron Devices Meeting 2000 (Electron Devices Meeting, 2000 Proceedings, 2000 IEEE Hong Kong, 72 -75). TFT Fabrication on MILC poly silicon film with puls ed rapid thermal annealing); 3) For example, Kuo et al. published a paper in Applied Physics (Appl. Phys. Lett. 69⑻, 19 August 1996, 1092-1094), and made amorphous stones into multiples by pulsed rapid thermal tempering. Xi Shixi, (Polycrystalline silicon formation by pulsed rapid thermal annealing of amorphous silicon); 4) For example, a paper published by Zhao et al. In Solar Energy & Solar Cells 62 (2000) 143-148) Polycrystalline silicon films prepared by improved pulsed rapid thermal annealing (improved pulse rapid thermal annealing); printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5) Such as Wang and others published in Applied Surface Science (Applied Surface Science 135 (1998) 205-208), solid phase crystallization and dopant activation of amorphous silicon films by pulsed rapid thermal annealing ; This paper size applies to China National Standard (CNS) A4 (210X297 mm) 548749 Α7 Β7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs V. Invention Description (L) 6) For example, Wang et al. Published in the 1998 Proceedings of the Materials Research Association 975-980), Structural properties of polycrystalline silicon films formed by pulsed rapid thermal processing. The above 1) and 2) research papers on pulsed rapid thermal tempering (pUisecj thermal annealing) are based on the deposition of an amorphous thin film on a crystalline silicon (C_Si) substrate. A silicon dioxide layer is added between the crystalline silicon substrate and the amorphous silicon thin film layer, and a nickel metal layer is plated on the amorphous silicon thin film layer and above for induction crystallization, and a tungsten halogen lamp is used. It is a tungsten wire that is electrically conductive in a halogen-containing bulb. The tungsten wire is used to raise the temperature to emit black body radiation. According to Wien's displacement law, λpeakT = constant, and it is called the peak wavelength. , T is the absolute temperature (° κ), and the peak value of the tungsten wire gear lamp source is about 1000 nm of infrared light; the tungsten halogen lamp is pulsed from the top directly to the test piece, because the nickel metal layer is very thin The non-crystalline silicon film layer and silicon dioxide layer have a very small absorption coefficient for infrared photons of tungsten filament lamp source, and the absorption effect is very good, while the absorption effect of single crystal silicon substrate is quite good, so most of the tungsten Silk halogen, source infrared photon After passing through the layers, the infrared photon energy is absorbed by the single crystal substrate, which causes the temperature of the single crystal substrate to rise, and at the same time, the thermal energy is released, which is conducted to the amorphous rhenium film layer through the oxidation = layer. The two research papers The tempering method used for ordinary white crickets is the method of directly irradiating the test piece with infrared photons emitted by the Hesiqi lamp source. In fact, the amorphous stone film layer cannot effectively absorb the amorphous stone. The energy of the polycrystalline crystalline thin film converted from the thin film layer is indeed absorbed (please read the precautions on the back before filling this page).
548749 A7 "----------B7 五、發明説明(^;) 7絲^燈脉外光子之單晶雜板所财之熱能,並不 是非晶石夕薄膜層有效地被燈源照射而回火成多晶石夕,·再著, 以單晶梦絲也未騎讀舰溫乡晶判_加供耐e P〇iyfc,簡稱OTS)整合於—玻璃或一塑勝基板之需求。 以上第3)至第6)篇有關脈衝快速熱回火之研究論文係將 非晶矽薄朗沉積於—_基板上(第3)篇論文在非晶石夕 缚臈層與玻璃基板之間加入了一氮化铺,在非晶石夕薄膜層 上方鑛有薄金屬層作為誘發結晶用),使用一單晶石夕載台供承 載玻璃基板及測量溫度,並使用—鵁_素燈源自上方直接 朝非晶矽細層、_基板及單晶残妓行脈衝式照射, 由於金屬層很薄域切層、非晶㈣顯及綱基板對鶴 絲_素燈源紅外光子之吸收效果甚差而單晶賴台之吸收效 果卻頗佳,因此大部份的鶴絲齒素燈源紅外光 玻璃基板後,狂外光子能餘私残台大量吸收 早晶石夕载台溫度上升,同時釋出熱能,經玻璃基板傳導至非 晶石夕薄膜層’該四篇研究論文仍_-般·_火方法, 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 即由鶴絲鹵素燈源所發射出之紅外光子直接照射試片的方 法’而實際上非晶料膜層轉換成之多晶賴膜之能量確係 來自吸收鶴絲_素燈源紅外光子之單晶石夕載台釋出之敎能, 並不是非晶石夕薄膜層有效地被燈源照射而回火成多晶石夕;再 著’單晶石夕載台釋出之熱能,必須先經玻璃基板傳導,方可 ?達^4薄膜層,故該四篇研究論文所揭露之脈衝快速熱 回火4用技術在使用向溫脈衝時’熱能會先傳給玻璃再 至非晶石夕薄膜層,因此極為容易傷璃基板。548749 A7 " ---------- B7 V. Description of the Invention (^;) 7-wire ^ extra-pulse photon single crystal hybrid plate is not the effective thermal energy of the amorphous stone film layer Tempered by a light source and tempered into a polycrystalline stone, and then, again, the single crystal dream silk has not been read by the warship Wen Xiangjing. _ Plus supply resistance e Poiyfc (referred to as OTS) integrated in-glass or plastic The need for a winning substrate. The above 3) to 6) research papers on pulsed rapid thermal tempering are deposited on amorphous silicon thin film on the substrate (3) paper between the amorphous stone binding layer and the glass substrate A nitriding layer is added, and a thin metal layer is used to induce crystallization on the top of the amorphous stone film layer. A single crystal stone stage is used to support the glass substrate and measure the temperature. Pulsed irradiation from the top directly to the amorphous silicon thin layer, the substrate and the single crystal residual prostitutes, because the metal layer is a very thin domain, the amorphous display and the substrate absorb the infrared photons of the crane wire. It is very poor and the absorption effect of single crystal Laitai is quite good. Therefore, after most infrared rays glass substrates of crane filament lamp source, mad photon can absorb a large amount of prespar and the temperature of the stage increases. At the same time, the heat energy is released and transmitted to the amorphous stone film layer via the glass substrate. The four research papers are still _-like · _ fire method, which is printed by the crane wire halogen light source printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Method for directly irradiating infrared photons with test strips' In fact, the energy of the polycrystalline film converted from the amorphous material film layer is actually the energy released from the monocrystalline stone carrier that absorbs infrared light from the crane wire. It is not effective for the amorphous stone film layer. The ground is irradiated by a light source and tempered into a polycrystalline stone; then the thermal energy released by the 'monocrystalline stone' carrier must be conducted through a glass substrate before it can reach ^ 4 thin film layers, so the four research papers The disclosed pulsed rapid thermal tempering 4 technology uses a thermal pulse when the thermal energy is first transmitted to the glass and then to the amorphous stone film layer, so it is extremely easy to damage the glass substrate.
經濟部智慧財產局員工消費合作社印製 548749 Μ __-___Β7 五、發明説明() 以上習用技術所採㈣脈衝快速細火方法,均採用一 般習用的回火方法,即由鎢絲鹵素燈源所發射出之紅外光子 直接照射試片的方法,因非晶㈣膜層及玻璃基板對紅外光 子吸收係數小’吸收效果差,非㈣細層不能因紅外光子 照射而升溫,實際上是單晶石夕基板或單晶石夕載台吸收嫣絲齒 素燈源所發射出之紅外光子的能量。不使用單晶石夕做基板或 載台時,非晶石夕薄膜層無法有效地利用紅外光子直接照射試 片的方法達成回火成多晶矽薄膜之效果。再者,以單晶矽基 板也未能符合前述低溫多晶矽(lowtemperaturepolyslllcon,簡 稱LTPS)整合於一玻璃或一塑膠基板之需求。 有鑑於習用技術脈衝快速熱回火技術上述之缺失,本發 明將於下文中詳細揭露一快速能量傳輸回火裝置及方法,不 採用以燈源所發射出的光子直接照射試片_火方法,但可 快速有效傳輸能量,並能分別控制非晶石夕薄膜層升溫及玻璃 (或塑膠)基板散熱,同時達成非晶梦薄膜層快速回火結晶, 且不因過熱傷害玻璃(或塑膠)基板之兩大目標。 【發明概述】 因此,本發明之目的在提出一種快速能量傳輸回火裝置 及方法,具有製造容易、可以大面積製造的特性,並能有效 使非晶㈣膜層快相火結晶,並能魏賴(或娜)基板 文到咼熱傷害之快速能量傳輸回火裝置及方法。 依照本發明快速能量傳輸回火裝置,使用一能量板及一 散熱板,能量板可快速有效吸收一光源能量、快速升溫,並 ---·--^-----0IT0— (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) 2i〇x7^F) 548749 五、發明説明(〇| ) 'ΐ由氣體或固體介質以傳導或對流或輻射方 二晶至’’儿積於—玻璃基板上之-非晶矽薄膜,提供 日日^、猎以回火轉換為一多晶石夕薄膜之熱能,散執板亦 =由氣體^體介質以傳導或對流或接收轄射方式吸收玻 1:反:熱此’有效降低玻璃基板之^1度’保護玻璃基板避 免因過熱而受損。 胃 本發明之贿能量输回域置結觀方法,與其詳細 内容’則參照下列依附圖所作之詳細說明,gp可得到完全的 了解0 ——^——··----衣|丨 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 【發明簡要說明】 本土明之目的’係在於提供—種可快速有效吸收一光源 能量、快速升溫’並快速釋出、傳輸熱能之能量板,經由氣 體或固體介㈣輸能量,可提供非_薄賴_火轉換為 -多晶碎薄膜之熱能之快魏量傳輸回火裝置及方法。 本發明之另-目的’係在於提供—魏熱板,可保護玻 璃基板免於過齡損之快賴#倾目火敍及方法。 本發明之又-目的,係在於提供—種可調整能量板與非 晶石夕薄膜間距以控制傳輸入非晶矽薄膜之能量之怯速能量傳 輸回火裝置及方法。 本發明之再一目的,係在於提供一種可調整玻璃基板與 散熱板間距以控制玻璃基板傳輸出之能量之快速能量傳輸回 火裝置及方法。 U- 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇><297公釐) -訂· 548749 A7 -------—_______B7 一 五、發明説明() 本發明之另一目的,係在於提供一種可同步調整能量板 與非晶矽薄膜間距及玻璃基板與散熱板間距,以同步挖制傳 輸入非晶矽薄膜與玻璃基板傳輸出之能量,而兩間距之總合 始終保持不變之快速能量傳輸回火裝置及方法。 本發明之又一目的,係在於提供一種可隨時間任意調整 能量板與非晶矽薄膜間距及玻璃基板與散熱板間距,以機動 控制傳輸入非晶矽薄膜與玻璃基板傳輸出之能量之快速能量 傳輸回火裝置及方法。 本發明之再一目的,係可於一反應室中,藉分別調整進 入反應室入口及排出反應室出口之氣體,可控制反應室内之 氣流、氣溫、氣壓,從而控制非晶矽薄膜層自能量板吸收熱 能之速率之快速能量傳輸回火裝置及方法。 本發明之另一目的,係在於提供一種藉導熱層、隔熱層、 受熱層、散熱層或隔熱層達成選擇性結晶,或引導結晶朝特 定方向成長之快速能量傳輸回火裝置及方法。 【圖示說明】 圖一係本發明第一較佳實施例快速能量傳輸回火裝置示意 圖。 圖二係本發明第二較佳實施例快速能量傳輸回火裝置示意 圖。 圖二係本發明第三較佳實施例快速能量傳輸回火裝置示意 1¾) 〇 圖四係本發明第四較佳實施例快速能量傳輸回火裝置示意 本紙張尺度適用中國國家襟率(CNS ) A4規格(21〇><297公菱) (讀先閱讀背面之注意事項再填寫本頁) ¾衣· 訂 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 548749 A7 --—_ B7 五、發明説明(丨| ) ^~~-- 圖。 圖^^示月^較佳實施例第一態樣快速能量傳輸回火 圖五B係梦本發明土第五較佳實施例第二態樣快速能量傳輸回火 哀罝不思圖。Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 548749 Μ __-___ Β7 V. Description of the Invention () The rapid pulsed fire method of chirped pulses adopted by the above conventional technologies adopts the commonly used tempering method, that is, the tungsten halogen lamp source The method of directly irradiating the test strip with the emitted infrared photons has a small absorption coefficient of infrared photons due to the amorphous erbium film layer and the glass substrate, and the absorption effect is poor. The substrate or the single crystal substrate absorbs the energy of infrared photons emitted by the Yansitooth lamp source. When monocrystalline stone is not used as the substrate or stage, the amorphous stone film layer cannot effectively use infrared photons to directly irradiate the test piece to achieve the effect of tempering into a polycrystalline silicon film. Furthermore, the use of a single-crystal silicon substrate fails to meet the aforementioned needs of integrating low temperature polyslllcon (LTPS) into a glass or a plastic substrate. In view of the above-mentioned shortcomings of the conventional technology pulsed rapid thermal tempering technology, the present invention will disclose a rapid energy transmission tempering device and method in detail below, instead of directly irradiating the test piece with the photons emitted by the lamp source_fire method, However, it can quickly and effectively transmit energy, and can control the temperature rise of the amorphous stone film layer and the heat dissipation of the glass (or plastic) substrate, and at the same time achieve the rapid tempering of the amorphous dream film layer without damaging the glass (or plastic) substrate due to overheating. The two main goals. [Summary of the Invention] Therefore, the object of the present invention is to propose a fast energy transmission tempering device and method, which has the characteristics of easy manufacturing and large area manufacturing, and can effectively crystallize the amorphous phase of the rhenium film, and can rapidly Fast energy transmission tempering device and method for thermal damage caused by Lai (or Na) substrate. According to the rapid energy transmission and tempering device of the present invention, an energy plate and a heat dissipation plate are used. The energy plate can quickly and effectively absorb the energy of a light source, heat up rapidly, and --------- ^ ----- 0IT0— (please first Read the notes on the reverse side and fill out this page) This paper size is applicable to Chinese National Standard (CNS) 2i〇x7 ^ F) 548749 V. Description of the invention (〇 |) 'ΐ It is conducted by gas or solid medium by conduction or convection or radiation. "Crystalline"-an amorphous silicon film on a glass substrate, which provides thermal energy for day-to-day, tempered, and tempered conversion into a polycrystalline stone film. The diffuser plate is also conducted by a gaseous medium. Or convection or receiving method to absorb glass 1: anti: heat This 'effectively reduces the ^ 1 degree of the glass substrate' to protect the glass substrate from damage due to overheating. Stomach observation method of the bribe energy return field of the present invention, and its detailed content, refer to the following detailed description according to the drawings, gp can be fully understood 0 —— ^ —— ·· ---- 衣 | 丨 ( (Please read the notes on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economics [Brief Description of the Invention] The purpose of the native name is to provide-a kind that can quickly and effectively absorb the energy of a light source, quickly warm up, and quickly release An energy plate that outputs and transmits thermal energy and transmits energy through a gas or a solid medium can provide a rapid heat transfer and tempering device and method for converting non-thin, thin-fire to-polycrystalline broken film thermal energy. Another object of the present invention is to provide a hot plate which can protect the glass substrate from over-age damage. Another object of the present invention is to provide a fast energy transmission and tempering device and method capable of adjusting the distance between the energy plate and the amorphous silicon film to control the energy transmitted into the amorphous silicon film. Another object of the present invention is to provide a fast energy transmission tempering device and method capable of adjusting the distance between a glass substrate and a heat sink to control the energy transmitted from the glass substrate. U- This paper size applies the Chinese National Standard (CNS) A4 specification (21〇 > < 297mm)-Order · 548749 A7 ----------- _______ B7 One or five, the description of the invention () One purpose is to provide a method that can simultaneously adjust the distance between the energy plate and the amorphous silicon film and the distance between the glass substrate and the heat sink to simultaneously excavate the energy transmitted into the amorphous silicon film and the glass substrate, and the sum of the two distances. Fast energy transmission tempering device and method that are always unchanged. Yet another object of the present invention is to provide a fast method for arbitrarily adjusting the distance between the energy plate and the amorphous silicon film and the distance between the glass substrate and the heat sink plate, and controlling the energy transmitted to the amorphous silicon film and the glass substrate by motor control. Energy transmission tempering device and method. Another object of the present invention is to control the gas flow, air temperature, and air pressure in the reaction chamber by adjusting the gas entering the reaction chamber inlet and exhausting the reaction chamber outlet separately, thereby controlling the self-energy of the amorphous silicon film layer. Device and method for rapid energy transmission tempering at a rate at which the plate absorbs thermal energy. Another object of the present invention is to provide a rapid energy transmission and tempering device and method for achieving selective crystallization by using a heat conducting layer, a heat-insulating layer, a heat-receiving layer, a heat-dissipating layer or a heat-insulating layer, or guiding the crystal to grow in a specific direction. [Illustration] FIG. 1 is a schematic diagram of a fast energy transmission tempering device according to a first preferred embodiment of the present invention. Fig. 2 is a schematic diagram of a fast energy transmission tempering device according to a second preferred embodiment of the present invention. Figure 2 is a schematic diagram of a fast energy transmission tempering device according to the third preferred embodiment of the present invention 1¾) 〇 Figure 4 is a schematic diagram of a fast energy transmission tempering device according to the fourth preferred embodiment of the present invention The paper size is applicable to the Chinese National Standard (CNS) A4 Specifications (21〇 > < 297 Gongling) (Read the precautions on the back before filling out this page) ¾ Order · Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Employees' Cooperatives of the Ministry of Economic Affairs Intellectual Property Bureau 548749 A7 ---_ B7 V. Description of the invention (丨 |) ^ ~~-Figure. Figure ^^ shows the first embodiment of fast energy transmission tempering in the preferred embodiment Figure 5B is the second aspect of the fifth preferred embodiment of the soil of the present invention fast energy transmission tempering.
KU係本發明第六較佳實施織速能量傳輸以裝置示意 圖。 t U 圖七係本發明第七較佳實施例快速能量傳輸回火裂置之試片 示意圖。 圖八A係本以第_較佳實施例實驗獅質活化試片 回火前的剖面穿透式電子顯微鏡圖像。 圖八B係本發明以第_較佳實施例實驗之N型雜質活化試片 •回火後的剖面穿透式電子顯微鏡圖像。 圖九A係本發明以第一較佳實施例實驗之氮化非晶石夕試片回 火後的剖面穿透式電子顯微鏡圖像。 圖九B係本發明以第一較佳實施例實驗之氫化非晶矽試片回 火後的剖面穿透式電子繞射圖像。 【圖號說明】 , 10、20、30、40、50a、50b、60_快速能量傳輸回火裝置 12、 22、32、42、52a、52b_複數個石英柱 13、 23、33、43、53a、53b、63、73-試片 131、 231、331、431、631、731•玻璃基板 132、 232、332、432-二氧化矽隔熱層 本紙張尺度適用中國國家標準(CNS ) A4規格(210X%7公釐) 丨.—I—-----------訂 ^W1 (請先閲讀背面之注意事項再填寫本頁) 548749 A7 B7 五、發明説明(丨>) 133、233、333、433、633-非晶矽薄膜層 14、 24、34、44、54a、54b、64·能量板 (請先閲讀背面之注意事項再填寫本頁) 15、 25、35、45、55a、55b、65-散熱板 16、 26、36、46、56a、56b-鎢絲鹵素燈源 dr第一距離 dr第二距離 ds-試片厚度 2卜31、41、51b-承載板 434a-第一凸塊 435a-第二凸塊 434b-第三凸塊 435b-第四凸塊 436a-第一非晶矽薄膜層區域 437a-第二非晶矽薄膜層區域 436b-第三非晶矽薄膜層區域 437b-第四非晶矽薄膜層區域 43 8a-第五非晶矽薄膜層區域 43 8b-第六非晶矽薄膜層區域 經濟部智慧財產局員工消費合作社印製 439-第七非晶矽薄膜層區域 67-反應室 68a-入口 68b_ 出口 69a、69c-固體介質 69b、69d-氣體介質 -u- 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇'乂297公釐) 548749 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(\)) 732- 導熱層 733- 隔熱層 乃4-非晶薄膜層 735-受熱層 散熱層 ai、a2、a3、尺寸 【較佳實施例詳細說明】 將於下文中說明本發明,請參考附圖,熟習本技術者須 瞭解下文中的說明·作為例證用,而不用於限制本發明。、 參照前述各類制技術之描述,騎效解決前述各種習 用技術之缺失,本發明專利揭露一嶄新之快速能量傳輸回火 (rapid energy transfer annealing,簡稱拙伙)裝置及方法,應 用與前述各類習用技術不同之方法,可達成—具可控制性之 快速能量傳輸回火裝置及綠。但實際之元件製作不必須完 全符合較佳實施例之描述,熟習本技#者#能在不脫離本發 明之精神及範圍的情況下,作出變化及修改。 【第一較佳實施例】 _ 圖一係本發明第一較佳實施例快速能量傳輸回火裝置 10示意圖,包括固定於一散熱板(base plate) 上之複數個石 英柱12、由複數個石英柱12支撐於散熱板15上方一第二距 離4處、厚度為ds之一試片13,其係包含一玻璃基板13卜 於玻璃基板131上依次沉積之一二氧化矽隔熱層132及一非 (請先閱讀背面之注意事項再填寫本頁)KU is a schematic diagram of a weaving speed energy transmission device according to a sixth preferred embodiment of the present invention. t U FIG. 7 is a schematic diagram of a test piece for rapid energy transmission tempering cracking of the seventh preferred embodiment of the present invention. FIG. 8A is a cross-sectional transmission electron microscope image of a lion-quality activated test piece according to the first preferred embodiment before tempering. Figure 8B is an N-type impurity-activated test piece of the present invention's experiment with the preferred embodiment. • Cross-section transmission electron microscope image after tempering. Fig. 9A is a cross-sectional transmission electron microscope image of a nitrided amorphous stone test piece of the present invention in a first preferred embodiment. Fig. 9B is a cross-sectional transmission electron diffraction image of the hydrogenated amorphous silicon test piece of the present invention, which was tested in the first preferred embodiment. [Illustration of drawing number], 10, 20, 30, 40, 50a, 50b, 60_ fast energy transmission tempering device 12, 22, 32, 42, 52a, 52b_ plural quartz columns 13, 23, 33, 43, 53a, 53b, 63, 73-test pieces 131, 231, 331, 431, 631, 731 • glass substrates 132, 232, 332, 432-silicon dioxide thermal insulation layer This paper standard applies to China National Standard (CNS) A4 specifications (210X% 7mm) 丨 .—I —----------- Order ^ W1 (Please read the notes on the back before filling out this page) 548749 A7 B7 V. Description of the invention (丨 > ) 133, 233, 333, 433, 633-amorphous silicon thin film layers 14, 24, 34, 44, 54a, 54b, 64 · Energy board (Please read the precautions on the back before filling this page) 15, 25, 35 , 45, 55a, 55b, 65- heat sinks 16, 26, 36, 46, 56a, 56b-tungsten halogen lamp source dr first distance dr second distance ds-test piece thickness 2 bu 31, 41, 51b-bearing Plate 434a-first bump 435a-second bump 434b-third bump 435b-fourth bump 436a-first amorphous silicon film layer region 437a-second amorphous silicon film layer region 436b-third non- Crystalline silicon thin film layer region 437b-fourth amorphous silicon thin Layer region 43 8a-fifth amorphous silicon film layer region 43 8b-sixth amorphous silicon film layer region Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 439-seventh amorphous silicon film layer region 67-reaction chamber 68a- Inlet 68b_ Outlet 69a, 69c-Solid medium 69b, 69d-Gaseous medium-u- This paper size applies to China National Standard (CNS) A4 specification (21¡ 乂 297 mm) 548749 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (\)) 732- Thermally conductive layer 733- Thermally insulating layer is 4-amorphous film layer 735- Heat-receiving layer heat-sinking layer ai, a2, a3, size [Detailed description of the preferred embodiment] The present invention is explained in the text, please refer to the accompanying drawings. Those skilled in the art must understand the following descriptions, which are for illustration only and are not intended to limit the present invention. With reference to the descriptions of the various manufacturing technologies, the riding effect solves the aforementioned shortcomings of various conventional technologies. The patent of the present invention discloses a new rapid energy transfer annealing (rapid energy transfer annealing) device and method. Different conventional methods can be used to achieve-controllable rapid energy transmission tempering device and green. However, the actual component production does not necessarily completely conform to the description of the preferred embodiment, and those skilled in the art # 者 # can make changes and modifications without departing from the spirit and scope of the present invention. [First Preferred Embodiment] _ FIG. 1 is a schematic diagram of a fast energy transmission tempering device 10 according to a first preferred embodiment of the present invention, including a plurality of quartz pillars 12 fixed on a base plate, and a plurality of quartz pillars 12. The quartz column 12 is supported on a test piece 13 with a thickness of ds at a second distance 4 above the heat dissipation plate 15. The test piece 13 includes a glass substrate 13 and a silicon dioxide thermal insulation layer 132 deposited on the glass substrate 131 in order. Yifei (Please read the notes on the back before filling this page)
548749 A7 經濟部智慧財產局員工消費合作社印製 --------- 、發明説明(νΨ 晶矽薄膜層133、一能吾社/ 从一 此里板(energy Plate)i4,設於試片13上 古^蹲dl處、—鶴絲齒素燈源,設於能量板14上 时’曰\^共能量板14所需之熱能,能量板則由石墨、钥_、 早IL/、其他可快相素燈源16能量並快速升溫 之材,所構成;散熱板丨5可為-恒溫之散熱板。 第、車乂佳實施例快速能量傳輸回火裝置10巾,能量板 二式片13間之第一距離山及試片13與散熱板15間之第 =離d2保持不變,快速能量傳輸回火裝置K)係藉鶴絲函 源Μ自上方朝能量板14進行脈衝式或非脈衝式快速照 射脈衝式丨週期性變溫而非脈衝式係持續一定溫之短時 =由於能#板快賴收朗、岐麟16快賴騎提供之 能量,可快速升溫,同時釋出熱能,主要經能量板14與試片 13第一距離山之間的介質(氣體或固體)藉由傳 (_duc㈣’亦可藉對流(c〇nvecti〇n)與輕射 熱相隔第-轉&之非㈣細層133,使之快速升溫、 ^-多晶⑪薄膜層’以傳導(咖—㈣為例,依據熱能通 $ (th'flux of heat energy)公式,Jhl= Kthl(Te — Tsi)/di,Jhi (W/cm2)為由能量板14下表面經第一距離山傳導至非晶矽 薄膜層133上表面之熱能通量,Κώ1 (W/cm°C)為能量板14 下表面與非晶矽薄膜層133上表面第一距離山之間氣體或固 體介質之熱導率(thermal conductivity),Te為能量板Μ下表 面之溫度,Tsl為非晶矽薄膜層133上表面之溫度。由能量 14下表面傳輸至非晶矽薄膜層上表面的能量大小 Kthi、Te、Tsl、及山四個參數值決定,以第一距離山而言 導加轉 板 (請先閱讀背面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS) M規格( 44- 21 OX 297 公釐) 548749548749 A7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ---------, Invention Description (ν 晶 crystalline silicon thin film layer 133, Ino Energy Co., Ltd. / energy plate i4, located at Test piece 13 in ancient times ^ squat dl, the source of the crane wire tooth lamp, when set on the energy plate 14, said heat energy required by the common energy plate 14, the energy plate is composed of graphite, key, early IL /, Other materials can be composed of fast phase light source 16 energy and rapid temperature rise; the heat radiation plate 5 can be a constant temperature heat radiation plate. The first and second embodiments of the invention have a fast energy transmission and tempering device 10 towels, and the energy plate 2 The first distance between the sheet 13 and the first = d2 between the test sheet 13 and the heat sink 15 remain unchanged, and the rapid energy transmission and tempering device K) is pulsed by the crane wire source M from above to the energy plate 14 Or non-pulse type rapid irradiation pulse type 丨 periodic temperature change instead of pulse type for a short period of time = due to the energy provided by # 板 快 赖 赖 朗, Qi Lin 16 fast Laiqi can quickly heat up and release at the same time Thermal energy is mainly transmitted through the medium (gas or solid) between the energy plate 14 and the test piece 13 at the first distance. By convection (c0nvecti0n) and light radiation heat, the non-㈣ thin layer 133 of the first turn & is used to rapidly heat up the ^ -polycrystalline ⑪ thin film layer 'to conduct (ca-㈣ as an example, according to thermal energy According to the formula (th'flux of heat energy), Jhl = Kthl (Te — Tsi) / di, and Jhi (W / cm2) is transmitted from the lower surface of the energy plate 14 to the amorphous silicon thin film layer 133 through the first distance mountain. Thermal energy flux on the surface, where K 1 (W / cm ° C) is the thermal conductivity of the gas or solid medium between the first surface of the lower surface of the energy plate 14 and the upper surface of the amorphous silicon thin film layer 133, and Te is Temperature of the lower surface of the energy plate M, Tsl is the temperature of the upper surface of the amorphous silicon thin film layer 133. The amount of energy Kthi, Te, Tsl, and mountain transmitted from the lower surface of the energy 14 to the upper surface of the amorphous silicon thin film layer Decided to take the first distance from the mountain guide and turn the board (please read the precautions on the back before filling this page) The size of the paper is applicable to the Chinese National Standard (CNS) M specification (44-21 OX 297 mm) 548749
第-距離山值愈小傳輸的能量愈大,當di值趨近於交,&旦 傳輸有最大值,TS1趨近於Te,而當di值趨近於無^大^ 量傳輸有最小值,Jhl趨近於零’因此第一距離山值的調整^ 以十分有效的由最大值至最小值控制能量板14下表 至非晶石夕薄膜層133上表面之熱能量,二氧化石夕隔_ 132 係提供隔熱功能,保護玻璃基板131免於過熱(超過6曰00。〇 軟化產生之損害;設於刻13下謂二距離d2處之散熱板 15,可為一恆溫之散熱板,根據快速能量傳輸回火裝置川 之整體設計,可設於遠低於能量板14溫度之25〇c I溫、 100°C、200〇c或300T,可迅速將自非晶梦薄膜層133經二 氧化矽隔熱層132傳導至玻璃基板131之熱能,主要經試片 13與政熱板15第一距離由之間的介質(氣體或固體)藉由 傳導,亦可藉對流與輻射,有效地自玻璃基板131下方第二 距離由處之散熱板15散熱,避免玻璃基板131因過熱而受 到傷害’同理,以傳導(conduction)為例,依據熱能通量(the fluxofheatenergy)公式,Jh2=Kth2(Ts2-Tb)/d2,Jh2 (w/cm2) 為由玻璃基板131下表面經第二距離山傳導至散熱板i5上 表面之熱能通量,ΚΜ (W/cmT)為玻璃基板131下表面與 月丈熱板15上表面苐^一距離由之間氣體或固體介質之熱導率 (thermal conductivity),Τα為玻璃基板1;31下表面之溫度, Tb為散熱板15上表面之溫度。由玻璃基板131下表面傳輸 至散熱板15上表面的能量大小由Κμ、Τη ' Tb、及d2四個 參數值決定,以第二距離山而言,第二距離山值愈小傳輸的 能量愈大’當山值趨近於零,能量傳輸有最大值,ts2趨近於 張尺Μ财關家縣(CNS ) A4規格(210¾ 297公釐) ---- (請先閲讀背面之注意事項再填寫本頁) 、1Τ 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 548749 五、發明説明((t ) 之痊m 鎢絲«燈源 、/χ、強又、脈衝式或非脈衝式快速照射之週期、溫 度或時段、能量板Μ與試片η間之第一距離I介質^ 氣流、氣溫、氣壓、試片13與散熱板15間之 介質、及氣流、氣溫、氣壓、散熱板15之面積、厚-度姻、、 溫度'及數量等諸多參數,彼此相互關連、依存、作用 '妒 響,需以實驗逐步調整、校正,俾獲最佳回火結晶效果;^ 【第二較佳實施例】 ’ 圖二為本發明第二較佳實施例快速能量傳輸回火裝置 20示意圖,包括固定於一承載板21上之複數個石英柱22、 由複數個石英柱22支撐、厚度為ds之一試片23,其係包含 一玻璃基板231、於玻璃基板231上依次沉積之一二氧化矽 層232及一非晶矽薄膜層233、一能量板24,設於試片23 上方一第一距離山處、一散熱板25,其係設於試片23下方 一第二距離山處,可讓複數個石英柱22穿過,故散熱板25 可上下移動 '一鎢絲鹵素燈源26,設於能量板24上方,可 提供能量板24吸收之熱能,能量板24則由石墨、鉬、單晶 矽或其他可快速吸收鎢絲_素燈源26能量並快速升溫之材 料所構成。 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) ---.-------衣------1Τ------^1 (請先閱讀背面之注意事項再填寫本頁) 548749 A7 B7 五、發明説明(P ) 第二較佳實施例快速能量傳輸回火裝置20係藉鎢絲鹵 素燈源26自上方朝能量板24進行脈衝式或非脈衝式快速照 射’與第一較佳實施例快速能量傳輸回火裝置10相同者係能 量板24與試片23間之第一距離山保持不變,所不同者在於 快速能量傳輸回火裝置20中,複數個石英柱22係固定於承 載板21上,藉上下移動散熱板25,可在回火過程中隨時間 任意調整試片23與散熱板25間之第二距離山,因此可隨時 間任意控制玻璃基板之散熱;此外,承載板21與散熱板25 一者可為一恆溫散熱系統,其溫度可由一恆溫控制系統達成。 【第三較佳實施例】 圖二為本發明第三較佳實施例快速能量傳輸回火裝置 30示意圖’包括固定於一承載板31上之複數個石英柱幻、 由複數個石英柱32支撐、厚度為ds之一試片33,其係包含 一玻璃基板331、於玻璃基板331上依次沉積之一二氧化矽 層332及一非晶矽薄膜層333、一能量板34,設於試片幻 上方一第一距離山處、一散熱板35,設於試片33下方一第 二距離4處,可讓複數個石英柱32穿過,故承載板31可上 下移動、一鎢絲齒素燈源36,設於能量板34上方,可提供 月匕里板34所需之熱能,能量板則由石墨、|目、單晶石夕或其他 可快速吸收鎢絲鹵素燈源36能量並快速升溫之材料所構成。 第三較佳實施例快速能量傳輸回火裝置30同樣係藉鶴 絲鹵素燈源36自上方朝能量板34進行脈衝式或非脈衝式快 速照射,可包括一第一態樣及一第二態樣,其中第一態樣與 本紙張尺度適用中國國家標準(CNS )八4規格(2丨0'〆297公釐) (請先閱讀背面之注意事項再填寫本頁) 衣. -訂 548749 A7 ^-----_____B7 五、發明説明((j ) — 一- 第-較佳實施例及第二較佳實施例快速能量傳輸回火裝置 :〇、20不同者係藉上下移動承載板31之位置,能量板私與 試片33間之第一距離di及散熱板%與試片%間之第二距 離由在回火過程中隨時間同步改變,惟第一距離&與第二距 之總合㈣尸D-ds (ds為試片厚度)始終保持不變,以此 間同步㈣非晶吸熱與玻璃基板散熱·,第二態樣 與第一較佳實施例及第二較佳實施例快速能量傳輸回火裝置 ω、2〇不同者係承載板31及散熱板35之位置皆可移動,故 第一距離山及第二距離a可在回火過程中隨時間任意調整, 以此隨時間機動控制非晶石夕薄膜之吸熱與玻璃基板之。 【第四較佳實施例】 , 圖四為本發明第四較佳實施例快速能量傳輸回火裝置 40不意圖,包含一鎢絲鹵素燈源46、厚度為山之一試片43, 其係包含一玻璃基板431、於玻璃基板431上依次沉積之一 二氧化矽層432及一非晶矽薄膜層43S、一能量板44,設於 試片43上方一第一距離山處、一散熱板45,其係設於試片 43下方一第二距離由處,整體結構與第二或第三較佳實施例 快速能量傳輸回火裝置20、30大致相同;第一相昇處在於非 晶矽薄膜層433上之一第一凸塊434a,該第一凸塊434a之 突起導致其與能量板44間之距離山,小於非晶矽薄膜層433 與能量板44間之第一距離山,第一凸塊434a受熱較多,故 其下方之一第一非晶矽薄膜層區域436a吸收之熱能量高於 一第七非晶矽薄膜層區域439,同娌,第二凸塊435a下方之 ___________ _20_ 本紙張尺度適用中國國家標準(CNS )八4規格(21〇Χ297公釐) -丨 ^----蝗! (請先閱讀背面之注意事項再填寫本頁) 、tr 經濟部智慧財產局員工消費合作社印製 548749 A7 經濟部智慧財產局員工消費合作社印製 五、發明説明(q) 一第二非晶石夕薄膜層區域437a吸收之熱能量亦高於第七非 晶矽薄膜層區域439,第一非晶矽薄膜層區域436a及第二非 晶矽薄膜層區域437a所吸收較高之熱能量會傳導至兩區域 間之一第五非晶矽薄膜層區域438a,因此,第一非晶矽薄膜 層區域436a、第二非晶矽薄膜層區域437a及第五非晶矽薄 膜層區域438a三者之結晶速率高於第七非晶矽薄膜層區域 439及非晶矽薄膜層433之其他區域;第二相異處在於玻璃 基板431上之一第三凸塊434b,該第三凸塊43牝與散熱板 45之距離由’小於玻璃基板431與散熱板45間之第二距離 山,第三凸塊434b散熱較多,同理,第四凸塊435b散熱亦 較多,第三凸塊434b上方之一第三非晶矽薄膜層區域436b 及第四凸塊435b上方之一第四非晶矽薄膜層區域437b散熱 速度今於第七非晶矽薄膜層區域439,故第三非晶矽薄膜層 區域436b、第四非晶矽薄膜層區域437b及兩區域之間之一 第六非晶矽薄膜層區域438b散熱速度高於第七非晶矽薄膜 層區域439及非晶矽薄膜層433之其他區域;綜上所述,非 晶矽薄膜層433上之凸塊可使其下方及相鄰近之非晶矽薄膜 層區域加快吸熱而加快升溫,而玻璃基板上之凸塊可令其上 方及相鄰近之非晶矽薄膜層區域加快散熱而加怯降溫。 【第五較佳實施例】 圖五A及®五B分別為本發明第五較佳實施例第一態樣 及第二態樣快速能量傳輸回火裝覃伽及·示意圖,第一 態樣圖五A之結構及實施方式與圖一中第一較佳實施例快 本紙張尺度適用中國國家標準(CNS ) A4«^TTi^X 297^^ II Ϊ- - - 1= 1 II - 1 1= 1 . -- (請先閲讀背面之注意事項再填寫本頁) 訂 548749 A7 B7 、發明説明(β) 經濟部智慧財產局員工消費合作社印製 月匕里傳輸回火裝置10大致相同,包括一鎢絲鹵素燈源56a 及一能量板54a皆固定不動,所不同者係圖五A中,一散熱 板55a、固定於一散熱板55a上之複數個石英柱52a及由複 數個石英柱52a支撐於散熱板55a上方一第二距離由處、厚 度為ds之一試片53a,皆可置於一輸送帶(圖中未示)上,同 時向左移動,故試片53a可隨之依序通過能量板54a下方, 藉能量板54a釋出之熱能掃瞄,快速吸收能量板54a釋出之 熱志,快速升溫,完成類似圖一第一較佳實施例快速能量傳 輸回火裝置10中所述之回火結晶製程;第二態樣圖五B之 結構及實施方式與圖二第二較佳實施例快速能量傳輸回火裝 置20或圖三第三較佳實施例快速能量傳輸回火裝置3〇大致 相同,包括一鶴絲鹵素燈源56b及一能量板54b皆固定不動, 所不同者係圖五B中,一散熱板55b、固定於一承載板51b 上之複數個石英柱52b、由複數個石英柱52b支撐之一試片 53b及試片53b下方之一散熱板55b,皆可置於一輸送帶(圖 中未示)上,同時向左移動,故試片53b可隨之陸續通過能量 板54b下方,藉能量板54b釋出之熱能掃瞄,快速吸收能量 板54b釋出之熱能,快速升溫,散熱板55b及承載板51b皆 可上下調整移動,完成類似圖二第二較佳實施例怯速能量傳 輸回火裝置20或圖三第三較佳實施例快速能量傳輸回火裝 置30中所述之回火結晶製程。 經濟部智慧財產局員工消費合作社印製 548749 A7 A7 _ B7 五、發明説明(y) 【第六較佳實施例】 圖六為本發明第六較佳實施例快速能量傳輸回火裝置 60示意圖,其結構及實施方式與圖二第二較佳實施例快速能 量傳輸回火裝置20或圖三第三較佳實施例快速能量傳輸回 火裝置30大致相同,所不同者係圖六將所有元件置於一反應 室67中,反應室67内之氣體係為一氣體介質,可藉以傳導 及對流來傳輸熱能,一般可選擇使用氮氣(N2)、氫氣(h2)、 氬氣(Ar)、氦氣(He)、氖氣(Ne)、及氙氣(xe)等,反應室67 包括一入口 68a及一出口 08b,藉分別調整進入入口 68a及 排出出口 68b之氣體,可控制反應室67内之氣流、氣溫、 氣壓,從而控制自一能量板64傳輸能量至一非晶矽薄膜層 633之效率及自一玻璃基板631傳輸能量至_散熱板幻之效 率。 此外,如圖六所示,一能量板64與一試片63間可有一 固體介質69a及一氣體介質_,試片63及一散熱板65間, 亦可有一固體介質69c及一氣體介質/69d。 【苐七較佳實施例】 圖七為本發明第七較佳實施例快速能量傳輸回火裝置之 一试片73示意圖,包括於一玻璃(或一塑膠)基板上方依 次沉積之一如金屬之導熱層732、一如二氧化矽或氮化矽之 隔熱層733、一如非晶矽之非晶薄膜層734、一受熱層乃5, 以及於該玻璃(或塑膠)基板731下方沉積之一如金屬之散熱 層736 ’其中導熱層732、隔熱層733及散熱層736可為連續 尺度適用中國國家標—-- > —1^"I··-----9------1T#1 (請先閱讀背面之注意事項再填寫本頁) 548749 、發明説明( 薄膜,或如線條狀、格狀 請亦可為連續_^=^爾之触,非晶薄膜 之薄膜,受熱層735可為^中二狀、格狀及其他幾何圖案 a2、a3、a^+T立為圖中所示之幾何圖形,其中⑴、 程度不同,晶調735不同區域的受熱 求靈活應用’其原理係利 ;===: 速率所達成 生,控峨㈣爾結定區域發 火f = 實施例至第六較佳實施例快速能量傳輸回 ίί ; 〇 ' 5〇a ' 5〇b ' 訂 速=傳輪回火裝置試片73,詳細描述了本發明之不同實施 II .,^ ’本發明以第"^佳實施例所獲下列之第一實驗 、、、口,在第-距離山=2醜,第二距離d2=3mnU*件下, 以鶴絲«燈源自上方输量機行_式贿騎,其係 重複五次單-脈衝,每單-脈衝之設定㈣自·。c於球 鐘升溫至9001,維持9001五秒鐘,續自9〇(rc於十秒鐘 降溫至400 °C,單一脈衝週期共持續十八秒鐘,下一單一脈 衝週期緊接著開始’如此週而復始、#重複五個週期,僅花 費九十秒鐘(18 χ5 = 90秒),即可將一厚度為5〇〇埃的低溫 多晶矽薄膜,因Ν型離子佈植摻雜(磷(Ph〇sph()rus).2()key 1 X 1015/cm2)撞擊損壞所形成約400埃之非晶矽薄膜層回火 成多晶矽且將雜質活化,如圖八A及圖八B所示分別 型雜質活化試片回火前及回火後的剖面穿透式電子顯微鏡圖 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 548749 A7 B7 五、發明説明(>>) 像,可以清楚看出回火後非晶矽薄膜層已完全轉換為一多晶 矽薄膜層,且其雜質活化效果良好,具有良好導電性,片電 阻值約280D/square,此結果與一般使用雷射回火的效果相 當;又本發明以第一較佳實施例所獲下列之第二實驗結果, 與第一實驗不同處是以15個週期共270秒(18 χ15 = 270 秒),即可將沉積於一玻璃基板上之一厚度為4000埃的氫化 非晶矽薄膜(a-Si:H),在未去氫條件下回火成多晶矽薄膜, 沒有氫爆現象,如圖九A及圖九B所示分別為此氫化非晶矽 減片回火後的剖面穿透式電子顯微鏡圖像及電子繞射圖像, 可以清楚看出回火後氫化非晶矽薄膜層已完全轉換為一多晶 薄膜層,且介面十分平坦,並有多晶矽的繞射圖像;再者, 本發明快速能量傳輸回火裝置亦可藉一回饋控制系統,機動 調整能量板之溫度,加熱步驟可不受鎢絲鹵素或其他燈源衰 退之影響,且燈源、能量板、散熱板'及承載板等均可以由 許多單元組合成大面積的結構,故可迅速有效的進行大面積 之快速能量傳輸回火製程,若謂遠非前述習用技術所可比 擬’實不為過。 以上所述僅為本發明之較佳較佳實施例,不應用於僞限 本I明之可貝知範圍,凡根據本發明之内容所作之部份修 改,而未違背本發明之精神時,f應屬本發明之範圍者。此 外,本發明於巾請前絲f見於任何公開場合或刊物上,因 此t案深具「實用性、新穎性及進步性」之發明專利要件, =法=出發明專利之中請。祈請常審*委員允撥時間惠允 審查亚早賜與專利為禱。 , 本紙張尺度適用中國蘇公釐). (請先閲讀背面之注意事項再填寫本頁)The smaller the first-distance mountain value, the greater the transmission energy. When the di value approaches the intersection, & once the transmission has a maximum value, TS1 approaches the Te, and when the di value approaches the non-significant amount, there is a minimum transmission amount. Value, Jhl approaches zero ', so the first distance adjustment of the mountain value ^ controls the thermal energy of the energy plate 14 from the maximum value to the minimum value to the top surface of the amorphous stone film layer 133. Xige _ 132 provides thermal insulation function to protect the glass substrate 131 from overheating (over 6 ° 00 °). Damage caused by softening; heat dissipation plate 15 located at two distances d2 at 13 below, can be a constant temperature heat dissipation Plate, based on the overall design of the rapid energy transmission tempering device, can be set at 25 ° C, 100 ° C, 200 ° C, or 300T, which is much lower than the temperature of the energy plate 14. 133 The thermal energy transmitted to the glass substrate 131 through the silicon dioxide thermal insulation layer 132 is mainly transmitted through the medium (gas or solid) between the first distance between the test piece 13 and the political heat plate 15 through conduction, or by convection and radiation. To effectively dissipate heat from the heat sink 15 at a second distance below the glass substrate 131 and avoid the glass substrate 1 31 is hurt due to overheating. Similarly, taking conduction as an example, according to the flux of heatenergy formula, Jh2 = Kth2 (Ts2-Tb) / d2, Jh2 (w / cm2) is the glass substrate 131 The heat energy flux transmitted from the lower surface to the upper surface of the heat sink i5 through the second distance. KM (W / cmT) is the distance between the lower surface of the glass substrate 131 and the upper surface of the hot plate 15, which is a gas or solid medium. Thermal conductivity (Ta) is the temperature of the lower surface of the glass substrate 1; 31, and Tb is the temperature of the upper surface of the heat dissipation plate 15. The amount of energy transmitted from the lower surface of the glass substrate 131 to the upper surface of the heat dissipation plate 15 is κ, The values of the four parameters Τη ′ Tb and d2 are determined. In the case of the second distance mountain, the smaller the second distance mountain value is, the more energy is transmitted. When the mountain value approaches zero, the energy transmission has a maximum value, and ts2 approaches Zhangjia M Caiguanjia County (CNS) A4 specification (210¾ 297 mm) ---- (Please read the precautions on the back before filling out this page), 1T Intellectual Property Bureau, Ministry of Economic Affairs, Consumer Consumption Cooperative, Printing Wisdom of Economic Ministry Printed by the Consumer Cooperative of the Property Bureau 548749 V. Description of Invention (( t) The cure m tungsten wire «lamp source, / χ, strong, pulsed or non-pulsed fast irradiation cycle, temperature or period, the first distance between the energy plate M and the test strip η medium air flow, air temperature , Air pressure, the medium between the test piece 13 and the heat sink 15, and air flow, air temperature, air pressure, the area of the heat sink 15, the thickness-degree marriage, temperature, and the number of parameters are interrelated, dependent, and effective. It needs to be adjusted and corrected step by step through experiments to obtain the best tempering crystallization effect; ^ [Second Preferred Embodiment] 'Figure 2 is a schematic diagram of a fast energy transmission tempering device 20 according to a second preferred embodiment of the present invention, including A plurality of quartz pillars 22 fixed on a carrier plate 21, and a test piece 23 with a thickness of ds supported by the plurality of quartz pillars 22, includes a glass substrate 231, and a second oxide is deposited on the glass substrate 231 in order. A silicon layer 232, an amorphous silicon thin film layer 233, and an energy plate 24 are provided at a first distance from the mountain above the test strip 23, and a heat dissipation plate 25 is provided at a second distance from the mountain below the test strip 23. Allows multiple quartz posts 22 to pass through, so the heat sink 25 can move up and down 'A tungsten filament halogen lamp source 26 is provided above the energy plate 24 and can provide the heat energy absorbed by the energy plate 24. The energy plate 24 is made of graphite, molybdenum, single crystal silicon, or other fast-absorbing tungsten wires. And made of fast heating materials. This paper size applies to China National Standard (CNS) Α4 specification (210 × 297 mm) ---.------- clothing ------ 1T ------ ^ 1 (Please read the Note: Please fill in this page again) 548749 A7 B7 V. Description of the invention (P) The second preferred embodiment of the fast energy transmission tempering device 20 is a pulsed or non-pulsed type from the top of the tungsten halogen lamp source 26 toward the energy plate 24 The type of "rapid irradiation" is the same as the rapid energy transmission tempering device 10 of the first preferred embodiment. The first distance between the energy plate 24 and the test piece 23 remains unchanged. The difference lies in the rapid energy transmission tempering device 20. The plurality of quartz pillars 22 are fixed on the carrier plate 21. By moving the heat radiation plate 25 up and down, the second distance between the test piece 23 and the heat radiation plate 25 can be adjusted arbitrarily over time during the tempering process, so it can be arbitrarily over time. The heat dissipation of the glass substrate is controlled; in addition, one of the carrier plate 21 and the heat dissipation plate 25 may be a constant temperature heat dissipation system, and the temperature thereof may be achieved by a constant temperature control system. [Third Preferred Embodiment] FIG. 2 is a schematic diagram of a rapid energy transmission tempering device 30 according to a third preferred embodiment of the present invention, including a plurality of quartz pillars fixed on a carrier plate 31 and supported by a plurality of quartz pillars 32. A test piece 33 having a thickness of ds. The test piece 33 includes a glass substrate 331, a silicon dioxide layer 332, an amorphous silicon thin film layer 333, and an energy plate 34 deposited on the glass substrate 331 in this order. A first distance from the top of the mountain is a mountain, a heat sink 35 is provided at a second distance from the bottom of the test piece 33, and a plurality of quartz columns 32 can pass through, so the carrier plate 31 can move up and down, and a tungsten wire tooth element. The light source 36 is provided above the energy plate 34, and can provide the thermal energy required by the moon dagger plate 34. The energy plate is made of graphite, mesh, monocrystalline stone, or other fast-absorbing tungsten halogen light source 36 and quickly Made of warming materials. The third preferred embodiment of the rapid energy transmission and tempering device 30 also uses a crane wire halogen lamp source 36 to perform pulsed or non-pulsed rapid irradiation from above to the energy plate 34, which may include a first state and a second state The first aspect and this paper size are in accordance with the Chinese National Standard (CNS) 8-4 specification (2 丨 0'〆297mm) (Please read the precautions on the back before filling this page) Clothing.-Order 548749 A7 ^ -----_____ B7 V. Description of the Invention ((j) — One-The first and second preferred embodiments of the rapid energy transmission tempering device: 〇, 20 different by borrowing the carrier plate 31 up and down 31 Position, the first distance di between the energy board private and the test piece 33 and the second distance between the heat radiating plate% and the test piece% are changed synchronously with time during the tempering process, but the first distance & and the second distance In total, the corpse D-ds (ds is the thickness of the test piece) is always maintained, and in this time, the amorphous heat absorption and heat dissipation of the glass substrate are synchronized. The second aspect is the first preferred embodiment and the second preferred implementation. For example, the fast energy transmission tempering device ω, 20, the position of the bearing plate 31 and the heat radiation plate 35 can be moved. Therefore, the first distance mountain and the second distance a can be arbitrarily adjusted with time during the tempering process, so that the heat absorption of the amorphous stone film and the glass substrate can be controlled manually with time. [Fourth Preferred Embodiment] FIG. 4 is a schematic diagram of a fast energy transmission tempering device 40 according to a fourth preferred embodiment of the present invention, which includes a tungsten halogen lamp source 46 and a test piece 43 having a thickness of 1300, which includes a glass substrate 431 and a glass substrate. A silicon dioxide layer 432, an amorphous silicon thin film layer 43S, and an energy plate 44 are sequentially deposited on 431, disposed at a first distance from the mountain above the test piece 43, and a heat dissipation plate 45, which is provided on the test piece 43 There is a second distance below, the overall structure is approximately the same as that of the second or third preferred embodiment of the rapid energy transmission tempering device 20, 30; the first phase rise lies in a first protrusion on the amorphous silicon thin film layer 433 Block 434a. The protrusion of the first bump 434a causes the distance between the first bump 434a and the energy plate 44 to be smaller than the first distance between the amorphous silicon thin film layer 433 and the energy plate 44. The first bump 434a receives more heat, so Thermal energy absorbed by the first amorphous silicon film layer region 436a below it ___________ _20_ in the seventh amorphous silicon thin film layer region 439 under the second bump 435a This paper size is applicable to China National Standard (CNS) 8-4 specification (21〇 × 297 mm)-丨 ^- -Locust! (Please read the notes on the back before filling out this page), tr Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 548749 A7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of Invention (q) The thermal energy absorbed by the second amorphous silicon film layer region 437a is also higher than that of the seventh amorphous silicon film layer region 439, and the first amorphous silicon film layer region 436a and the second amorphous silicon film layer region 437a have higher absorption energy. Thermal energy is conducted to one of the fifth amorphous silicon thin film layer regions 438a between the two regions. Therefore, the first amorphous silicon thin film layer region 436a, the second amorphous silicon thin film layer region 437a, and the fifth amorphous silicon thin film layer region The crystallization rate of the three 438a is higher than that of the seventh amorphous silicon thin film layer region 439 and other areas of the amorphous silicon thin film layer 433; the second difference lies in a third bump 434b on the glass substrate 431, which The distance between the block 43 牝 and the heat sink 45 is reduced by 'small At the second distance between the glass substrate 431 and the heat sink 45, the third bump 434b dissipates more heat. Similarly, the fourth bump 435b also dissipates more heat, and one of the third amorphous silicon above the third bump 434b. The thin film layer region 436b and one of the fourth amorphous silicon film layer regions 437b above the fourth bump 435b dissipate heat faster than the seventh amorphous silicon film layer region 439, so the third amorphous silicon film layer region 436b and the fourth The crystalline silicon thin film layer region 437b and the sixth amorphous silicon thin film layer region 438b between the two regions dissipate heat faster than the seventh amorphous silicon thin film layer region 439 and other regions of the amorphous silicon thin film layer 433; to sum up The bumps on the amorphous silicon thin film layer 433 can accelerate the heat absorption and temperature rise of the areas below and adjacent amorphous silicon thin film layers, and the bumps on the glass substrate can make the amorphous silicon thin films above and adjacent to it. The layer area accelerates heat dissipation and cools down. [Fifth Preferred Embodiment] Figures 5A and 5B are schematic diagrams of the first aspect and the second aspect of the fifth preferred embodiment of the present invention for fast energy transmission and tempering, and the first aspect. The structure and implementation of FIG. 5A and the first preferred embodiment in FIG. 1 are based on the Chinese National Standard (CNS) A4 «^ TTi ^ X 297 ^^ II Ϊ---1 = 1 II-1 1 = 1.-(Please read the precautions on the back before filling this page) Order 548749 A7 B7, description of invention (β) The printing and tempering device 10 printed in the moon dagger printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy is roughly the same, including A tungsten halogen light source 56a and an energy plate 54a are both fixed. The difference is that in Fig. 5A, a heat sink 55a, a plurality of quartz pillars 52a fixed on a heat sink 55a, and a plurality of quartz pillars 52a. A test piece 53a supported on a heat sink 55a for a second distance and having a thickness of ds can be placed on a conveyor belt (not shown) and moved to the left at the same time, so the test piece 53a can follow Sequentially pass under the energy plate 54a and scan by the thermal energy released by the energy plate 54a to quickly absorb the heat emitted by the energy plate 54a , Rapid heating, complete the tempering crystallization process similar to that described in the first preferred embodiment of the rapid energy transmission tempering device 10 of the first embodiment; the second aspect of the structure and implementation of the fifth embodiment and the second preferred embodiment of FIG. 2 The rapid energy transmission tempering device 20 of the example or the third preferred embodiment of the rapid energy transmission tempering device 3 of FIG. 3 is substantially the same, including a crane wire halogen lamp source 56b and an energy plate 54b. In 5B, a heat dissipation plate 55b, a plurality of quartz pillars 52b fixed on a carrier plate 51b, a test piece 53b supported by the plurality of quartz pillars 52b, and a heat dissipation plate 55b under the test piece 53b can be placed on A conveyor belt (not shown) moves to the left at the same time, so the test piece 53b can successively pass below the energy plate 54b, and the thermal energy released by the energy plate 54b is scanned to quickly absorb the thermal energy released by the energy plate 54b. The temperature rises quickly, and both the heat dissipation plate 55b and the bearing plate 51b can be adjusted up and down to complete the rapid energy transmission tempering device 20 similar to the second preferred embodiment of FIG. 2 or the rapid energy transmission tempering device of the third preferred embodiment of FIG. Made of tempered crystal as described in 30 . Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 548749 A7 A7 _ B7 V. Description of the Invention (y) [Sixth Preferred Embodiment] FIG. 6 is a schematic diagram of a fast energy transmission tempering device 60 according to a sixth preferred embodiment of the present invention. Its structure and implementation are substantially the same as those of the fast energy transmission tempering device 20 of the second preferred embodiment of FIG. 2 or the fast energy transmission tempering device 30 of the third preferred embodiment of FIG. 3, except that all components are placed in FIG. In a reaction chamber 67, the gas system in the reaction chamber 67 is a gaseous medium, which can transmit heat energy by conduction and convection. Generally, nitrogen (N2), hydrogen (h2), argon (Ar), and helium can be selected. (He), neon (Ne), and xenon (xe), etc., the reaction chamber 67 includes an inlet 68a and an outlet 08b. By adjusting the gas entering the inlet 68a and the outlet 68b, the gas flow in the reaction chamber 67 can be controlled , Air temperature, and air pressure, thereby controlling the efficiency of transmitting energy from an energy plate 64 to an amorphous silicon thin film layer 633 and the efficiency of transmitting energy from a glass substrate 631 to a heat sink. In addition, as shown in FIG. 6, a solid medium 69a and a gas medium may be provided between an energy plate 64 and a test piece 63, and a solid medium 69c and a gas medium may be provided between the test piece 63 and a heat sink 65. 69d. [Big Seventh Preferred Embodiment] FIG. 7 is a schematic diagram of a test piece 73 of a fast energy transmission tempering device according to a seventh preferred embodiment of the present invention, which includes sequentially depositing one such as metal on a glass (or a plastic) substrate. A heat-conducting layer 732, a heat-insulating layer 733 like silicon dioxide or silicon nitride, an amorphous thin-film layer 734 like amorphous silicon, a heat-receiving layer 5 and a layer deposited under the glass (or plastic) substrate 731 The heat dissipation layer 736 is the same as metal. Among them, the thermal conduction layer 732, the heat insulation layer 733, and the heat dissipation layer 736 can be continuous scales applicable to Chinese national standards --- > —1 ^ " I ·· ----- 9-- ---- 1T # 1 (Please read the precautions on the back before filling in this page) 548749, description of the invention (thin film, or if the line shape, grid shape can also be continuous _ ^ = ^ Er touch, amorphous film In the thin film, the heating layer 735 can be in the shape of two, lattice, and other geometric patterns a2, a3, a ^ + T. The geometric figure shown in the figure, where ⑴, the degree is different, the heating of different regions of the crystal tone 735 Seek flexible application 'its principle is profitable; ===: rate achieved, control of Emeier area firing f = embodiment to the sixth best Example: Quick energy transmission back; 〇 '5〇a' 5〇b 'Speed setting = wheel tempering device test strip 73, describing in detail the different implementations of the present invention II., ^' The present invention is first " The following first experiment, test, and test obtained in the example, under the first distance distance mountain = 2 ugly, the second distance d2 = 3mnU * pieces, the crane wire «light comes from the upper volume machine line _ style brige riding, It repeats the single-pulse five times, and the setting of each single-pulse is self-c. The temperature is raised to 9001 in the ball clock, maintained for 9001 for five seconds, and continued from 90 (rc cooled to 400 ° C in ten seconds, single The pulse period lasts for a total of eighteen seconds, and the next single pulse period begins immediately. 'This cycle repeats, # repeats five cycles, and it takes only ninety seconds (18 x 5 = 90 seconds) to change a thickness to 500. The low-temperature polycrystalline silicon thin film of Angstrom is tempered by an amorphous silicon thin film layer of about 400 Angstroms formed by N-type ion implantation doping (Phosph () rus) .2 () key 1 X 1015 / cm2) damage Form polycrystalline silicon and activate the impurities, as shown in Figure 8A and Figure 8B, respectively, before and after tempering cross-section transmission electron microscope diagram The Zhang scale is in accordance with the Chinese National Standard (CNS) A4 specification (210 × 297 mm) 548749 A7 B7 V. Description of the invention (>) It can be clearly seen that the amorphous silicon film layer has been completely converted into a polycrystalline silicon film after tempering Layer, and its impurity activation effect is good, has good conductivity, the sheet resistance value is about 280D / square, this result is equivalent to the effect of laser tempering in general; and the present invention in the first preferred embodiment The second experiment result is different from the first experiment in that it takes 15 cycles for a total of 270 seconds (18 x 15 = 270 seconds), and a hydrogenated amorphous silicon film (a- Si: H). Tempered into a polycrystalline silicon thin film without dehydrogenation. There is no hydrogen explosion phenomenon. As shown in Figure 9A and Figure 9B, the cross-section electrons after tempering of the hydrogenated amorphous silicon subtractive sheet are respectively tempered. The microscope image and the electron diffraction image clearly show that the hydrogenated amorphous silicon film layer has been completely converted into a polycrystalline film layer after tempering, and the interface is very flat and there is a diffraction image of polycrystalline silicon; furthermore, The rapid energy transmission tempering device of the present invention is also By using a feedback control system, the temperature of the energy board can be adjusted by maneuvering, and the heating step can not be affected by the decay of tungsten halogen or other lamp sources, and the lamp source, energy board, heat sink 'and carrier board can be combined into a large unit by many units. The structure of the area allows rapid and efficient rapid energy transmission and tempering of large areas, which is far from being comparable to the conventional technology. The above description is only a preferred embodiment of the present invention, and should not be used to pseudo-limit the scope of the present invention. Any modification made based on the content of the present invention without departing from the spirit of the present invention, f It should be within the scope of the present invention. In addition, the present invention can be used in any public places or publications. Therefore, the t case has the elements of invention patents that are "practical, novel, and progressive." Pray for the members of the Standing Examination * to allow time to examine the patent granted by Yazao. , This paper size applies to Chinese millimeters). (Please read the notes on the back before filling this page)
、1T 經濟部智慧財產局員工消費合作社印製Printed by 1T Consumer Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs