TW541651B - Copper interconnect damascene fabrication process of semiconductor device - Google Patents
Copper interconnect damascene fabrication process of semiconductor device Download PDFInfo
- Publication number
- TW541651B TW541651B TW91112049A TW91112049A TW541651B TW 541651 B TW541651 B TW 541651B TW 91112049 A TW91112049 A TW 91112049A TW 91112049 A TW91112049 A TW 91112049A TW 541651 B TW541651 B TW 541651B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- copper wire
- item
- scope
- patent application
- Prior art date
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
541651 A7 B7 五、發明説明( 1明領域 本發明係關於一半導體元件之鑲嵌製程,特別是關於利 用低介電常數材質為介電層之銅導線鑲嵌製程。 i明背景 隨著積體電路的積集度增加,半導體元件之金屬導線間 的距離也愈來愈近,由於該導線之電阻值及相鄰導線間之 介電質形成之電容值相乘之效應(RC delay),使得信號傳 輸時間延遲且為元件速度受限的主要原因。此外,為因應 製程上線寬漸窄之趨勢所造成寄生電阻及電容的升高,銅 (Cu)金屬導線及具有低介電常數(1〇w_u的導線間層 (Intermetal Didectric ; IMD )被不斷地發展,並應用於深次 微米的元件製造技術中。 由於銅金屬導線不易以氣體電漿(乾式)的方式加以蝕 刻,因此銅金屬連線的製作大都是採用銅鑲嵌(cu Damascene)製程,如圖1(a)至圖1(d)所示。參照圖丨, 首先蝕刻一半導體元件〗〇之導線間層丨〇2、ι 〇4及一蝕刻 停止層106,形成可連接至一金屬導線層1〇8之一介層洞 (via) 110及溝渠(trench) 112、114。該溝渠⑴、ιι4 係作為金屬導線(metal line)部分’即相當於該金屬導線層 108 ’只是隸屬不同層。參照圖1(b),依序沈積一金屬阻 障層116及填充一銅金屬層118。該金屬阻障層ιΐ6常以氮 化钽(TaN)組成,作為防止該銅金屬層118中之鋼原子擴 散之用。參照圖1(c),利用化學機械研磨(❹⑽丨㈤ Mechanical Polishing ; CMP )技術進行平坦化,將高出於該 H:\Hu\tys\NDL 中說\77788\77788修正 doc -4- 541651 A7 _____B7 五、發明説明(2 ) 導線間層1 0 4的該銅金屬層1 1 8及該金屬阻障層1 1 6磨除。 參照圖1 ( d),最後沈積一氮化矽(叫队)蓋層(capping layer) 12〇於該銅金屬層丨丨8及該導線間層1〇4上,以防止 銅金屬層1 1 8中銅原子的擴散及氧化。 雙鑲嵌製程係用於取代目前以鋁-銅為金屬線之製程, 屬於晶圓製造之後段製程(Back-End Of Line ; BEOL ),即 使用於完成與矽底層之接觸栓塞(c〇ntactplug)後,且依元 件設計之金屬導線層數,可能需重覆進行多次。 然而,在此習知的鑲嵌結構製程中常遭遇到一些問題。 首先,在利用CMP製程來磨除多餘的該銅金屬層118時, 由於所選擇I研磨液(slurry )主要是用來研磨該銅金屬層 1 1 8,故其對於該金屬阻障層i丨6之研磨速率相對較慢, 使得在較大圖案(pattern)面積的區域,例如填充於該溝渠 1 12、114之該銅導線層118,常會發生碟狀凹陷 (dishing) 122、124的現象,造成表面平坦度不佳。並且在 移除該金屬阻障層116的CMP製程中,也容易造成該導線 間層1 0 4的表面受損,而產生嚴重的介面漏電流( leakage current)現象。除此之外,由於該氮化矽蓋層12()具 有較南的介電常數(約7.9 ),會提高整體鑲嵌結構的有 效介電常數值。另外,由於銅金屬原子在Cu/si3N4介面 上黾子遷移黍生的反應活化能(activation energy )低於541651 A7 B7 V. Description of the Invention (1) The invention relates to the damascene process of a semiconductor device, especially the copper wire damascene process using a low dielectric constant material as the dielectric layer. As the degree of accumulation increases, the distance between the metal wires of the semiconductor element is getting closer and closer. Due to the effect of the resistance value of the wire and the capacitance value formed by the dielectric between adjacent wires (RC delay), signal transmission The time delay is the main reason for the limited speed of the device. In addition, in order to increase the parasitic resistance and capacitance caused by the trend of narrowing line width on the process, copper (Cu) metal wires and low dielectric constant Intermetal Didectric (IMD) has been continuously developed and applied to deep sub-micron component manufacturing technology. Because copper metal wires are not easy to be etched by gas plasma (dry type), the production of copper metal wires Most of them use Cu damascene process, as shown in Fig. 1 (a) to Fig. 1 (d). Referring to Fig. 丨, the first inter-conductor layer of a semiconductor device is etched. ι〇4 and an etch stop layer 106 to form a via 110 and trenches 112 and 114 which can be connected to a metal wire layer 108. The trenches ι and ι4 are used as metal lines. ) Part is equivalent to the metal wire layer 108, but it belongs to different layers. Referring to FIG. 1 (b), a metal barrier layer 116 and a copper metal layer 118 are sequentially deposited. The metal barrier layer ιΐ6 is usually nitrogen. The composition of tantalum (TaN) is used to prevent the diffusion of steel atoms in the copper metal layer 118. Referring to FIG. 1 (c), planarization using chemical mechanical polishing (CMP) technology will be higher In the H: \ Hu \ tys \ NDL said \ 77788 \ 77788 amended doc -4- 541651 A7 _____B7 V. Description of the invention (2) The copper metal layer 1 1 8 of the conductor layer 1 0 4 and the metal barrier Layer 1 1 6 is removed. Referring to FIG. 1 (d), a silicon nitride (called capping) capping layer 12 is finally deposited on the copper metal layer 8 and the wire interlayer 104. In order to prevent the diffusion and oxidation of copper atoms in the copper metal layer 1 1 8. The dual damascene process is used to replace the current aluminum-copper metal. The line process belongs to the back-end of line (BEOL) process of wafer manufacturing. Even after it is used to complete the contact plug with silicon bottom layer (contactplug), and depending on the number of metal wire layers of the component design, it may require It is repeated many times. However, some problems are often encountered in the process of the conventional mosaic structure. First, when the CMP process is used to remove the excess copper metal layer 118, since the selected I slurry is mainly used to polish the copper metal layer 1 1 8, it is not suitable for the metal barrier layer i 丨The polishing rate of 6 is relatively slow, so that in regions with a large pattern area, such as the copper wire layer 118 filled in the trenches 1 12, 114, dishing 122, 124 phenomena often occur. Causes poor surface flatness. In addition, during the CMP process of removing the metal barrier layer 116, the surface of the wire interlayer 104 is easily damaged, and a serious interface leakage current phenomenon is generated. In addition, since the silicon nitride capping layer 12 () has a relatively low dielectric constant (about 7.9), the effective dielectric constant value of the overall damascene structure will be increased. In addition, the activation energy due to the migration of copper atoms on the Cu / si3N4 interface is lower than the activation energy.
Cu/TaN介面上的反應活化能,其抗電子遷移的能力較 差,這使得該氮化矽蓋層12〇在銅導線製程的應用上受到 了一些限制。The reaction activation energy on the Cu / TaN interface and its ability to resist electron migration are poor, which makes the silicon nitride cap layer 120 limited in the application of the copper wire process.
H:\Hu\tys\NDL 中說\77788\77788修正 doc ^ CH: \ Hu \ tys \ NDL says \ 77788 \ 77788 fix doc ^ C
541651 A7 一 B7 五、發明説明(3 ) — ---- 1明之簡要說明 本發明之目的係提供一高可靠性的銅導線鑲嵌製程,可 有效地增強孩銅導線之抗電子遷移的能力、降低碟狀凹陷 對平坦度的影響以及降低導線間層在介面處的漏電流。此 外,利用具有低介電常數的介電層作為該銅導線的蓋層, 更能進一步地降低該銅導線系統之整體有效介電常數。 本發明之半導體元件之銅導線鑲嵌製程,包含下列步 驟·( a)於一半導體基板上形成至少一雙鑲嵌結構,其包含 係作為導線間層之至少一介電層及至少一金屬導線層,而 咸介電層中包含作為導線通道之溝渠及介層洞;(b)沈積 一第一金屬阻障層於該介電層及該金屬導線層,以防止銅 金屬擴散;(c)覆蓋一銅金屬層於該第一金屬阻障層;(d) 以化學機械研磨技術進行表面平坦化至曝露出該介電層為 止,(e)形成一第二金屬阻障層於該銅金屬層表面及一氮化 物層於該介電層表面;以及(f)覆蓋一介電質蓋層。 上逑 < 第二金屬阻障層可為一氮化鎢層,該氮化鎢層及 氮化物層之形成可先利用WF0和SiH4氣體選擇性地僅於該 銅金屬層表面反應形成一鎢金屬層。再利用氮氣(M2)或 氨氣(NH3)電漿進行氮化反應,使該鎢金屬層成為該氮化 鶴層,而該介電層表面則形成一氮化物層。另外,該氮化 鎢層亦可利用WF6、S1H4及A或WF6、Si%及NH3等氣體直接 反應而成。因為WF6氣體不易與介電質等絕緣材質反應, 但卻可於金屬材質表面沈積鎢金屬。本發明即藉由這 種於不同材質上之成長潛伏期不同的特性,選擇性地沈積 H:\Hu\tys\NDL 中說\77788\77788修正 d〇c -6- 541651 A7541651 A7-B7 V. Description of the invention (3) — ---- 1 Brief description The purpose of the present invention is to provide a high-reliability copper wire inlay process, which can effectively enhance the ability of the copper wire to resist electron migration, Reduce the influence of dish-shaped depressions on flatness and reduce the leakage current at the interface between wires. In addition, the use of a dielectric layer having a low dielectric constant as the capping layer of the copper wire can further reduce the overall effective dielectric constant of the copper wire system. The copper wire damascene process of the semiconductor element of the present invention includes the following steps: (a) forming at least one double damascene structure on a semiconductor substrate, which includes at least one dielectric layer and at least one metal wire layer as a wire interlayer, The salt dielectric layer includes a trench and a via hole as a wire channel; (b) depositing a first metal barrier layer on the dielectric layer and the metal wire layer to prevent copper metal from diffusing; (c) covering a A copper metal layer on the first metal barrier layer; (d) planarizing the surface by chemical mechanical polishing technology until the dielectric layer is exposed, and (e) forming a second metal barrier layer on the surface of the copper metal layer And a nitride layer on the surface of the dielectric layer; and (f) covering a dielectric cap layer. The upper metal barrier layer may be a tungsten nitride layer. The tungsten nitride layer and the nitride layer may be formed by first reacting only WF0 and SiH4 gas on the surface of the copper metal layer to form tungsten. Metal layer. Nitrogen (M2) or ammonia (NH3) plasma is used to perform the nitriding reaction, so that the tungsten metal layer becomes the nitrided crane layer, and a nitride layer is formed on the surface of the dielectric layer. The tungsten nitride layer can also be formed by directly reacting WF6, S1H4 and A or WF6, Si% and NH3. Because WF6 gas is not easy to react with insulating materials such as dielectrics, it can deposit tungsten metal on the surface of metal materials. The present invention selectively uses this characteristic of different growth latency on different materials to selectively deposit H: \ Hu \ tys \ NDL said \ 77788 \ 77788 modified doc -6- 541651 A7
該氮化鎢料平坦化後的該銅金屬層上,不僅可 凹陷的問題因氮化鵁之介電常數較氮切低,亦:狀 少電子遷移的現象。 可滅 圖式之簡單tn 本發明將依後附圖式來說明,其中: 圖1 ( a) 土圖1 ( d)係習知之銅導線鑲截製程;以及 圖2(a)至圖2(e)係本發明之銅導線鑲嵌製程。 元_件符號說明 10 半導體元件 102、104 導線間層 106 蝕刻停止層 108 金屬導線層 1 10 介層洞 112、114 溝渠 116 金屬阻障層 118 銅金屬層 120 氮化矽蓋層 122、124 碟狀凹陷 20 半導體元件 202、204 介電層 206 蝕刻停止層 208 金屬導線層 210 介層洞 212、214 溝渠 216 TaN金屬阻障層 218 銅金屬層 220 、222 碟狀凹陷 224 氮化鎢層 226 氮化物層 228介電質蓋層 較佳實施例說明 圖2(a)至圖2(e)顯示本發明之半導體元件之銅On the copper metal layer after the tungsten nitride material is planarized, not only the problem that the dielectric constant of hafnium nitride is lower than that of nitrogen, but also the phenomenon of less electron migration. The simple tn of the extinguishable pattern The present invention will be described with reference to the following drawings, in which: Figure 1 (a) Figure 1 (d) is a conventional copper wire inlaying process; and Figures 2 (a) to 2 ( e) It is the copper wire inlaying process of the present invention. Symbol description of element_10 semiconductor element 102, 104 inter-wire layer 106 etch stop layer 108 metal wire layer 1 10 via hole 112, 114 trench 116 metal barrier layer 118 copper metal layer 120 silicon nitride cap layer 122, 124 dish 20 depressions 20 semiconductor elements 202, 204 dielectric layer 206 etch stop layer 208 metal wire layer 210 vias 212, 214 trenches 216 TaN metal barrier layer 218 copper metal layer 220, 222 dish-like depression 224 tungsten nitride layer 226 nitrogen Description of the preferred embodiment of the metallization layer 228 dielectric capping layer Figures 2 (a) to 2 (e) show the copper of the semiconductor device of the present invention
裝 訂Binding
線 製程之製作步驟。參照圖2(a),首先蝕刻一半導體元件2〇 之作為導線間層之介電層2 0 2、2 0 4及一姓刻停止層2 〇 6, HAHu\tys\NDL 中說\77788V77788修正 doc -" 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 541651 A7 B7 五、發明説明(5 ) 以形成可連接至一金屬導線層2 0 8之一介層洞(via ) 2 1 0及 溝渠(trench )212、214,該介電層202、204係由具有低 介電常數之矽酸鹽類(Silicate-based )薄膜所組成,例如: FSG(Fluorosilicate Glass)、HSQ(Hydrogen silsesquioxane)、 MSQ(Methylsilsesquioxane)、HOSP(Hybrid-Organic_Siloxane_ Polymer)及SiOC等。參照圖2(b),依序沈積一 TaN金屬阻 障層2 1 6及填充一銅金屬層2 1 8於該介層洞2 1 0及該溝渠 2 1 2、2 1 4。參照圖2 ( c )’利用化學機械研磨(chemical Mechanical Polishing ; CMP )技術進行平坦化,將高出於該 介電層204的該銅金屬層218及該TaN金屬阻障層216磨 除,由於CMP針對該銅金屬層2 1 8及該TaN金屬阻障層 216之研磨速率不同,而於該溝渠212、214處產生碟狀凹 陷220、222。參照圖2(d),選擇性地沈積一氮化鎢 (WNX)層22 4於CMP後的該銅金屬層21 8上,而該介電層 204的表面經氮化形成一氮化物層226,由於FSG為一氧 化矽材質,故該氮化物層22 6係由氮氧化矽(Si0N)所組 成。在此步驟中’不但可減少該碟狀凹陷2 2 〇、2 2 2的凹 陷深度,並且由於C u / W N x界面相較於習知c u / s丨3 N 4界 面具有較高的反應活化能,而可提升抗電子遷移的能力。 參照圖2 ( e ) ’以旋塗塗佈(Spin_coating )的方式覆蓋一介電 質盍層2 2 8 ’而完成銅鑲後結構的製作。該介電質蓋層 H:\Hu\tys\NDL 中說\77788\77788修正 doc - g _Production steps of the line process. Referring to FIG. 2 (a), a semiconductor device 20 is first etched with a dielectric layer 2 0, 2 0 4 as a wire interlayer, and a etch stop layer 2 0. HAHu \ tys \ NDL says \ 77788V77788 modified doc-" This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 541651 A7 B7 V. Description of the invention (5) to form a via hole that can be connected to a metal wire layer 208 ( via) 2 10 and trenches 212 and 214. The dielectric layers 202 and 204 are composed of a Silicate-based film with a low dielectric constant, such as: FSG (Fluorosilicate Glass), HSQ (Hydrogen silsesquioxane), MSQ (Methylsilsesquioxane), HOSP (Hybrid-Organic_Siloxane_ Polymer), and SiOC. Referring to FIG. 2 (b), a TaN metal barrier layer 2 16 and a copper metal layer 2 1 8 are sequentially deposited on the via hole 2 10 and the trench 2 1 2 and 2 1 4 in this order. Referring to FIG. 2 (c), a chemical mechanical polishing (CMP) technique is used for planarization to remove the copper metal layer 218 and the TaN metal barrier layer 216 that are higher than the dielectric layer 204. CMP has different polishing rates for the copper metal layer 2 18 and the TaN metal barrier layer 216, and dish-shaped depressions 220 and 222 are generated at the trenches 212 and 214. 2 (d), a tungsten nitride (WNX) layer 22 4 is selectively deposited on the copper metal layer 21 8 after CMP, and a surface of the dielectric layer 204 is nitrided to form a nitride layer 226. Since FSG is made of silicon monoxide, the nitride layer 22 6 is composed of silicon oxynitride (Si0N). In this step, not only can the dish-shaped depressions 2 2 0, 2 2 2 be reduced in depth, but also because the Cu / WN x interface has higher reaction activation than the conventional cu / s 丨 3 N 4 interface Yes, it can improve the ability to resist electron migration. Referring to FIG. 2 (e) ', a dielectric coating layer 2 2 8' is covered with a spin coating method to complete the fabrication of the structure after copper inlaying. The dielectric cap layer H: \ Hu \ tys \ NDL says \ 77788 \ 77788 modified doc-g _
541651 A7 B7 五發明説明(6~~) ' 228可由具有低介電常數之矽酸鹽類薄膜或介電常數為5之 碳化矽(SiC )所組成,以取代傳統上使用之電常數為8的 Si3N4 。 上述之選擇性的氮化鎢層2 2 4可利用以下兩種方法於金 屬鎢化學氣相沈積機台(W-CVD )中形成: (1 )利用W F 6和S i Η 4混合氣體作為先驅物(precursor*), (其混合比例為 WF6 · SiH4 = 40〜100 seem : 60〜150 seem, seem係一流量單位,即c.c./min),於300°C〜400°C下進行 化學反應’依下列反應式(a)選擇性地於該銅金屬層2 1 8表 面形成一鎢金屬層(圖未示出): 2WF6 + 3SiH4 ^ 2 W + 3SiF4+6Η2 · · · (a) 於實施此化學氣相沉積反應時,反應室(chamber )中先 行通入S i Η 4氣體約1〜3分鐘,作為一清除(purging )的動 作’之後再通入WF6氣體。如此可防止該銅金屬層218表 面氧化。此化學沉積反應具有選擇性,該鎢金屬層只會形 成在該銅金屬層218的表面,而不會形成於該介電層2〇4 接著,對該鎢金屬層進行氮氣(A)電漿或氨氣(NH3) 電漿的處理,形成該氮化鎢層224。在此電漿處理步驟的 同時’也會將該介電層2 04的表面進行氮化,而形成一氮 化物層22 6 ’可修補先前以CMP製程研磨時對該介電層 H:\Hu\tys\NDL 中說\77788\77788修正 doc - 9 _ 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) I· 裝 訂541651 A7 B7 Fifth invention description (6 ~~) '228 can be composed of silicate film with low dielectric constant or silicon carbide (SiC) with a dielectric constant of 5 to replace the traditionally used dielectric constant of 8 Si3N4. The above-mentioned selective tungsten nitride layer 2 2 4 can be formed in a metal tungsten chemical vapor deposition machine (W-CVD) using the following two methods: (1) using a mixed gas of WF 6 and Si i 4 as a precursor (Precursor *), (the mixing ratio is WF6 · SiH4 = 40 ~ 100 seem: 60 ~ 150 seem, seem is a flow unit, ie cc / min), and the chemical reaction is performed at 300 ° C ~ 400 ° C ' A tungsten metal layer (not shown) is selectively formed on the surface of the copper metal layer 2 1 8 according to the following reaction formula (a): 2WF6 + 3SiH4 ^ 2 W + 3SiF4 + 6Η2 · · · (a) In the chemical vapor deposition reaction, S i Η 4 gas is first introduced into the reaction chamber (chamber) for about 1 to 3 minutes, and as a purging action, the WF6 gas is introduced. This prevents the surface of the copper metal layer 218 from being oxidized. The chemical deposition reaction is selective, and the tungsten metal layer will only be formed on the surface of the copper metal layer 218, but not on the dielectric layer 204. Next, a plasma of nitrogen (A) is performed on the tungsten metal layer. Or the treatment of ammonia gas (NH3) plasma to form the tungsten nitride layer 224. At the same time of the plasma processing step, the surface of the dielectric layer 204 will also be nitrided to form a nitride layer 22 6 'which can repair the dielectric layer H: \ Hu when it was previously polished by the CMP process. \ tys \ NDL says \ 77788 \ 77788 revised doc-9 _ This paper size applies to China National Standard (CNS) A4 (210X297 mm) I. Binding
線 541651 A7 B7 五 發明説明(7 ) 2 0 4所造成的損壞,有效降低該介電層2 0 4界面的漏電 流。 (2)利用WF6、SiH4及N2 (或NH3 )之混合氣體(其比 例為為 WF6 : SiH4 : N2 = 40〜100 seem : 60〜150 seem : 20〜50 seem),依下列反應式(b )於3 0 0 ° C〜4 0 0 ° C進行化學反 應,形成該氮化鎢層2 2 4及該氮化物層2 2 6。 2WF6 + 3SiH4 + N2 ^ 2WN + 3SiF4+ 6H2 ···〇)) 如同上述之第一種方法,在實施此化學氣相沉積反應 時,反應室中亦先行通入S i Η 4氣體約1〜3分鐘,之後才通 入WF6氣體及Ν24ΝΗ3氣體。 本發明之技術内容及技術特點巳揭示如上,然而熟悉本 項技術之人士仍可能基於本發明之教示及揭示而作種種不 背離本發明精神之替換及修飾。因此,本發明之保護範圍 應不限於實施例所揭示者,而應包括各種不背離本發明之 替換及修飾,並為以下之申請專利範圍所涵蓋。 -10- H:\Hu\tys\NDL 中說\77788\77788修正 doc 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Line 541651 A7 B7 V. Description of the invention (7) The damage caused by 204 is effective to reduce the leakage current at the interface of the dielectric layer 204. (2) Using a mixed gas of WF6, SiH4, and N2 (or NH3) (the ratio is WF6: SiH4: N2 = 40 ~ 100 seem: 60 ~ 150 seem: 20 ~ 50 seem), according to the following reaction formula (b) A chemical reaction is performed at 300 ° C. to 400 ° C. to form the tungsten nitride layer 2 2 4 and the nitride layer 2 2 6. 2WF6 + 3SiH4 + N2 ^ 2WN + 3SiF4 + 6H2 ··· 〇)) As in the first method described above, when carrying out this chemical vapor deposition reaction, S i 先 4 gas is first introduced into the reaction chamber for about 1 ~ 3 Minutes, after which WF6 gas and Ν24ΝΗ3 gas were introduced. The technical content and technical features of the present invention are disclosed as above. However, those skilled in the art may still make various substitutions and modifications based on the teaching and disclosure of the present invention without departing from the spirit of the present invention. Therefore, the protection scope of the present invention should not be limited to those disclosed in the embodiments, but should include various substitutions and modifications that do not depart from the present invention, and are covered by the following patent application scope. -10- H: \ Hu \ tys \ NDL says \ 77788 \ 77788 amended doc This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91112049A TW541651B (en) | 2002-06-04 | 2002-06-04 | Copper interconnect damascene fabrication process of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91112049A TW541651B (en) | 2002-06-04 | 2002-06-04 | Copper interconnect damascene fabrication process of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW541651B true TW541651B (en) | 2003-07-11 |
Family
ID=29708421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91112049A TW541651B (en) | 2002-06-04 | 2002-06-04 | Copper interconnect damascene fabrication process of semiconductor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW541651B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7413991B2 (en) | 2003-08-14 | 2008-08-19 | Taiwan Semiconductor Manufacturing Co., Ltd. | Damascene process at semiconductor substrate level |
-
2002
- 2002-06-04 TW TW91112049A patent/TW541651B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7413991B2 (en) | 2003-08-14 | 2008-08-19 | Taiwan Semiconductor Manufacturing Co., Ltd. | Damascene process at semiconductor substrate level |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10943867B2 (en) | Schemes for forming barrier layers for copper in interconnect structures | |
US6713873B1 (en) | Adhesion between dielectric materials | |
US9219036B2 (en) | Interconnect structure for semiconductor devices | |
US6627539B1 (en) | Method of forming dual-damascene interconnect structures employing low-k dielectric materials | |
US6528426B1 (en) | Integrated circuit interconnect and method | |
US7834459B2 (en) | Semiconductor device and semiconductor device manufacturing method | |
CN1819178A (en) | Semiconductor device and method for production thereof | |
US20060281299A1 (en) | Method of fabricating silicon carbide-capped copper damascene interconnect | |
US6930033B2 (en) | Treating surface of low-dielectric constant material to achieve good mechanical strength | |
US6495448B1 (en) | Dual damascene process | |
KR100703968B1 (en) | Method for fabricating interconnection line in a semiconductor device | |
US6169034B1 (en) | Chemically removable Cu CMP slurry abrasive | |
JP2004505447A (en) | Method for forming copper wiring cap layer with improved interface and adhesion | |
US20030008493A1 (en) | Interconnect structure manufacturing | |
TW541651B (en) | Copper interconnect damascene fabrication process of semiconductor device | |
US6459155B1 (en) | Damascene processing employing low Si-SiON etch stop layer/arc | |
KR20080114056A (en) | Line of semiconductor device and method for manufacturing the same | |
US20060040490A1 (en) | Method of fabricating silicon carbide-capped copper damascene interconnect | |
US20030008495A1 (en) | Selective barrier metal fabricated for interconnect structure manufacturing process | |
TW304297B (en) | ||
KR101138113B1 (en) | Method for Forming Metal-Line of Semiconductor Device | |
JP2009188101A (en) | Semiconductor device, and manufacturing method thereof | |
TW594920B (en) | Damascene structure having dielectric barrier and process of making the same | |
TW504799B (en) | Copper line fabrication method | |
TW503521B (en) | Manufacturing method of damascene type inter-connection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |