TW504799B - Copper line fabrication method - Google Patents
Copper line fabrication method Download PDFInfo
- Publication number
- TW504799B TW504799B TW90132803A TW90132803A TW504799B TW 504799 B TW504799 B TW 504799B TW 90132803 A TW90132803 A TW 90132803A TW 90132803 A TW90132803 A TW 90132803A TW 504799 B TW504799 B TW 504799B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- copper
- metal
- item
- copper wire
- Prior art date
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
504799 A7 B7 五、發明説明(1 ) 發明領域 本發明係關於一種銅導線製作方法,特別是關於一利用 銅接觸置換技術之銅導線製作方法。 發明背景 一般來說,積體電路晶片之操作速度會隨著其元件間内 連接導線之電阻值和導線間之介電值之相乘值之增加而降 低,即所謂的R C延遲,由於銅具有低電阻之特性,因此以 銅為内連接導線可以有更高之晶片運算速度。此外,銅具 有較高的電子遷移阻力(electron migration resistant),可提高 其所構成之元件的壽命及穩定性。 由於銅金屬之特性,目前尚無法由傳統之金屬蚀刻方法 形成所謂的銅金屬線(metal line),業界大都採用由I B Μ公 司所發展之銅導線雙鑲嵌(Dual Damascene)製程,用以形成 銅導線之結構。該銅導線雙鑲嵌製程係用於取代目前以鋁-銅合金為金屬線之製程,屬於晶圓製造之後段製程(Back_ End Of Line ; BEOL),即使用於完成與矽底層之接觸栓塞 (contact plug)後,且依元件設計之金屬線層數,可能需重覆 進行多次。 圖1 ( a)至圖1 ( f)係習知之銅導線雙鑲嵌製程於各步騾之 結構圖。在圖1(a)中,一半導體元件10包含一基板102、 一第一氮化碎層104、一第一介電質層106、一第二氮化 矽層108及一第二介電質層110。該基板102可為一晶圓完 成其内層介電質(Inter Layer Dielectric ; ILD)之接觸栓塞之結 構(圖未示出),或一晶圓於進行多重内連線製程(multilevel H:\HU\TYS\NDL 中說\ 已修正75134.DOC _ 4 — 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 504799 A7 B7 五、發明説明(2 )504799 A7 B7 V. Description of the Invention (1) Field of the Invention The present invention relates to a method for manufacturing a copper wire, and more particularly to a method for manufacturing a copper wire using copper contact replacement technology. BACKGROUND OF THE INVENTION Generally speaking, the operating speed of an integrated circuit chip decreases as the multiplied value of the resistance value of the connecting wires between the components and the dielectric value between the wires increases, the so-called RC delay. Low resistance, so using copper as the interconnect wire can have higher chip operation speed. In addition, copper has a higher electron migration resistance, which can improve the life and stability of the components it forms. Due to the characteristics of copper metal, it is not yet possible to form so-called copper metal lines by traditional metal etching methods. Most of the industry uses the dual damascene process of copper wires developed by IB M company to form copper. The structure of the wire. The copper wire dual damascene process is used to replace the current process using aluminum-copper alloy as the metal wire. It belongs to the back-end process of wafer manufacturing (Back_End Of Line; BEOL). plug), and depending on the number of metal line layers of the component design, it may need to be repeated several times. Figures 1 (a) to 1 (f) are the structural diagrams of the conventional copper wire double-inlaying process at each step. In FIG. 1 (a), a semiconductor device 10 includes a substrate 102, a first nitride layer 104, a first dielectric layer 106, a second silicon nitride layer 108, and a second dielectric. Layer 110. The substrate 102 can be a wafer (interlayer dielectric) (ILD) contact plug structure (not shown), or a wafer can be subjected to multiple interconnection processes (multilevel H: \ HU \ TYS \ NDL said \ Revised 75134.DOC _ 4 — This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 504799 A7 B7 V. Description of invention (2)
Interconnects)中之結構,即已完成某一金屬間介電層(Inter Metal Dielectric ; IMD)及其介層洞(via)栓塞之結構。該第一 介電質層106及第二介電質層110可由低介電係數之介電 材料所組成,該低介電係數(low k)之介電材料可為無機 (inorganic)物,例如多孔性(porous)氧化碎,或有機(organic polymer)聚合物之型式,其形成之方式則可利用化學氣相沈 積(Chemical Vapor Deposition ; CVD)或旋塗(spin on)等方 法。在圖1(b)中,以一光阻(圖未示出)定義金屬層間之介 層洞區域,依序蝕刻該第二介電質層1 1 0、第二氮化矽層 108、第一介電質層106及該第一氮化矽層104,並停止於 該基板102表面。接著,以另一光阻(圖未示出)定義金屬 線之溝渠(trench)區域,蝕刻該第二介電質層1 1 0,並停止 於詨第二氮化矽層1 0 8,該第二氮化矽層1 0 8係作為一蝕 刻停止層。在圖1 ( c)中,以物理氣相沈積(Physical Vapor Deposition ; PVD)或C V D之方式沈積一鈕或氮化鈕之銅阻障 層(barrier) 112及一銅種晶層(seed layer) 1 1 4。該銅阻障層 112可防止銅金屬藉由擴散作用進入該第一介電質層106 與該第二介電質層1 1 0而造成元件的漏電流現象,而該銅 種晶層1 1 4則作為後續進行銅電鍍之電極。在圖1 ( d)中, 電鍍一銅金屬層1 1 6。在圖1 ( e)中,以化學機械研磨 (Chemical Mechanical Polishing ; CMP)之方式進行平坦化處 理,且研磨掉該銅金屬層1 1 6、該銅種晶層1 1 4及該銅阻 障層1 1 2。在圖1 ( f)中,以C V D之方法披覆一氮化矽層 1 1 8作為阻障層之用。 H:\HU\TYS\NDL 中說\ 已修正75134.DOC 一 5 一 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 504799 A7The structure in Interconnects), that is, the structure of a certain Inter Metal Dielectric (IMD) and its via plug. The first dielectric layer 106 and the second dielectric layer 110 may be composed of a low-k dielectric material. The low-k dielectric material may be an inorganic material, such as Porous oxidized particles, or organic polymer polymers, can be formed by chemical vapor deposition (CVD) or spin on methods. In FIG. 1 (b), a photoresist (not shown in the figure) is used to define the interlayer hole area between the metal layers, and the second dielectric layer 1 10, the second silicon nitride layer 108, the first silicon nitride layer are sequentially etched. A dielectric layer 106 and the first silicon nitride layer 104 are stopped on the surface of the substrate 102. Next, another trench (not shown) is used to define the trench region of the metal line, and the second dielectric layer 1 1 0 is etched and stopped at the second silicon nitride layer 108. The second silicon nitride layer 108 is used as an etch stop layer. In FIG. 1 (c), a copper barrier layer 112 and a copper seed layer of a button or a nitride button are deposited by physical vapor deposition (PVD) or CVD. 1 1 4. The copper barrier layer 112 can prevent copper metal from entering the first dielectric layer 106 and the second dielectric layer 1 10 through diffusion to cause leakage current of the device, and the copper seed layer 1 1 4 is used as an electrode for subsequent copper plating. In FIG. 1 (d), a copper metal layer 1 1 6 is plated. In FIG. 1 (e), a planarization process is performed by a chemical mechanical polishing (CMP) method, and the copper metal layer 1 1 6, the copper seed layer 1 1 4, and the copper barrier are polished away. Layer 1 1 2. In Fig. 1 (f), a silicon nitride layer 1 1 8 is used as a barrier layer by C V D method. H: \ HU \ TYS \ NDL said \ Has been corrected 75134.DOC 1 5 1 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 504799 A7
該銅導線雙鑲後製程之技術發展瓶頸如下·· (1) 由於兀件之導線寬度逐漸縮小,導致該導線間之介 層洞的深寬比(aspect rati0)逐漸加大,因而增加其微 影、蝕刻製程的困難度。 (2) 針對不同低介電係數之介電材料,必需搭配不同的 蝕刻製程,且該介電材料經蝕刻後,去除光阻之灰 化(ashing)及去除殘留物之清洗製程,易造成該介電 材料之介電特性劣化。此外,對於目前發展之有機 介電材料,更需搭配硬質罩幕(hardmask)以進行蝕 刻0 (3) 該銅阻障層112及銅種晶層114之披覆及其後續之 銅電鍍製程,均隨著高深寬比的介層洞及溝渠而增 加其均勻覆盍的困難性。例如一般由p V D方式形成 的該銅種晶層1 1 4都有側壁較薄的特性。 (4) 銅電鍍之速率會隨著該銅種晶層114厚度的不同而 改變,因此若控制不當,易將該介層洞的洞口封死 而在該介層洞内部留下孔洞,造成填充不佳的問 題。 (5 )進行化學機械研磨時,易造成該鋼金屬層丨丨6的表 面淺碟化(dishing)現象及該第二介電質層11〇過度磨 耗(erosion)等問題。 (6 )對於更低介電係數之多孔性介電材料,經姓刻後易 k成由该介電材料所組成之第一介電質層1 〇 6和第 二介電質層1 1 0的側壁造成孔隙’而增加後續披覆 HAHU\TYS\NDL 中說\ 已修正75134.DOC - g - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)The technical development bottlenecks of the copper wire after double inlaying process are as follows: (1) As the width of the wire of the element gradually decreases, the aspect ratio of the interlayer hole between the wires gradually increases, thus increasing its micro Difficulties in shadow and etching processes. (2) For different low-k dielectric materials, different etching processes must be used, and after the dielectric material is etched, the photoresist ashing and residue removal cleaning processes are easily caused. The dielectric characteristics of the dielectric material are deteriorated. In addition, for the currently developed organic dielectric materials, a hard mask is required for etching. (3) The coating of the copper barrier layer 112 and the copper seed layer 114 and the subsequent copper plating process, Both increase the difficulty of uniform coverage with the vias and trenches of high aspect ratio. For example, the copper seed layer 1 1 4 generally formed by the p V D method has a characteristic of thinner sidewalls. (4) The rate of copper electroplating will change with the thickness of the copper seed layer 114. Therefore, if the control is not proper, it is easy to seal the hole of the interlayer hole and leave holes in the interlayer hole, causing filling. Poor question. (5) When chemical mechanical polishing is performed, problems such as shallow dishing of the surface of the steel metal layer 6 and excessive erosion of the second dielectric layer 11 may be caused. (6) For a porous dielectric material with a lower dielectric constant, it is easy to form a first dielectric layer 106 and a second dielectric layer 1 10 composed of the dielectric material after engraving. HAHU \ TYS \ NDL said that the side walls caused porosity and increased the coverage. \ 75134.DOC-g-This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm).
裝 訂Binding
線 504799 A7 B7 五 發明説明(4 該銅阻障層1 1 2及銅種晶層1丨4之困難。 薆L明之簡要說明 本發明的目的係提供一銅導線製作方法以克服目前銅導 線雙鑲嵌製程所遭遇的困難。本發明利用一習知之銅接觸 置換技術整合至銅導線製程以取代目前的銅電鍵方式。該 鋼接觸置換技術揭露於” Selective Copper Metallization by Electrochemical Contact Displacement with Amorphous Silicon Film11 ^ Electrochemical and Solid-State Letters » 4(7) C 4 7 - C 4 9 ’ 2 0 0 1,其係利用一包含硫酸銅(CuS〇4)及緩衝 氧化物蝕刻液(Buffered Oxide Etchant ; BOE)之溶液,於室溫 下將晶圓浸泡處理,以一銅金屬層置換一非晶矽層。該緩 衝氧化物蝕刻液係由氫氟酸(HF)和氟化氨(NH4F)i混合溶 液所組成。 本發明之優點如下: (1) 不需經高難度的蝕刻,即可輕易地達成所需高深寬 比的介層洞栓塞及金屬線之結構。 (2) 本發明利用氮化作用形成一氮化矽層作為銅阻障 層,可輕易克服當披覆銅阻障層時所遭遇的均勻度 等問題。 (3 )以銅接觸置換技術取代銅電鍍及化學機械研磨製 程,可避免銅電鍍之填充不佳及均勻度等問題,以 及避免因化學機械研磨所造成的鋼導線表面之淺碟 化現象。 HAHU\TYS\NDL 中說\已修正75134.DOC 一 Ί 一 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 五、發明説明(5 ) ⑷可使用多孔性之低介電係數之介電材料。 ⑺可形成均相(homogeneous)之介電質層,即不需如鋼 導線雙鑲嵌製程中介於兩介電質層間之钱刻停止 層,而可減低因不同材質而導致的附著性問題及銅 導線間之介面漏電現象。 本發明之銅導線製作方法,包含:⑴沈積-阻障層於一 基板表面;⑺覆蓋-非晶♦層;(取義至少—介層洞區 域,蝕刻該介層洞區域外之該非晶矽層;(4)定義至少一 金屬線區4,蚀刻掉該金屬線區域外之該非晶珍層及該阻 P早層,(5)氮化該非晶矽層表$,形成至少一氮化矽層; (6)覆蓋一介電質層;⑺進行平坦化,去除部分之該介電 質=、該氮化梦層及該非晶碎層,直到該非晶珍層的表面 曝露出來為止;以及⑷以一銅金屬層置換該非晶矽層。 上述之銅導線之製作方法係利用氨氣電漿選擇性地將該 非晶硬層表面進行氮化,且利用—包含硫酸銅、氫氣酸及 氣化氣之溶液’以電化學之方法將該非晶矽層置換為該銅 金屬層。 此外,當该介電質層係由氧化矽組成,為避免當該非晶 矽層置換為Μ銅金屬層時,氫氟酸對該介電質層之侵蝕, 於是在該介電質層表面另覆蓋一有機介電質層,用以對該 由氧化矽所組成之介電質層進行保護。 霞式之簡軍 本發明將依後附圖式來說明,其中·· 圖1 ( a)至圖丨(f)係習知之銅導線雙鑲嵌製作流程;Wire 504799 A7 B7 Five invention descriptions (4 The difficulty of the copper barrier layer 1 12 and the copper seed layer 1 丨 4. Brief description of the invention The purpose of the present invention is to provide a copper wire manufacturing method to overcome the current copper wire double Difficulties encountered in the damascene process. The present invention uses a conventional copper contact replacement technology to integrate into the copper wire process to replace the current copper electrical bonding method. The steel contact replacement technology is disclosed in "Selective Copper Metallization by Electrochemical Contact Displacement with Amorphous Silicon Film11 ^ Electrochemical and Solid-State Letters »4 (7) C 4 7-C 4 9 '2 0 01, which uses a copper sulfate Solution, soak the wafer at room temperature, and replace an amorphous silicon layer with a copper metal layer. The buffer oxide etching solution is composed of a mixed solution of hydrofluoric acid (HF) and ammonia fluoride (NH4F) i The advantages of the present invention are as follows: (1) The structure of the via hole plug and the metal wire with the required high aspect ratio can be easily achieved without requiring difficult etching. (2) The present invention Using silicon nitride to form a silicon nitride layer as a copper barrier layer can easily overcome problems such as uniformity encountered when covering the copper barrier layer. (3) Replace copper plating and chemical mechanical polishing with copper contact replacement technology The manufacturing process can avoid the problems of poor filling and uniformity of copper electroplating, as well as the shallow dishing of the surface of steel wires caused by chemical mechanical polishing. HAHU \ TYS \ NDL said \ corrected 75134.DOC This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X297 mm) 5. Description of the invention (5) ⑷ Porous dielectric materials with low dielectric constant can be used. ⑺ Can form homogeneous dielectric The quality layer, that is, no need to engrav the stop layer between the two dielectric layers in the double damascene process of steel wires, can reduce the adhesion problem caused by different materials and the interface leakage between copper wires. Copper of the invention A method for making a wire includes: ⑴ deposition-a barrier layer on a substrate surface; ⑺ cover-an amorphous layer; (meaning at least-a via hole region, etching the amorphous silicon layer outside the via hole region; (4 Define at least one gold Belonging to the line area 4, the amorphous layer and the early P resist layer outside the metal line area are etched away, (5) the amorphous silicon layer is nitrided to form at least one silicon nitride layer; (6) a dielectric layer is covered A dielectric layer; (i) planarizing and removing a portion of the dielectric =, the nitride nitride layer, and the amorphous chip layer until the surface of the amorphous layer is exposed; and (ii) replacing the amorphous with a copper metal layer Silicon layer. The manufacturing method of the above copper wire is to selectively nitride the surface of the amorphous hard layer by using an ammonia gas plasma, and to use an solution containing copper sulfate, hydrogen acid, and a gasification gas to electrolyze the amorphous layer. The silicon layer is replaced with the copper metal layer. In addition, when the dielectric layer is composed of silicon oxide, in order to avoid the erosion of the dielectric layer by hydrofluoric acid when the amorphous silicon layer is replaced with the M copper metal layer, another surface of the dielectric layer is formed. An organic dielectric layer is covered to protect the dielectric layer composed of silicon oxide. Xia's Simple Army The present invention will be described with reference to the following drawings, in which FIG. 1 (a) to (f) are the conventional double-inlay manufacturing process of copper wires;
504799504799
圖2(a)至圖2(g)係本發明之銅導線製作流程; 圖1 2 3係本發明之元件漏電流測試結果; 圖4(a)至圖4(g)係本發明之另一銅導線製作流程。 元件符號 102基板 106第一介電質層 110第二介電質層 1 14銅種晶層 118氮化矽層 202阻障層 206銅金屬層 22、42半導體元件 10半導體元件 104第一氮化矽層 1 0 8第二氮化碎層 1 12銅阻障層 116銅金屬層 20基板 204介電質層 208氮化矽層 210阻障層 214氮化矽層 218銅金屬層 402阻障層 406有機介電質層 410氮化矽層 4 14非晶珍層 418多孔性氧化矽層 422銅金屬層 。圖2(a)顯 &或氮化鈕 圖2 ( a)至圖2 ( g )係本發明之銅導線製作流程 示該製作流程之起始結構,一基板2 〇包含一由 H:\HU\TYS\NDL 中說\ 已修正75134 D〇cFigures 2 (a) to 2 (g) are the manufacturing process of the copper wire of the present invention; Figures 1 2 to 3 are the test results of the component leakage current of the present invention; Figures 4 (a) to 4 (g) are the other of the present invention A copper wire manufacturing process. Element symbol 102 substrate 106 first dielectric layer 110 second dielectric layer 1 copper seed layer 118 silicon nitride layer 202 barrier layer 206 copper metal layer 22, 42 semiconductor element 10 semiconductor element 104 first nitride Silicon layer 1 0 8 Second nitride layer 1 12 Copper barrier layer 116 Copper metal layer 20 Substrate 204 Dielectric layer 208 Silicon nitride layer 210 Barrier layer 214 Silicon nitride layer 218 Copper metal layer 402 Barrier layer 406 organic dielectric layer 410 silicon nitride layer 4 14 amorphous layer 418 porous silicon oxide layer 422 copper metal layer. Figure 2 (a) shows & nitride buttons Figure 2 (a) to Figure 2 (g) are the copper wire manufacturing process of the present invention showing the initial structure of the manufacturing process, a substrate 2 0 includes a H: \ HU \ TYS \ NDL says \ Fixed 75134 D〇c
1 12非晶碎層 216介電質層 40基板 2 404多孔性氧化砍層 408銅金屬層 3 12阻障層 416氮化矽層 420有機介電質層 較佳實施例說明 504799 A7 B71 12 Amorphous chip layer 216 Dielectric layer 40 Substrate 2 404 Porous oxide layer 408 Copper metal layer 3 12 Barrier layer 416 Silicon nitride layer 420 Organic dielectric layer Description of preferred embodiments 504799 A7 B7
五、發明説明(7 組成之阻P早層2 0 2及一介電質層2 〇 4、一由銅金屬線及銅 介層洞栓塞所組成之一銅金屬層2 0 6以及介於該介電質層 204和該銅金屬層206間之一氮化矽層2〇8,該氮化珍層 2 0 8係作為防止銅金屬擴散之銅阻障層。在圖2(b)中,一 半導體元件22於該基板20表面,以pVd之方式沈積 或氮化叙之阻障層210,接著再以CVD之方式,沈積一非 晶矽層2 12。在圖2(c)中,以一光阻(圖未示出)定義一介 層洞區域,蝕刻該介層洞區域外的該非晶矽層2丨2至一適 當深度。接著以另一光阻(圖未示出)定義一金屬線區域, 並蚀刻該金屬線區域外之該非晶矽層2丨2及該鈕或氮化麵 之阻障層2 1 0。在圖2 ( d)中,利用氨氣電漿選擇性地將該 非晶碎層2 1 2表面進行氮化,而形成一氮化矽層2丨4,作 為防止銅金屬擴散之銅阻障層。在圖2(e)中,以CVD或旋 塗之方式覆1 一介電質層216。在圖2(f)中,利用CMp或 乾蝕刻回蝕(etching back)之方式進行平坦化,使該非晶矽 層2 12表面暴露出來。在圖2(g)中,以銅接觸置換技術, 以一銅金屬層218取代該非晶矽層212。本實施例是以晶 圓進行多重連線製程中為例,故該基板2〇包含一金屬間介 迅層及其間導線之結構,當然本發明也可以應用於晶圓完 成内層介電質之接觸栓塞後,此時該製作流程之起始結構 足基板就必須包含内層介電質及該接觸栓塞之結構。 、本發明以一氮化矽層2 〇 8取代習知的妲或氮化鈕層來作 為銅阻障層,可利用氨氣(腿3)、氧化氮(n2〇)或氮氣(N2) 電漿作用3分鐘所形成,其漏電流經22 5。〇,4Mv/cm之V. Description of the invention (7 composition of P early layer 202 and a dielectric layer 204, a copper metal layer composed of copper metal wires and copper via hole plugs 2 0 6 and The silicon nitride layer 208 is one of the dielectric layer 204 and the copper metal layer 206. The nitride layer 208 serves as a copper barrier layer to prevent copper metal from diffusing. In FIG. 2 (b), A semiconductor element 22 is deposited on the surface of the substrate 20 by pVd or nitrided barrier layer 210, and then an CVD silicon layer 2 12 is deposited by CVD. In FIG. 2 (c), A photoresist (not shown) defines a via hole area, and the amorphous silicon layer 2 etched outside the via area is etched to an appropriate depth. Then another photoresist (not shown) is used to define a metal Line, and etch the amorphous silicon layer 2 丨 2 outside the metal line area and the barrier layer 2 10 of the button or nitride surface. In FIG. 2 (d), an ammonia plasma is used to selectively The surface of the amorphous broken layer 2 1 2 is nitrided to form a silicon nitride layer 2 4 as a copper barrier layer to prevent copper metal from diffusing. In FIG. 2 (e), it is coated by CVD or spin coating. 1 Dielectric Layer 216. In FIG. 2 (f), the surface of the amorphous silicon layer 2 12 is exposed by using CMP or dry etching etch back to planarize. In FIG. 2 (g), it is contacted with copper. In the replacement technology, a copper metal layer 218 is used to replace the amorphous silicon layer 212. In this embodiment, the wafer is subjected to a multi-connection process as an example, so the substrate 20 includes a structure of an intermetallic interlayer and a wire therebetween. Of course, the present invention can also be applied to the wafer after the inner dielectric contact plug is completed. At this time, the starting structure of the manufacturing process must include the inner dielectric and the structure of the contact plug. The present invention uses a nitrogen The siliconized layer 2 08 replaces the conventional samarium or nitrided button layer as a copper barrier layer, which can be formed by using ammonia (leg 3), nitrogen oxide (n2〇) or nitrogen (N2) plasma for 3 minutes. , Its leakage current through 22 5.〇 , 4Mv / cm
裝Hold
線 HAHU\TYS\NDL 中說\已修正75134D〇c 504799 A7 B7 五、發明説明(8 ) 偏壓熱應力(Bias Thermal Stress ; BTS)測試2小時並未惡化, 結果如圖3所示。 此外,若該介電質層2丨6係由無機之多孔性氧化矽層所 組成’由於該多孔性氧化矽層在進行銅接觸置換步驟時, 會受到氫氟酸之侵蝕,本發明另利用一有機介電質層及一 無機介電質層來克服上述多孔性氧化矽層易受氫氟酸侵蝕 之缺點,其製作流程如圖4(a)至圖4(g)所示。在圖4(昀 中,顯示該製作流程之起始結構,一基板4 〇包含一由鈕或 氮化鈕組成之阻障層4 〇 2、一多孔性氧化矽層4 〇 4、一低 α私係數之有機介電質層4〇6、一由銅金屬線及銅介層洞 栓塞組成之銅金屬層4 〇 8以及介於該多孔性氧化矽層 404、該有機介電質層4〇6和該銅金屬層4〇8間之一氮化矽 層410,作為防止銅金屬擴散之銅阻障層。在圖4(b)中, 半導體兀件42於該基板4〇表面,以PVD之方式沈積一 鈕或氮化鈕之阻障層4 12,接著再以CVD之方式,沈積一 非晶矽層4 Μ。在圖4(〇中,以一光阻(圖未示出)定義一 介層洞區域,蝕刻該介層洞區域外的該非晶矽層4丨4至一 適當深度,接著以另-光阻(圖未示出)定義一金屬線區 域,並蝕刻該金屬線區域外之該非晶矽層414及該由妲或 氮化鈕組成之阻障層412,接著再以蝕刻或氧化之方式去 除該有機介電質層406。在圖4⑷中,利用氨氣電聚選擇 性地將該非晶矽層4丨4表面進行氮化,形成一氮化矽層 4 16,作為防止銅金屬擴散之銅阻障層。在圖4(幻中,以 CVD之方式覆蓋-低介電係數之多孔性氧切層川,並 I 中說\ 已修正75134.DOC — ^ — 本紙張尺度適用f ®國家標準(CMS) Α4規格(21GX297公D ---------- — 504799 A7 ----———_____B7 五、發明説明(9 ) ---- 以回蝕万式將部分之該氮化碎層4丨6暴露出來,接著再覆 ^有機介電質層420。在圖4(f)中,以CMP或回蝕之方 式進行平坦化,使該非晶矽層414表面暴露出來。在圖4(§) 中,進行銅接觸置換技術,以一鋼金屬層422取代該非晶 矽層4 1 4,因為此時該有機介電質層42〇對該多孔性氧化 矽層4 1 8形成一保護層,可防止進行銅接觸置換時,氫氟 酸對該多孔性氧化矽層4 1 8造成傷害。 本發明之技術内容及技術特點巳揭示如上,然而熟悉本 項技術之人士仍可能基於本發明之教示及揭示而作種種不 背離本發明精神之替換及修飾。因此,本發明之保護範圍 應不限於實施例所揭Μ,而應、包括各種不背離本:明已之 替換及修飾,並為以下之申請專利範園所涵蓋。 12 -The line HAHU \ TYS \ NDL says \ corrected 75134D0c 504799 A7 B7 V. Description of the invention (8) Bias Thermal Stress (BTS) test did not deteriorate for 2 hours. The result is shown in Figure 3. In addition, if the dielectric layer 2 丨 6 is composed of an inorganic porous silicon oxide layer, since the porous silicon oxide layer will be attacked by hydrofluoric acid during the copper contact replacement step, the present invention uses another An organic dielectric layer and an inorganic dielectric layer overcome the disadvantage that the porous silicon oxide layer is easily eroded by hydrofluoric acid. The manufacturing process is shown in Figs. 4 (a) to 4 (g). In FIG. 4 (i), the initial structure of the manufacturing process is shown. A substrate 40 includes a barrier layer 4 made of a button or a nitride button, a porous silicon oxide layer 4 and a low α-private organic dielectric layer 406, a copper metal layer 4 composed of copper metal wires and copper via hole plugs, and interposed between the porous silicon oxide layer 404 and the organic dielectric layer 4 One of the silicon nitride layer 410 between 〇6 and the copper metal layer 408 serves as a copper barrier layer to prevent the diffusion of copper metal. In FIG. 4 (b), a semiconductor element 42 is on the surface of the substrate 40 to A barrier layer 4 12 of a button or a nitride button is deposited by PVD, and then an amorphous silicon layer 4 M is deposited by CVD. In FIG. 4 (0, a photoresist is used (not shown) Define a via hole area, etch the amorphous silicon layer 4 丨 4 to an appropriate depth outside the via hole area, then define a metal line area with another photoresist (not shown), and etch the metal line area The amorphous silicon layer 414 and the barrier layer 412 composed of rhenium or nitride button are then removed, and then the organic dielectric layer 406 is removed by etching or oxidation. In FIG. 4 (a), the surface of the amorphous silicon layer 4 丨 4 is selectively nitrided by using ammonia gas polymerization to form a silicon nitride layer 4 16 as a copper barrier layer to prevent copper metal from diffusing. In the CVD method, the porous oxygen-cut layer with low dielectric constant is covered, and I said that \ 13475.DOC — ^ — This paper standard is applicable to f ® National Standard (CMS) A4 specification (21GX297 male D ---------- — 504799 A7 ----————_____ B7 V. Description of the invention (9) ---- Expose part of the nitrided fragmentation layer 4 丨 6 by etchback method Then, the organic dielectric layer 420 is covered again. In FIG. 4 (f), planarization is performed by CMP or etch-back to expose the surface of the amorphous silicon layer 414. In FIG. 4 (§), the The copper contact replacement technology replaces the amorphous silicon layer 4 1 4 with a steel metal layer 422, because the organic dielectric layer 42 forms a protective layer for the porous silicon oxide layer 4 1 8 at this time, which can prevent copper from being carried. During contact replacement, hydrofluoric acid causes damage to the porous silicon oxide layer 4 1 8. The technical content and technical features of the present invention are disclosed above, but are familiar with this technology. Scholars may still make various substitutions and modifications that do not depart from the spirit of the invention based on the teachings and disclosures of the invention. Therefore, the scope of protection of the invention should not be limited to those disclosed in the embodiments, but should include, without departing from, the following: The replacement and modification are covered by the following patent application parks. 12-
H:\HU\TYS\NDL 中說\ 已修正75134.DOC 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公爱)H: \ HU \ TYS \ NDL said \ Has been corrected 75134.DOC This paper size applies Chinese National Standard (CNS) Α4 specification (210X297 public love)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90132803A TW504799B (en) | 2001-12-28 | 2001-12-28 | Copper line fabrication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90132803A TW504799B (en) | 2001-12-28 | 2001-12-28 | Copper line fabrication method |
Publications (1)
Publication Number | Publication Date |
---|---|
TW504799B true TW504799B (en) | 2002-10-01 |
Family
ID=27607986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90132803A TW504799B (en) | 2001-12-28 | 2001-12-28 | Copper line fabrication method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW504799B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI456691B (en) * | 2005-02-14 | 2014-10-11 | Tokyo Electron Ltd | Substrate processing method, electronic device manufacturing method and program |
-
2001
- 2001-12-28 TW TW90132803A patent/TW504799B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI456691B (en) * | 2005-02-14 | 2014-10-11 | Tokyo Electron Ltd | Substrate processing method, electronic device manufacturing method and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW441015B (en) | Dual-damascene interconnect structures and methods for fabricating same | |
US7727888B2 (en) | Interconnect structure and method for forming the same | |
US6245663B1 (en) | IC interconnect structures and methods for making same | |
US6706626B2 (en) | Method of fabricating contact plug | |
US6821879B2 (en) | Copper interconnect by immersion/electroless plating in dual damascene process | |
TWI239592B (en) | Semiconductor device and its manufacturing method | |
TWI229412B (en) | Method for forming metal interconnect structures | |
US6627539B1 (en) | Method of forming dual-damascene interconnect structures employing low-k dielectric materials | |
US7514354B2 (en) | Methods for forming damascene wiring structures having line and plug conductors formed from different materials | |
US7419916B2 (en) | Manufacturing method of semiconductor device | |
US6734096B2 (en) | Fine-pitch device lithography using a sacrificial hardmask | |
US20090280643A1 (en) | Optimal tungsten through wafer via and process of fabricating same | |
US7199045B2 (en) | Metal-filled openings for submicron devices and methods of manufacture thereof | |
JP2007109894A (en) | Semiconductor device and its manufacturing method | |
TWI321346B (en) | Method of forming metal line in semiconductor device | |
JP2009026989A (en) | Semiconductor device, manufacturing method of the semiconductor device | |
US20040121583A1 (en) | Method for forming capping barrier layer over copper feature | |
JP2003179136A (en) | Mask layer and interconnection structure for manufacturing dual damascene semiconductor | |
US6156642A (en) | Method of fabricating a dual damascene structure in an integrated circuit | |
EP1330842B1 (en) | Low temperature hillock suppression method in integrated circuit interconnects | |
US6482755B1 (en) | HDP deposition hillock suppression method in integrated circuits | |
US7056821B2 (en) | Method for manufacturing dual damascene structure with a trench formed first | |
US6984875B2 (en) | Semiconductor device with improved reliability and manufacturing method of the same | |
TW200945491A (en) | Method for fabricating a semiconductor device | |
TW504799B (en) | Copper line fabrication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |