TW540117B - Method for improving the roughness of the sidewall of a polysilicon layer in an etching process - Google Patents
Method for improving the roughness of the sidewall of a polysilicon layer in an etching process Download PDFInfo
- Publication number
- TW540117B TW540117B TW91111124A TW91111124A TW540117B TW 540117 B TW540117 B TW 540117B TW 91111124 A TW91111124 A TW 91111124A TW 91111124 A TW91111124 A TW 91111124A TW 540117 B TW540117 B TW 540117B
- Authority
- TW
- Taiwan
- Prior art keywords
- polycrystalline silicon
- scope
- silicon layer
- patent application
- layer
- Prior art date
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
540117 五、發明說明(1) 發明領域: 本發明與一種於蝕刻製程中改善多晶矽層侧壁粗糙之 方%法有關’特別是一種在多段式i虫刻製程之每一段餘刻程 序後’對多晶石夕層側壁進行氧化作用之相關方法。 發明背景: 隨著半導體工業持續的進展,在超大型積體電路 (ULSI)的開發與設計中,為了符合高密度積體電路之設計 趨勢’各式元件之尺寸皆降至次微米以下。並且由於元件 不斷的縮小,也導致在進行相關半導體製程時,往往遭遇 了前所未有之難題,且製程複雜程度亦不斷提高。一般而 言,積體電路包括在晶圓上某特定區域中,形成數以百萬 計的元件,以及用來連接這些元件的電子連結結構,以便 執行所需之特定功能。基於上述理由,如何提升半導體元 件之線寬(Critical Dimension ;CD)精準度,在半導體 相關製程中就顯的非常重要。 今舉一傳統多晶矽閘極之製作為例,說明在元件尺寸 不斷縮小,而線寬精準度又不斷提升之需求下,所遭遇到 之問題。 請參閱第一圖,首先在一已完成主動區域製作之半導 體底材1 〇上’依序形成氧化薄膜1 2與多晶矽層1 4,且此多 晶石夕層1 4之形成可利用低壓化學氣相沈積法(丨0 w pressure chemical vapor deposition ;LPCVD),藉著 將石夕甲嫁(silane ’即SiH4)加熱解離而產生,其反應式540117 V. Description of the invention (1) Field of the invention: The present invention relates to a method for improving the roughness of the side wall of a polycrystalline silicon layer in an etching process. Related methods for oxidizing the side walls of polycrystalline stones. Background of the Invention: With the continuous progress of the semiconductor industry, in the development and design of ultra large integrated circuits (ULSI), in order to meet the design trend of high density integrated circuits, the size of various components has been reduced to sub-micron. And due to the continuous shrinking of components, the related semiconductor process often encounters unprecedented difficulties, and the complexity of the process is also increasing. Generally speaking, an integrated circuit consists of forming millions of components in a specific area on a wafer and an electronic connection structure used to connect these components in order to perform a specific function required. Based on the above reasons, how to improve the accuracy of the critical dimension (CD) of semiconductor components is very important in semiconductor-related processes. Take the production of a traditional polysilicon gate as an example to illustrate the problems encountered when the component size is continuously reduced and the line width accuracy is continuously improved. Referring to the first figure, firstly, an oxide film 12 and a polycrystalline silicon layer 14 are sequentially formed on a semiconductor substrate 10 that has completed the active area fabrication, and the polycrystalline silicon layer 14 can be formed using low-pressure chemistry. The vapor deposition method (丨 0 w pressure chemical vapor deposition; LPCVD) is produced by dissociating silane '(SiH4) by heating, and its reaction formula is
第4頁 540117 五、發明說明(2) 如下所示:Page 4 540117 V. Description of the invention (2):
SiH4 (g) — Si (s)+ 2H2 (g) Δ 其中,當進行上述反應之溫度低於5 7 5 °C,所獲得的 矽沈積將以非晶矽(amorPhous )的型態存在;而當溫度 介於5 7 5 °C到6 5 0 °C之間時,則會形成多晶矽(po 1 y s i 1 i con )。在應用上,大多將此反應之溫度控制在6 0 0到 6 5 0 t ,壓力約0 · 3到〇 · 6 Torr之間,以形成多晶矽層丨4。 利用低壓化學氣象沈積法形成多晶石夕層1 4於氧化薄膜t 1 2上後,為了降低多晶石夕層1 4之電阻率,會對其進行摻雜 反應,而將其變成電的導體。其中,進行多晶矽摻雜的方 法有三種:(1 )於進行沈積反應的同時施行摻雜 (in-situ ); (2 )於沈積完成後,藉著高溫擴散 (diffusion )的方式,將摻質驅入(drive )多晶石夕層 内,以及;(3 )於沈積完成後,藉著離子植入(1〇η曰 implantation )的方式,將摻質以離子的型態,植入多晶 接著請繼續參閱第一圖,塗佈光阻層丨6於多晶矽声 之上士:。隨後如第二圖所示,#用傳統之曝光舆顯; 序,定義閘極開口 1 8於光阻層1 β中。 ’〜 如第三圖所示’以此光阻層16為罩冪,依序對少 矽層1 4以及氡务讀瞪1 9、隹 > , 伙斤對多 膜12進㈣刻程序,以定義出多晶石夕 曰曰SiH4 (g) — Si (s) + 2H2 (g) Δ Wherein, when the temperature for performing the above reaction is lower than 5 7 5 ° C, the obtained silicon deposit will exist as an amorphous silicon (amorPhous); and When the temperature is between 5 7 5 ° C and 65 0 ° C, polycrystalline silicon (po 1 ysi 1 i con) is formed. In application, the temperature of this reaction is mostly controlled between 600 and 650 t, and the pressure is between about 0.3 and 0.6 Torr to form a polycrystalline silicon layer. After the polycrystalline silicon layer 14 is formed on the oxidized thin film t 1 2 by using a low-pressure chemical weather deposition method, in order to reduce the resistivity of the polycrystalline silicon layer 14, a doping reaction will be performed on it to turn it into an electrical conductor. Among them, there are three methods for doping polycrystalline silicon: (1) doping (in-situ) while performing a deposition reaction; (2) after the deposition is completed, the dopant is doped by means of high-temperature diffusion (diffusion) Drive into the polycrystalline stone layer; and (3) after the deposition is completed, the dopant is implanted into the polycrystalline form by ion implantation (ionization). Then please continue to refer to the first figure, coating the photoresist layer on the polycrystalline silicon sound:. Subsequently, as shown in the second figure, #the conventional exposure is used to display the order; define the gate opening 18 in the photoresist layer 1 β. '~ As shown in the third figure' With the photoresist layer 16 as a mask, sequentially read the small silicon layer 14 and the service read 19, 隹 >, and enter the multi-film 12 engraving process, To define polycrystalline stone
第5頁 540117 五、發明說明(3) 閘極20 ’並曝露出半導體底材1〇之部分上表面。最後,移 除位於半導體底材上之部分光阻層丨6。 值得;主思的疋,當對多晶石夕層1 4進行钱刻程序以形成 夕曰曰矽閘極2 0於半導體底材1 〇上時,所使用的離子電漿會 在此多晶矽閘極2 0的側壁造成粗糙表層2 2 (如第四圖所示 ),這樣的結果,會產生一些缺點: (1 )在形成後續之膜層時,其沈積效果會降低,譬 如在新形成膜層與多晶矽閘極的粗糙側壁之間,容易產生 孔洞,造成膜層與膜層間的密合度不佳,進而 膜層剝 離; U (2)、.良率下降。多晶矽問極之側壁產生粗糙表層的, :果:會導致此多晶矽閘極容易發生斷裂,使製程良率下 I舍,以及 精準度 過度粗糙的多晶矽閘極側壁會降低元件之線寬 發明目的及概述: 種於餘刻製程中改善多晶 種於蝕刻製程中提高線寬 本發明之第一目的為提供一 石夕層側壁粗糙之方法。 本發明之第二目的為提供一 精準度之方法。 本發明之第三目的為提供一 種於多段式蝕刻製 程之每 540117Page 5 540117 V. Description of the invention (3) Gate 20 'and exposed part of the upper surface of the semiconductor substrate 10. Finally, a part of the photoresist layer on the semiconductor substrate is removed. Worth it; I thought, when the polycrystalline silicon layer 14 is engraved to form silicon gate 20 on the semiconductor substrate 10, the ion plasma used will be in this polycrystalline silicon gate The side wall of the pole 20 causes a rough surface layer 2 2 (as shown in the fourth figure). This result will have some disadvantages: (1) When the subsequent film layer is formed, its deposition effect will be reduced, such as when a new film is formed. Between the layer and the rough sidewall of the polysilicon gate, holes are easily generated, resulting in poor adhesion between the film layer and the film layer, and the film layer peeling off; U (2), yield decreases. The surface of the polycrystalline silicon interrogator has a rough surface. Consequences: This will cause the polysilicon gate to easily break, which will reduce the yield of the process, and the polycrystalline silicon gate with excessively rough sidewalls will reduce the line width of the device. Summary: Improving polycrystalline seeds in the post-etching process and increasing line width in the etching process. A first object of the present invention is to provide a method for roughening the sidewall of a stone layer. A second object of the present invention is to provide a method of accuracy. A third object of the present invention is to provide a 540117
以便形 一段姓刻程序後,對多晶矽層側壁進行氧化作用 成平坦側壁之方法。 -種定義多晶⑦問極之方法。首先,依序 層與光阻層於半導體底材上’接著對光阻層進二:石夕 :程序’以形成問極開口於其中。之後1光阻 冪對多晶㈣進行多m刻料,並移除部 層材料。纟中’在每-段钱刻程序後,對多晶石夕層::: 施以虱化程序,而形成平滑的氧化侧壁。此蝕刻程 ς 抵達半導體底材之上表面後停止,並定義多晶矽 ^ 導體底材上。 ^ %牛 發明詳細說明: 本發明揭露了 一種定義多晶矽閘極之方法。其中藉著 對多晶矽層進行多段式蝕刻程序,並在每一段蝕刻程序 後’對多晶石夕層之側壁施以氧化程序,而形成平滑的氧化 側壁。有關本發明的詳細製程與實施例如下所述。 請參照第五圖,首先提供一具< 1 〇 〇 >晶向之半導體底 材5 〇。一般而言,其它種類之半導體材料,諸如砂化鎵 (gallium arsenide )、鍺(germanium)或是位於絕緣 層上之石夕底材(silicon on insulator, SOI )皆可作為 此處的半導體底材50使用。另外,由於半導體底材表面的 特性對本發明而言,並不會造成特別的影晌,是以其晶向In order to form a process of engraving, the method of oxidizing the side wall of the polycrystalline silicon layer to form a flat side wall. -A way to define polycrystalline interrogation. First, a sequential layer and a photoresist layer are formed on the semiconductor substrate ', and then the photoresist layer is further subjected to two steps: Shi Xi: Procedure' to form an interrogation opening therein. After that, the polycrystalline silicon is multi-m carved with a photoresist power, and the layer material is removed.纟 中 ’after each period of money engraving procedure, the polycrystalline stone layer :: is subjected to a lice formation procedure to form a smooth oxidized sidewall. This etching process stops after reaching the upper surface of the semiconductor substrate, and defines polycrystalline silicon on the conductor substrate. ^% Cattle Detailed description of the invention: The present invention discloses a method for defining a polycrystalline silicon gate. Among them, a smooth oxidation side wall is formed by performing a multi-stage etching process on the polycrystalline silicon layer and performing an oxidation process on the sidewall of the polycrystalline silicon layer after each etching process. The detailed processes and examples of the present invention are described below. Please refer to the fifth figure, and first provide a semiconductor substrate 50 with a crystal orientation of < 100 >. Generally speaking, other types of semiconductor materials, such as gallium arsenide, germanium, or silicon on insulator (SOI) on the insulating layer can be used as the semiconductor substrate here. 50 used. In addition, due to the characteristics of the surface of the semiconductor substrate, the present invention does not cause any special influence.
第7頁 540117Page 7 540117
五、發明說明(5) 亦可選擇<110〉或<111〉。 接著,可形成閘極氧化層5 2於半導體底材5 0上,以產 生所需之絕緣作用。一般而言,此閘極氧化層5 2是在溫声 約7 0 0至1 1 〇 〇 °C,且充滿氧氣之環境中,以熱氧化法 (thermal oxidation)來形成。至於,其它合適的氧化 物或化學組合、程序,例如化學氣相沈積法,亦可用來形 成此處的閘極氧化層5 2。在較佳實施例中,此閘極氧化展 5 2的厚度大約在5 〇至3 5 0埃間。 3 然後,可形成多晶矽層5 4於閘極氧化層5 2上。其中, 此多晶石夕層5 4厚度可為1 5 0 0〜2 5 0 0埃,且可使用低壓化學 氣相沈積法(LPCVD ),藉著將矽曱烷加熱解離來沉積所 需之多晶矽層5 4。並且,沉積多晶矽層5 4的溫度大約控制 在6 0 0至6 5 0 t左右,壓力調整在約〇 · 3至〇 · 6托耳間。此 外,為了降低所形成多晶矽材料的電阻值,亦可在多晶矽 ’冗積反應中進行同步摻雜(in — sitij doping)程序,或是 在沉積程序完成後,再藉著離子植入方法,將摻質植入$ 晶矽層5 4中。 、接著,塗佈光阻層56於多晶矽層54之上表面,其中形 成此光阻層56的方式,可選擇旋轉式塗佈法(spin coat i ng )。光阻層56形成後,緊接著對其施以烘烤 ^baking )程序,以進行光阻固化作用。此烘烤程序可分 種,分別為加熱板烘烤(h〇t plate bakln§)以及f = = 。其中,加熱板烘烤為將已塗佈 枓+導體底材,直接置於加熱板上施以2 0 0〜2 505. Description of the invention (5) You can also choose < 110> or < 111>. Next, a gate oxide layer 52 can be formed on the semiconductor substrate 50 to produce a desired insulating effect. Generally speaking, the gate oxide layer 52 is formed by thermal oxidation in an environment full of oxygen at a temperature of about 700 to 11000 ° C and oxygen. As for other suitable oxides or chemical combinations, procedures, such as chemical vapor deposition, can also be used to form the gate oxide layer 52 here. In a preferred embodiment, the thickness of the gate oxide layer 52 is approximately 50 to 350 angstroms. 3 Then, a polycrystalline silicon layer 54 can be formed on the gate oxide layer 52. Wherein, the thickness of the polycrystalline silicon layer 54 can be 150-1500 angstroms, and the low-pressure chemical vapor deposition (LPCVD) method can be used to deposit the required by heating and dissociating silarane. Polycrystalline silicon layer 5 4. In addition, the temperature of the deposited polycrystalline silicon layer 54 is controlled to be approximately 600 to 650 t, and the pressure is adjusted to be approximately 0.3 to 0.6 Torr. In addition, in order to reduce the resistance value of the formed polycrystalline silicon material, an in-sitij doping process can also be performed in the polysilicon's “redundant” reaction, or after the deposition process is completed, the ion implantation method is used. Dopants are implanted in the crystalline silicon layer 5 4. Then, a photoresist layer 56 is coated on the upper surface of the polycrystalline silicon layer 54, and a spin coating method may be selected as a method of forming the photoresist layer 56. After the photoresist layer 56 is formed, it is then subjected to a baking process to perform photoresist curing. This baking procedure can be divided into heating plate baking (h〇t plate bakln§) and f = =. Among them, the heating plate is baked by coating the coated 枓 + conductor substrate directly on the heating plate and applying 2 0 0 to 2 50
第8頁 540117 五、發明說明(6) C的溫度以固化光阻材料,而紫外線烘烤則是利用丨5 〇〜 2 5 0 °C的溫度進行照光固化。在另一實施例中,此光阻層 56亦可以由硬式罩冪(hard mask)層取代。硬式罩冪層 的材料可選擇自無機材料如:Si〇2、Si3N4以及SiON,且 藉由化學氣相沈積法(chemicai vapor deposition ;CVD )形成。 之後請參照第六圖,對光阻層5 6施以曝光以及微影製 程’而在光阻層5 6中定義出閘極開口圖案5 8。隨後,以此 光阻層5 6為罩冪’對多晶石夕層5 4進行多段式餘刻程序。 以下兹列舉兩段式蝕刻程序為一實施例,詳細說明上述之 夕段式蝕刻程序。然而,其並非用以限定本發明精神與發 明實體,而僅止於此一實施例爾。 請參閱第七圖,對多晶矽層5 4進行第一段蝕刻程序, 至到達約多晶矽層5 4之一半高度左右後停止,其中,在完 成第一段姓刻程序之多晶矽層側壁,會具有如圖所示之$ 縫表層6 0。隨後,對此粗糙表層6 〇進行第一次氧化程序, 以幵》成如第八圖所示之平滑側壁6 2。在一較佳實施例中, 此氧化程序為氧基電漿處理(〇xygen —base(1 plasma t r e a t m e n t )程序,亦即利用通入純氧於蝕刻反應室中, 而在粗糙之多晶石夕層側壁上產生氧化表層。 接著,再對剩餘之一半多晶矽層54進行第二段蝕刻程 ^ ’、並在其之後接續進行第二次氧化程序,以使已完成雙 段式钱刻程序之多晶矽層側壁具有完整之平滑氧化表層64 (如第九圖所示)。隨後,移除位於部分多晶矽層54上之Page 8 540117 V. Description of the invention (6) The temperature of C is used to cure the photoresist material, and the ultraviolet curing is cured by light at a temperature of 50 ~ 250 ° C. In another embodiment, the photoresist layer 56 may be replaced by a hard mask layer. The material of the hard mask power layer can be selected from inorganic materials such as Si02, Si3N4, and SiON, and is formed by chemical vapor deposition (CVD). Then, referring to the sixth figure, the photoresist layer 56 is subjected to an exposure and lithography process to define a gate opening pattern 58 in the photoresist layer 56. Subsequently, the photoresist layer 56 is used as a mask 'to perform a multi-stage epitaxial process on the polycrystalline stone layer 54. The two-stage etching process is listed below as an example, and the above-mentioned stage etching process is described in detail. However, it is not intended to limit the spirit and the invention of the present invention, but only to this embodiment. Referring to the seventh figure, the polysilicon layer 54 is subjected to the first stage of the etching process until it reaches about one and a half heights of the polysilicon layer 54, and then stops. Among them, the sidewall of the polysilicon layer after completing the first stage of the polysilicon process has the following The picture shows $ 0 seam surface. Subsequently, the rough surface layer 60 is subjected to the first oxidation process to form a smooth sidewall 62 as shown in FIG. 8. In a preferred embodiment, the oxidation process is an oxygen plasma treatment (Oxygen-base (1 plasma treatment) process, that is, the use of pure oxygen in the etching reaction chamber, and the rough polycrystalline stone evening An oxide surface layer is generated on the sidewall of the layer. Next, a second etching process is performed on the remaining one-half polycrystalline silicon layer 54, and a second oxidation process is subsequently performed to make the polycrystalline silicon having completed the two-stage money engraving process. The sidewall of the layer has a complete smooth oxide surface layer 64 (as shown in the ninth figure). Subsequently, the polysilicon layer 54 is partially removed.
540117 五、發明說明(7) 部分光阻層5 6。值得注意的是,蝕刻程序會持續進行,直 到抵達半導體底材5 0上表面為止,而定義出多晶矽閘極 6 6,如第十圖所示。 在本發明中,利用氧化程序使多晶矽閘極側壁的粗糙 表層變的平滑,具有下列之優點: (1 )提升沈積與填洞效果。當膜層與膜層間的密合 度提高,不但可避免後續製程之膜層剝離現象,亦可由於 膜層沈積的效果提升而大幅增進製程良率;540117 V. Description of the invention (7) Part of the photoresist layer 56. It is worth noting that the etching process will continue until the upper surface of the semiconductor substrate 50 is reached, and the polysilicon gate 66 is defined, as shown in the tenth figure. In the present invention, the rough surface of the polysilicon gate sidewall is smoothed by using an oxidation process, which has the following advantages: (1) The effects of deposition and hole filling are improved. When the adhesion between the film layer and the film layer is increased, not only the film peeling phenomenon in the subsequent process can be avoided, but also the process yield can be greatly improved due to the improvement of the film deposition effect;
(2 )提高多晶矽閘極之結構抗壓能力。平滑的側 壁,可使得多晶矽閘極具有較好的結構基礎,以抵擋後續 膜層之沈積過程中所給予之壓力;以及 1 (3 )增進元件之線寬精準度。 本發明雖以一較佳實例闡明如上,然其並非用以限定 本發明精神與發明實體,僅止於此一實施例爾。是以,在 不脫離本發明之精神與範圍内所作之修改,均應包含在下 述之申請專利範圍内。(2) Improve the structure pressure resistance of polysilicon gates. The smooth side wall can make the polycrystalline silicon gate have a better structural foundation to withstand the pressure given in the subsequent film deposition process; and 1 (3) improve the line width accuracy of the component. Although the present invention is explained as above with a preferred example, it is not intended to limit the spirit and the inventive substance of the present invention, but only to this embodiment. Therefore, all modifications made without departing from the spirit and scope of the present invention should be included in the scope of patent application described below.
第10頁 540117 圖式簡單說明 圖式簡單說明: 藉由以下詳細之描述結合所附圖示,將可輕易的了解 上述内容及此項發明之諸多優點,其中: 技層 界阻 業光 前與 目層 據矽 根晶 示多 顯、 ,膜 圖薄 面化 截氧 之成 圓形 晶序 體依 導上 半材 為底 圖體 一導 第半 在 術 截 之 圓 晶 體 導 半製 為中 圖層 ;二阻 驟第光 步 於 之 術 之 D 開 極 閘 作 技 界 業 前 目 據 根 示 顯 圖驟 面步 界 業 前 目 據 根 示 顯 圖 面 截 之. 圓驟之 晶步圓 體之晶 導極體 半閘導 矽半 ‘晶為 多圖 作四 第製第 術 技‘ 為 為 圖 三 技 界 業 前 目 據 根 示 顯 圖 面 截 技 α^Γ 業 前 目 據 •,根 形示 情顯 之, 層圖 表面 糙截 粗之 生圓 產晶 壁體 侧導 極半 閘為 碎圖 晶五 多第 於 術 驟 步 之 層 阻 光 與 層 矽 晶 多 層 化 技 界 業 前 目 據 根 示 顯 圖 面 截 之 圓 晶 體 氧導 極半 閘為 成圖 形六 序第 依 術 行 進 明 發 本 據 根 ;示 驟顯 步, 之圖 案面 圖截 口 之 開圓 極晶 閘體 作導 製半 中為 層圖 阻七 光第 於 術 行 進 明 發 本 據 根 示 顯 圖 面 截 之 •, Ipla 驟晶 步體 之導 序半 程為 刻圖 钱八 段第 1 第 行 進 明 發 本 據 根 示 顯 圖 面 截 之 圓 晶 體 導 序半 程為 化圖 氧九 次第 一 第 -s' 驟 步 之 成 形 明 發 及本 以據 •,根 驟示 步顯 之, 序圖 程面 化截 氧之 次圓 二晶 第體 及導 序半 程為 刻圖 #十 段第 二 第Page 540117 Schematic illustrations Schematic illustrations: With the following detailed description combined with the attached drawings, the above content and the many advantages of this invention can be easily understood, of which: According to the silicon root crystal, multiple layers are displayed, and the membrane is thinned and the oxygen cut-off is formed into a circular crystal sequence. The upper half is used as the base material. The first half of the round crystal is cut into the middle layer. The second step of the first step of the light step is to open the gate of the technical field according to the original display plan. The previous step of the step industry is based on the original display. The conductor half gate and the silicon conducting half of the crystal are 'multi-picture for the fourth system technique', which is a graphic cutting technique based on the pre-industrial project image of the third technical field α ^ Γ. It is obvious that the surface of the layered diagram is rough and the surface of the semi-circular crystal wall body has a semi-conductive gate half gate. Oxygen Conductor for Circular Crystals The gate is formed into six patterns according to the technique, and the basis of the development is shown; the step is shown, and the pattern of the surface is cut. The open circular thyristor is used as a guide. According to the original graphic display, the half of the guide sequence of the Ipla step is the first step of the eighth paragraph of the carved picture. The formation of the first step of the n-th 'step of the ninth oxygen is based on the shape of the first step, and the basis of the step is shown. The sequence diagram shows the second round body of the second round crystal and the leading half of the sequence.刻 图 # 十 段 第二 第 The first
第11頁 540117 圖式簡單說明 多晶矽閘極之步驟。 圖號對照表: 半導體底材10 多晶矽層1 4 閘極開口 1 8 粗链表層2 2 閘極氧化層5 2 光阻層5 6 粗链表層6 0 i 平滑氧化表層6 4 氧化薄膜1 2 光阻層1 6 多晶石夕閘極2 0 半導體底材50 多晶矽層5 4 閘極開口圖案5 8 平滑侧壁6 2 多晶石夕閘極6 6Page 11 540117 The diagram briefly explains the steps of polysilicon gate. Drawing number comparison table: Semiconductor substrate 10 Polycrystalline silicon layer 1 4 Gate opening 1 8 Thick chain surface layer 2 2 Gate oxide layer 5 2 Photoresistive layer 5 6 Thick chain surface layer 6 0 i Smooth oxide surface layer 6 4 Oxide film 1 2 Light Barrier layer 1 6 polycrystalline silicon gate 2 0 semiconductor substrate 50 polycrystalline silicon layer 5 4 gate opening pattern 5 8 smooth sidewall 6 2 polycrystalline silicon gate 6 6
第12頁Page 12
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91111124A TW540117B (en) | 2002-05-24 | 2002-05-24 | Method for improving the roughness of the sidewall of a polysilicon layer in an etching process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91111124A TW540117B (en) | 2002-05-24 | 2002-05-24 | Method for improving the roughness of the sidewall of a polysilicon layer in an etching process |
Publications (1)
Publication Number | Publication Date |
---|---|
TW540117B true TW540117B (en) | 2003-07-01 |
Family
ID=29580689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91111124A TW540117B (en) | 2002-05-24 | 2002-05-24 | Method for improving the roughness of the sidewall of a polysilicon layer in an etching process |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW540117B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103828023A (en) * | 2011-09-08 | 2014-05-28 | 美商新思科技有限公司 | Methods for manufacturing integrated circuit devices having features with reduced edge curvature |
US9786734B2 (en) | 2011-07-25 | 2017-10-10 | Synopsys, Inc. | Integrated circuit devices having features with reduced edge curvature and methods for manufacturing the same |
CN107611027A (en) * | 2017-08-16 | 2018-01-19 | 江苏鲁汶仪器有限公司 | A kind of method for improving deep silicon etching sidewall roughness |
US11139402B2 (en) | 2018-05-14 | 2021-10-05 | Synopsys, Inc. | Crystal orientation engineering to achieve consistent nanowire shapes |
US11264458B2 (en) | 2019-05-20 | 2022-03-01 | Synopsys, Inc. | Crystal orientation engineering to achieve consistent nanowire shapes |
-
2002
- 2002-05-24 TW TW91111124A patent/TW540117B/en not_active IP Right Cessation
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9786734B2 (en) | 2011-07-25 | 2017-10-10 | Synopsys, Inc. | Integrated circuit devices having features with reduced edge curvature and methods for manufacturing the same |
US10256293B2 (en) | 2011-07-25 | 2019-04-09 | Synopsys, Inc. | Integrated circuit devices having features with reduced edge curvature and methods for manufacturing the same |
CN103828023A (en) * | 2011-09-08 | 2014-05-28 | 美商新思科技有限公司 | Methods for manufacturing integrated circuit devices having features with reduced edge curvature |
US9379183B2 (en) | 2011-09-08 | 2016-06-28 | Synopsys, Inc. | Methods for manufacturing integrated circuit devices having features with reduced edge curvature |
CN103828023B (en) * | 2011-09-08 | 2017-02-15 | 美商新思科技有限公司 | Methods for manufacturing integrated circuit devices having features with reduced edge curvature |
US10032859B2 (en) | 2011-09-08 | 2018-07-24 | Synopsys, Inc. | Methods for manufacturing integrated circuit devices having features with reduced edge curvature |
CN107611027A (en) * | 2017-08-16 | 2018-01-19 | 江苏鲁汶仪器有限公司 | A kind of method for improving deep silicon etching sidewall roughness |
US11139402B2 (en) | 2018-05-14 | 2021-10-05 | Synopsys, Inc. | Crystal orientation engineering to achieve consistent nanowire shapes |
US11264458B2 (en) | 2019-05-20 | 2022-03-01 | Synopsys, Inc. | Crystal orientation engineering to achieve consistent nanowire shapes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201013773A (en) | Method for photoresist pattern removal | |
TW591741B (en) | Fabrication method for multiple spacer widths | |
TWI301296B (en) | Method for fabricating a hard mask polysilicon gate | |
TW540117B (en) | Method for improving the roughness of the sidewall of a polysilicon layer in an etching process | |
TWI227362B (en) | Liquid crystal display manufacturing process and polysilicon layer forming process | |
TW410388B (en) | A laminated structure and a method of forming the same | |
JP2003309254A (en) | Medium dosage simox over wide box thickness range by a plurality of implants and a plurality of annealing processes | |
TWI241632B (en) | Method for fabricating poly patterns | |
KR970053902A (en) | Process time reduction semiconductor manufacturing method | |
TW495859B (en) | Method for preventing gate oxide thinning | |
JPS63117420A (en) | Manufacture of silicide layer | |
JP2558289B2 (en) | Method of forming altered layer | |
TW508732B (en) | Method of concurrent formation of gate dielectric layer and minute spacer layer | |
JP2004146583A (en) | Method of manufacturing semiconductor device | |
JP2005517285A (en) | Semiconductor device including thin oxide liner and method of manufacturing the same | |
JPS62104078A (en) | Manufacture of semiconductor integrated circuit device | |
JPH09181077A (en) | Semiconductor device and manufacturing method thereof | |
TW589662B (en) | Method for fabricating metal silicide | |
TW413853B (en) | Manufacturing method for semiconductor device having small-size gate structure | |
TW538505B (en) | Method of fabricating bipolar complementary metal-oxide semiconductor on silicon on insulator | |
JPS60217645A (en) | Manufacture of semiconductor device | |
TW463386B (en) | Process for improving the reliability of a polysilicon thin film transistor device | |
TW536757B (en) | Manufacturing method of composite devices having gate electrodes with different dimensions | |
TWI304231B (en) | Method of manufacturing dielectric layer | |
TW425610B (en) | Method for reducing critical dimensions of semiconductor chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |