TW540008B - Color image processing method and apparatus thereof - Google Patents
Color image processing method and apparatus thereof Download PDFInfo
- Publication number
- TW540008B TW540008B TW089103998A TW89103998A TW540008B TW 540008 B TW540008 B TW 540008B TW 089103998 A TW089103998 A TW 089103998A TW 89103998 A TW89103998 A TW 89103998A TW 540008 B TW540008 B TW 540008B
- Authority
- TW
- Taiwan
- Prior art keywords
- color
- image processing
- scope
- patent application
- item
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 45
- 239000013598 vector Substances 0.000 claims abstract description 57
- 239000003086 colorant Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 19
- 238000013139 quantization Methods 0.000 claims description 17
- 238000001914 filtration Methods 0.000 claims description 15
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 238000002360 preparation method Methods 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000003709 image segmentation Methods 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
- G06F16/5838—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Library & Information Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Image Analysis (AREA)
- Facsimile Image Signal Circuits (AREA)
- Image Processing (AREA)
- Color Image Communication Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Processing Of Color Television Signals (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Processing Or Creating Images (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Forklifts And Lifting Vehicles (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
540008 五、發明說明(1) 相關申請案參照 本申請案請求對於1 9 9 9年2月5日提出申請之美國臨時 申請案序號No. 60/ 1 1 8, 742之利益的權利,該案揭示内容 以參照方式併入此處。 發明背景 1 ·發明範圍 本發明有關一種彩色圖像處理方法與設備,尤其有關 一種彩色圖像處理方法,用以擷取彩色圖像索引與搜尋時 使用的色彩特徵描述符。 2 ·相關技術說明 用於描述多媒體内容的各種視覺特徵中,色彩是最具 優勢的特徵。根據傳統的彩色圖像處理方法,其中使用一 種色形直方圖來表示一圖像的彩色資訊。然而,使用包含 1 0 2 4儲存區之色彩柱狀圖的傳統彩色圖像處理方法,其缺 點在於,描述圖像的圖像處理步驟,其計算複雜性 了曰 需許多處理時間。 ° 發明概要 ,了解決上述問題,本發明目的—之是提供一種可 低5十异设雜性與處理時間的彩色圖像處理方法。 本發明另一目的是提供一種電腦可讀 腦可執行之程式,用以執行彩色圖像處理其具有灣 本發明再一目的是提供一種彩色 執行彩色圖像處理方法。 1象處理§又備… 實現本發明特徵之彩色圖像處理方法,540008 V. Description of the invention (1) Related applications refer to the right of this application for the benefit of US Provisional Application No. 60/1 1 8, 742 filed on February 5, 1999 The disclosure is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Scope of the Invention The present invention relates to a color image processing method and device, and more particularly to a color image processing method for capturing color feature descriptors used in color image indexing and searching. 2 · Related technical descriptions Among the various visual features used to describe multimedia content, color is the most advantageous feature. According to the conventional color image processing method, a color shape histogram is used to represent color information of an image. However, the conventional color image processing method using a color histogram including a storage area of 102 is disadvantageous in that it describes the image processing steps of the image, and its computational complexity requires a lot of processing time. ° Summary of the invention, to solve the above problems, the purpose of the present invention is to provide a color image processing method that can reduce the heterogeneity and processing time by 50%. Another object of the present invention is to provide a computer-readable, brain-executable program for performing color image processing, which has a further object. Another object of the present invention is to provide a color performing color image processing method. 1 image processing § also prepared ... color image processing method to realize the features of the present invention,
〇枯以下步韻〇 Following the rhyme
8902l03.ptd 540008 五、發明說明(2) (a )取得一輸入圖像之色旦.,...^ 以獲得輸入圖像之主要色彩及。率,以及色=量分類 主要色彩及其比率,作為於 (c)表不此等 色彩向量較佳為量;特徵描述符。 位數。 .千化向夏,且其比率較佳採用百分 本彩色圖像處理方法可進而包括步驟(e) ··组 化色彩向量與色彩特徵描沭笳 *主-z人 ’、、。里子 圖像。 田这付,並表不組合結果做為整體 —同Ϊ1在步驟(b)前,可進而包括一步驟,執行一預 乂便輸入之圖像柔和。或者,本方法在步 驟(?二,可進而包括一步驟’執行一預定的過滤處理, 以除去輸入圖像之雜訊。 同時,本方法在步驟(b)前,可進而包括二步驟:分 析過濾後圖像中的晝素(pixels)為雜訊畫素之機率,並對 之給予適當的加權;以及對應加權之畫素,對色彩向量進 行一般勞埃德演算法(general L1〇yd alg〇rithm),以執 行色彩量子化。 - 根據本發明另一層面,其中提供一種彩色圖像處理方 法’用以擷取說明圖像色彩特徵之色彩特徵描述符。此方 法包括以下步驟:(a )將一輸入圖像分割成複數個區域, (b)取得各分割區域之色彩向量,(c )將色彩向量分類以 獲得輸入圖像之主要色彩及其比率,以及(d )表示此等主 要色彩及其比率,作為輸入圖像之色彩特徵描述符。 本务明亦提供一種電細可頃媒體,其具有電腦可執行8902l03.ptd 540008 V. Description of the invention (2) (a) Obtain the color of an input image ..., ... ^ to obtain the main color and Rate, and color = quantity classification The main colors and their ratios, as shown in (c) These color vectors are preferably quantities; feature descriptors. Digits. Qianhua Xiangxia, and its ratio is preferably a percentage. The color image processing method may further include step (e)...... Lizi images. This is the same, and the results are not combined as a whole—the same as before step (b), step 1 can further include a step to execute a pre-set and then soften the input image. Alternatively, the method may further include a step of performing a predetermined filtering process in step (?) To remove noise from the input image. At the same time, before step (b), the method may further include two steps: analysis The day pixels (pixels) in the filtered image are the probability of noise pixels, and appropriate weighting is given to them; and the corresponding weighted pixels are subjected to general Lloyd's algorithm (general L1〇yd alg) 〇rithm) to perform color quantization.-According to another aspect of the present invention, a color image processing method is provided to capture color feature descriptors describing the color characteristics of an image. This method includes the following steps: (a ) Divide an input image into a plurality of regions, (b) obtain the color vector of each divided region, (c) classify the color vector to obtain the main colors and ratios of the input image, and (d) indicate these main Colors and their ratios are used as descriptors of the color characteristics of the input image. This service also provides an electronic thin media, which has a computer executable
8902103.ptd 第5頁 540008 五、發明說明(3) ,用以執行一種彩色圖像處理方*,以擷取說明 二)蔣:特徵之色彩特徵描述符。此方法包括以下步驟: θ夕名I輪入圖像分割成複數個區域,(b )取得各分割區 1 4 t A向1,( C )將色彩向量分類以獲得輸入圖像之主 从盔2及其比率’以及(0 )表示此等主要色彩及其比率, 作為輸入圖像之色彩特徵描述符。 根據本發明另一層面,其中提供一種彩色圖像處理設 備用以擷取說明圖像色彩特徵之色彩特徵描述符。此設 備包括:色彩向量擷取單元與一色彩特徵描述符產生單元 。該色^向量擷取單元接收一輸入圖像之晝素值數據,並 擷取^形向量給一預定色彩座標系統;該色彩特徵描述符 產生單兀於所有色彩向量都已接收後,取得以色彩向量表 示的主要色彩百分位數,並產生與輸出包含主要色彩及其 百分位數資訊的色彩特徵描述符數據。 本發明亦提供一種彩色圖像處理設備,用以擷取說明 圖像色,特徵之色彩特徵描述符。此設備包括一分割單元 、一色f向量擷取單元、及一色彩特徵描述符產生單元。 該分割單元將一輸入圖像分割成k個區域(其中,k是一任 意正整t) ’並依序輸出對應第k個區域的晝素值數據。該 色彩向5掏取單元接收一輸入圖像之畫素值數據,並擷取 色彩向量給一預定色彩座標系統。該色彩特徵描述符產生 單兀於所有色彩向量都已接收後,取得以色彩向量表示的 主要色彩百分位數,並產生與輸出包含主要色彩及其百分 位數資訊的色彩特徵描述符數據。8902103.ptd Page 5 540008 5. Description of the invention (3) is used to execute a color image processing method * to capture the description. 2) Jiang: The color feature descriptor of the feature. This method includes the following steps: θ Ximing I turns the image into multiple regions, (b) obtains each divided region 1 4 t A to 1, (C) classifies the color vector to obtain the master and slave helmets of the input image 2 and its ratio 'and (0) represent these main colors and their ratios as color feature descriptors of the input image. According to another aspect of the present invention, a color image processing device is provided for capturing color feature descriptors describing color characteristics of an image. The device includes a color vector acquisition unit and a color feature descriptor generation unit. The color vector extraction unit receives daytime value data of an input image, and extracts a shape vector to a predetermined color coordinate system. The color feature descriptor is generated after all color vectors have been received. The color vector represents the major color percentiles, and generates and outputs color feature descriptor data containing information about the major colors and their percentiles. The present invention also provides a color image processing device for capturing color feature descriptors that describe image colors and features. The device includes a segmentation unit, a color f-vector acquisition unit, and a color feature descriptor generation unit. The segmentation unit divides an input image into k regions (where k is an arbitrary positive integer t) ′ and sequentially outputs day value data corresponding to the kth region. The color receiving unit 5 receives pixel value data of an input image, and extracts a color vector to a predetermined color coordinate system. The color feature descriptor generation unit obtains the main color percentiles represented by the color vectors after all color vectors have been received, and generates and outputs color feature descriptor data including the main color and its percentile information .
8902103.ptd 第6頁 540008 五、發明說明(4) 較佳實施例說明 本發明以上目的及優點,可藉參照附圖詳 佳實施例而更趨於明白,附圖包括: 、说明其較 以下參照附圖詳細說明本發明實施例。 请參照圖1 ,其中顯示根據本發明之彩色 法。首先輸入一彩色圖像A(步驟100)。將此彩备像處理方 成複數個區域Fl、f2、F3、及^ (步驟1〇2)。此=圖像分割 據例如邊緣流ϊ (edge f 1 ow)來執行。缺後、刀割可根 叫、卩2〜及卩4之量子化色彩向;(步、驟心各個區 取得量子化色彩向量之步驟,較佳包括 先,執行-預定的過滤步驟以柔和及除去 ζ驟:首 預處理步驟。其次’分析過濾後圖像中的畫素為m 為雜訊晝素的機率,係從與相鄰晝素間 類,在這•書辛;二彩距離而分 素,並在所選出的畫素中1色彩= ,、里素值叹疋為最大色彩距離,用τ(η)來表示。然後 Τ(〇加權各晝素的色彩向量。exP(-T(n))是用 ▽,疋義的。胃其次’假設所有晝素的T(n)值的平均數為Ta ’要用在量子化的初期叢集(initial clusters)數N等 查=vg乘=一任意常數,例如2。然後,針對對應加權後 =^之色衫向量進行一般勞埃德演算法,將這些色彩向量 匕首先’使用异式(1)表示的叢集質心(ci):8902103.ptd Page 6 540008 V. Description of the invention (4) The preferred embodiments illustrate the above objects and advantages of the present invention, which can be more clearly understood by referring to the detailed embodiments of the drawings. The drawings include: Embodiments of the present invention will be described in detail with reference to the drawings. Please refer to FIG. 1, which shows a color method according to the present invention. First, a color image A is input (step 100). This color image is processed into a plurality of areas Fl, f2, F3, and ^ (step 102). This = image segmentation is performed based on, for example, edge f 1 ow. After the deletion, the knife cut can be called the quantized color direction of 卩 2 ~ and 卩 4; (The steps of obtaining the quantized color vector in each step and the center of the heart, preferably include first, performing-a predetermined filtering step to soften and Removal of the ζ step: the first pre-processing step. Secondly, the probability of m in the filtered image as noise is the daylight element, which is from the class with the adjacent daylight element, here the book color; Separate the pixels, and 1 color = in the selected pixels, and the prime value sighs as the maximum color distance, expressed by τ (η). Then T (0 weights the color vector of each day element. ExP (-T (n)) is the meaning of ▽. The stomach is next 'assuming that the average number of T (n) values of all daylights is Ta' to be used in the number of initial clusters of quantization. = An arbitrary constant, such as 2. Then, a general Lloyd's algorithm is performed on the color shirt vectors corresponding to the weighted = ^, and these color vectors are first used as the cluster centroid (ci) represented by the heterogeneous (1):
8902103.ptd 第7頁 540008 五、發明說明(5) ^ Σν(η)Χ(η) / Σν (η) ···_· (1) 其中’ x(η)是已分類晝素中第η個晝素之晝素值。然後計 算算式(2)表示的Di值: I = Σ V ⑻丨 X⑻- “丨丨 2 ···_·· (2) 然後分割Di值最大的一個叢集。重複此程序,直到產 生N個叢集。產生N個叢集後,執行一般勞埃德演算法。執 行一般勞埃德演算法時,使用算式(1 )計算叢集質心以執 行更新(updating)。 其次’執行凝聚叢集(agglomerative clustering)以 凝聚色彩向量相同的叢集。凝聚叢集是由匕〇· Duda與ρ· Ε·8902103.ptd Page 7 540008 V. Description of the invention (5) ^ Σν (η) × (η) / Σν (η) ··· _ · (1) where 'x (η) is the η Diurnal value of a diurnal element. Then calculate the Di value represented by the formula (2): I = Σ V ⑻ 丨 X⑻- "丨 丨 2 ··· _ ·· (2) Then divide the cluster with the largest Di value. Repeat this procedure until N clusters are generated After the N clusters are generated, the general Lloyd algorithm is executed. When the general Lloyd algorithm is executed, the cluster centroid is calculated using equation (1) to perform updating. Secondly, 'agglomerative clustering' is performed to Condensed clusters with the same color vector. Condensed clusters are composed of D. Duda and ρ · E ·
Hart 在 1973 年紐約j〇hn Wiley and Sons 書局出版的 nPatt ern Classification and Scene Analysis” (樣態分類與 景物分析)一書中揭示。本說明書中將不詳細說明此書。 然後’將色彩向量分類,並獲得以色彩向量[c L,c u, cVJ表不的主要色彩及其百分位數Pi (步驟1〇6)。此處,i 表示主要區域的任意序號,範圍從!到]^ ; L、U & v表示cie LUV色彩座標系統之座標。百分位數Pi是以小數表示^ ^個 區域的百分位數Pi之總和為1,如算式(3)所表示: |ΣΡ,= ΐ[…··_(3) 其次,以色彩向量[cLi,cUi,cVi]表示的主要色 百分位數Pi:皮表示為一相關區域之色彩特徵描述符:牛ς 108)。換言之,色彩特徵描述符F可用算式⑷表示‘:Hart is disclosed in the book "n Classification and Scene Analysis" published by John Wiley and Sons, New York, 1973. This book will not describe this book in detail. Then 'classify color vectors , And obtain the color vector [c L, cu, cVJ represents the main color and its percentile Pi (step 106). Here, i represents any serial number of the main area, ranging from! To] ^; L, U & v represent the coordinates of the cie LUV color coordinate system. The percentile Pi is expressed by decimals. The sum of the percentiles Pi of the ^^^ area is 1, as represented by formula (3): | ΣΡ, = ΐ [... · __ (3) Secondly, the main color percentile Pi: pi represented by the color vector [cLi, cUi, cVi] is represented as a color feature descriptor of a relevant area: cattle 108). In other words , The color feature descriptor F can be expressed by the formula ⑷:
540008540008
卜={{[cLi’cUi’cVihPi},Ui,…·,N}……⑷ 其中,N是一預定之正整數。色彩特徵描述符可稱為可變 儲存區色彩柱狀圖(variable —bin c〇1〇r hist〇gram)。 結合第k區域内的晝素值數據(亦即Regi〇nk)與此區域 的色彩特徵描述符數據(亦即Fk),可用算式(5)表示 圖像A’ : A 丨 Reg i oni,,Reg i 〇n2, F2; ......;Regionk,Fk} .........(5) /、中’k疋一預疋正整數,表示圖像a之切割區域數(步驟 110 )。 θ以本,明之彩色圖像處理方法擷取的色彩特徵描述符 二=相Ϊ每一區域用小量數目的數值壓縮表示的。色彩特 欲描述=的壓縮表示法(compact 可顯著 減少计t複雜性。如此允許快速搜尋與擷取以多媒體為基 礎的内谷。本發明之彩色圖像處理方法可應用在諸WMPEG - 7之物體基準式圖像處理方法。 本發明之彩色圖像處理方法可用電腦程式作程式設定 構成電細程式的編碼與編碼節段(c 〇 d e s e g m e n t s )可由 相關技術^電腦程式設計師輕易導出。此外,程式係儲存 在電^可項媒體中,並可由電腦讀取與執行,藉此具體實 現本衫色圖像處理方法。前述媒體包括磁性記錄媒體、光 學記錄媒體、載波媒體等。 —此外’本彩色圖像處理方法可在一彩色圖像處理設備 上貫施。圖3為根據本發明之彩色圖像處理設備之方塊圖 。請爹照圖3 ’此彩色圖像處理設備包括一分割單元300Bu = {{[cLi'cUi'cVihPi}, Ui, ..., N} ... ⑷, where N is a predetermined positive integer. The color feature descriptor can be called a variable storage area color histogram (variable-bin c0100r history). Combining the daytime prime data in the k-th region (that is, Regio) with the color feature descriptor data (that is, Fk) in the region, the image A 'can be expressed by the formula (5): A 丨 Reg i oni ,, Reg i 〇n2, F2; ......; Regionk, Fk} ......... (5) /, 'k 疋 a pre- 疋 positive integer, which represents the number of cut areas of image a (Step 110). θ The color feature descriptors extracted by the original and bright color image processing method. Second = each area is represented by a small number of numerical compression. Compressed representation of color specific description = compact (compact can significantly reduce the calculation complexity. This allows fast searching and capture of multimedia-based inner valleys. The color image processing method of the present invention can be applied to WMPEG-7 Object-referenced image processing method. The color image processing method of the present invention can use a computer program as a program to set the coding and coding segments (c odesegments) constituting the electrical program, which can be easily derived by related technologies ^ computer programmers. Programs are stored in electronic media, and can be read and executed by a computer, so as to specifically realize the shirt image processing method. The aforementioned media include magnetic recording media, optical recording media, carrier media, etc.-In addition to this The color image processing method can be implemented on a color image processing device. FIG. 3 is a block diagram of a color image processing device according to the present invention. Please refer to FIG. 3 'This color image processing device includes a segmentation unit 300
8902103.ptd 第9頁 5400088902103.ptd Page 9 540008
、—色彩向量擷取單元302 3〇4、及一組合單元3〇6。 一色彩特徵描述符產生單元 此彩色圖像處理設備在操作時,分割單元3〇〇將 入圖像A分割成k個區域’並依序輪屮輪 ^ fRegl〇nk。色彩向量擷取單元3〇2接收第k區域内的查 ’並操取色彩向量[cLi,cUi,修當 4向篁[cLpcUi’cVi]都已接收時’色彩特徵描述符產生 早兀304獲付以色彩向量[cLi,cUi,cVi]表示的主要色彩百 分位數P, ’並產生與輸出色彩特徵描述符數狀。色彩特 徵描述符數據Fk包括以色彩向量cUi,cVJ表示的主要 色彩及其百分位數Pi的相關資訊。 為了獲得各色彩的百分位數Pi,最好在每一分割區域 内執行^彩量=化。因此,本彩色圖像處理設備最好進而 包栝一 1子化單7L (圖中未示)。本彩色圖像處理設備最好 進而再包括一過濾單元(圖中未示),用以執行一預定的過 遽糕序’使輸入圖像柔和並去除雜訊。量子化單元分析過 濾、後的圖像中’其晝素為雜訊1畫素之機率為若干,並對其 給予適當的加權,並利用一般勞埃德演算法對應加權晝素 將色彩向量量子化。 306組合第k區域内的晝素值數據(亦即Regi〇r^)此區 的色彩特徵描述符數據(亦即Fk),以輸出處理後的圖像八, 。本發明之彩色圖像處理設備可應用在諸如MPeg-7之物體 基举式圖像處理方法。此外,在本發明之彩色圖像處理設 備中’使用圖像主要色彩表示彩色圖像的方法,除了彩色,-A color vector acquisition unit 302 304 and a combination unit 306. A color feature descriptor generating unit When the color image processing device is in operation, the segmenting unit 300 divides the input image A into k regions' and sequentially executes the sequence ^ fReglnk. The color vector extraction unit 302 receives the query in the k-th area and manipulates the color vector [cLi, cUi, Xiu when the 4-way 篁 [cLpcUi'cVi] has been received. The main color percentiles P, 'represented by the color vector [cLi, cUi, cVi] are generated and output as the number of color feature descriptors. The color feature descriptor data Fk includes information about the main colors and their percentiles Pi represented by the color vectors cUi, cVJ. In order to obtain the percentile Pi of each color, it is best to perform ^ color == in each divided area. Therefore, the color image processing apparatus preferably further includes 7L (not shown). The color image processing apparatus preferably further includes a filtering unit (not shown) for performing a predetermined pass sequence to soften the input image and remove noise. The quantization unit analyzes the filtered and filtered images with a probability of several pixels and noise, and gives them appropriate weighting, and uses a general Lloyd algorithm to quantize the color vector corresponding to the weighted day pixels. Into. 306 combines the day value data in the k-th area (ie, Regi0r ^) with the color feature descriptor data (ie, Fk) in this area to output the processed image. The color image processing apparatus of the present invention can be applied to an object-based image processing method such as MPeg-7. In addition, in the color image processing apparatus of the present invention, a method for representing a color image using the main color of the image, in addition to color
540008540008
8902103.ptd 第11頁 540008 圖式簡單說明 圖式簡要說明 圖1為一流程圖,顯示本發明之彩色圖像處理方法; 圖2顯示圖1之步驟1 0 6所執行的圖像分割; 圖3為本發明之彩色圖像處理設備之方塊圖;以及 圖4A與4B顯示根據本發明之彩色圖像處理方法,針對 以電腦程式索引之圖像執行分區搜尋所獲得的結果。 圖式元件說明 3 0 0分割單元 302色彩向量擷取單元 3 04色彩特徵描述符產生單元 3 0 6組合單元8902103.ptd Page 11 540008 Brief description of the diagram Brief description of the diagram FIG. 1 is a flowchart showing the color image processing method of the present invention; FIG. 2 shows the image segmentation performed in step 106 of FIG. 1; 3 is a block diagram of the color image processing apparatus of the present invention; and FIGS. 4A and 4B show the results obtained by performing a partition search on an image indexed by a computer program according to the color image processing method of the present invention. Graphic component description 3 0 0 segmentation unit 302 color vector extraction unit 3 04 color feature descriptor generation unit 3 0 6 combination unit
8902103.ptd 第12頁8902103.ptd Page 12
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11874299P | 1999-02-05 | 1999-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW540008B true TW540008B (en) | 2003-07-01 |
Family
ID=22380466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW089103998A TW540008B (en) | 1999-02-05 | 2000-06-16 | Color image processing method and apparatus thereof |
Country Status (16)
Country | Link |
---|---|
EP (2) | EP1420364B1 (en) |
JP (2) | JP3634266B2 (en) |
KR (1) | KR100390866B1 (en) |
CN (2) | CN100428278C (en) |
AT (2) | ATE489691T1 (en) |
AU (1) | AU753599B2 (en) |
BR (1) | BR0008002A (en) |
CA (1) | CA2361490C (en) |
DE (2) | DE60045290D1 (en) |
ES (1) | ES2284478T3 (en) |
MX (1) | MXPA01007911A (en) |
MY (3) | MY135412A (en) |
NZ (2) | NZ513143A (en) |
SG (1) | SG117459A1 (en) |
TW (1) | TW540008B (en) |
WO (1) | WO2000046748A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI499921B (en) * | 2010-03-08 | 2015-09-11 | Alibaba Group Holding Ltd | Near duplicate images computer for a method and apparatus |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2364590B (en) * | 2000-07-07 | 2004-06-02 | Mitsubishi Electric Inf Tech | Method and apparatus for representing and searching for an object in an image |
KR100788643B1 (en) | 2001-01-09 | 2007-12-26 | 삼성전자주식회사 | Searching method of image based on combination of color and texture |
KR100494080B1 (en) * | 2001-01-18 | 2005-06-13 | 엘지전자 주식회사 | Method for setting dominant color using spatial coherency |
KR100450793B1 (en) * | 2001-01-20 | 2004-10-01 | 삼성전자주식회사 | Apparatus for object extraction based on the feature matching of region in the segmented images and method therefor |
KR100477801B1 (en) * | 2002-12-26 | 2005-03-22 | 한국전자통신연구원 | Apparatus and Method of 3-Dimensional Image Data Description and Apparatus and Method of 3-Dimensional Image Data search |
JP4353503B2 (en) | 2003-04-30 | 2009-10-28 | キヤノン株式会社 | Image processing device |
JP4266695B2 (en) | 2003-04-30 | 2009-05-20 | キヤノン株式会社 | Image processing apparatus and image processing method |
EP1477931A1 (en) | 2003-05-15 | 2004-11-17 | Siemens Schweiz AG | Procedures to the representation of an outline containing graphic on a display unity |
EP2273451B1 (en) * | 2003-07-04 | 2012-05-09 | Mitsubishi Electric Information Technology Centre Europe B.V. | Method and apparatus for searching for a group of images |
GB2418555A (en) * | 2004-09-23 | 2006-03-29 | Mitsubishi Electric Inf Tech | Representing an image using descriptors based on colour information |
US7840081B2 (en) * | 2004-09-23 | 2010-11-23 | Mitsubishi Denki Kabushiki Kaisha | Methods of representing and analysing images |
US7689620B2 (en) | 2006-05-24 | 2010-03-30 | Sizhe Tan | Efficiently and systematically searching stock, image, and other non-word-based documents |
US7809185B2 (en) * | 2006-09-21 | 2010-10-05 | Microsoft Corporation | Extracting dominant colors from images using classification techniques |
AU2007237365B2 (en) * | 2007-12-05 | 2011-05-12 | Canon Kabushiki Kaisha | Colour reproduction in a colour document image |
CN101576932B (en) * | 2009-06-16 | 2012-07-04 | 阿里巴巴集团控股有限公司 | Close-repetitive picture computer searching method and device |
CN101599122B (en) * | 2009-07-02 | 2013-06-19 | 阿里巴巴集团控股有限公司 | Image identification method and device |
US8897552B2 (en) * | 2012-08-01 | 2014-11-25 | Microsoft Corporation | Setting an operating-system color using a photograph |
US20180228552A1 (en) * | 2017-01-30 | 2018-08-16 | The Board Of Regents, The University Of Texas System | Surgical cell, biologics and drug deposition in vivo, and real-time tissue modification with tomographic image guidance and methods of use |
CN111488885B (en) * | 2020-06-28 | 2020-09-25 | 成都四方伟业软件股份有限公司 | Intelligent extraction method and device for theme color system of picture |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5665342A (en) * | 1979-10-29 | 1981-06-03 | Victor Co Of Japan Ltd | Electrostatic capacity type recording medium for information signal |
JPS6318256A (en) * | 1986-07-09 | 1988-01-26 | Toshiba Corp | Measurement of dissolved substance |
US5047842A (en) * | 1989-11-03 | 1991-09-10 | The Trustees Of Princeton University | Color image display with a limited palette size |
EP0555674B1 (en) * | 1992-02-11 | 1999-04-21 | Eastman Kodak Company | Image rendering system and associated method for minimizing contours in a quantized digital color image |
US5684897A (en) * | 1992-02-19 | 1997-11-04 | Ezel Inc. | Method for quantizing color image data by minimizing least squares error of binary coding |
JPH05266091A (en) * | 1992-03-23 | 1993-10-15 | Mitsubishi Electric Corp | Similar color tone retrieving device for image |
JPH05274372A (en) * | 1992-03-25 | 1993-10-22 | Mitsubishi Electric Corp | Automatic feature color adding device for image |
JP3311077B2 (en) * | 1993-05-06 | 2002-08-05 | 松下電器産業株式会社 | Image retrieval device |
EP0680030A4 (en) * | 1993-11-18 | 1997-01-08 | Sega Enterprises Kk | Data compressing method, image data memory, and method and device for expanding compressed data. |
JPH0816789A (en) * | 1994-07-05 | 1996-01-19 | Kajima Corp | Judging method for landscape by means of color |
US6215910B1 (en) * | 1996-03-28 | 2001-04-10 | Microsoft Corporation | Table-based compression with embedded coding |
KR100245338B1 (en) * | 1996-09-25 | 2000-02-15 | 전주범 | Color raw file filing and searching method and device |
KR200235751Y1 (en) * | 1996-10-30 | 2001-11-22 | 이구택 | Gas pressure vessel automatic replacement device |
JP3747589B2 (en) * | 1997-09-17 | 2006-02-22 | コニカミノルタビジネステクノロジーズ株式会社 | Image feature amount comparison device and recording medium storing image feature amount comparison program |
JPH11196296A (en) * | 1997-12-26 | 1999-07-21 | Canon Inc | Image processor, method for it, nonlinear filter and recording medium |
JPH11238077A (en) * | 1998-02-24 | 1999-08-31 | Minolta Co Ltd | Image retrieval device and method and medium recording image retrieval program |
JP3853156B2 (en) * | 1999-04-23 | 2006-12-06 | サムスン エレクトロニクス カンパニー リミテッド | Color image division method |
-
2000
- 2000-02-03 CN CNB008039933A patent/CN100428278C/en not_active Expired - Fee Related
- 2000-02-03 AU AU25774/00A patent/AU753599B2/en not_active Ceased
- 2000-02-03 SG SG200305598A patent/SG117459A1/en unknown
- 2000-02-03 CA CA002361490A patent/CA2361490C/en not_active Expired - Fee Related
- 2000-02-03 NZ NZ513143A patent/NZ513143A/en unknown
- 2000-02-03 NZ NZ528531A patent/NZ528531A/en unknown
- 2000-02-03 DE DE60045290T patent/DE60045290D1/en not_active Expired - Lifetime
- 2000-02-03 EP EP03022071A patent/EP1420364B1/en not_active Expired - Lifetime
- 2000-02-03 MY MYPI20034963A patent/MY135412A/en unknown
- 2000-02-03 CN CNB2003101010017A patent/CN100530231C/en not_active Expired - Fee Related
- 2000-02-03 DE DE60034554T patent/DE60034554T2/en not_active Expired - Lifetime
- 2000-02-03 MY MYPI20034993A patent/MY154501A/en unknown
- 2000-02-03 ES ES00904102T patent/ES2284478T3/en not_active Expired - Lifetime
- 2000-02-03 MY MYPI20000386A patent/MY122593A/en unknown
- 2000-02-03 WO PCT/KR2000/000089 patent/WO2000046748A1/en active IP Right Grant
- 2000-02-03 MX MXPA01007911A patent/MXPA01007911A/en active IP Right Grant
- 2000-02-03 AT AT03022071T patent/ATE489691T1/en not_active IP Right Cessation
- 2000-02-03 KR KR10-2001-7009440A patent/KR100390866B1/en not_active IP Right Cessation
- 2000-02-03 EP EP00904102A patent/EP1153366B1/en not_active Expired - Lifetime
- 2000-02-03 JP JP2000597756A patent/JP3634266B2/en not_active Expired - Fee Related
- 2000-02-03 AT AT00904102T patent/ATE360863T1/en not_active IP Right Cessation
- 2000-02-03 BR BR0008002-0A patent/BR0008002A/en not_active IP Right Cessation
- 2000-06-16 TW TW089103998A patent/TW540008B/en not_active IP Right Cessation
-
2003
- 2003-11-10 JP JP2003380346A patent/JP2004078995A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI499921B (en) * | 2010-03-08 | 2015-09-11 | Alibaba Group Holding Ltd | Near duplicate images computer for a method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
ATE360863T1 (en) | 2007-05-15 |
ATE489691T1 (en) | 2010-12-15 |
DE60034554T2 (en) | 2007-12-27 |
NZ513143A (en) | 2004-06-25 |
CA2361490A1 (en) | 2000-08-10 |
JP3634266B2 (en) | 2005-03-30 |
MXPA01007911A (en) | 2004-03-26 |
SG117459A1 (en) | 2005-12-29 |
DE60034554D1 (en) | 2007-06-06 |
CN100530231C (en) | 2009-08-19 |
BR0008002A (en) | 2002-01-15 |
NZ528531A (en) | 2005-06-24 |
AU2577400A (en) | 2000-08-25 |
EP1153366A1 (en) | 2001-11-14 |
EP1153366B1 (en) | 2007-04-25 |
DE60045290D1 (en) | 2011-01-05 |
EP1420364A1 (en) | 2004-05-19 |
CA2361490C (en) | 2008-10-21 |
WO2000046748A1 (en) | 2000-08-10 |
ES2284478T3 (en) | 2007-11-16 |
MY122593A (en) | 2006-04-29 |
JP2002536748A (en) | 2002-10-29 |
MY135412A (en) | 2008-04-30 |
EP1153366A4 (en) | 2002-10-30 |
KR20010113665A (en) | 2001-12-28 |
AU753599B2 (en) | 2002-10-24 |
EP1420364B1 (en) | 2010-11-24 |
JP2004078995A (en) | 2004-03-11 |
KR100390866B1 (en) | 2003-07-12 |
CN100428278C (en) | 2008-10-22 |
MY154501A (en) | 2015-06-30 |
CN1495670A (en) | 2004-05-12 |
CN1341247A (en) | 2002-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW540008B (en) | Color image processing method and apparatus thereof | |
Ashraf et al. | Content based image retrieval by using color descriptor and discrete wavelet transform | |
US11210797B2 (en) | Systems, methods, and devices for image matching and object recognition in images using textures | |
US9508151B2 (en) | Systems, methods, and devices for image matching and object recognition in images using image regions | |
US20170024384A1 (en) | System and method for analyzing and searching imagery | |
JP2005510775A (en) | Camera metadata for categorizing content | |
JP5018614B2 (en) | Image processing method, program for executing the method, storage medium, imaging device, and image processing system | |
RU2345414C1 (en) | Method of creation of system of indexing for search of objects on digital images | |
Mattivi et al. | Exploitation of time constraints for (sub-) event recognition | |
Smith et al. | Multi-stage classification of images from features and related text | |
CN104361348A (en) | Flower and plant recognition method on intelligent terminal | |
Islam et al. | Indigenous fish classification of Bangladesh using hybrid features with SVM classifier | |
CN114419391A (en) | Target image identification method and device, electronic equipment and readable storage medium | |
CN106657817A (en) | Processing method applied to mobile phone platform for automatically making album MV | |
Athanasiadou et al. | Camera recognition with deep learning | |
Salmi et al. | Content based image retrieval based on cell color coherence vector (Cell-CCV) | |
CN110209865A (en) | A kind of object identification and matching process based on deep learning | |
Memon et al. | Unsupervised feature approach for content based image retrieval using principal component analysis | |
Bhatt et al. | Indian monuments classification using support vector machine | |
Malik et al. | Finding objects in image databases by grouping | |
JP2015158739A (en) | Image sorting device, image classification method, and image classification program | |
Golge et al. | FAME: face association through model evolution | |
Lee et al. | A scalable service for photo annotation, sharing, and search | |
Farhan | Content based video retrieval using discrete cosine transform | |
Pérez-Pimentel et al. | A genetic algorithm applied to content-based image retrieval for natural scenes classification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |