TW530195B - Alignment error calculating method, alignment measuring apparatus and yield analytic apparatus - Google Patents
Alignment error calculating method, alignment measuring apparatus and yield analytic apparatus Download PDFInfo
- Publication number
- TW530195B TW530195B TW89114176A TW89114176A TW530195B TW 530195 B TW530195 B TW 530195B TW 89114176 A TW89114176 A TW 89114176A TW 89114176 A TW89114176 A TW 89114176A TW 530195 B TW530195 B TW 530195B
- Authority
- TW
- Taiwan
- Prior art keywords
- alignment
- alignment error
- pattern
- unit
- patent application
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70358—Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
530195 五、發明說明(i) 發明背景 發明領域 本發明有關於對準誤差計算方法、對準量測裝置及良率 分析裝置,特別適用於對準誤差及對準誤差與特性評估之 間關係之分析。 相關技藝之描述 在利用一掃描型態曝光裝置製造一個阻抗圖案的過程 中,例如半導體平版印刷過程,對準測量被導出以檢視在 一先前步驟所形成圖案的對準。 傳統上,如圖1所示,為了節省產品的讀取時間,這樣 的對準測量只對幾個曝射或晶片(此後統稱為曝射)1 0 2而 做,例如五至九個曝射,於一半導體晶圓1 0 1上,而不是 對該半導體晶圓1 0 1上的所有曝射或晶片。此種測量的一 個結果被顯示於表1。 表1530195 V. Description of the invention (i) Background of the invention The present invention relates to an alignment error calculation method, an alignment measurement device, and a yield analysis device, and is particularly suitable for the relationship between the alignment error and the alignment error and the characteristic evaluation. analysis. Description of Related Art In the process of manufacturing an impedance pattern using a scanning type exposure device, such as a semiconductor lithography process, alignment measurements are derived to view the alignment of the pattern formed in a previous step. Traditionally, as shown in FIG. 1, in order to save the reading time of the product, such alignment measurement is only performed on a few exposures or wafers (hereinafter collectively referred to as exposures) 102, such as five to nine exposures On a semiconductor wafer 101 instead of all exposures or wafers on the semiconductor wafer 101. A result of this measurement is shown in Table 1. Table 1
XX
Y 被量測點之數目 36 最大值(/zm) 0.2 0.026 最小值(//m) 0.099 -0.064 平均值(//m) 0.147 -0.022 3 a(n-l)(/zm) 0.088 0.064 1 平均值1+3(7 (//m) 0.234 0.085 如表1所示,對準誤差的控制是利用一個只有最小數目 曝射1 0 2,像是幾個曝射1 0 2,的對準測量得到的測量值所Y Number of measured points 36 Maximum (/ zm) 0.2 0.026 Minimum (// m) 0.099 -0.064 Average (// m) 0.147-0.022 3 a (nl) (/ zm) 0.088 0.064 1 Average 1 + 3 (7 (// m) 0.234 0.085 As shown in Table 1, the alignment error is controlled using an alignment measurement with only a minimum number of exposures of 102, such as several exposures of 1.02. Measured value
第6頁 530195 五、發明說明(2) 計算出的統計值(I平均值I + 3 σ )。 這個控制對準誤差的方法是在一平 對準誤差的標準方法。由於只有小數 法優勢在於侠速控制對準誤差。 然而,由於·傳統方法沒有測量所有 很難掌握對準鉍差與半導體装置良率 係。 也就是說,為了檢視一個分析良率 產品的良率,為了分析曝射的對準誤 的評估結果之間的關係,必須對丰導 射1 0 2再次測量圖案之間的對準誤差。 此外,由於對準誤差的測量利用在 個角的盒狀標記所導出,在對準測量 產生了一個差異。因此,傳統方法需 析。 發明目的及概要 因此本發明的一個目的是要提供一 法、對準誤差量測裝置及良率分析裝 差及得自一個對準誤差最小測量結果 並且提供良率分析所需時間的減少。 根據本發明的第一個方面,提供了 法,特點為: 在一基板上設定多個單位區域; 測量與形成於該基板上一個第一圖 面印刷過程當中控制 目的測量點,這個方 曝射上的對準誤差, 評估結果之間的關 可能因子的過程當中 差與半導體裝置良率 體晶阊ί 0丨上鲂有曝 母個曝射或晶片的四 點與特性評估點之間 要許多時間做良率分 種對準誤差計算方 置,能夠掌握對準誤 的良率之間的關係, 一種對準誤差計算方 案有關的一個第二圖Page 6 530195 V. Description of the invention (2) Calculated statistical value (I mean I + 3 σ). This method of controlling misalignment is a standard method for misalignment. The advantage of the decimal method is that the speed control alignment error. However, it is difficult to grasp the relationship between the misalignment of bismuth and the yield of semiconductor devices due to the fact that the traditional method does not measure all. That is, in order to examine the yield of an analysis yield product, and to analyze the relationship between the evaluation results of the misalignment of the exposure, the alignment error between the patterns must be re-measured for the Feng 1 102. In addition, since the measurement of the alignment error is derived using the box marks at the corners, a difference occurs in the alignment measurement. Therefore, traditional methods need to be analyzed. OBJECTS AND SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method, an alignment error measuring device and a yield analysis device, and obtain a minimum measurement result from an alignment error and provide a reduction in the time required for the yield analysis. According to a first aspect of the present invention, a method is provided, which is characterized by: setting a plurality of unit areas on a substrate; measuring and forming a target measurement point during a first drawing printing process on the substrate, and the square exposure Alignment error, the difference between the possible factors between the evaluation results, and the yield of the semiconductor device. There are many differences between the four points of the exposure or the wafer and the characteristic evaluation points. Time to do yield and sort the alignment error calculation method, can grasp the relationship between the alignment error yield, a second figure related to an alignment error calculation scheme
第7頁 530195 五、發明說明(3) 案之對準誤差,並且將該第二圖案構成於選自該單位區域 的Μ個單位區域;及 利用得自該Μ個單位區域對準誤差的一個測量結果,計 算在Ν個單位區域該第二圖案之對準誤差。 根據本發明的第二個方面,提供了 一種對準量測裝置被 規劃在一基板上設定多個單位區域,並且包括對準量測裝 置以測量與形成於該基板上一個第一圖案有關的一個第二 圖案之對準誤差,並且將該第二圖案構成於選自該單位區 域的Μ個單位區域,包含: 利用藉由該對準量測裝置得自該Μ個單位區域對準誤差 的一個測量結果,計算在Ν個單位區域該第二圖案之對準 誤差的裝置。 根據本發明的第三個方面,提供了 一種良率分析裝置以 分析形成於一基板上的半導體裝置之良率,包含: 於基板上設定複數個單位區域; 對準量測裝置,以測量與形成於該基板上一個第一圖案 有關的一個第二圖案之對準誤差,並且將該第二圖案構成 於選自該單位區域的Μ個單位區域; 對準量測裝置,以利用藉由該對準量測裝置得自該Μ個 單位區域對準誤差的一個測量結果,計算在Ν個單位區域 該第二圖案之對準誤差; 特性評估裝置,以評估在該Ν個單位區域内的半導體裝 置之特性;及 良率分析裝置,由該對準誤差計算裝置所算出該第二圖Page 7 530195 V. Explanation of the invention (3) and the second pattern is composed of M unit regions selected from the unit region; and one of the M unit region alignment errors is used. The measurement results are used to calculate the alignment error of the second pattern in N unit regions. According to a second aspect of the present invention, there is provided an alignment measurement device that is planned to set a plurality of unit areas on a substrate, and includes an alignment measurement device to measure a first pattern formed on the substrate. An alignment error of a second pattern, and constructing the second pattern in M unit regions selected from the unit region, including: using the alignment error obtained from the M unit regions by the alignment measurement device A measurement result, a device for calculating an alignment error of the second pattern in N unit regions. According to a third aspect of the present invention, a yield analysis device is provided to analyze the yield of a semiconductor device formed on a substrate, including: setting a plurality of unit regions on the substrate; and aligning a measurement device to measure and An alignment error of a second pattern related to a first pattern formed on the substrate, and the second pattern is formed in M unit regions selected from the unit region; an alignment measurement device to utilize the The alignment measurement device obtains a measurement result of the alignment errors of the M unit areas, and calculates the alignment errors of the second pattern in the N unit areas. The characteristic evaluation device evaluates the semiconductors in the N unit areas. Characteristics of the device; and a yield analysis device, the second figure calculated by the alignment error calculation device
530195 五、發明說明(4) 案的對準誤差的一個計算結果,與由該特性評估裝置所評 估該半導體裝置的特性的一個評估結果,以分析良率。 在本發明的一個典型做法中,被測量於Μ個單位區域内 的該第二個圖案内對準誤差的一個測量結果,被用來計算 在一基板内所有單位區域該第二圖案的對準誤差。 在本發明的一個典型做法中,於Ν個單位區域内的該第 二個圖案内的對準誤差,被利用由Μ個單位區域内對準誤 差的一個測量結果所計算的線性因子而計算出來。530195 V. Description of the invention (4) A calculation result of the alignment error and an evaluation result of the characteristics of the semiconductor device evaluated by the characteristic evaluation device to analyze the yield. In a typical method of the present invention, a measurement result of the alignment error in the second pattern measured in M unit regions is used to calculate the alignment of the second pattern in all unit regions in a substrate. error. In a typical method of the present invention, the alignment error in the second pattern in N unit areas is calculated using a linear factor calculated from a measurement result of the alignment error in M unit areas. .
在本發明的一個典型做法中,於Ν個單位區域内的該第 二個圖案内的對準誤差,被利用選自包括了陣列位移、陣 列軸放大、陣列軸旋轉、一個單位區域的軸放大以及該單 位區域的軸旋轉、一基板上該單位區域的中心座標,及該 單位區域内一個評估點的座標之一群當中的多個因子而計 算出來。 在本發明的一個典型做法中,該單位區域是形成於一基 板上一個單一晶片的區域。在本發明的一個較佳做法中, 該基板是一個半導體基板,例如^夕(S i )基板或坤化嫁基 板,且該單位區域是形成於該半導體基板上一個單一半導 體裝置晶片的區域。In a typical method of the present invention, the alignment error in the second pattern in N unit areas is selected from the group consisting of array displacement, array axis magnification, array axis rotation, and axis magnification of one unit area. And the axis rotation of the unit area, the center coordinates of the unit area on a substrate, and multiple factors among a group of coordinates of an evaluation point in the unit area. In a typical practice of the present invention, the unit area is an area of a single wafer formed on a substrate. In a preferred method of the present invention, the substrate is a semiconductor substrate, such as a Si substrate or a sintered substrate, and the unit area is an area of a single semiconductor device wafer formed on the semiconductor substrate.
在本發明的一個典型做法中,該第二個圖案是利用一個 曝光裝置所造成,且該單位區域是由該曝光裝置曝光一個 單一曝射的區域。進一步,在本發明,該第二個圖案通常 是由一個曝光裝置所轉移的一個阻抗圖案,且該單位區域 是該阻抗圖案曝光的一個單一曝射。此外,在本發明中,In a typical method of the present invention, the second pattern is caused by using an exposure device, and the unit area is a single exposure area exposed by the exposure device. Further, in the present invention, the second pattern is usually an impedance pattern transferred by an exposure device, and the unit area is a single exposure of the impedance pattern exposure. Further, in the present invention,
第9頁 530195 五、發明說明(5) 該曝光裝置最好是一個掃描型態的曝光裝置,但是任何其 他適當的曝光裝置也都可以被使用。 在本發明的一個典型做法中,做對準誤差測量的單位區 域數Μ是.5 $ M S 9。亦即,在該第二個圖案内的對準誤差測 量在該基板上的5至9個單位區域被執行,且這個對準誤差 測量的結果被用來做該基板上Ν個單位區域或所有區域的 對準誤差的計算。 根據具有以上概述規格的發明,由於一基板上Ν個單位 區域的對準誤差是利用一個對準誤差量測裝置由Μ個單位 區域的對準誤差的測量結果所計算出來,因此可能藉由測 量多個單位區域之間最小單位區域的對準誤差而計算於“· 基板上任何單位區域内該第二個圖案的對準誤差,且對準 誤差可以被輕易地控制。 以上及其他本發明的目標、特色及優點將在以下的詳細 描述中,配合相關圖式被閱讀而變得更為明顯。 圖式簡述 圖1是顯示藉由一種傳統對準量測裝置以一向量圖形式 所做的一個對準誤差測量結果的一個圖示; 圖2是解釋一種根據本發明之一具體實施例的對準誤差 量測方法的一個圖示; 圖3 Α至3 C是解釋根據本發明之一具體實施例的線性因子 的圖示; 圖4 A及4B是解釋根據本發明之一具體實施例的線性因子 的圖示;Page 9 530195 V. Description of the invention (5) The exposure device is preferably a scanning type exposure device, but any other appropriate exposure device can also be used. In a typical method of the present invention, the number of unit areas M for which an alignment error measurement is made is .5 $ M S 9. That is, the alignment error measurement in the second pattern is performed on 5 to 9 unit areas on the substrate, and the result of the alignment error measurement is used to make N unit areas or all on the substrate Calculation of area alignment errors. According to the invention with the specifications outlined above, since the alignment errors of N unit areas on a substrate are calculated from the measurement results of the alignment errors of M unit areas using an alignment error measuring device, it is possible to measure the The alignment error of the smallest unit area between a plurality of unit areas is calculated as "the alignment error of the second pattern in any unit area on the substrate, and the alignment error can be easily controlled. The above and other aspects of the invention The objectives, features, and advantages will become more apparent in the following detailed description, read in conjunction with the related drawings. Brief Description of the Drawings Figure 1 shows a vector diagram in the form of a conventional alignment measurement device. FIG. 2 is a diagram explaining an alignment error measurement method according to a specific embodiment of the present invention; FIGS. 3A to 3C are diagrams explaining one according to the present invention A diagram of a linear factor of a specific embodiment; FIGS. 4A and 4B are diagrams explaining a linear factor according to a specific embodiment of the present invention;
第10頁 530195 五、發明說明(6) 圖5是解釋根據本發明之一具體實施例的對準誤差計算 的一個範例的一個圖示; 圖6是顯示根據本發明之一具體實施例在一半導體晶圓 上所有曝射的對準誤差的一個計算結果的一個圖示; 圖7是顯示根據本發明之一具體實施例在一半導體晶圓 上一個圖案的一個特性評估結果的一個圖示; 圖8是根據本發明之一具體實施例一種對準誤差量測裝 置的一個方塊圖;Page 10 530195 V. Description of the invention (6) FIG. 5 is a diagram explaining an example of an alignment error calculation according to a specific embodiment of the present invention; FIG. 6 is a diagram showing a specific embodiment according to the present invention. FIG. 7 is a diagram showing a characteristic evaluation result of a pattern on a semiconductor wafer according to a specific embodiment of the present invention; 8 is a block diagram of an alignment error measurement device according to a specific embodiment of the present invention;
圖9是顯示根據本發明之一具體實施例顯示在一半導體 晶圓上九個曝射的對準誤差的一個計算結果的一個G U I顯 示器的一個圖示; 圖1 0是顯示根據本發明之一具體實施例顯示為輸入曝射 内部座標的對話方塊的一個G U I顯示器的一個圖示; 圖1 1是顯示根據本發明之一具體實施例顯示在一半導體 晶圓上所有曝射的對準誤差的一個計算結果的一個G U I顯 示器的一個圖示; 圖1 2是顯示根據本發明之一具體實施例顯示一個基於在 一半導體晶圓上所有曝射的對準誤差的一個計算結果的一 個向量圖的一個G U I顯示器的一個圖示;FIG. 9 is a diagram showing a GUI display showing a calculation result of nine exposure alignment errors on a semiconductor wafer according to a specific embodiment of the present invention; FIG. 10 is a diagram showing one according to the present invention A specific embodiment shows a graphical representation of a GUI display as a dialog box for inputting internal coordinates of exposures; FIG. 11 is a diagram showing alignment errors of all exposures displayed on a semiconductor wafer according to a specific embodiment of the present invention A diagram of a calculation result of a GUI display; FIG. 12 is a vector diagram showing a calculation result based on an alignment error of all exposures on a semiconductor wafer according to a specific embodiment of the present invention A graphic representation of a GUI display;
圖1 3是顯示根據本發明之一具體實施例一個η良率分析 系統規格的一個方塊圖;及 圖1 4是顯示一個特性評估結果與一個對準誤差計算結果 之間關係的一個範例的一個輸出圖表。 較佳具體實施例描述FIG. 13 is a block diagram showing the specifications of an η yield analysis system according to a specific embodiment of the present invention; and FIG. 14 is an example showing an example of the relationship between a characteristic evaluation result and an alignment error calculation result. Output chart. Description of preferred embodiments
第U頁 530195 五、發明說明(7) 以下參照圖式解釋本發明之一具體實施例。在所有描述 該具體實施例的圖當中,相同或相當的部份或元件被標示 以一樣的參照數字。Page U 530195 V. Description of the Invention (7) Hereinafter, a specific embodiment of the present invention will be explained with reference to the drawings. In all the drawings describing this specific embodiment, the same or equivalent parts or elements are marked with the same reference numerals.
首先解釋的是根據本發明之該具體實施例一種計算對準 誤差的方法。在根據該具體實施例的對準誤差計算方法中 ,對準誤差是在利用一掃描型態曝光裝置平版印刷所形成 的一個阻抗圖案上被測量,例如,在一個已經具有一個由 一半導體裝置製造過程所形成的預定圖案的半導體晶圓上 。在該阻抗圖案上的這個對準誤差測量,只對該半導體晶 圓上的五至九個曝射所做,以節省產品的讀取時間。在本 具體實施例中,如圖2所示,該半導體晶圓1上的九個曝射 2 (圖2中晝影線的部分)進行對準誤差的測量。一個單一曝 射2包括一至六個晶片區域。這種測量的一個結果被顯示 於表2。First explained is a method for calculating an alignment error according to the specific embodiment of the present invention. In the alignment error calculation method according to this embodiment, the alignment error is measured on an impedance pattern formed by lithography using a scanning type exposure device, for example, in a method that already has a semiconductor device manufacturing process The semiconductor wafer is formed in a predetermined pattern. This alignment error measurement on the impedance pattern was made for only five to nine exposures on the semiconductor wafer to save product read time. In this specific embodiment, as shown in FIG. 2, the nine exposures 2 (parts of the daytime hatching in FIG. 2) on the semiconductor wafer 1 are used to measure the alignment error. A single exposure 2 includes one to six wafer regions. A result of this measurement is shown in Table 2.
表2 X Y 被量測點之數目 36 36 最大值("m) 0.200 0.026 最小值(/zm) 0.099 -0.064 3 σ (// m) 0.088 0.064 1 平均值|+3σ (μπι) 0.234 0.085 陣列位移(Vm) 0.147 -0.022 陣列軸放大(μm) 0.100 -0.100 陣列軸旋轉(ppm) 0.500 0.200 曝射軸放大(ppm) -0.700 -0.700 曝射軸旋轉(ppm) 0.300 0.300Table 2 Number of XY measured points 36 36 Maximum value (" m) 0.200 0.026 Minimum value (/ zm) 0.099 -0.064 3 σ (// m) 0.088 0.064 1 Mean | + 3σ (μπι) 0.234 0.085 Array Displacement (Vm) 0.147 -0.022 Array axis magnification (μm) 0.100 -0.100 Array axis rotation (ppm) 0.500 0.200 Exposure axis magnification (ppm) -0.700 -0.700 Exposure axis rotation (ppm) 0.300 0.300
第12頁 530195 五、發明說明(8) 如表2所示,根據本發明該阻抗圖案的對準誤差測量被 針對如圖2的影線所示的九個曝射2的頂點而做。亦即,被 測量的點數於九個曝射2總計為3 6。圖2顯示這3 6個點以向 量的形式所做的對準誤差測量的結果。Page 12 530195 V. Description of the invention (8) As shown in Table 2, the alignment error measurement of the impedance pattern according to the present invention is performed for nine vertices of the exposure 2 as shown by hatching in FIG. 2. That is, the number of measured points totals 36 out of nine exposures. Figure 2 shows the results of the alignment error measurements at these 36 points in the form of a vector.
由表2可知,以影線顯示於半導體晶圓1上的九個曝射2 的對準誤差,在X軸方向範圍由0 . 2 0 0 // m最大值到0 . 0 9 9 /zm最小值,且在Y軸方向範圍由0.026/zm最大值到-0.064 最小值。進一步,顯示於表2的|平均值|+3σ的因子包 -括了所謂的線性因子,如陣列位移、陣列軸放大、陣列軸 旋轉、曝射軸放大及曝射軸旋轉,以及所謂的非線性因 _ 子,由隨機誤差所代表。 上述丨平均值I + 3 σ的因子當中的線性因子被更特別解釋 如下。圖3 Α至3 C以圖表式顯示有關半導體晶圓1的線性因 子,及圖4 A及4B以圖表式顯示有關一個曝射2的線性因 子。It can be known from Table 2 that the alignment errors of the nine exposures 2 displayed on the semiconductor wafer 1 by hatching range from the maximum value of 0.2 0 0 // m to 0.09 9 / zm in the X-axis direction. The minimum value and the range in the Y-axis direction from the maximum value of 0.026 / zm to the minimum value of -0.064. Further, the factors of | mean | + 3σ shown in Table 2 include so-called linear factors such as array displacement, array axis magnification, array axis rotation, exposure axis magnification and exposure axis rotation, and so-called non- The linear factor is represented by random errors. The linear factor among the above-mentioned factors of the average value I + 3 σ is explained more specifically as follows. Figs. 3A to 3C graphically show the linear factors related to the semiconductor wafer 1, and Figs. 4A and 4B graphically show the linear factors related to an exposure 2. In Figs.
圖3 A顯示陣列位移為線性因子之一。如圖3 A所示,陣列 位移是一個線性因子,由整個半導體晶圓1的一個X軸誤差 量(X陣列位移)XQ及一個Y軸誤差量(Y陣列位移)YG所構成。 在此具體實施例中,由表2可知,其X陣列位移XQ是0 . 1 4 7 /z m,而其Y陣列位移Y 〇是0 . 0 2 2 // m。 圖3 B顯示陣列軸放大為線性因子之一。如圖3 B所示,陣 列轴放大是以該半導體晶圓1的中心為原點’在該半導體 晶圓的放射方向放大或縮小的比率。此外,陣列軸放大是Figure 3 A shows that the array displacement is one of the linear factors. As shown in FIG. 3A, the array displacement is a linear factor and is composed of an X-axis error amount (X array displacement) XQ and a Y-axis error amount (Y array displacement) YG of the entire semiconductor wafer 1. In this specific embodiment, it can be known from Table 2 that the X array displacement XQ is 0.14 7 / z m, and the Y array displacement Y 0 is 0. 0 2 2 // m. Figure 3B shows the array axis zoomed to one of the linear factors. As shown in FIG. 3B, the array axis magnification is a ratio in which the center of the semiconductor wafer 1 is enlarged or reduced in the radial direction of the semiconductor wafer. Also, the array axis magnification is
第13頁 530195 五、發明說明(9) 一個線性因子,由一個X軸陣列軸放大(X陣列軸放大)xp及 一個Y軸陣列軸放大(Y陣列軸放大)Yp所構成。在此具體實 施例中,由表2可知,其X陣列軸放大Χρ是0 · 1 0 0 ppm,而其 Y陣列轴放大γ p是-〇 . 1 〇 〇 p p m。這裡所用的p p m是一個改變 單位 0. 1 // m 每 10cm 〇 圖3 C顯示陣列軸旋轉為線性因子之一。如圖3 C所示,陣 列軸旋轉是以其中心為原點,該半導體晶圓在旋轉方向偏 離的比率,並且是一個線性因子,由一個X軸偏移比率(X 陣列軸旋轉)X ( Θ )及一個Y軸偏移比率(Y陣列軸旋轉) Y ( Θ )所構成。在此具體實施例中,由表2可知,其X陣列 軸旋轉X( 0 )是0· 5 0 0 ppm,而其Y陣列軸旋轉Y( 0 )是 0 . 2 0 Oppm 〇 圖4A顯示曝射軸放大為線性因子之一。如圖4A所示,一 個單一曝射2的曝射軸放大是一個線性因子,由一個曝射2 在X軸方向的放大或縮小的比率(X曝射軸放大)Xm及一個曝 射2在Y軸方向的放大或縮小的比率(Y曝射軸放大)Ym所構 成。在此具體實施例中,由表2可知,其X曝射軸放大Xm是 -0.700ppm,而其 Y曝射軸放大 YmS-0.70 0ppm。 圖4B顯示曝射軸旋轉為線性因子之一。如圖4B所示,曝 射軸旋轉是對曝射2之中心在旋轉方向偏離的比率,並且 是一個線性因子,由一個X軸偏離(X曝射軸旋轉)Xc及一個 Y軸偏離(Y曝射軸旋轉)Yc所構成。在此具體實施例中,由 表2可知,其X曝射軸旋轉X。是0.300ppm,而其Y曝射軸旋 轉Yc是0· 300ppm 。Page 13 530195 V. Description of the invention (9) A linear factor is composed of an X-axis array axis magnification (X-array axis magnification) xp and a Y-axis array axis magnification (Y-array axis magnification) Yp. In this specific embodiment, it can be known from Table 2 that the X array axis magnification Xρ is 0. 100 ppm, and the Y array axis magnification γ p thereof is -0.10.1 p p m. The p p m used here is a unit of change 0. 1 // m every 10 cm 〇 Figure 3C shows that the array axis rotation is one of the linear factors. As shown in Figure 3C, the rotation of the array axis is the ratio of the deviation of the semiconductor wafer in the rotation direction with its center as the origin, and is a linear factor, which is determined by an X-axis offset ratio (X-array axis rotation) X ( Θ) and a Y-axis offset ratio (Y array axis rotation) Y (Θ). In this specific embodiment, it can be known from Table 2 that the X array axis rotation X (0) is 0.5 ppm, and the Y array axis rotation Y (0) is 0.2 0 Oppm. FIG. 4A shows the exposure. The beam axis is enlarged to one of the linear factors. As shown in FIG. 4A, the exposure axis magnification of a single exposure 2 is a linear factor, which is the ratio of the enlargement or reduction of an exposure 2 in the X-axis direction (X exposure axis magnification) Xm and an exposure 2 at The ratio of enlargement or reduction in the Y-axis direction (Y-exposure-axis enlargement) Ym. In this specific example, it can be known from Table 2 that the X exposure axis magnification Xm is -0.700 ppm, and the Y exposure axis magnification YmS-0.70 0 ppm. FIG. 4B shows that the exposure axis rotates as one of the linear factors. As shown in FIG. 4B, the rotation of the exposure axis is a ratio of the deviation of the center of the exposure 2 in the rotation direction, and is a linear factor, which is offset by an X axis (X exposure axis rotation) Xc and a Y axis deviation (Y The exposure axis rotates) Yc. In this specific embodiment, it can be known from Table 2 that the X exposure axis is rotated by X. It is 0.300 ppm, and its Y exposure axis rotation Yc is 0.300 ppm.
第14頁 530195 五、發明說明(ίο) 接下來被計算的是以如表2所示對準誤差測量的結果為 基礎的該半導體晶圓1上所有曝射2的對準誤差。對準誤差 的計算在測量點上基於該半導體裝置特性的評估於該半晶 圓1上之個別曝射2 (此後稱為特性評估點)。 亦即,首先被導出的是由顯示於下的等式(1)及等式(2) 對準誤差的計算,利用被由顯示於表2對準誤差測量的結 果所計算出的線性因子。 Δ Χ = Χ〇 + ΧρΧ-Υ( Θ )Y + Xmx-Y〇y (1) Δ Υ-Υ〇 + ΥρΥ + Χ( 0 )X + Ymy + Xcx (2) 等式(1 )是用以計算χ軸對準誤差△ X ’而等式(2 )是用以計 算Y軸對準誤差ΔΥ。在等式(1)及(2)當中,X及γ是做對^ 誤差計算一個曝射2的中心位置的座標,且X及y是在一個 曝射内特性評估點的座標。 這裡利用等式(1 )及(2 )解釋一個對準誤差計算的範例。 在這個計算範例中,被顯示於圖5的半導體晶圓3上一個圓 所包圍的曝射4被選做Y轴對準誤差的計算。為了較容易瞭 解,這裡假設Y0=〇,l//m、Yp=2ppm、)二0、γ,〇、xc = 〇 ,曝射4的大小是20mm X 20mm,當設定半導體晶圓3的中 心為原點時,被選做對準誤差計算的曝射4的特性評估點 的Y軸座標為5 0 m m。於是,曝射4的特性評估點的Y軸對準 誤差△ Y由等式(2 )計算為: Δ Y-Y〇 + YpY + X( ^ )X + Ymy + Xcx =〇. 1 + ( 2 / 1 0 0 0 0 0 0 ) X 5 0 0 〇〇 + 〇 + 0 + 〇 =〇 . 2 # mPage 14 530195 V. Description of Invention (ίο) Next, the alignment error of all exposures 2 on the semiconductor wafer 1 based on the results of the alignment error measurement shown in Table 2 is calculated. The calculation of the alignment error is based on the individual exposure 2 (hereinafter referred to as a characteristic evaluation point) on the semi-circle 1 at the measurement point based on the evaluation of the characteristics of the semiconductor device. That is, the calculation of the alignment error from Equations (1) and (2) shown below is first derived, using the linearity factor calculated from the results of the alignment error measurements shown in Table 2. Δ χ = 〇〇 + ΧρΧ-Υ (Θ) Y + Xmx-Y〇y (1) Δ Υ-Υ〇 + ΥρΥ + χ (0) X + Ymy + Xcx (2) Equation (1) is used to Calculate the x-axis alignment error Δ X 'and Equation (2) is used to calculate the Y-axis alignment error ΔΥ. In equations (1) and (2), X and γ are used to calculate the coordinates of the center position of an exposure 2 with the error ^, and X and y are the coordinates of characteristic evaluation points within an exposure. Here we use equations (1) and (2) to explain an example of alignment error calculation. In this calculation example, the exposure 4 surrounded by a circle on the semiconductor wafer 3 shown in Fig. 5 is selected as the calculation of the Y-axis alignment error. For easier understanding, it is assumed here that Y0 = 0, 1 // m, Yp = 2ppm, 2) 0, γ, 0, xc = 0, and the size of the exposure 4 is 20mm X 20mm. When the center of the semiconductor wafer 3 is set At the origin, the Y-axis coordinate of the characteristic evaluation point of Exposure 4 selected for the calculation of the alignment error is 50 mm. Then, the Y-axis alignment error ΔY of the characteristic evaluation point of the exposure 4 is calculated from equation (2) as: ΔYY〇 + YpY + X (^) X + Ymy + Xcx = 0.1 + (2/1 0 0 0 0 0 0) X 5 0 0 〇〇 + 〇 + 0 + 〇 = 〇. 2 # m
530195 五、發明說明(11) 如以上的計算範例,X軸對準誤差Δ X及Y軸對準誤差△ Y · 被計算於圖2所示半導體晶圓1上的所有曝射2。在此具體 · 實施例中,利用顯示於表2的線性因子的數量,X軸對準誤 差△ X及Y軸對準誤差A Y被計算於圖2所示半導體晶圓1上 的所有曝射2的每一個。這個計算的一個結果被顯示於圖 6。如圖6所示,在被顯示於半導體晶圓1上個別曝射2内的 · 數值,上面的數值是X軸對準誤差ΔΧ,而下面的數值是Y 軸對準誤差△ γ。 另一方面,為了與根據本具體實施例藉由對準誤差計算 i 方法計算阻抗圖案對準誤差的計算值做比較,具有一個藉 _ 由利用該阻抗圖案所做的圖案的半導體裝置的特性被評 估。這個特色的評估在個別曝射2的預定特性評估點被完 成。該評估的一個結果被顯示於圖7。在圖7, 「0Κ」被顯 示於被評估為具有好的特性的曝射2區域,且「N G」被顯 示於被評估為不好的曝射2區域。在此具體實施例中,在 - 5 2個曝射2的區域當中,2 5個曝射2的區域被評估為不好 的,且其產品良率為27/52。 接著,藉由比較顯示於圖6該半導體晶圓1上所有曝射2 的對準誤差的計算值,與顯示於圖7該半導體晶圓1上所有 曝射2的區域内特性評估點的評估結果,可以知道顯示於 圖6該半導體晶圓1上曝射2内特性評估是「NG」,其中X軸 φ 對準誤差ΔΧ是150nm(0.15//m)或更大。 如此,該半導體晶圓1上所有曝射2區域的對準誤差及特 v 性評估結果之間的關係可被理解,且其良率可被分析。這 、530195 V. Description of the invention (11) As the above calculation example, the X-axis alignment error ΔX and the Y-axis alignment error Δ Y · are calculated for all exposures 2 on the semiconductor wafer 1 shown in FIG. 2. In this specific example, using the number of linear factors shown in Table 2, the X-axis alignment error △ X and the Y-axis alignment error AY are calculated for all exposures 2 on the semiconductor wafer 1 shown in FIG. 2. Each of them. A result of this calculation is shown in Figure 6. As shown in FIG. 6, in the individual exposures 2 displayed on the semiconductor wafer 1, the upper value is the X-axis alignment error ΔX, and the lower value is the Y-axis alignment error Δ γ. On the other hand, in order to compare with the calculated value of the impedance pattern alignment error calculated by the alignment error calculation i method according to the present embodiment, the characteristics of a semiconductor device having a pattern by using the impedance pattern are Evaluation. The evaluation of this characteristic is completed at a predetermined characteristic evaluation point of the individual exposure 2. One result of this evaluation is shown in Figure 7. In FIG. 7, "0K" is displayed in the exposure 2 area evaluated as having good characteristics, and "NG" is displayed in the exposure 2 area evaluated as being poor. In this specific embodiment, out of -52 areas of 2 exposures, 25 areas of 2 exposures were evaluated as bad, and the product yield was 27/52. Next, by comparing the calculated values of the alignment errors of all the exposures 2 on the semiconductor wafer 1 shown in FIG. 6 with the evaluation of characteristic evaluation points in the area of all the exposures 2 on the semiconductor wafer 1 shown in FIG. 7 As a result, it can be known that the evaluation of the internal characteristics of the exposure 2 on the semiconductor wafer 1 shown in FIG. In this way, the relationship between the alignment error and the characteristic evaluation results of all the exposure 2 regions on the semiconductor wafer 1 can be understood, and the yield can be analyzed. This ,
第頁 530195 五、發明說明(12) 樣對於未來在直彳<τ< μ 如3 0 0 _半導體晶^逐漸增加的半導體晶圓特別有效’例 接著被解釋的| & 呌ΐ方沬仏 疋^個應用根據本具體實施例的對準誤差 二二―,個二準太量測裝置綠 一個對進旦、ΘΙ /冢本具體實施例的對準量測裝置10包括 知/的杜六, u、控制部分12、由ROM、RAM及VRAM所 殂成的喊存部合彳q , 及輸入部分1 5。、如CRT的顯示部分1 4 (陰極放射管)’ 該對準量測邱八]ePage 530195 V. Description of the invention (12) This is particularly effective for the future in the straight line < τ < μ such as 3 0 0 _ semiconductor wafer ^ gradually increasing semiconductor wafers' example is explained next | & 呌 ΐ 方 呌 ΐ仏 疋 应用 Apply the alignment error 22 according to the present embodiment, the two alignment measurement devices are green, and the alignment measurement device 10 according to the present embodiment includes the following: Six, u, the control section 12, the combination of the call storage section q formed by ROM, RAM and VRAM, and the input section 15. , CRT display part 1 4 (cathode radiation tube) ’The alignment measurement Qiu Ba] e
案的對準誤差σΡ刀11疋用以測量該半導體晶圓1上一個圖 該控制部分1 9 I 各種算術運苜。$ ϋ控制整個對準裝置10 ’且可以產生 社罢,决神I 邊健存部分1 3作用不只是儲存資料為測量 =被ίί該對準量測裝置10的一個作業系統等等。例 VRAM或其他^被儲存於該儲存部分13。例如,在 祐德存。、士 域存域’由該控制器1 2所產生的影像資料 千於嗲顯?-儲存於該儲存部分1 3的VRAM内的影像資料被顯 β Γ π τ Γ PI P 刀1 4。在此情形下,由影像資料的圖形顯示 疋圖形伟田名八 、矣毛兮烛—文用者;|面)的圖形顯示。由該控制部分12被 部分13的影像資料包括,例如,視窗、游標, 二^ ' 一二,的圖像的影像資料。在這個對準量測裝置1 〇 二f 1错著顯示各種影像資料於該顯示部分14上’ G υ 1的 準呈:則壯男'現。此外’該控制部分1 2被規劃來控制該對 準量測部分11測量五至九個曝# 、至’且遠顯不部分1 4顯示由該對準量測裝置i 1The alignment error σP knife 11 疋 is used to measure a picture on the semiconductor wafer 1. The control section 1 9 I performs various arithmetic operations. $ ϋ Controls the entire alignment device 10 ′ and can generate social services. The decisive part I of the side health storage section 1 3 is not only used to store data for measurement = it is an operating system of the alignment measurement device 10 and so on. For example, VRAM or others are stored in the storage section 13. For example, at Yau Tak Chuen. , Domain storage domain ’The image data generated by the controller 12 is more than one thousand? -The image data stored in the VRAM of the storage section 13 is displayed β Γ π τ Γ PI P knife 14. In this case, the graphic display of the image data (the graphic Weitian Mingba, the hairy candle — the text user; | surface) graphic display. The image data by the control portion 12 and the portion 13 include, for example, image data of a window, a cursor, and two images. In this alignment measurement device 10, f1, a variety of image data is displayed on the display portion 14's quasi-presentation: then the strong man appears. In addition, the control section 1 2 is planned to control the alignment measurement section 11 to measure five to nine exposures #, to ′, and the remote display section 1 4 shows that the alignment measurement device i 1
第17頁 530195 五、發明說明(13) 輸出的各種資訊當中的預定資訊作為一個G ϋ I顯示。 接著被解釋的是一種方法,用以測量形成於該半導體晶 圓1上一個阻抗圖案的對準誤差,並計算所有曝射2的對準 誤差,更特別的是,參照一個G U I顯示。 首先在該對準量測部分11,類似於對準誤差測量的情 形,形成於該半導體晶圓1上該阻抗圖案的對準誤差被測 量。在本具體實施例中,如圖9所示,對準誤差被測量於 九個曝射(圖9的陰影部分)於該半導體晶圓1上。這個測量 的結果可被顯示於該G U I顯示2 0為一個向量圖。顯示於圖9 的G U I顯示更詳細地被解釋。亦即,根據本具體實施例該 對準量測裝置1 0的G U I顯示準備於視窗2 1上以顯示該半導 體晶圓1,例如,一個座標按鈕2 2以打開一個對話方塊用 以輸入如猶後所解釋的曝射内部座標,一個向量圖顯示按 鈕2 3以顯示一個對準誤差測量結果關於九個被測量的曝射 2,一個估計結果向量顯示按鈕2 4以顯示於該半導體晶圓1 上所有曝射2的對準誤差(△ X,△ Υ )的一個估計結果,以 及一個估計值顯示按鈕2 5以數值顯示對準誤差(△ X, △ Υ) 的一個估計結果如圖6所示的相同方式。 在該G U I顯示2 0當中,當座標按鈕2 2被透過一個滑鼠(未 顯示),例如被提供於該對準量測裝置1 0的輸入部分1 5, 所點選時,如圖1 0所示的對話方塊2 6被顯示出來。這個對 話方塊2 6包括曝射内部座標輸入部分2 7、2 8、2 9、3 0、3 1 以輸入曝射2的特性評估點的座標,及檢查按紐2 7 a、 2 8a、29a、30a、31a被提供於其左方。在這個對話方塊26Page 17 530195 V. Description of the invention (13) The predetermined information among various information output is displayed as a GGI. What is explained next is a method for measuring the alignment error of an impedance pattern formed on the semiconductor wafer 1 and calculating the alignment error of all the exposures 2 and, more specifically, referring to a G U I display. First, in the alignment measurement section 11, similar to the case of alignment error measurement, the alignment error of the impedance pattern formed on the semiconductor wafer 1 is measured. In this specific embodiment, as shown in FIG. 9, the alignment error is measured on the nine wafers (the shaded portion in FIG. 9) on the semiconductor wafer 1. The results of this measurement can be displayed in the G U I display 2 0 as a vector graph. The GUI display shown in Figure 9 is explained in more detail. That is, according to the specific embodiment, the GUI display of the alignment measurement device 10 is prepared on the window 21 to display the semiconductor wafer 1, for example, a coordinate button 22 to open a dialog box for inputting as if After explaining the internal coordinates of the exposure, a vector diagram displays a button 2 3 to display an alignment error measurement result. With respect to the nine measured exposures 2, an estimated result vector displays a button 2 4 to display on the semiconductor wafer 1 An estimated result of the alignment error (△ X, △ Υ) of all the exposures 2 on the above, and an estimated value display button 25 shows an estimated result of the alignment error (△ X, △ Υ) in numerical values as shown in Fig. 6 Shown the same way. In the GUI display 20, when the coordinate button 22 is passed through a mouse (not shown), for example, it is provided to the input part 15 of the alignment measurement device 10, and when clicked, as shown in FIG. 10 The dialog boxes 2 6 shown are displayed. This dialog box 2 6 includes exposure internal coordinate input sections 2 7, 2, 8, 2, 9, 30, 3 1 to input the coordinates of the characteristic evaluation points of the exposure 2, and check buttons 2 7 a, 2 8a, 29a. , 30a, 31a are provided to the left. In this dialog box 26
第18頁 530195 五、發明說明(14) 當中,兩個偏移方塊3 2、兩個曝射方塊3 3,及兩個估計值 顯示方塊3 4被提供。在其左方的方塊是X軸座標,及在其 右方的方塊是Y軸座標。在該曝射方塊3 3的右方,一個計 算按鈕3 5被提供。 接著,特色評估點的曝射内部座標被透過一個鍵盤(未 顯示),例如被提供於該對準量測裝置1 0的輸入部分1 5, 輸入於該對話方塊2 6的曝射内部座標輸入部分2 7。在本具 體實施例中,由於特性評估點被設定於曝射2的原點(中心 ),例如,在0被輸入到該曝射内部座標輸入部分2 7的兩個 輸入部分後,左方的檢查按鈕被利用例如一個滑鼠所點選 〇 在那之後,基於由該對準量測部分1 1所測量的九個曝射 2的測量結果,以及被輸入到該曝射内部座標輸入方塊2 7 的特性評估點的曝射内部座標,該半導體晶圓1上所有曝 射的對準誤差都被計算出來。做這樣對準誤差計算所需的 時間是幾秒鐘。 之後,如果必要,圖9所示的估計值顯示按钮2 5被利用 如上所提及的一個滑鼠所點選。結果如圖1 1所示,於該半 導體晶圓1上所有曝射2的特性評估點的對準誤差(△ X, △ Y)計算結果,被以如同圖5的相同方式以數值指示於該 GUI顯示20的視窗21當中。 此外,如果必要,圖9所示的估計結果向量顯示按姐2 4 被利用一個滑鼠所點選。結果如圖1 2所示,於該半導體晶 圓1上所有曝射2的特性評估點的對準誤差(△ X, △ Y)計算Page 18 530195 5. In the description of the invention (14), two offset blocks 3 2, two exposure blocks 3 3, and two estimated value display blocks 3 4 are provided. The square on the left is the X-axis coordinate, and the square on the right is the Y-axis coordinate. To the right of the exposure block 3 3, a calculation button 35 is provided. Next, the exposure internal coordinates of the characteristic evaluation point are input through a keyboard (not shown), for example, provided in the input part 15 of the alignment measurement device 10, and entered in the exposure internal coordinate input of the dialog box 26. Part 2 7. In this specific embodiment, since the characteristic evaluation point is set at the origin (center) of the exposure 2, for example, after 0 is input to the two input parts of the internal coordinate input part 27 of the exposure, the left The check button is clicked with, for example, a mouse. After that, based on the measurement results of the nine exposures 2 measured by the alignment measurement section 11 and the internal coordinate input box 2 that was entered into the exposure The internal coordinates of the exposure of the characteristic evaluation point of 7 and the alignment errors of all the exposures on the semiconductor wafer 1 are calculated. The time required to do such an alignment error calculation is a few seconds. After that, if necessary, the estimated value display button 25 shown in Fig. 9 is clicked with a mouse as mentioned above. The results are shown in FIG. 11. The calculation results of the alignment errors (Δ X, Δ Y) of the characteristic evaluation points of all the exposures 2 on the semiconductor wafer 1 are indicated by numerical values in the same manner as in FIG. 5. GUI display 20 in window 21. In addition, if necessary, the estimated result vector shown in FIG. 9 shows that by the sister 2 4 was clicked with a mouse. The results are shown in Fig. 12. The alignment errors (△ X, △ Y) of the characteristic evaluation points of all the exposures 2 on the semiconductor wafer 1 are calculated.
第19頁 530195 五、發明說明(15) 結果,被顯示於G U I顯示2 0的視窗2 1為一個向量圖。 如上所解釋,藉著於對準量測裝置1 0整合由控制部分1 2 的計算對準誤差功能,及輸入特色評估點的曝射内部座標 功能,有可能實現使該對準量測裝置可以藉由利用該對準 量測部分1 1於該半導體晶圓1上五至九個曝射的對準誤差 測量的一個結果,來計鼻該半導體晶圓1上所有曝射的對 準誤差。結果,半導體裝置的開發如設計規則的最佳化及 良率的分析可被有效達成,開發及設計半導體裝置所需的 時間可被明顯降低。 接著被解釋的是利用根據本具體實施例的對準誤差計算 方法的另一個裝置範例。圖1 3顯示具有根據本具體實施例 的對準誤差計算功能的一個良率分析系統。 如圖1 3所示,根據本具體實施例的該良率分析系統包括 一個主電腦4 1、缺陷檢查裝置4 2、重點掃描型態電子顯微 鏡(CD-SEM) 43、對準量測機器44、特性評估裝置45、分 析器4 6、終端裝置4 7,及印表機4 8,由一條電纜4 9所連 接。 該主電腦4 1是經由該電纜4 9所連接裝置的一個伺服器。 該缺陷檢查裝置4 2是被用以檢查形成於一基板上圖案缺陷 的有無。CD-SEM 43是測量罩膜或半導體晶圓上小圖案的 線寬的一個電子顯微鏡。該分析裝置4 6是分析形成於該半 導體晶圓1上的半導體裝置的一個裝置。該終端裝置47是 控制該主電腦4 1的一個裝置。該印表機4 8被用以輸出預定 資訊於例如紙張之上。Page 19 530195 V. Description of the invention (15) As a result, the window 2 1 displayed in the GUI display 2 0 is a vector graph. As explained above, by integrating the alignment measurement device 10 with the calculation of the alignment error function of the control section 12 and the exposure of the internal coordinates of the input characteristic evaluation points, it is possible to realize that the alignment measurement device can By using a result of the alignment error measurement of the five to nine exposures on the semiconductor wafer 1 by the alignment measurement portion 11, the alignment errors of all the exposures on the semiconductor wafer 1 are calculated. As a result, the development of semiconductor devices such as optimization of design rules and yield analysis can be effectively achieved, and the time required to develop and design semiconductor devices can be significantly reduced. Explained next is another apparatus example using the alignment error calculation method according to the present embodiment. Fig. 13 shows a yield analysis system having an alignment error calculation function according to this embodiment. As shown in FIG. 13, the yield analysis system according to this embodiment includes a host computer 4 1, a defect inspection device 4 2, a focused scanning electron microscope (CD-SEM) 43, and an alignment measurement machine 44 The characteristic evaluation device 45, the analyzer 46, the terminal device 47, and the printer 48 are connected by a cable 49. The host computer 41 is a server of a device connected via the cable 49. The defect inspection device 42 is used to inspect the presence or absence of a pattern defect formed on a substrate. CD-SEM 43 is an electron microscope that measures the line width of small patterns on a cover film or semiconductor wafer. The analysis device 46 is a device that analyzes a semiconductor device formed on the semiconductor wafer 1. The terminal device 47 is a device that controls the host computer 41. The printer 48 is used to output predetermined information on, for example, paper.
530195 五、發明說明(16) 該對準量測機器4 4是類似於該對準量測裝置的一個裝 置,且被規劃對該半導體晶圓1上五至九個曝射2的對準誤 差測量,在2 0至3 6個點上測量對準誤差,並且計算該半導 體晶圓上所有曝射2的對準誤差。該特性評估裝置4 5是評 估形成於該半導體晶圓1上的半導體裝置的特性的一個裝 置。530195 V. Description of the invention (16) The alignment measurement machine 44 is a device similar to the alignment measurement device, and is planned to have an alignment error of five to nine exposures 2 on the semiconductor wafer 1 Measure, measure the alignment error at 20 to 36 points, and calculate the alignment error of all exposures 2 on the semiconductor wafer. The characteristic evaluation device 45 is a device for evaluating characteristics of a semiconductor device formed on the semiconductor wafer 1.
在具有以上解釋規格的良率分析系統當中,該對準量測 裝置4 4首先測量在五至九個曝射2内的對準誤差,類似於 以上解釋對準誤差計算方法中的測量。之後,在該對準量 測機器44當中,對準誤差被利用等式(1 )及等式(2 )由該對 準誤差測量的結果,對該半導體晶圓1上的所有曝射2計算 出來。 另一方面,在該特性評估裝置4 5當中,形成於該半導體 晶圓1上的半導體裝置的特性被評估。在本具體實施例 中,例如,對電壓的阻抗被評估。 接著,由該特性評估裝置4 5有關特性評估點的曝射内部 座標的資訊,被提供給該對準量測裝置44。之後,該對準 量測裝置44計算對準誤差於要被評估該半導體晶圓1上的 所有曝射個別的特性評估點。Among the yield analysis systems having the above explained specifications, the alignment measurement device 44 first measures the alignment errors within five to nine exposures 2, similar to the measurement in the above-explained alignment error calculation method. Thereafter, in the alignment measurement machine 44, the alignment error is calculated from the results of the alignment error measurement using equations (1) and (2) from all the exposures 2 on the semiconductor wafer 1. come out. On the other hand, among the characteristic evaluation devices 45, the characteristics of the semiconductor device formed on the semiconductor wafer 1 are evaluated. In this specific embodiment, for example, the impedance to the voltage is evaluated. Next, information on the internal coordinates of the exposure of the characteristic evaluation point by the characteristic evaluation device 45 is provided to the alignment measurement device 44. After that, the alignment measurement device 44 calculates the alignment error at the individual characteristic evaluation points of all exposures on the semiconductor wafer 1 to be evaluated.
之後,在該主電腦4 1内被提供了該半導體晶圓1上所有 曝射2的有關特性評估結果的資訊及有關對準誤差計算結 果的資訊,該特性評估結果及該對準誤差計算結果之間的 關係被計算並輸出。一個計算的輸出結果被顯示於圖1 4。 在圖1 4中,對於電壓具有好的阻抗的部分被塗色顯示,且Thereafter, the host computer 41 is provided with information on the characteristic evaluation results of all the exposures 2 on the semiconductor wafer 1 and information on the calculation results of the alignment error, the characteristic evaluation results and the calculation results of the alignment error. The relationship between them is calculated and output. The output of a calculation is shown in Figure 14. In Fig. 14, the part with good impedance to the voltage is colored and shown, and
第21頁 530195 五、發明說明(17) 對於電壓具有不滿意阻抗的部分被以斜線顯示。 · 由圖1 4可知,在計算結果對準誤差為0 /z m的半導體裝置 · 中,對於電壓具有好的阻抗的裝置佔1 0 0 %,且所有半導體 裝置具有足夠對電壓的阻抗被確認。由圖1 4也可知道,在 計算結果對準誤差為- 的半導體裝置中,對於電壓 具有好的阻抗的裝置大約佔2 0 %,且8 0 %的半導體對電壓的 ‘ 阻抗不佳。此外,有關分別具有對準誤差-0. 0 2 y m、 -0.04//m、-0.06/zm及-0.08/zm的半導體裝置,具有足夠 對電壓阻抗的半導體裝置比率可以相同方式被得知。 、 如上所解釋,由於透過該主電腦4 1,在具有藉由根據本 ___ 具體實施例之對準誤差計算方法的對準誤差計算功能之對 準量測裝置4 4,與特性評估裝置4 5之間建立連結,有可能 獲得對準誤差計算結果與特性評估結果之間的關係,且因 , 此輕易地分析良率。因此’錯由只在該半導體晶圓1上的 九個曝射内的圖案測量對準誤差,有可能實現使得該良率 分析系統可以分析該半導體晶圓1上所有曝射2的對準誤差 與半導體裝置的良率之間的關係。 如上所解釋,根據本具體實施例,由於該半導體晶圓1 上所有曝射内的對準誤差(△ X, △ Y),是只由該半導體晶 圓1上的九個曝射2内的對準誤差測量結果計算而得。因 此,曝射2的對準誤差計算結果,與形成於該半導體晶圓1 __ 上的半導體裝置的特性評估結果之間的關係可被得知。結 果,開發半導體裝置的設計規則可被有效地決定,且透過 一個半導體裝置製造過程最後產品的良率可被有效地分 -Page 21 530195 V. Description of the invention (17) The part with unsatisfactory impedance to the voltage is shown with a slash. · It can be seen from FIG. 14 that among the semiconductor devices whose calculation results have an alignment error of 0 / z m, 100% of the devices having a good impedance to the voltage accounted for 100%, and all semiconductor devices had sufficient impedance to the voltage to be confirmed. It can also be known from FIG. 14 that among the semiconductor devices whose calculation results have an alignment error of-, about 20% of the devices have a good impedance to the voltage, and 80% of the semiconductors have a poor impedance to the voltage. In addition, regarding semiconductor devices each having an alignment error of -0.02 ym, -0.04 // m, -0.06 / zm, and -0.08 / zm, the ratio of semiconductor devices having sufficient resistance to voltage impedance can be known in the same manner. As explained above, since the host computer 41 has an alignment measurement device 4 4 and a characteristic evaluation device 4 having an alignment error calculation function by the alignment error calculation method according to the specific embodiment of this ___ Establishing a connection between 5 makes it possible to obtain the relationship between the calculation result of the alignment error and the result of the characteristic evaluation, and therefore, the yield can be easily analyzed. Therefore, 'misalignment' measures alignment errors within only nine exposures on the semiconductor wafer 1, it is possible to realize that the yield analysis system can analyze the alignment errors of all exposures 2 on the semiconductor wafer 1. And the yield of semiconductor devices. As explained above, according to the present embodiment, due to the alignment errors (ΔX, ΔY) in all exposures on the semiconductor wafer 1, only the nine exposures 2 on the semiconductor wafer 1 Calculated from the alignment error measurement results. Therefore, the relationship between the calculation result of the alignment error of the exposure 2 and the characteristic evaluation result of the semiconductor device formed on the semiconductor wafer 1 __ can be known. As a result, the design rules for developing a semiconductor device can be effectively determined, and the yield of the final product through a semiconductor device manufacturing process can be effectively divided-
第22頁 530195 五、發明說明(18) 析。此外,藉由利用已獲得的關係計算該半導體晶圓1上 的所有曝射2的對準誤差,產生於該半導體晶圓1上的半導 體裝置的特性評估可被預期,且產品的製造良率可被理 解。 雖然參照相關圖式描述本發明的一個較佳具體實施例, 需了解本發明並不限於該特定具體實施例,且各種改變及 改良可被熟悉本項技藝之人士產生,而不背離如所附申請 專利範圍中本發明之範疇或精神。 例如,指示於該具體實施例的解釋當中的數值只是範例 而已,且任何其他適當的數值都可被採用,如果必要。此 外,例如,顯示於該具體實施例當中對準誤差測量的結果 只是範例,且無庸置疑,本發明即使在測量造成不同值時 也可被類似應用。 此外,在以上所解釋的具體實施例當中,CRT被利用為 顯示部分1 4以顯示GU I顯示2 0。然而,液晶顯示器(LCD )也 是可用的。進一步,例如像是結合了顯示部分1 4及輸入部 分1 5,使能夠由使用者以一根手指直接碰觸螢幕來點選、 選擇或下指令的觸控面板這樣的裝置,也可以被使用。 如上所述,根據本發明,由於在N個單位區域内的對準 誤差是由Μ個單位區域内的對準誤差測量結果計算而得, 實際做對準誤差測量的單位區域數可以被最小化,且一基 板上所有單位區域的對準誤差可被計算及估計,而不需測 量所有這些單位區域内的對準誤差。結果,有可能可以掌 握該基板上所有單位區域内的對準誤差,與形成於該基板Page 22 530195 V. Explanation of the invention (18). In addition, by calculating the alignment error of all exposures 2 on the semiconductor wafer 1 using the obtained relationship, the characteristic evaluation of the semiconductor device generated on the semiconductor wafer 1 can be expected, and the manufacturing yield of the product Can be understood. Although a preferred embodiment of the present invention is described with reference to the related drawings, it should be understood that the present invention is not limited to this specific embodiment, and various changes and improvements can be made by those skilled in the art without departing from the attached The scope or spirit of the invention within the scope of the patent application. For example, the numerical values indicated in the explanation of this specific embodiment are merely examples, and any other appropriate numerical values may be used if necessary. In addition, for example, the results of the alignment error measurement shown in this specific embodiment are merely examples, and there is no doubt that the present invention can be similarly applied even when the measurement causes different values. Further, in the specific embodiments explained above, the CRT is used as the display section 14 to display the GU I display 20. However, a liquid crystal display (LCD) is also available. Further, for example, a device such as a touch panel that combines the display portion 14 and the input portion 15 so that the user can directly touch the screen with one finger to click, select, or issue a command can also be used. . As described above, according to the present invention, since the alignment errors in the N unit regions are calculated from the measurement results of the alignment errors in the M unit regions, the number of unit regions that actually do the alignment error measurement can be minimized Moreover, the alignment errors of all unit regions on a substrate can be calculated and estimated without measuring the alignment errors in all of these unit regions. As a result, it is possible to grasp the misalignment in all unit areas on the substrate and
第23頁 530195 五、發明說明(19)Page 23 530195 V. Description of the invention (19)
第24頁Page 24
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11204636A JP2001035771A (en) | 1999-07-19 | 1999-07-19 | Misalignment calculation, alignment measuring device, and yield analyzing device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW530195B true TW530195B (en) | 2003-05-01 |
Family
ID=16493769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW89114176A TW530195B (en) | 1999-07-19 | 2000-07-15 | Alignment error calculating method, alignment measuring apparatus and yield analytic apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2001035771A (en) |
TW (1) | TW530195B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003100599A (en) * | 2001-09-25 | 2003-04-04 | Nikon Corp | Method for adjusting aligner and exposure system |
US20100141969A1 (en) * | 2008-12-08 | 2010-06-10 | Brazier David B | Method and Apparatus for Making Liquid Flexographic Printing Elements |
-
1999
- 1999-07-19 JP JP11204636A patent/JP2001035771A/en active Pending
-
2000
- 2000-07-15 TW TW89114176A patent/TW530195B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2001035771A (en) | 2001-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7888638B2 (en) | Method and apparatus for measuring dimension of circuit pattern formed on substrate by using scanning electron microscope | |
US8178837B2 (en) | Logical CAD navigation for device characteristics evaluation system | |
JP2007292679A5 (en) | ||
JP4950550B2 (en) | Pattern misalignment measuring method and program | |
WO2007086511A1 (en) | Method and device for determining processing conditions, display and displaying method, processor, measuring instrument and aligner, substrate processing system, and program and information recording medium | |
WO2014077303A1 (en) | Image processor, method for generating pattern using self-organizing lithographic techniques and computer program | |
JP2007220471A (en) | Electron microscope | |
JP2024125416A (en) | Information processing device and information processing method | |
TW530195B (en) | Alignment error calculating method, alignment measuring apparatus and yield analytic apparatus | |
US20230245851A1 (en) | Method for calibrating a scanning charged particle microscope | |
JP2000277425A (en) | Electron beam lithography method and its device | |
KR102309432B1 (en) | charged particle beam device | |
US7856138B2 (en) | System, method and computer software product for inspecting charged particle responsive resist | |
US7587700B2 (en) | Process monitoring system and method for processing a large number of sub-micron measurement targets | |
TWI853181B (en) | Method and system for calibrating a scanning electron microscope | |
JP3837138B2 (en) | Pattern evaluation method and pattern transfer method | |
US20080228439A1 (en) | Method and apparatus for measuring distance with graphic data | |
JP2022119370A (en) | Information processor, and information processing method | |
JP2006114583A (en) | Display system and program | |
JP2022119371A (en) | Information processing device, information processing method, and article manufacturing method | |
JP2021173914A (en) | Information processing device and information processing method | |
JP2024507079A (en) | New interface definition for lithographic equipment | |
JPH05102259A (en) | Device for finding magnification of secondary electron image | |
JP2006203123A (en) | Display method and program | |
JP2002031508A (en) | Pattern measuring device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |