TW529166B - Method for forming an array of DRAM cells with buried trench capacitors - Google Patents
Method for forming an array of DRAM cells with buried trench capacitors Download PDFInfo
- Publication number
- TW529166B TW529166B TW091100741A TW91100741A TW529166B TW 529166 B TW529166 B TW 529166B TW 091100741 A TW091100741 A TW 091100741A TW 91100741 A TW91100741 A TW 91100741A TW 529166 B TW529166 B TW 529166B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- buried
- scope
- buried trench
- patent application
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 93
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 20
- 230000008569 process Effects 0.000 claims abstract description 20
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000005530 etching Methods 0.000 claims abstract description 16
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 8
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 8
- 230000002093 peripheral effect Effects 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 235
- 239000000758 substrate Substances 0.000 claims description 63
- 239000004065 semiconductor Substances 0.000 claims description 47
- 238000004519 manufacturing process Methods 0.000 claims description 38
- 238000009792 diffusion process Methods 0.000 claims description 17
- 239000004575 stone Substances 0.000 claims description 16
- 238000002955 isolation Methods 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 13
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 150000004767 nitrides Chemical class 0.000 claims description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 7
- 239000002019 doping agent Substances 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 7
- 239000011737 fluorine Substances 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000001312 dry etching Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 238000005468 ion implantation Methods 0.000 claims description 5
- 238000001459 lithography Methods 0.000 claims description 5
- 229920002120 photoresistant polymer Polymers 0.000 claims description 5
- 238000001020 plasma etching Methods 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims description 3
- 239000012495 reaction gas Substances 0.000 claims description 3
- 229910003818 SiH2Cl2 Inorganic materials 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- 238000001039 wet etching Methods 0.000 claims 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 239000011229 interlayer Substances 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 239000004576 sand Substances 0.000 claims 1
- 239000002002 slurry Substances 0.000 claims 1
- 238000007740 vapor deposition Methods 0.000 claims 1
- 239000012212 insulator Substances 0.000 abstract 1
- 238000000206 photolithography Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 32
- 229910052710 silicon Inorganic materials 0.000 description 17
- 239000010703 silicon Substances 0.000 description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 16
- 238000003860 storage Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- -1 for example Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000005360 phosphosilicate glass Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 240000003109 Persicaria chinensis Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910000070 arsenic hydride Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
529166 五、發明說明(1) 5-1 發明領域: 本發明係有關μ _ 法;特別是有關於」機存取記憶體元件製Μ 取記憶體元件製造方法;;置溝渠型電容器之動態隨機存 5-2發明背景: 動怨隨機存取記憶體 · memory) (DRAM)儀卸姑—ynamiC random access (―rging state)以數::::二己憶胞的電容器荷電狀態 體。一個動態隨機存取$ 5虎的一種揮發性記憶 (_ss transistQmmt—個存取電晶體 caDacii^H。六η兩 個貝了存電容器(storage 儲存電極,如1電極晶::連接至存儲電容器的- 電壓。上、下電極之間Π,;;::電極係連接至-正 容哭隨機存取記憶體晶胞的心臟部位。當電 谷σσ儲存的電何命多,古啬φ今 與鄕L 7心夕°貝出放大益、在讀取資料時受雜訊的 I pL, α粒子所產生的軟錯記(S〇ft err〇rs )將大大 低,更可減低"再補充"(refresMng卜叫Μη”)的 須率。當一動態隨機存取記憶體晶胞的電容器僅需要小量 2電荷貯存電容時,可於積體電路上製造二維或平面式電 容器。然而,平面式電容器佔據半導體基底相當大的表面 第6頁 529166 五、發明說明(2) -------- 積,並不適用於高積集度的動態隨機存取記憶體元件。 使用一種三維的電容器,例如所謂的堆疊式或溝竿 器,以提高動態隨機存取記憶體元件的積集度。〃电谷 第-A圖至第-L圖係傳統具溝渠型電容器動態隨機存 取記憶體晶胞(trench type DRAM ceU)各種製程步驟 截面示意圖。如弟-A圖及第二A圖所示,纟中第二A圖係 後續製程步驟的俯視示意圖及第一 A圖係第二A圖沿著丨_ t 線的截面示意圖。一墊氧化層i i 、一氮化矽^丄 係依續地形成於一P型矽基底丄〇 〇上。之後,以傳統微 影及蝕刻製程圖案蝕刻氮化矽層i 〇 2及墊氧化声 ,以形成複數列溝渠1 〇 3於P型矽基底2 〇 ◦上。如 二A圖所示,每一列溝渠1 q φ台4 , 再木1 U d中包括稷數對相鄰的溝渠 1 0 3 ,而母一對相鄰的溝準1 n q及# ,, _ J /再木1 0 3係彼此相隔一預定距 (conf〇rmal sU.con nitride layer) 1 0 4 ^ 04i:;;二一犧牲層105形成於共形氣化石夕層 4上。蒼知、弟一 C圖,钱刻部/八从技"口 使犧牲層1 0 5的古/Ui伤的犧牲層1 〇 5 ,以 溝準1 0 ? ϋ Γ 氧化層1 0 1下#,並且使 氮化石夕V?/ 的犧牲層1 〇 5覆蓋的部份共形 见夕層104。之後,移除剩餘的犧牲529166 V. Description of the invention (1) 5-1 Field of the invention: The present invention is related to the μ _ method; in particular, it is related to the method of making memory elements by making machine access to memory elements; and the dynamic randomness of trench capacitors. Memory 5-2 Background of the Invention: Dynamic memory random access memory (DRAM) instrument unloading —ynamiC random access (-rging state): Number: 2 :: The state of charge of the capacitor of the two cells. A dynamic random access $ 5 tiger's volatile memory (_ss transistQmmt-an access transistor caDacii ^ H. Six n two storage capacitors (storage storage electrode, such as 1 electrode crystal :: connected to the storage capacitor -Voltage. Between the upper and lower electrodes Π,; ::: The electrode system is connected to the heart of a positive-access random-access memory cell. When the electric valley σσ stores more electricity, the ancient φφ and the鄕 L 7 Xin Xi ° Implification gain, I pL, which is noisy when reading data, and soft false records (S〇ft err〇rs) produced by α particles will be significantly lower, which can be further reduced " refill " (refresMng, called Mη "). When a dynamic random access memory cell capacitor requires only a small amount of 2 charge storage capacitors, two-dimensional or planar capacitors can be fabricated on integrated circuits. However, The planar capacitor occupies a considerable surface of the semiconductor substrate. Page 6 529166 V. Description of the invention (2) -------- The product is not suitable for dynamic random access memory elements with a high accumulation degree. A three-dimensional capacitor, such as a so-called stacked or trencher, Improve the accumulation of dynamic random access memory devices. Figures -A to -L of the Valley of Power Valley are cross-sectional schematic diagrams of various process steps of a traditional trench type DRAM ceU with trench capacitors. As shown in Figure A and Figure A, Figure 2A is a schematic plan view of the subsequent process steps, and Figure 1A is a cross-sectional view of Figure 2A along the line 丨 _ t. A pad oxidation The layer ii and a silicon nitride layer are sequentially formed on a P-type silicon substrate OO. After that, the silicon nitride layer i 〇2 and the pad oxidation sound are etched by a conventional lithography and etching process pattern to form The plurality of rows of trenches 〇3 are on the P-type silicon substrate 2 〇◦. As shown in Figure 2A, each row of trenches 1 q φ Taiwan 4, and 1 U d includes a number of pairs of adjacent trenches 103. And a pair of adjacent grooves 1 nq and #, _ J / Zaimu 103 are separated from each other by a predetermined distance (conf〇rmal sU.con nitride layer) 1 0 4 ^ 04i: ;; two one sacrifices The layer 105 is formed on the conformal gasified fossil layer 4. The picture of Cangzhi, Brother C, Qian Kebu / Bacongji " the ancient sacrifice layer 105 and the Ui wounded sacrifice layer 1 〇 5, with the groove 10 1 ϋ Γ oxide layer 10 1 under #, and the part covered by the sacrifice layer 105 of the nitride stone V? / Conform to the layer 104. After that, the remaining sacrifice is removed.
529166529166
JU teq ^ ^ ^ ^ 1 〇 3 ^ 1 0 6 的内側壁上。之後,以熱磷酸溶液移除1 0 4覆蓋 層1。4、。參照第-F圖,形成-N型擴上、=形氮化石夕 每一個溝渠1 〇 3周圍的p型石夕基底1 品 7於鄰接 用Ν型雜質氣體做為摻雜源,埶 中’可藉由使 溝渠1 0 3周圍鄰接的ρ型石夕基底二/去型摻雜摻人與 區1 0 7係供作稍後形成的埋置溝竿 &成。Ν型擴散 極。溝渠1 0 3中被環形氧化層丄〇、6覆:二的-底部電 100區域並不會摻入N型摻質。 ·^的P!石夕基底 參照第”—氮化石"二氧 s山⑽ nitride/sillc〇n dl〇xide c⑽p〇si 曰( (NO c〇mp〇Slte layer) i ◦ 8 於每一個 :匕 形氧化層1 0 6覆蓋的内周壁(1_r 未被壤 area),以供作一埋置溝渠型電容器的介電層。夫日” 圖,沈積一N型掺雜多晶石夕層工〇 9射型石夕 γ、第一Η ’以填滿每-個溝渠i 〇 3,及供作埋置溝渠型= 頂部電極。之後,蝕刻部份的N型摻雜多晶矽層的 以曝露溝渠1 0 3中部份環形氧化層丄〇 6。參照’ aa 圖,蝕刻壞形氧化層]_ 〇 6的曝露部份直至N 矽層1 0 9的表面。 H 4 7 529166 發明說明(4) 參照第一 J圖,接下來,沈一 1 〇 〇上,及餘刻部份非晶石夕層積,以非使日曰乘^層;^型石夕基底 溝渠1 0 3中形成埋置靖二使二的非晶… 1 1 D。以雜工从 V DUriea S1 1 icon strap ) Π 方法將N型換質摻入埋置石夕導帶 丄丄U 進订一回火步驟使植入埋置矽導帶]1 n 士 型摻質向外擴散進入鄰接的P 1 0 2的\ 質摻雜的埋置石夕“ Η η Λ '基底1 Q。,以使N型摻 ^ ^ , x 7 v f 1 1 〇电性連接於埋置溝渠型雷交哭 及稍後形成於p型石々美庥ΊΓ|η 合口口 極〆、、及極區τ , 〇 〇上的一存取電晶體的一源 / 〇σ 16。根據上述製程步驟,即可完成埋t、、ι 渠型電容器的製作。 I」兀成埋置溝 /…、第K圖及第二B圖,其中第二β圖係後續势 驟的俯視示意圖乃筮.m ^ τ傻、貝I私步 -立岡你=圆及苐一κ圖係第二β圖沿著IIMI線的截面 不思圖i使用一島形圖案(island pattern ) ]L ]_丄成形 t' ? m機存取記憶體晶胞的存取電晶體的源極,汲極 i區11 ? 區域(active area)。其結果是一溝渠隔 " >成於一對相鄰的埋置溝渠型電容器之間的ρ 里矽基底1 0 〇中,並穿過此 的個別埋置矽導帶n R * 丹卞土电合口口 ν 1 1 0及部份個別的埋置溝渠型電容器 〇 ;· '、專一 L圖及第二C圖,其中第二ς圖係後續製程步 驟的俯視不意圖及第一[圖係第二C圖沿著I I I - I I I線的截 面7"思圖。沈積-氧化層於Ρ型矽基底1 0 0上,以填滿JU teq ^ ^ ^ ^ 1 〇 3 ^ 1 0 6 on the inner side wall. After that, the 104 covering layer 1.4 was removed with a hot phosphoric acid solution. Referring to FIG. -F, a p-type stone substrate 1 around a trench of -N-type nitrided silicon nitride is formed around the N-type nitride stone, and the n-type impurity gas is used as a doping source in the vicinity of the n-type impurity. The p-type stone substrate base / de-doping doping region 10 adjacent to the trench 103 can be used as a buried trench to be formed later. N-type diffuser. The trench 103 is covered by a ring-shaped oxide layer 丄 0 and 6: the second-bottom region 100 is not doped with an N-type dopant. The reference of P! Shi Xi substrate refers to "Nitride stone" nitride / sillc〇n dl〇xide c⑽p〇si (NO c〇mp〇Slte layer) i ◦ 8 in each: The inner peripheral wall covered by the dagger-shaped oxide layer 106 (1_r is not soiled area) for use as a dielectric layer for buried trench capacitors. Fig. "Figure, depositing an N-type doped polycrystalline silicon layer 〇9 shot-type stone γ, the first Η to fill each trench 〇3, and for the buried trench type = top electrode. After that, the N-type doped polycrystalline silicon layer was etched to expose the trench. Part of the ring oxide layer 丄 06 in 103. Refer to the 'aa diagram, etching the bad-shaped oxide layer] _〇6 exposed part up to the surface of the N silicon layer 109. H 4 7 529166 Description of the invention (4) Referring to the first figure J, next, Shen Yi 100, and the remaining part of the amorphous stone layered in order to multiply the layer; in order to form a buried in the Shi Xi basement channel 103 Jing Ershi's amorphous ... 1 1 D. Using handymanship from V DUriea S1 1 icon strap) Π method to mix N-type metamorphisms into the embedded Shi Xi guide belt 丄 丄 U and order a tempering step to implant the embedded silicon Conduction band] The 1 n-type dopant diffuses outward into the adjacent P 1 0 2 \ -doped embedded stone slab "Η η Λ 'substrate 1 Q., so that the N-type dopant ^ ^, x 7 vf 1 1 〇 A source of an access transistor / 〇σ that is sexually connected to the buried trench-type thundercry and later formed on the p-type stone 々 || η Hekoukou pole, and the pole region τ, 〇〇 16. According to the above process steps, the production of buried t, and d trench capacitors can be completed. I ″ built into the buried trench / ..., Figure K and Figure B, where the second β picture is the subsequent potential steps The top view is 筮. M ^ τ Silly, I walk privately-Takaoka you = circle and 苐 a κ diagram is the second β diagram cross section along the IIMI line without thinking i uses an island pattern (L) ] _ 丄 Forming the source of the access transistor of the t '? M machine to access the memory cell, the active area of the drain i region 11 ?. The result is that a trench barrier " is formed in a ρ silicon substrate 100 between a pair of adjacent buried trench capacitors and passes through the individual buried silicon conduction bands n R * Dan Geoelectrical junction ν 1 1 0 and some individual buried trench-type capacitors 0; · ', a dedicated L-picture and a second C-picture, where the second picture is the top view of the subsequent process steps and the first [picture The second C diagram is a section 7 " thinking diagram along the III-III line. Deposition-oxide layer on P-type silicon substrate 100 to fill
第9頁 529166 五、發明說明(5) 研磨步驟將此 塾氧化層1〇 矽基底1 〇〇 成的埋置溝渠 法形成一閘氧 精沈積一 Ν型 刻,以形成一 之字元線。然 /汲極區1 1 型電容器的動 丄°以 t °此 型電容 化層 經摻雜 閘極層 後,以 6 °藉 怒隨機 溝渠隔離區ί ί 2 ’之後以化學機械 平坦化,同時移除氮化石夕層1 〇 2及 離子植入方法形成一 Ν井1 1 3於ρ型 Ν井1 1 3係將由Ν型擴散區1 〇 7形 器電性耦合至一正電壓。使用熱氧化 1 1 4於Ρ型矽基底1 〇 〇上。之後, 多晶石夕層及一矽化鎢層,並經圖案蝕 1 1 5供作動態隨機存取記憶體晶胞 離子植入方法形成存取電晶體的源極 上述製程步驟,即可完成具埋置溝渠 存取記憶體晶胞陣列。 然而,根據上 寸縮小時的一主要 渠型電容器的溝渠 小所造成的電容器 rat io )愈提高時 貝。另一方面,溝 ,由於可承受高溫 容器的介電層厚度 據此,亟待提 存取記憶體晶胞的 點,並提高電容器 述傳統製程,溝渠型電容器 限制因素。為保持電容不變,::件尺 蝕刻得更深,以補償因水平方/、將溝 面積e損失。當溝渠的高寬比縮 ’^冓乐的蝕刻製程即變得更困難及 乐型電容器係在其它元件形 更cp 的高介電材質有限,故藉= 以增加單位電容似乎變得困難溝木型電 供一種具埋置溝渠型電容 =製程’其可克服上述傳統以:Page 9 529166 V. Description of the invention (5) The polishing step forms a gate oxide by a buried trench formed from the silicon oxide layer 10 on the silicon substrate 100 to form an N-type incision to form a zigzag line. However, the dynamics of the type 1 1 capacitor in the drain / drain region is t °. This type of capacitive layer is doped with the gate layer, and then the random trench isolation area is 6 °. Then, it is chemically and mechanically planarized. At the same time, Removal of the nitrided stone layer 102 and ion implantation method to form an N-well 1 1 3 and a p-type N-well 1 1 3 are electrically coupled to a positive voltage by the N-type diffusion region 107. Thermal oxidation 1 1 4 was used on a P-type silicon substrate 100. After that, the polycrystalline silicon layer and a tungsten silicide layer are pattern-etched 1 15 for the dynamic random access memory cell cell ion implantation method to form the source of the access transistor. The above process steps can be completed. The buried trench accesses the memory cell array. However, according to the small size of the main channel capacitor when the size is reduced, the capacitor rat io is increased. On the other hand, due to the thickness of the dielectric layer of the container that can withstand high temperatures, it is urgent to mention the point of accessing the memory cell and improve the capacitor. This is the traditional process and the limiting factor of the trench capacitor. In order to keep the capacitance unchanged, :: The piece size is etched deeper to compensate for the loss of the trench area e due to the horizontal squareness. When the aspect ratio of the trench is reduced, the process of etching is more difficult and the type capacitor is limited in other components. The high dielectric material is limited, so it seems difficult to increase the unit capacitance. Type power supply with a buried trench capacitor = process' It can overcome the above tradition to:
529166 五、發明說明(6) 5 - 3發明目的及概述: 本發明之主要目的係提供一種具埋置溝渠型電容器之 動態隨機存取記憶體晶胞陣列製造方法,其可在不增加埋 置溝渠型電容器深度及不薄化其介電層厚度的情況下增加 電容。 本發明之另一目的係提供一種具埋置溝渠型電容器之 動態隨機存取記憶體晶胞陣列製造方法,其使用一線狀圖 案(strip type pattern)取代傳統製程的島形圖案( island pattern )沿著埋置溝渠型電容器圖案方向,定義 供作存取電晶體(access transistor)之源極/沒極的主動 區域於半導體基底上。因此,可大大地提高線狀圖案轉移 的製程空間(process window)。 本發明之又一目的係提供一種具埋置溝渠型電容器之 動態隨機存取記憶體晶胞陣列製造方法,其使用一線狀圖 案(strip type pattern)取代傳統製程的島形圖案( island pattern )沿著埋置溝渠型電容器圖案方向,定義❿ 供作存取電晶體(access transistor)之源極/汲極的主動 區域於半導體基底上。因此,電性耦合於一埋置溝渠型電 容器的頂部電極及一存取電晶體的一源極/汲極的一埋置 導電帶(buried C〇ndUctlVe strap)之接觸電阻可被降低529166 V. Description of the invention (6) 5-3 Purpose and summary of the invention: The main purpose of the present invention is to provide a method for manufacturing a dynamic random access memory cell array with a buried trench capacitor, which can be used without additional embedding. Trench capacitors increase capacitance without thinning the thickness of their dielectric layers. Another object of the present invention is to provide a method for manufacturing a dynamic random access memory cell array with a buried trench capacitor, which uses a strip type pattern instead of an island pattern along a traditional process. In the direction of the pattern of the buried trench capacitor, an active area for the source / dead end of the access transistor is defined on the semiconductor substrate. Therefore, the process window for linear pattern transfer can be greatly improved. Another object of the present invention is to provide a method for manufacturing a dynamic random access memory cell array with a buried trench capacitor, which uses a strip type pattern instead of an island pattern along a traditional process. In the direction of the pattern of the buried trench capacitor, an active region for a source / drain of an access transistor is defined on a semiconductor substrate. Therefore, the contact resistance of a buried conductive band (buried CondUctlVe strap) electrically coupled to a top electrode of a buried trench capacitor and a source / drain of an access transistor can be reduced.
529166 五、發明說明(7) 及受到良好控制 記憶體晶 電性之一 底上。接 (buried 渠包括複 係相互隔 i e1ectr i 形介電層 一介電層 層。接著 的,本發 根據以上所述之目 電容器之動態隨機存取 方法係提供具一第—導 一介電層於此半導體基 以形成複數列埋置溝渠 上,其中每一列埋置溝 每一對相鄰的埋置溝渠 形介電層(conformal d 中。形成一犧牲層於共 使犧牲層之高度位於第 層覆蓋的部份共形介電 明提供一種具埋置溝渠型 胞陣列製造方法。本發明 半導體基底,並形成_第 著’圖案触刻苐一介電層 trench )於半導體基底 數對相鄰的埋置溝渠,及 開一預定距離。形成一共 c layer)於此些埋置溝渠 上。移除部份的犧牲層以 表面下方。移除未被犧牲 ,移除犧牲層的剩餘部份 形成—環形氧化層(collar 〇xide layer)於 溝渠未被共形介電層剩餘部份覆蓋的内側壁上。、埋置 介電層的剩餘部份。形成具電性相反於第二 =示共形 二導電性的—擴散區於每—埋置溝渠未被氧化^ :第 的周圍部份的半導體基底中,其中此 匕層覆蓋 溝渠型電容器之+電極…微 二::埋置 -對相鄰的埋置溝渠彼此相鄰的内側 多除每 層。 W 4 h裱形氧化 529166529166 V. Description of the invention (7) and one of the well-controlled memory crystals. The connection (buried channel) includes a plurality of i eectr i-shaped dielectric layers and a dielectric layer. Then, the dynamic random access method of the capacitor according to the above-mentioned purpose is to provide a first-conductor-dielectric Layer on the semiconductor substrate to form a plurality of rows of buried trenches, wherein each row of buried trenches and each pair of adjacent buried trench-shaped dielectric layers (conformal d.) Form a sacrificial layer so that the height of the sacrificial layer is located at A part of the conformal dielectric layer covered by the first layer provides a manufacturing method of an embedded trench-type cell array. The semiconductor substrate of the present invention is formed with a pattern of a dielectric layer (trench) on the semiconductor substrate. The adjacent buried trenches are separated by a predetermined distance to form a total c layer) on these buried trenches. Remove part of the sacrificial layer below the surface. The unsacrificed layer is removed, and the remaining portion of the sacrificial layer is removed. A ring oxide layer is formed on the inner sidewall of the trench that is not covered by the remaining portion of the conformal dielectric layer. Bury the rest of the dielectric layer. Formed with electrical properties opposite to the second = showing conformal two-conductivity—diffusion regions in each—the buried trenches are not oxidized ^: in the semiconductor substrate in the surrounding part of the first, where this layer covers + of the trench capacitor Electrode ... Micro 2 :: Embedded-Remove each layer from the inner side of adjacent buried trenches adjacent to each other. W 4 h mounting oxidation 529166
529166 五、發明說明(9) 一對相鄰的埋置溝渠型電容器的相鄰内側壁上的 , 氧化層。接著,以第二介電層例如一氮化矽/二^ %形 合層取代被移除的部份環形氧化層及使用一線狀圖=, 埋置溝渠型電容器圖案方向於埋置溝渠型電容器上^ = 供作源極/汲極區的主動區域,藉此於每一埋置溝 容器之-周圍面積產生額外的電容,此周圍面積係;: 埋置溝渠型電容器中不被使用。因此,本發明方法可7冼 增加埋置溝渠型電容器深度及不薄化其介電層厚 Τ 下增加電容。 又列h况 5 - 4 發明詳細說明: 本發明之高積集度具埋置溝渠型電容器(buried trench capacitor)之動態隨機存取記憶體 random access memory) (DRAM)晶胞構造及其製造方法 f於下文詳細說明。根據本發明—較佳具體實施例,其動 悲隨機存取記憶體晶胞係使用位於埋置 ,半導體基底上的-N通道場效電晶體(N::hannel;eld e feCt tranS1St〇r)作為每一個記憶體晶胞的存取電晶 體Recess transistor)。因此,當記憶體晶胞面積減 ^日I i可利用元件面積下方的空間製造增加電容的埋置型 電容器。藉由額外的製程步驟,亦可形成直它類型的元件 於動態隨機存取記憶體元件晶片上。例如?藉由形㈣井 於p型半導體基底中,同時可在晶片上製造互補式金氧半529166 V. Description of the invention (9) The oxide layer on the adjacent inner side wall of a pair of adjacent buried trench capacitors. Next, replace a part of the removed ring oxide layer with a second dielectric layer such as a silicon nitride / two ^% shaped layer and use a line pattern =, the pattern of the buried trench capacitor is oriented toward the buried trench capacitor Upper ^ = Active area for source / drain region, to generate additional capacitance in the surrounding area of each buried trench container, this surrounding area is:: Not used in buried trench capacitors. Therefore, the method of the present invention can increase the depth of the buried trench capacitor and increase the capacitance without thinning the dielectric layer thickness T. The following is a detailed description of the case 5-4. The invention has a high-accumulation dynamic random access memory (DRAM) cell structure with a buried trench capacitor and a manufacturing method thereof. f is described in detail below. According to the present invention, a preferred embodiment, the dynamic and random access memory cell system uses a -N channel field effect transistor (N :: hannel; eld e feCt tranS1St〇r) located on a buried semiconductor substrate. Recess transistor as an access transistor of each memory cell. Therefore, when the area of the memory cell is reduced, the space below the device area can be used to manufacture a buried capacitor with increased capacitance. With additional process steps, other types of devices can also be formed on the dynamic random access memory device chip. E.g? By forming a well in a p-type semiconductor substrate, a complementary metal-oxide semiconductor can be fabricated on the wafer at the same time.
第14頁 529166 五、發明說明(ίο) 场效電曰曰體(complemeritai'y me t a 卜oxide-semic〇nduct〇r ) (CM〇s)電路。 氧半場效電晶體電路可作為動態隨機存取記/金 邊電路。 心篮兀件的周 芩照第3A圖至第3M圖,及第4A、4B、4C、41) mp 根據本發明較佳具體實施例的呈及4E圖, 隨機存取印愔舻曰的咕, ^ 置’冓木支電谷器的動能 二钺:取5己[思體曰曰胞陣列的各種製程 勖 明。參照第3A圖及第4A圖,其中 =下面砰細說 例初始製程步驟的俯 ^ ^ ^較佳具體實施 IV-IV轉的/品立思圖’而第3Α圖係第4Α圖沿著 V、.'泉的截面不思圖。本發明方者 電性的半導體基底300。第ic 具—弟—導 電性苴由t 上- 弟—導電性可以是N型或p刑道 石=中任-者 '然而’半導體基底3 〇 〇較C 矽基底。-二氧化矽的墊氧 :U 土為-Ρ型 底]η η d U 1係形成於丰邋鱗甘 ^ 〇 1,例如藉由熱氧化法。接著,形成一:體基 層3〇2於墊氧化芦ΊΠ11_ ^ Γ 成弟一介電 肿3作a “ = 3 〇 1上,其較佳是使用SiH2Cl及 為反應氣體,以低壓化學洛士 2及 矽層。 &化予虱相沈積方法形成的氮化 3 〇,者:以一微影及姓刻製程圖案餘刻第一介電岸 3心中列埋置溝渠3 0 3於半導體心 相鄰的埋置溝母:列埋置溝渠3 〇 3包括複數對 彼此相隔2 ,::對相鄰的埋置溝渠3"係 預疋距離。评而…係使用光阻塗敷步驟及 第15頁 529166 五、發明說明(11) 非等向性電漿 供作埋置溝渠 施例中,係使 fluorine ), plasma )餘刻 一介電層3 0 。繼續進行蝕 渠3 0 3,於 置溝渠3 0 3 刻方法形成。 蝕刻製程 型電容器 用含H I虫 例如C F4, 機或反應 2及墊氧 刻製程以 此處將形 係使用含 於稍後形成的元件面積下方钱刻出 的電容器溝渠面積。此較佳具體實 刻氣體(an etchant containing 於高密度電漿(high-density 性離子蝕刻機中對氮化矽形成的第 化層3 0 1進行非等向性電漿蝕刻 於半導體基底3 0 〇中形成埋置溝 成電谷裔的陽極電極。較佳地,埋 氯(C込)氣體以非等向性電漿蝕 1著,參照第3B圖,將光阻移除並形成—共形介電層 …中的半導體基底300表埋置f渠八雷 層3 0 4可以是使用SiH2Cl2及叩3做為及座^此/、开y ^ 化學氣相沈積方法形成的氣化石夕層^反矣應氣體,以低壓 Sacrlflcial layer) 3 〇 5係形成於之^後,一犧牲層( 上,以填滿埋置溝渠3 〇 3。犧牲層丨電層3 〇 ' 化矽層,例如是磷矽玻璃(PSG ) / 5可以是一二氧 及旋塗式玻璃(S0G )。參照第3C圖:矽玻璃(BpsG) 3 〇 5,以使犧牲層3 〇 5的高度位,移除部份的犧牲層 表面下方。較佳以乾蝕刻方法移除二弟—介電層3 0 2 例如使用含氟蝕刻氣體以非等向性雷=的犧牲層3 ◦ 5 , 的二氧化ί夕犧牲層3 〇 5。 水餘刻方法移除部份Page 14 529166 V. Description of the invention (ίο) Field-effect electric circuit (complemeritai'y me t a bu oxide-semiconductor) (CM〇s) circuit. The oxygen half field effect transistor circuit can be used as a dynamic random access memory / golden circuit. The perimeter of the heart basket is shown in Figures 3A to 3M, and Figures 4A, 4B, 4C, 41) mp According to the preferred embodiment of the present invention and Figure 4E, random access to the seal said, ^ Set the kinetic energy of the Tochigi electric valley device: Take 5 already [thinking about the various processes of the cell array. Referring to FIG. 3A and FIG. 4A, where = the following details the example of the initial process steps ^ ^ ^ The preferred implementation of the IV-IV transfer / Pinelli diagram 'and Figure 3A is Figure 4A along V ,. 'Spring cross section does not think. The inventor of the present invention is an electrical semiconductor substrate 300. The ic tool—brother—conductivity—from t on to—brother—conductivity can be N-type or p-type. Stone = any-the 'however' semiconductor substrate is 3 〇 than the silicon substrate. -Oxygen for silicon dioxide: U soil is -P type. Bottom] η η d U 1 is formed in P. chinensis, for example, by thermal oxidation. Next, one is formed: a body base layer 302 is formed on a pad of oxidized aluminum alloy 11_ ^ Γ to form a dielectric swelling 3 a == 3 〇1, which is preferably SiH2Cl and a reaction gas, and a low pressure chemical And a silicon layer. &Amp; Nitride formed by the deposition method using a lithographic method. The lithography process is engraved with a lithography and surname process pattern to bury a trench 30 in the center of the first dielectric bank 3 in the semiconductor core. Neighboring buried trenches: Columns of buried trenches 3 03 include a plurality of pairs spaced apart from each other 2 :: For adjacent buried trenches 3 " is a pre-distance. Comment ... is using a photoresist coating step and the 15th Page 529166 V. Description of the invention (11) In the embodiment where the non-isotropic plasma is used as the buried trench, a dielectric layer 3 0 is fluorine), plasma), and the etching channel 3 0 3 is continued. The trench 3 0 3 is formed. The etching process type capacitor contains HI insects such as C F4, machine or reaction 2 and pad oxygen engraving process. Here the shape is used to include the capacitor engraved under the element area to be formed later. Ditch area. This is a preferred embodiment of a high-density plasma (an etchant containing In a density ion etching machine, the first chemical layer 3 1 formed of silicon nitride is anisotropically plasma-etched into a semiconductor substrate 300 to form an anode electrode embedded in a trench. Chlorine (C 込) gas is etched by an anisotropic plasma. Referring to FIG. 3B, the photoresist is removed and formed—a semiconductor substrate 300 in the conformal dielectric layer. 0 4 can be formed using SiH2Cl2 and 叩 3 as the base ^ this /, y ^ ^ gaseous fossil layer formed by chemical vapor deposition method ^ reaction gas, a low-pressure Sacrlflcial layer) 3 〇5 formed on it Then, a sacrificial layer (above, to fill the buried trench 3 03. The sacrificial layer 丨 electrical layer 3 0 ′ silicon layer, for example, phosphosilicate glass (PSG) / 5 can be a one-oxide and spin-on glass (S0G). Refer to Figure 3C: Silicon glass (BpsG) 3 05, so that the height of the sacrificial layer 3 05, remove part of the surface of the sacrificial layer. It is preferred to remove the second brother by dry etching method— The dielectric layer 3 0 2 is, for example, a sacrificial layer 3 using a fluorine-containing etching gas with an anisotropic lightning = 3, a sacrificial layer 3 of the dioxide, and water. Removing part of the law
第16頁 529166 五、發明說明(12) 餘部份,以使共形介電層3 0 4的剩ί部: 層3 0 5的剩 曝露出來。 參照第3D圖,之後,移除未被犧牲層3 〇 5覆蓋 份共形介電層3 〇 4,較佳使用非等向性乾蝕刻方法j 如,可使用含氟氣體以非等向性電漿蝕刻方法移除氮化矽 形成的共形介電層3 0 4。之後,以乾蝕刻方法移除犧牲 參照第3Ε圖,一環形氧化層(c〇ilar oxide laye =6係形成於未被共形介電層3 〇 4剩餘部 = 氧化層3〇6係可在:氧 剩餘部份。例如,#用敎=後,移除共形介電層3 0 4的 solution ),以、‘、,、恤酸溶液(hot H3P〇4 aqUeous 移除一形方法 性的相=第-導電性之-第二導電 半導體基底3 〇 〇 f ::::埋置溝渠3 0 3周圍的 以,周圍之外= = = = = = 埋置溝渠電容器的第一 υ 〈係仏作稍後形成的 一對相鄰的埋置、、f q 1在較佳具體實施例中,在 的擴散區3 〇 7 ί: 巾’環繞個別埋置溝渠3 〇 3 型摻質氣體以罢:散區3 0 7較佳使_ ‘、、、擴政法摻入埋置溝渠3 〇 3中的半導體基 529166 五、發明說明(13) =2 0 0表面而形成。然而,被環 介電層年匕1匕續306及给 丑丨 302设盍的半導體基底表面區衿* 人“久弟〜 型雜質。 卸^域並不會摻入此以 接下來’參照第三G圖及第四b圖,i # -t fi ^ ^ rt ^ ^ t w A ^ β ^ ^ ^ 。ο?ΐ;微f及㈣製程以移除每-對相鄰的 :份環形氧化層3 〇 6。供作㈣= :壁上的 塗敷於半導體基底3 0 0上,而移且f。8係 蓋的部份環形氧化層3 0 6。之後:: = : = 8覆 0 〇 接著,參照第三H圖及第四C圖,其中 製程步驟的俯視示咅楚 圖係後續 的截面示意圖:;:;匕'圖二,四圖沿著… 化層3 0 6的剩餘^ #二Λ· 糸形成於未被環形氧 周壁r Γ 置溝渠3 0 3的: 置溝準型電』二 r 供作猶後完成的埋 予絕緣層。第二介電層3 ◦9較佳可以 d i ox 疋 λ 一 氧化矽複合層(si 1 icon ni tride/si 1 icon ^ layer ) (NO composite layer)。此 3 :;一二化矽複合層之形成步驟係先以低壓化學氣相 氮化石夕層於埋置溝渠3 0 3未被環形氧化 層3 0 6剩餘部份覆蓋的部份内周壁上,然後在 _ l e ^omposite layer ) (NO composite layer)。此 石夕/二氧4b石々讳人既 i …、、丄—..Page 16 529166 V. Description of the invention (12) The remainder, so that the remaining portion of the conformal dielectric layer 3 0 4: The remaining portion of the layer 3 0 5 is exposed. Referring to FIG. 3D, after that, the conformal dielectric layer 3 04 which is not covered by the sacrificial layer 3 05 is removed, preferably using an anisotropic dry etching method. For example, a fluorine-containing gas may be used to anisotropically The plasma etching method removes the conformal dielectric layer 304 formed from silicon nitride. Afterwards, the sacrificial sacrifice is removed by a dry etching method. Referring to FIG. 3E, a ring-shaped oxide layer (c0ilar oxide laye = 6 is formed on the non-conformal dielectric layer 3 04; the remaining portion = the oxide layer 3 06) : The remaining part of oxygen. For example, after using # 敎 =, the solution of the conformal dielectric layer 3 0 4 is removed), and the acid solution (hot H3P〇4 aqUeous) is removed. Phase = the -conductivity-the second conductive semiconductor substrate 3 〇f :::: buried trench 3 0 3 around, outside the periphery = = = = = = the first υ buried capacitor In the preferred embodiment, a pair of adjacent buried, fq 1 is formed later. In the preferred embodiment, the diffusion zone 3 007 is: 'around the individual buried trench 3 0 3 type dopant gas. : The scattered area 3 0 7 is preferably formed by incorporating the semiconductor substrate embedded in the trench 3 0 3 529 166 5. Description of the invention (13) = 2 0 0 surface. However, the ring dielectric The surface layer of the semiconductor substrate is continued from 306 to 306, and the surface area of the semiconductor substrate provided with the ugly 302 is not a type of impurity. The unloading domain will not be incorporated into this. Figure and Figure 4b, i # -t fi ^ ^ rt ^ ^ tw A ^ β ^ ^ ^. Ο? Ϊ́; micro f and ㈣ processes to remove each-pair of adjacent: parts of the ring oxide layer 3 〇 6. For the purpose of 壁 =: coating on the semiconductor substrate 300 on the wall, and shifting f. 8 part of the ring-shaped oxide layer 3 0 6. After :: = = = 8 covering 0 〇 Then, Reference is made to the third H and the fourth C diagrams, wherein the plan view of the process steps shows the subsequent cross-sectional schematic diagrams: ;; Figure 2 and Figure 4 along the remaining layers of the chemical layer 3 0 6 ^ # 二 Λ · 糸 is formed on the peripheral wall r Γ that is not placed in the trench 3 0 3: The trench quasi-type electricity is provided for the buried insulation layer that is completed later. The second dielectric layer 3 ◦ 9 is preferably di ox疋 λ silicon oxide composite layer (si 1 icon ni tride / si 1 icon ^ layer) (NO composite layer). This 3:; the formation step of the silicon dioxide composite layer is a low-pressure chemical vapor nitride nitride layer On the inner peripheral wall of the buried trench 3 0 3 which is not covered by the remainder of the ring-shaped oxide layer 3 0 6, and then on the _ le ^ omposite layer) (NO composite layer). People both i… ,, 丄— ..
529166 五、發明說明(14) 下以熱氧化法將部份氮化矽層氧化成二氧化矽層。由於心 到氮化矽/二氧化矽複合層(N0 composlte丨ee n = 形成機制的影響,會於靠近氮化梦/二氧化 〇 9 3 W與半導f基底3 0 0例如P型石夕基底界面的氮曰 一乳化矽稷合層3 〇 9上產生正電荷。此些正電 導體基底300界面例如是矽界面誘發一反 3;半 inversion layer ) 3 ί 0。此反弟皇屆 Q ,。曰1 3 0 7相鄰接,可同時供作埋置溝曰與擴散區 極。須注意的是,當氮化石夕/二氧#化:1電人谷器的第-電529166 V. Description of the invention (14) Under the thermal oxidation method, a part of the silicon nitride layer is oxidized into a silicon dioxide layer. Due to the influence of the formation mechanism of the silicon nitride / silicon dioxide composite layer (N0 composlte 丨 ee n =), it will be near the nitride nitride / dioxide 0 9 3 W and the semiconducting f substrate 3 0 0 such as P-type stone. The nitrogen at the substrate interface generates a positive charge on an emulsified silicon bonding layer 3 09. The interface of these positively conductive substrates 300 is, for example, a silicon interface induced reversal 3; semi-inversion layer 3 3 0. This anti-brother Huang Q. It is adjacent to 1 3 0 7 and can be used as buried trench and diffusion area electrode at the same time. It should be noted that, when the nitrided stone eve / dioxin # 化: 1 the first-electric
composi te layer ) 3 0 9 形成扒 稷 σ 層(NO ,並不會產生上述反:以 接下來,參照第三Z圖,具 、* 1 1係形成於半導體基底3 〇 〇 i一導電性的一導電層3 渠3 〇 3。此導電層3 1 1係供方以填滿每一個埋置溝 二電極。導電層3 1 1較佳為」M埋置溝渠型電容器的第 可於使用SiH4作為反應氣體,‘、、型經摻雜多晶矽層,其 積多晶矽層時,使用AsH3作為摻=化學氣相沈積方法沈 ln situ doping)方式將磷摻貝夕Λ、,以臨場摻雜( ,其較佳使用移除-部份 “他勺環形氧化層3 ::向性乾蝕刻方法,以 12)蝕刻氣體,以非等向*路出來。可使用含 經摻雜多日日“夕形成的導電層^•刻方法移除部份的;^ 529166 五、發明說明(15) 接著, 氧化層3 0 南度一致, 方法移除。 conductive 導電層3 1 。進行一回 外擴散進入 ’以使埋置 憶體晶胞的 步驟形成) 第二電極。 器的製作。 參照第 6被曝 其較佳 之後, strap 1上, 火步驟 鄰接的 導電帶 存取電 及埋置 根據上 圖,埋置溝渠3 〇 3中剩餘的環形 路部份係被移除直到與導電層3丄丄的 使用含氟蝕刻氣體以非等向性電漿蝕 f照第三K圖,一埋置導電帶(buriedx j 3 1 2係形成於埋置溝渠3 〇 3中的 並以離子植入方式將N型摻質植入其中 以使埋置導電帶3 1 2中的N型摻質向 半‘體基底3 0 0之中(參第三[圖) 3 1 2可電性連接於一動態隨機存取記 晶體的一源極/汲極區3 1 8 (於後續 溝渠型電容器之以導電層3 1 1形成^ 述製程步驟,即可完成埋置溝渠型電容 芩知第二L圖及第四d圖,其中第四d圖係後續製程步 驟的俯視示意圖及第三L圖係第四D圖沿著v I I - v I I線的戴 面示思圖。使用一線狀圖案(strip type pattern) 3 1 3沿著此些列埋置溝渠3 0 3圖案方向,定義供作動 態隨機存取記憶體晶胞陣列之存取電晶體的源極/汲極區 3 1 8的主動區域。其結果如第三L圖所示,複數個溝渠 隔離區(trench isolation region) 3 1 4 係形成於導 電層3 1 2上方的半導體基底3 0 〇中。每一個溝渠隔離 區3 1 4係對齊位於其下方的一個埋置溝渠電容器,並將 務後形成於溝渠隔離區3 1 4上方的存取電晶體與埋置溝composi te layer) 3 0 9 The formation of the 稷 σ layer (NO) does not produce the above-mentioned inverse: Next, referring to the third Z diagram, * 1 1 is formed on the semiconductor substrate 3 〇i-conductive A conductive layer 3 channel 3 03. This conductive layer 3 1 1 is supplied by the supplier to fill each of the two electrodes of the buried trench. The conductive layer 3 1 1 is preferably “M” for buried trench capacitors. As a reactive gas, when the polycrystalline silicon layer is doped with a polycrystalline silicon layer, AsH3 is used as a doping = chemical vapor deposition method (situ doping), and phosphorus is doped in situ doping (,, It is better to use the removal-part of the "ring oxide layer 3 :: isotropic dry etching method, with 12) etching gas, and come out in an anisotropic way. You can use doped doped for many days" Even formation Part of the conductive layer is removed by engraving method; ^ 529166 V. Description of the invention (15) Next, the oxide layer is 30 degrees south and the method is removed. conductive layer 3 1. A step of external diffusion is performed to form the second electrode. Of the device. With reference to No. 6, it is exposed. On the strap 1, the conductive belt adjacent to the fire step is charged and buried. According to the above figure, the remaining ring road part in the buried trench 3 03 is removed until it is connected to the conductive layer. 3 丄 丄 Use fluorine-containing etching gas to anisotropic plasma etching f according to the third K picture, a buried conductive strip (buriedx j 3 1 2 is formed in the buried trench 3 03 and implanted with ions An N-type dopant is implanted in the implantation method so that the N-type dopant in the buried conductive tape 3 1 2 is inserted into the half-body substrate 3 0 0 (see the third [picture] 3 1 2 can be electrically connected to A source / drain region of a dynamic random access crystal 3 1 8 (formed by a conductive layer 3 1 1 in a subsequent trench capacitor is described in the following process steps, and the buried trench capacitor can be embedded. The second L Figure 4 and Figure 4d, where Figure 4d is a schematic plan view of the subsequent process steps and Figure 3D is a diagram showing the wearing of a fourth D figure along the line v II-v II. A linear pattern (strip type pattern) 3 1 3 along these rows of buried trenches 3 0 3 pattern direction, define the access transistor for the dynamic random access memory cell array The active region of the source / drain region 3 1 8 of the body. As shown in the third L diagram, a plurality of trench isolation regions 3 1 4 are semiconductor substrates formed over the conductive layer 3 1 2 3 0 〇. Each trench isolation area 3 1 4 is aligned with a buried trench capacitor located below it, and will form the access transistor and buried trench above the trench isolation area 3 1 4 afterwards.
529166529166
五、發明說明(16) 渠型電容器相隔開 參照第三Μ圖及第四E圖,其中第 F闰 、一 ^ T弟四b圖係後續製程步 驟的俯視示意圖及苐三Μ圖係第四e圖沿菩v τ τ τ v τ τ τ a η /口 嘗 v i i i - v I I I 線的V. Description of the invention (16) The channel capacitors are separated by referring to the third M diagram and the fourth E diagram, in which the Fth, first, and fourth drawings are the top schematic diagrams of the subsequent process steps and the third M diagram is the fourth. The e graph is along the line v τ τ τ v τ τ τ τ a η / viii-v III
截面示意圖。藉形成一氧化層於半導體基底3 〇 〇上方以 填滿此些溝渠隔離區3 1 4,並以化學機械研磨方法將此 氧化層平坦化,同時移除墊氧化層3 〇 1及第一介電層 3 〇 2 ,如此一來,即可完成溝渠隔離區3 1 4二製;。 之後,以離子植入方法,形成一具第二導電性的摻雜井區 3 1 5 ,較佳是一N井,於半導體基底3 〇 〇中。此摻雜 井區3 1 5係將供作埋置溝渠型電容器第一電極的此些擴 散區3 0 7電性耦合於一正電壓。接下來,完成存取電晶 體(access transistor)的製作。以熱氧化法形成一閑 氧化層3 1 6於溝渠隔離區3 1 4上方的半導體基底 3 0 0上。之後,藉沈積與微影方法,形成一導電性閘極 層(conductive gate layer ) 3 1 7 於閘氧化層 3 1 β 上。此導電性閘極層3 1 7係包括複數個條狀導電性閘極 (strip type conductive gate),每一個條狀導電性閑 極係供作動態隨機存取記憶體元件的一字元線。在此較佳Schematic cross-section. An oxide layer is formed on the semiconductor substrate 300 to fill the trench isolation areas 3 1 4, and the oxide layer is planarized by a chemical mechanical polishing method, and the pad oxide layer 3 and the first dielectric are removed at the same time. The electrical layer 3 02, so that the trench isolation area 3 14 can be completed; Thereafter, a doped well region 3 15 having a second conductivity, preferably an N-well, is formed in the semiconductor substrate 300 by an ion implantation method. The doped well region 3 1 5 electrically couples the diffusion regions 3 0 7 serving as the first electrode of the buried trench capacitor to a positive voltage. Next, the fabrication of an access transistor is completed. A free oxide layer 3 16 is formed on the semiconductor substrate 300 above the trench isolation region 3 1 4 by a thermal oxidation method. Thereafter, a conductive gate layer 3 1 7 is formed on the gate oxide layer 3 1 β by a deposition and lithography method. The conductive gate layer 3 1 7 includes a plurality of strip-type conductive gates, and each strip-shaped conductive gate is used as a word line of a dynamic random access memory device. Better here
具體實施例中,導電性閘極層3 1 7的形成方式使得兩對 相鄰的埋置溝渠電容器之間形成可共用一源極/汲極區 3 1 8 (於後續步驟形成)的兩個存取電晶體,參第三μ 圖。導電性閘極層3 1 7可以包含一Ν型經摻雜多晶矽層 及一石夕化鶴層。之後,以離子植入方法形成源極/;:及極區 ^166 ^166 五 、發明說明(17) 由埋置m f f 電晶體的一源極/汲極區3 1 8 主罝導電常3 1 2電性遠 J丄8係經 一電極,而此兩個存雷曰妾於 置溝朱型電容器的第 係連接5翻r晬1存電體共用的源極/沒極區3 1 » 至動悲隨機存取記憶體元件的-位元線。::8 晶胞陣列。凡成本·明具埋置溝渠型電容器之記憶體 -周:=卜圖所示’每一個埋置溝渠型電容器的 圍面積可產生額外的電容,而傳統的埋的 為亚不使用此周圍面積。因此,本發明方法可在;^電合 置滏退剂赍々_ y心J在不增加埋 ^ 一 谷為深度或不薄化其介電層的情況下,捭Λ蕾 谷器的電容。此外,由於以氮化矽/二氧化矽複合‘” 3 0 9取代部份環形氧化層3 0 6及使用一線狀圖^ 3定義主動區域,有較多的導電層3 1 1及埋^導電 帶3 1 2會保留下來。因此,埋置導電帶3 1 2的接觸電 阻(overall contact resistance)可被降低,並且受到 良好控制。另一方面,每一個埋置溝渠型電容器的一側有 一反轉層3 1 7。反轉層3 1 7可遮敝來自埋置溝渠型電 容器第二電極(頂部電極)的電場,因此相鄰的動態隨機 存取記憶體晶胞之間不會互相干擾。 ' 總括而言,本發明方法較之傳統製程具有下述優點: 1 ·在不增加埋置溝渠型電容器深度及不薄化其介電 層的情況下,可增加埋置溝渠型電容器的電容。、In a specific embodiment, the conductive gate layer 3 1 7 is formed in such a manner that two pairs of adjacent buried trench capacitors form two shared source / drain regions 3 1 8 (formed in subsequent steps). Access the transistor, see the third μ figure. The conductive gate layer 3 1 7 may include an N-type doped polycrystalline silicon layer and a lithographic crane layer. Then, the source /; is formed by the ion implantation method: and the electrode region ^ 166 ^ 166 V. Description of the invention (17) The source / drain region of the mff transistor is embedded 3 1 8 2Electrical distance J 丄 8 is connected through an electrode, and the two stored thunders are connected to the first connection of the trench capacitor. 5 The source / impulse area shared by the current storage body 3 1 »to Bit-bit line of tragic random access memory elements. :: 8 unit cell array. Where cost · memory with embedded trench-type capacitors-week: = as shown in the figure, the surrounding area of each buried trench-type capacitor can generate additional capacitance, while the traditional buried ones do not use this surrounding area . Therefore, the method of the present invention can reduce the capacitance of the valley device without increasing the buried depth or thinning its dielectric layer. In addition, since the silicon oxide / silicon dioxide composite '' '3 0 9 is used to replace part of the ring-shaped oxide layer 3 6 and a line graph ^ 3 is used to define the active area, there are more conductive layers 3 1 1 and buried ^ conductive. The band 3 1 2 will remain. Therefore, the overall contact resistance of the buried conductive band 3 1 2 can be reduced and well controlled. On the other hand, each side of each buried trench capacitor has a reverse Transfer layer 3 1 7. The reverse layer 3 1 7 can shield the electric field from the second electrode (top electrode) of the buried trench capacitor, so adjacent dynamic random access memory cell cells will not interfere with each other. '' In summary, the method of the present invention has the following advantages over traditional processes: 1 Without increasing the depth of the buried trench capacitor and without thinning its dielectric layer, the capacitance of the buried trench capacitor can be increased. ,
第22頁 529166 五、發明說明(18) 2. 由於使用線狀圖案定義主動區域,故可大大提高 圖案I虫刻主動區域的製程空間(process window)。 3. 埋置導電帶的接觸電阻可被降低並受到良好控制。 以上所述僅為本發明之較佳實施例而已,並非以限定 本發明之申請專利範圍;凡其它未脫離本發明所揭示之精 神下所完成之等效改變或修飾,均應包含在下述之專利申 請範圍内。Page 22 529166 V. Description of the invention (18) 2. Since the active area is defined using a linear pattern, the process window of the active area of the pattern I can be greatly improved. 3. The contact resistance of the embedded conductive tape can be reduced and well controlled. The above are merely preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention should be included in the following Within the scope of patent applications.
第23頁 529166 圖式簡單說明 第一 A圖至第一 L圖係具埋置溝渠型電容器之動態隨機 存取記憶體晶胞陣列傳統製程的各種步驟截面示意圖; 第二A圖係第一A圖的俯視示意圖; 第二B圖係第一K圖的俯視示意圖; 第二C圖係第一L圖的俯視示意圖; 第三A圖至第三Μ圖係本發明一較佳具體實施例的各種 製程步驟截面示意圖; 第四Α圖係第三Α圖的俯視示意圖; 第四B圖係第三G圖的俯視示意圖; 第四C圖係第三Η圖的俯視示意圖; 第四D圖係第三L圖的俯視示意圖;及 第四Ε圖係第三Μ圖的俯視示意圖。 主要部份之代表符號: 10 0 Ρ型矽基底529166 on page 23 is a diagram that briefly illustrates the first steps A through L, which are cross-sectional schematic diagrams of various steps in the conventional process of a dynamic random access memory cell array with embedded trench capacitors; the second A is the first A Figure B is a schematic top view; Figure B is a schematic top view of Figure K; Figure C is a schematic top view of Figure L; Figures A through M are drawings of a preferred embodiment of the present invention. Sectional schematic diagrams of various process steps; The fourth A diagram is a top schematic diagram of the third A diagram; the fourth B diagram is a top schematic diagram of the third G diagram; the fourth C diagram is a top schematic diagram of the third diagram; the fourth D diagram is The third schematic diagram L is a plan view; and the fourth E diagram is a schematic plan view of a third M diagram. The main part of the symbol: 10 0 P type silicon substrate
第24頁 529166 圖式簡單說明 1 〇 1 墊氧化層 1 0 2 氮化矽層 1 0 3 溝渠 1 0 4 共形氮化矽層 1 0 5 犧牲層 1 〇 6 環形氧化層 1 0 7 N型擴散區 1 0 8 氮化矽/二氧化矽複合層 1 0 9 N型經摻雜多晶矽層 1 1 0 埋置矽導帶 1 1 1 島形圖案 1 1 2 溝渠隔離區 1 1 3 N井 1 1 4 閘氧化層 1 1 5 閘極層 1 1 6 源極/汲極區 3 0 0 半導體基底 3 0 1 墊氧化層 3 0 2 第一介電層 3 0 3 埋置溝渠 3 〇 4 共形介電層 3 0 5 犧牲層 3 0 6 環形氧化層 3 0 7 擴散區 ΦPage 24 529166 Brief description of the drawing 1 〇1 Oxide pad 1 0 2 Silicon nitride layer 1 0 3 Ditch 1 0 4 Conformal silicon nitride layer 1 0 5 Sacrificial layer 1 〇6 Ring oxide layer 1 0 7 N-type Diffusion region 1 0 8 Silicon nitride / silicon dioxide composite layer 1 0 9 N-type doped polycrystalline silicon layer 1 1 0 Buried silicon conduction band 1 1 1 Island pattern 1 1 2 Trench isolation area 1 1 3 N well 1 1 4 gate oxide layer 1 1 5 gate layer 1 1 6 source / drain region 3 0 0 semiconductor substrate 3 0 1 pad oxide layer 3 0 2 first dielectric layer 3 0 3 buried trench 3 〇4 conformal Dielectric layer 3 0 5 sacrificial layer 3 0 6 ring oxide layer 3 0 7 diffusion region Φ
529166 圖式簡單說明 3 0 8 光 阻 層 3 0 9 第 二 介 電 層 3 1 0 反 轉 層 3 1 1 導 電 層 3 1 2 埋 置 導 電 帶 3 1 3 線 狀 圖 案 3 1 4 溝 渠 隔 離 區 3 1 5 摻 雜 井 區 3 1 6 閘 氧 化 層 3 1 7 導 電 性 閘 極層 3 1 8 源 極/ >及極區529166 Brief description of the drawing 3 0 8 Photoresist layer 3 0 9 Second dielectric layer 3 1 0 Inversion layer 3 1 1 Conductive layer 3 1 2 Buried conductive strip 3 1 3 Linear pattern 3 1 4 Trench isolation area 3 1 5 doped well region 3 1 6 gate oxide layer 3 1 7 conductive gate layer 3 1 8 source / > and electrode region
第26頁Page 26
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW091100741A TW529166B (en) | 2002-01-18 | 2002-01-18 | Method for forming an array of DRAM cells with buried trench capacitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW091100741A TW529166B (en) | 2002-01-18 | 2002-01-18 | Method for forming an array of DRAM cells with buried trench capacitors |
Publications (1)
Publication Number | Publication Date |
---|---|
TW529166B true TW529166B (en) | 2003-04-21 |
Family
ID=28451313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW091100741A TW529166B (en) | 2002-01-18 | 2002-01-18 | Method for forming an array of DRAM cells with buried trench capacitors |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW529166B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI549168B (en) * | 2014-01-20 | 2016-09-11 | 華亞科技股份有限公司 | Manufacturing method of capacitor structure and semiconductor device |
US9525045B1 (en) | 2016-03-10 | 2016-12-20 | Vanguard International Semiconductor Corporation | Semiconductor devices and methods for forming the same |
TWI601291B (en) * | 2015-10-07 | 2017-10-01 | 世界先進積體電路股份有限公司 | Semiconductor devices and methods for forming the same |
TWI822717B (en) * | 2017-12-20 | 2023-11-21 | 印度商皮埃企業有限公司 | Pyrazolopyridine-diamides, their use as insecticide and processes for preparing the same |
-
2002
- 2002-01-18 TW TW091100741A patent/TW529166B/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI549168B (en) * | 2014-01-20 | 2016-09-11 | 華亞科技股份有限公司 | Manufacturing method of capacitor structure and semiconductor device |
TWI601291B (en) * | 2015-10-07 | 2017-10-01 | 世界先進積體電路股份有限公司 | Semiconductor devices and methods for forming the same |
US9525045B1 (en) | 2016-03-10 | 2016-12-20 | Vanguard International Semiconductor Corporation | Semiconductor devices and methods for forming the same |
TWI822717B (en) * | 2017-12-20 | 2023-11-21 | 印度商皮埃企業有限公司 | Pyrazolopyridine-diamides, their use as insecticide and processes for preparing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW540154B (en) | Deep trench capacitor structure and its manufacturing method | |
US8936992B2 (en) | Deep isolation trench structure and deep trench capacitor on a semiconductor-on-insulator substrate | |
CN102082116B (en) | Method for fabricating side contact in semiconductor device using double trench process | |
TWI300973B (en) | Method for forming a semiconductor device | |
JP2012174866A (en) | Semiconductor device and manufacturing method of the same | |
TW451425B (en) | Manufacturing method for memory cell transistor | |
JP2011187652A (en) | Semiconductor device and method of manufacturing the same | |
CN108389837A (en) | Transistor arrangement, memory construction and preparation method thereof | |
WO2014109310A1 (en) | Semiconductor device and method for manufacturing same | |
US7211483B2 (en) | Memory device with vertical transistors and deep trench capacitors and method of fabricating the same | |
TW201448213A (en) | Semiconductor device and method for manufacturing same | |
TW591756B (en) | Method of fabricating a memory cell with a single sided buried strap | |
TW406405B (en) | Manufacture method of the trench-type capacitor | |
TWI236053B (en) | Method of selectively etching HSG layer in deep trench capacitor fabrication | |
CN115020378A (en) | Semiconductor device and forming method thereof | |
TWI230456B (en) | Shallow trench isolation and dynamic random access memory and fabricating methods thereof | |
TW529166B (en) | Method for forming an array of DRAM cells with buried trench capacitors | |
TW488068B (en) | Semiconductor device with trench capacitors and the manufacturing method thereof | |
JPH11204758A (en) | Manufacture of horizontal trench capacitor buried in semiconductor substrate | |
JP2014222682A (en) | Semiconductor device and method of manufacturing the same | |
TW569432B (en) | A semiconductor memory device having a trench capacitor and a manufacturing method thereof | |
TW536814B (en) | Manufacturing method of trench type DRAM cell | |
JP2012054454A (en) | Semiconductor device manufacturing method | |
JP2001135803A (en) | Dynamic random access memory and its manufacturing method | |
TWI246700B (en) | Trench capacitor and method for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |