TW528862B - Infrared gun-type ear-temperature thermometer - Google Patents

Infrared gun-type ear-temperature thermometer Download PDF

Info

Publication number
TW528862B
TW528862B TW90113147A TW90113147A TW528862B TW 528862 B TW528862 B TW 528862B TW 90113147 A TW90113147 A TW 90113147A TW 90113147 A TW90113147 A TW 90113147A TW 528862 B TW528862 B TW 528862B
Authority
TW
Taiwan
Prior art keywords
temperature
infrared
sensor
ear
thermometer
Prior art date
Application number
TW90113147A
Other languages
Chinese (zh)
Inventor
Yu Chien Huang
Simon Tsao
Charles Chang
Vincent Weng
Kevin Lin
Original Assignee
Radiant Innovation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Radiant Innovation Inc filed Critical Radiant Innovation Inc
Priority to TW90113147A priority Critical patent/TW528862B/en
Application granted granted Critical
Publication of TW528862B publication Critical patent/TW528862B/en

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

The present invention provides an infrared gun-type ear-temperature thermometer, which has an optical system, an infrared detector, an environmental temperature sensor, a display unit and a signal processing unit. The infrared detector converts infrared signal into electrical signal and detects a reference temperature. The environmental temperature sensor is arranged in the vicinity of the optical system to sense the rapidly changed environmental temperature. The signal processing unit receives signals from the infrared detector and the environmental temperature sensor and generates a compensation value by an algorithm. The compensation value is used to adjust the read temperature value and maintain a high accuracy of the gun-type ear-temperature thermometer when the temperature is rapidly changed, so that the gun-type ear-temperature thermometer can be used in a non-constant temperature condition.

Description

528862 五、發明說明(1) 發明背景 發明領域 本發明是關於--紅外線耳溫槍,其插入耳朵內部用以讀 取身體的體溫。 習知技藝敘沭 所有的傳統紅外線耳溫槍皆因偵測器對環境溫度反應 不靈敏及接收到除了耳道及耳膜以外如來自光學系統之導 波管的幅射,使其靈敏度及準確度在環境溫度變化時均較 差;在大部分的紅外線耳溫槍中,皆具有一溫度參考感測器 用以補償溫度變化的不靈敏度;然而,若環境溫度快速地變 化,該補償可能無法有效地及正確地跟隨偵測器的溫度變 依據U.S. Pat. No. 4,895,1 64專利揭露之紅外線醫療用溫 度計,其導波管及蝠射偵測器組合必須在均溫狀態下操作; 此溫度計特別地具有一導熱單元,其被建置用以將溫度保持 在均溫狀態下;然而,當環境溫度急遽變化時,此均溫狀態 的維持並不容易保持,例如,若將該溫度計由暖房(如30° C) 移至冷房(如1 5° C),則該均溫狀態便被破壞,同時必須花半 小時、1個小時或者更多的時間以達到新的均溫平衡狀態。 另一 U.S. Pat· 5,024,533所揭露的幅射醫療用溫度計具 有一導波管探頭及紅外線偵測器、一偵測信號處理單元'一 .軀體溫度操作單元及一顯示單元;該軀體溫度操作單元接收 來自紅外線偵測器的紅外線資料及來自兩溫度參考感測器 TIBi ^ 第5頁 528862 的溫度感應資料,在導波管及紅外線偵測器的溫度均衡必須 考慮這些溫度參考資料’以精確地計算軀體溫度;這兩個溫 度參考感測器分別設置在紅外線偵測器及導波管上以偵測 紅外線偵測器及導波管之間的溫度差,此狀況下,軀體溫度 是在非恆溫狀態下由兩溫度參考感測器差値所產生,但此狀 況並不是這麼簡單,首先,該導波管並不是惟一產生與紅外 線偵測器幅射交流的量測錯誤的來源,所有光學系統包含紅 外線偵測器包裝的內壁、偵測器窗口及探頭本身對於偵測器 單元皆具有幅射,這些輻射必須全盤考慮,以在非均溫狀態 下達到準確性的要求;同時,環境溫度變化可能多元化的, 環境溫度在變化的方向上及時間上可能是不定的,若溫度計 被置於混亂且迅速的溫度變化空間,則偵測器及導波管的溫 差可能在某一瞬間爲零,但溫度計的光學系統實際上並不是 處於均溫狀態,故其補償値可能並不正確。 發明槪要 本發明的主要目的是提供一紅外線耳溫槍,用以精確地 自外耳管精確地讀取體溫,而不須在快速環境溫度變化中等 待恆溫狀態。 本發明的另一目地是提供一更簡單的及有效率的方法產 生一補償値,該補償値是用以消除由環境溫度、紅外線偵測 器及光學系統間溫差所生讀取誤差;所以能維持紅外線耳溫 槍的準確性。 爲達上述目的,本發明紅外線耳溫槍,其具有一光學系 βϊ 528862 五、發明說明(3) 統、一紅外線偵測器、一環境溫度感測器、一顯示單元及一 信號處理單元;其中,該紅外線偵測器進一步包含有一紅外 線感測器及一溫度參考感測器;該紅外線感測器置於基板上 及該溫度參考感測器設置在紅外線偵測器之基板附近以分 別將紅外線信轉爲電氣信號,並感知參考溫度;該環境溫度 感測器設置於光學系統附近以偵測迅速變化的環境溫度;信 號處理單元接收來自溫度感測器的信號並由數學演算法產 生一補償値;該補償値是用以校正溫度讀取値,並在快速溫 度變化下維持耳溫度槍的高準確度。 較佳實施例之詳細說明 依據圖一本發明之剖面圖,其具有一機殼1、一紅外線偵 測器1 1、一導波管1 2、一環境溫度感測器1 3、一信號處理 單元14及一顯示單元15;其中,如圖三所示,導波管12之 一端與直接收集來自一被量測物31的紅外線幅射其導波管 12之另一端與紅外線偵測器11連接,紅外線偵測器Π(如圖 三所示)將紅外線幅射轉換爲電氣信號傳輸至信號處理單元 1 4 ;環境溫度感測器1 3設置在接近該光學系統(導波管1 2 及紅外線偵測器Π)以偵測環境溫度的變化,環境溫度感測 器13將環境溫度變化轉爲電氣信號及將其傳至信號處理單 元14(如圖三所示);顯示單元15設置在機殻上,其係顯示 信號處理單元14處理紅外偵測器11及環境溫度感測器13 之信號後的溫度値(如圖三所示),同時,紅外線偵測器11包 含一紅外線感測器Π 1及一溫度參考感測器11 2,其分別設528862 V. Description of the invention (1) Background of the invention The present invention relates to an infrared ear thermometer, which is inserted into the ear to read the body temperature. All the traditional infrared ear thermometers are sensitive to the ambient temperature due to the detector's insensitivity and receive radiation from the waveguide of the optical system except the ear canal and eardrum, making it sensitive and accurate. It is poor when the ambient temperature changes; in most infrared ear thermometers, there is a temperature reference sensor to compensate the insensitivity of the temperature change; however, if the ambient temperature changes rapidly, the compensation may not be effective and Correctly follow the temperature change of the detector According to the infrared medical thermometer disclosed in US Pat. No. 4,895,1 64 patent, the combination of the waveguide and the bat-shot detector must be operated in a uniform temperature state; this thermometer is especially It has a heat-conducting unit, which is built to keep the temperature in a uniform temperature state; however, when the ambient temperature changes sharply, maintaining this uniform temperature state is not easy to maintain. For example, if the thermometer is placed in a warm room (such as 30 ° C) Move to a cold room (such as 15 ° C), then the average temperature state will be destroyed, and it must take half an hour, one hour or more to reach the new average temperature. Balanced state. Another radiation medical thermometer disclosed in US Pat. 5,024,533 has a waveguide probe and an infrared detector, a detection signal processing unit, a body temperature operation unit and a display unit; the body temperature operation unit receives Infrared data from the infrared detector and temperature sensing data from the two temperature reference sensors TIBi ^ page 5 528862, these temperature reference materials must be considered in the temperature equalization of the waveguide and the infrared detector to accurately calculate Body temperature; these two temperature reference sensors are set on the infrared detector and the waveguide to detect the temperature difference between the infrared detector and the waveguide. In this case, the body temperature is at a non-constant temperature. In the state, it is caused by the difference between the two temperature reference sensors, but this situation is not so simple. First of all, the waveguide is not the only source that generates measurement errors in communication with the infrared detector. All optical systems The inner wall of the package containing the infrared detector, the detector window and the probe itself have radiation to the detector unit, and these radiation must be all In order to meet the requirements of accuracy under non-uniform temperature conditions; at the same time, the ambient temperature changes may be diversified, the ambient temperature may be uncertain in the direction and time of the change, if the thermometer is placed in a chaotic and rapid temperature When the space is changed, the temperature difference between the detector and the waveguide may be zero at a certain moment, but the optical system of the thermometer is not actually in a uniform temperature state, so its compensation may not be correct. SUMMARY OF THE INVENTION The main object of the present invention is to provide an infrared ear thermometer for accurately reading body temperature from an external ear canal without having to wait for a constant temperature state during rapid ambient temperature changes. Another object of the present invention is to provide a simpler and more efficient method for generating a compensation chirp, which is used to eliminate reading errors caused by the ambient temperature, the temperature difference between the infrared detector and the optical system; Maintain the accuracy of the infrared ear thermometer. In order to achieve the above object, the infrared ear thermometer of the present invention has an optical system βϊ 528862. 5. Description of the invention (3) system, an infrared detector, an ambient temperature sensor, a display unit and a signal processing unit; Wherein, the infrared detector further includes an infrared sensor and a temperature reference sensor; the infrared sensor is placed on the substrate and the temperature reference sensor is disposed near the substrate of the infrared detector to separately The infrared signal is converted into an electrical signal and senses the reference temperature. The ambient temperature sensor is installed near the optical system to detect the rapidly changing ambient temperature. The signal processing unit receives the signal from the temperature sensor and generates a mathematical algorithm. The compensation 値 is used to correct the temperature reading 校正 and maintain the high accuracy of the ear temperature gun under rapid temperature changes. The detailed description of the preferred embodiment is based on FIG. 1. A cross-sectional view of the present invention, which has a casing 1, an infrared detector 1 1, a waveguide 1, 2. an ambient temperature sensor 1, 3. a signal processing. A unit 14 and a display unit 15; as shown in FIG. 3, one end of the waveguide 12 and the infrared rays directly collected from a measured object 31 are radiated from the other end of the waveguide 12 and the infrared detector 11 Connected, the infrared detector Π (shown in Figure 3) converts the infrared radiation into electrical signals and transmits them to the signal processing unit 1 4; the ambient temperature sensor 13 is set close to the optical system (waveguide 12 and Infrared detector Π) to detect changes in the ambient temperature. The ambient temperature sensor 13 converts the ambient temperature changes into electrical signals and transmits them to the signal processing unit 14 (as shown in Figure 3); the display unit 15 is set at On the chassis, it displays the temperature of the signal processing unit 14 after processing the signals from the infrared detector 11 and the ambient temperature sensor 13 (as shown in Figure 3). At the same time, the infrared detector 11 includes an infrared sensor. Sensor Π 1 and a temperature reference sensor 11 2 Assume

(I 528862 五、發明說明(4) 置在該紅外線偵測器11之基板114上及其基板Π4附近以 接收紅外線幅射及感知溫度變化,其中,溫度參考感測器112 是用以偵測紅外線偵測器Π的基板114溫度。 以下爲溫度補償方法之演算式的實驗導出方式說明,請 參閱圖四,該實驗之實施例具有三個分別設置於不同位置的 溫度參考感測器,分別簡稱爲THRwg 41、THRean 42、THR& 43,其中THRwg 41設於導波管12的前段,THRcan 42設於 紅外線偵測器11的金屬包裝管壁,THRair 43設於接近光學 系統(導波管12及紅外線偵測器11)附近空間。 右紅外線耳溫槍承受一*自Ta至Ta + T 0的溫度變化,則在 光學系統附近(導波管12及紅外線偵測器Π)的THRau 43被 假設爲具有來自環境的一熱容Cair及一熱導GaK,該熱容被 疋義爲·(I 528862 V. Description of the invention (4) It is placed on the substrate 114 of the infrared detector 11 and near the substrate Π4 to receive infrared radiation and sense temperature changes. Among them, the temperature reference sensor 112 is used to detect The temperature of the substrate 114 of the infrared detector Π. The following is a description of the experimental derivation method of the calculation formula of the temperature compensation method. Please refer to FIG. 4. The embodiment of the experiment has three temperature reference sensors set at different positions, respectively. Abbreviated as THRwg 41, THRean 42, THR & 43, of which THRwg 41 is located in the front section of the waveguide 12, THRcan 42 is located on the metal packaging wall of the infrared detector 11, and THRair 43 is located near the optical system (waveguide 12 and infrared detector 11). The right infrared ear thermometer withstands a temperature change from Ta to Ta + T 0, and is near THRau 43 near the optical system (waveguide 12 and infrared detector Π). It is assumed to have a heat capacity Cair and a heat conductance GaK from the environment, which heat capacity is defined as ·

Cair - dQ/dT (1) 其中,當其溫度變化爲dT時,dQ爲增加的儲存熱;該 熱導Gau被定義具有如下關係: >Cair-dQ / dT (1) where, when the temperature change is dT, dQ is the increased heat of storage; the thermal conductance Gau is defined to have the following relationship: >

Pl=Gair*((TO + Ta)*u(t) -T(〇) (2) 其中Ρ1爲自環境流向溫度g十的熱流,同時u(t)爲一*步階 函式;該THRair 43的溫度是由下列等式所主導: 第8頁 528862 五、發明說明(5)Pl = Gair * ((TO + Ta) * u (t) -T (〇) (2) where P1 is the heat flow from the environment to the temperature g ten, and u (t) is a * step function; the THRair The temperature of 43 is dominated by the following equation: Page 8 528862 V. Description of the invention (5)

Cair* dT(t)/dt = Pl*u(t) (3)Cair * dT (t) / dt = Pl * u (t) (3)

以式(2)取代PIReplace PI with formula (2)

Cair*dT(t)/dt + Gair*T(t) = G a i r * (T 0 + Ta) * u ( t) (4) 使用Laplace轉換以得到解:Cair * dT (t) / dt + Gair * T (t) = G a i r * (T 0 + Ta) * u (t) (4) Use Laplace transformation to get the solution:

Cair*(s*T(s) - Ta) + Gair*T(s) = Gair*(TO + Ta)/s (5) 由式(4) T(s) = Ta/(s + Gair/Ca!r) + ((Ta + TO)*Gair/Cair)/(S*(S + G air/Cair)) (6) 令Gair air),以反Laplace轉換(6)並將得到的 解T⑴繪於圖五:Cair * (s * T (s)-Ta) + Gair * T (s) = Gair * (TO + Ta) / s (5) By the formula (4) T (s) = Ta / (s + Gair / Ca ! r) + ((Ta + TO) * Gair / Cair) / (S * (S + G air / Cair)) (6) Let Gair air) to inverse Laplace transform (6) and plot the resulting solution T⑴ In Figure 5:

Ta,r(t) = TO*(l-exp(.t/( r air))) + Ta (7) 其中,r air是在THRair 43的溫度時間常數,其可由實 驗測試取得。 ΊΒ1 ^ 528862 五、發明說明(7) 在實際的操作環境中,環境溫度在方向及時間上皆屬於 隨機的; 公式(4)必須寫爲:Ta, r (t) = TO * (l-exp (.t / (r air))) + Ta (7) where r air is the temperature time constant at THRair 43, which can be obtained by experimental tests. ΊΒ1 ^ 528862 V. Description of the invention (7) In the actual operating environment, the ambient temperature is random in direction and time; Formula (4) must be written as:

Cair*dT(t)/dt + Gair*T(t) = Gair*((Ta + TO)*u(t).(Ta + TO)*u (t-tl) + (Ta + Tl)*u(t-tl)-(Ta + Tl)*u(t-t2) + (Ta + T2)*u(t-t2)-...... … (10)Cair * dT (t) / dt + Gair * T (t) = Gair * ((Ta + TO) * u (t). (Ta + TO) * u (t-tl) + (Ta + Tl) * u (t-tl)-(Ta + Tl) * u (t-t2) + (Ta + T2) * u (t-t2) -... (10)

Cair*dT(t)/dt + Gair*T(t) = G a i r * ((Ta + T 0) * u (t) + Σ(η=1 〜N)((Tn-Tn-l)*u(t-tn))) (11) 其中,Τη可爲正或負。 籍由Laplace轉換及重合原理,可解得該溫度Ta,Jt): Tair(t) = Ta + T0*( 1 -exp(-t/( r air))) + Σ(η=1 〜N)( (Tn-Tn-1)*( l-exp(-(t-tn)/(r air)) )*u(t-tn) ) (12) 其中,Tair(t)、rair及Ta爲已 知常數,若時間tn亦 爲已知,則可算得TO〜Τη ;求得隨機時間tn的方法敘述如 下: 首先,考慮實驗測試溫度計實施例(如圖四所示)在t = 0時 只承受一迅速的溫度變化T0如公式(7);在時間t = 0之前, 該溫度計保持在一衡溫狀態Ta下,在溫度計接上電源之後, 1HI ^ 第11頁 528862 五、發明說明(8) 溫度計信號處理單元持續量·測溫度Tair(t)及其斜率 dTair(t)/dt,Tair(t)對時間微分爲 dTair(t)/dt = (TO/τ air)*exp(-t/r air) (13) 因爲溫度時間常數rair較rean、rWg、rsen (溫度參考感 測器112 (下稱THRsen 112)之時間常數)爲小,在t = t0時 THRair 43的反應速度及對室溫迅速變化的偵測能力均較 THRcan 42、THRwg 41或THRsen112迅速且強大,這便是使 用Tair(t)的時間微分作爲判斷溫度計的環境溫度變化是否過. 快的原因;當Tair(t)的斜率較一預設値(如3/ r ai〇大時,該 溫度計必定正處於迅速變動的環境溫度下,此時將時間設爲 t = 〇如圖五所示,當時間自t = 0移動時,如圖7所示之Tair(t) 斜率便逐漸變小,最後變爲0如公式(1 3 ),當時間較--預設 値(如1 0倍溫度時間常數r air)大時,Tair⑴的斜率便接近〇, 同時因爲所有溫度TaU(t)、Tsen、Tean(丨)及Twg⑴如圖六所示 皆相同,而達到另一恆溫狀態,Ta + TO ;若在t = tl時,環境 溫度由Ta + TO變化至Ta + Tl,則在公式(12)中假設N=1以求 得 T a i I· ( t):Cair * dT (t) / dt + Gair * T (t) = G air * ((Ta + T 0) * u (t) + Σ (η = 1 ~ N) ((Tn-Tn-l) * u (t-tn))) (11) wherein Tn may be positive or negative. Based on Laplace's transformation and coincidence principle, the temperature Ta, Jt) can be obtained: Tair (t) = Ta + T0 * (1 -exp (-t / (r air))) + Σ (η = 1 ~ N) ((Tn-Tn-1) * (l-exp (-(t-tn) / (r air))) * u (t-tn)) (12) where Tair (t), rair and Ta are already Knowing the constant, if the time tn is also known, then TO ~ Tη can be calculated; the method of obtaining the random time tn is described as follows: First, consider the experimental test thermometer embodiment (shown in Figure 4) that only bears at t = 0 A rapid temperature change T0 is as shown in formula (7); before the time t = 0, the thermometer is maintained at a constant temperature state Ta. After the thermometer is connected to the power supply, 1HI ^ page 11 528862 V. Description of the invention (8) Thermometer signal processing unit continuous measurement and measurement temperature Tair (t) and its slope dTair (t) / dt, Tair (t) differentiates time dTair (t) / dt = (TO / τ air) * exp (-t / r air) (13) Because the temperature time constant rair is smaller than rean, rWg, and rsen (time constants of temperature reference sensor 112 (hereinafter referred to as THRsen 112)), the reaction speed of THRair 43 and the room temperature at t = t0 The ability to detect rapid temperature changes is faster and more powerful than THRcan 42, THRwg 41 or THRsen 112. That is, the time differential of Tair (t) is used to determine whether the ambient temperature of the thermometer has changed excessively. The reason is fast; when the slope of Tair (t) is larger than a preset value (such as 3 / r ai0, the thermometer must be positive). At a rapidly changing ambient temperature, the time is set to t = 〇 as shown in Figure 5. When the time moves from t = 0, the Tair (t) slope shown in Figure 7 gradually decreases, and finally changes It is 0 as in formula (1 3). When the time is larger than the preset 値 (such as 10 times the temperature time constant r air), the slope of Tair 接近 is close to 0. At the same time, because all temperatures TaU (t), Tsen, Tean (丨) and Twg⑴ are the same as shown in Fig. 6, and reach another constant temperature state, Ta + TO; if t = tl, the ambient temperature changes from Ta + TO to Ta + Tl, then in formula (12) Suppose N = 1 to find T ai I (t):

Tair(t) =Ta + T0*( 1-exp(-t/( r air))) + (丁1-丁0”( l-exp(_(t-tl)/( r air)) )*u(t-tl) ) (14) 其中必須考慮兩種狀況;第一種狀況爲如圖八所示,當 τι>το,在t=tl時,dTair(t)/dt的値將變大而非如上所述遞 !! 第12頁 528862 五、發明說明(9) 減爲0,此時10倍r心的計時器將被設爲〇從新計時;因 Tair(t)、Ta、T0及r air爲已知,丁1可以數學方式計算;第二 種狀況爲在T1<T0的狀況下(含T1<0),在tl時,如圖九所 示Tair⑴的斜率將由正變爲負;對如上所述之所有狀況,不 論溫度計在何時(t0...tn)承受了迅速溫度變化均可由Tair(t) 的微分(Tair⑴的斜率)得知,環境溫度干擾的振幅(ΤΟ...Τη) 同樣可自數學公式(12)解得·用r _及r wg取代r air,Tean(t) 及Twg(t)皆可自公式(12)解得。. 在非均溫下的Tsen、Tean及Twg間之溫差對溫度計準確性 影響及補償値計算的討論如下: 如同上述,紅外線偵測器金屬包裝管壁ll(Tean(t))及導波 管12 (Twg(t))之溫度皆可由光學系統(導波管12及紅外線偵 測器11)附近溫度參考感測器(如圖一所示之環境溫度感 應器13)所測的溫度(TaiJ〇)計算得之,其時問導數 (dTaK(t)/dt)及已知時間常數I* ean及 rwg是由上述實驗導 得。 首先,考慮導波管1 2及紅外線感測器1 1 1之間具有溫 度差之狀況,如圖1〇所示,在一小傾斜立體角度dQ的紅外 線感測器Π 1上,接收自發光RA的目標1 0 1之能量d〇)可寫 成: άΦ =RA *cos(6r)* dQ (15) 依據 Stefan-Boltzmann 定律:ΙΙΑ = (σΤΛ4/π) 可得 dcP=(aTA4/7i)*cos(0r)*dQ (16) ΪΒ1 — 第13頁 528862 圖式簡單說明 圖一本發明 、 门 < 破佳實施例的内部剖面圖。 圖·一為圖一之^T & 1 ^ ^ <紅外線偵測器的切面圖。 圖二為本發明彳古Μ 唬處程序之方塊圖。 圖四為本發明 正演算、、ir Μ音A —固溫度感測器實驗測試用以導出溫度修 正肩异法的實施例剖面圖。 又/Tair (t) = Ta + T0 * (1-exp (-t / (r air))) + (but 1-but 0 ”(l-exp (_ (t-tl) / (r air))) * u (t-tl)) (14) Two conditions must be considered; the first condition is shown in Figure 8, when τι > το, when t = tl, the dTair (t) / dt 値 will become larger Instead of the above !! Page 12 528862 Fifth, the description of the invention (9) is reduced to 0, at this time the timer of 10 times r heart will be set to 0 to restart the time; because Tair (t), Ta, T0 and r air is known, and Ding 1 can be calculated mathematically; the second condition is that under the condition of T1 < T0 (including T1 < 0), at tl, the slope of Tair⑴ will change from positive to negative as shown in Figure 9; For all the conditions described above, no matter when the thermometer (t0 ... tn) withstands rapid temperature changes, the differential of Tair (t) (the slope of Tair⑴) can be known, the amplitude of the ambient temperature interference (T0 ... Τη) can also be solved from the mathematical formula (12). R r and r wg are used to replace r air. Both Tean (t) and Twg (t) can be solved from the formula (12). Tsen at non-uniform temperature The influence of the temperature difference between Tean, Tean and Twg on the accuracy of the thermometer and the compensation and calculation are discussed as follows: As mentioned above, infrared The temperature of the metal packaging tube wall (Tean (t)) and the waveguide 12 (Twg (t)) can be measured by the temperature reference sensor (such as the waveguide 12 and the infrared detector 11) near the optical system (such as The temperature (TaiJ〇) measured by the ambient temperature sensor 13) shown in Figure 1 is calculated. The time derivative (dTaK (t) / dt) and the known time constants I * ean and rwg are derived from the above experiments. First, consider the situation where there is a temperature difference between the waveguide 12 and the infrared sensor 1 1 1, as shown in FIG. 10, the infrared sensor Π 1 at a small tilted stereo angle dQ receives The energy of the self-luminous RA target 1 0 1 d〇) can be written as: άΦ = RA * cos (6r) * dQ (15) According to Stefan-Boltzmann's law: ΙΙΑ = (σΤΛ4 / π) dcP = (aTA4 / 7i ) * cos (0r) * dQ (16) ΪΒ1 — page 13 528862 The diagram briefly illustrates the internal cross-sectional view of the present invention, a door < ^ ^ < Cross-section view of infrared detector. Figure 2 is a block diagram of the program of the present invention. Figure 4 is the forward calculation of the present invention, ir M tone A-solid temperature sensor experimental test. Example sectional view of a temperature correction derived shoulder different method. also/

測試實施例所受環境溫度變化的曲線圖。 Γ變ί 實驗剛試實施例之三個感測器所測出溫L 圖七為在不同時間 之>皿度迅速變化斜率。 圖八為本發明; 實驗測試實施例受二不同環埼、、W许、„ 土 加區段的曲線。 衣兄/皿度迅迷増 圖九為本發明之實給 少的曲線。 實施例受環境溫度迅速增加及減A graph of changes in ambient temperature to which the test examples are subjected. Γ 变 ί The temperature L measured by the three sensors in the experimental example of the experiment is shown in Figure 7. The slope of the rapid change of the plateau at different times. Figure 8 is the present invention; the experimental test example is subjected to two different loops, W Xu, and Tujia sections. Yi Xiong / Dian Du Xun Mi 増 Figure 9 is the actual curve of the present invention. Ambient temperature increases and decreases rapidly

圖十為用以計算在,々k A 、·工外線自導波管輻射不同路徑時圖形。 標號說明 1 —機殼 II ---紅外線偵測器 13 環境溫度感測器 15---顯示單元 4卜THRwg 43---THRair III ---紅外線感測器 113---金屬包裝管壁 12 — -導波管 14---信號處理單元 31---被量測物 42 —— THRcan 101 —-目標 112 溫度參考感測器 114 一-基板Fig. 10 is used to calculate the graph when 々k A, · external line self-guided wave tube radiates different paths. DESCRIPTION OF SYMBOLS 1-Chassis II --- Infrared detector 13 Ambient temperature sensor 15 --- Display unit 4 THRwg 43 --- THRair III --- Infrared sensor 113 --- Metal packaging tube wall 12 —-Guide tube 14 --- Signal processing unit 31 --- Measured object 42 — THRcan 101 — — Target 112 Temperature reference sensor 114 — Base plate

第17頁Page 17

Claims (1)

528862 六、申請專利範圍 1 · 一種紅外 一光學系統 一紅外線偵 收集的紅外 以感知紅外 一環境溫度 一信號處理 測器及環境 補償值,用 一顯示單元 上述補 化下維持耳 便可使用。 線耳溫搶 用以接收 測器,其 線能轉為 線偵測器 感測器用 單元,其 溫度感測 以消除溫 用以顯示 償值是用 溫搶的高 ,其包含有: 及收集來自病患耳管的紅外線; 設有一紅外線感測器將前述光學系統 電氣信號,及一溫度參考感測器用 的基板溫度; 以偵測環境溫度變化; 收集來自紅外線感測器、參考溫度感 器的電氣信號以藉由一演算法產生一 度變化的影響;及 溫度讀取值; 以校正溫度讀取值,並在快速溫度變 準確度,使耳溫搶可不須到恆溫狀態528862 6. Scope of patent application 1 · An infrared-optical system-infrared detection collected infrared to perceive infrared-environment temperature-signal processing detector and environmental compensation value, use a display unit to maintain the ear with the above-mentioned compensation and then use it. The wire ear temperature snatch is used to receive the detector, and the wire can be converted into a line detector sensor unit. Its temperature sensing to eliminate the temperature is used to indicate that the compensation value is high. The temperature includes: The infrared of the patient's ear canal; an infrared sensor is provided to the electrical signals of the aforementioned optical system and a temperature of the substrate for the temperature reference sensor; to detect changes in the ambient temperature; collect the temperature from the infrared sensor and the reference temperature sensor The electrical signal has a one-degree change effect through an algorithm; and the temperature reading value; corrects the temperature reading value and changes the accuracy at a rapid temperature, so that the ear temperature can be kept constant. 第18頁 528862 六、申請專利範圍 3.如申請專利範圍第2項所述之紅外線耳溫槍溫度補償方 法,其演算法的設定使用狀況系由依據實際狀況的實驗測 試所得。Page 18 528862 6. Scope of patent application 3. As for the infrared ear thermometer temperature compensation method described in item 2 of the scope of patent application, its algorithmic setting and use conditions are obtained through experimental tests based on actual conditions. 第19頁Page 19
TW90113147A 2001-05-29 2001-05-29 Infrared gun-type ear-temperature thermometer TW528862B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90113147A TW528862B (en) 2001-05-29 2001-05-29 Infrared gun-type ear-temperature thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90113147A TW528862B (en) 2001-05-29 2001-05-29 Infrared gun-type ear-temperature thermometer

Publications (1)

Publication Number Publication Date
TW528862B true TW528862B (en) 2003-04-21

Family

ID=28450582

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90113147A TW528862B (en) 2001-05-29 2001-05-29 Infrared gun-type ear-temperature thermometer

Country Status (1)

Country Link
TW (1) TW528862B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001118A1 (en) 2008-02-18 2009-08-27 Fortune Semiconductor Corporation, Tamshui Chen Temperature sensor module
TWI418770B (en) * 2010-12-29 2013-12-11 Univ Nat Kaohsiung Applied Sci Room temperature compensation method of infrared thermometer
TWI759057B (en) * 2021-01-04 2022-03-21 熱映光電股份有限公司 Temperature calibration method of ear thermometer with probe cover

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001118A1 (en) 2008-02-18 2009-08-27 Fortune Semiconductor Corporation, Tamshui Chen Temperature sensor module
TWI418770B (en) * 2010-12-29 2013-12-11 Univ Nat Kaohsiung Applied Sci Room temperature compensation method of infrared thermometer
TWI759057B (en) * 2021-01-04 2022-03-21 熱映光電股份有限公司 Temperature calibration method of ear thermometer with probe cover

Similar Documents

Publication Publication Date Title
CA2012528C (en) Infrared thermometry system and method
US20120003726A1 (en) Apparatus and method for calibration of non-contact thermal sensors
US8197128B2 (en) Method and device for temperature prediction
JP2008538965A5 (en)
WO1999015866A1 (en) Radiation thermometer and method for adjusting the same
JP2015535083A (en) Non-contact medical thermometer with distance sensing and compensation
US6637931B2 (en) Probe for use in an infrared thermometer
WO2006047752A1 (en) Pulsed thermistor flow sensor
JP2009236624A (en) Deep temperature measurement apparatus of living body
CN107389723A (en) A kind of adiabatic reaction starting point based on difference variation judges and temperature method for tracing
Hashmi et al. Sensor data fusion for responsive high resolution ultrasonic temperature measurement using piezoelectric transducers
Ballestrín et al. Heat flux sensors: Calorimeters or radiometers?
TW528862B (en) Infrared gun-type ear-temperature thermometer
JP2603004B2 (en) Temperature measuring device and method for providing temperature signal
JP3812884B2 (en) Temperature detection method and temperature detector
TW200936996A (en) Temperature sensing module
WO2010014354A1 (en) System and method for a temperature sensor using temperature balance
EP2521900A2 (en) System for measuring fluid flow velocity
TWI636251B (en) Thermal characteristics measuring device
JP4093099B2 (en) Liquid leak detection device
JP2003070750A (en) Temperature compensator for ear thermometer
JPH03273121A (en) Radiation thermometer
CN112683409A (en) Temperature detection device, temperature calibration method, and computer-readable storage medium
JP3328408B2 (en) Surface temperature measurement method
CN107687901A (en) Thermosphere analysis probe temperature testing calibration system and testing calibration method based on black matrix

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees