JP4093099B2 - Liquid leak detection device - Google Patents

Liquid leak detection device Download PDF

Info

Publication number
JP4093099B2
JP4093099B2 JP2003101315A JP2003101315A JP4093099B2 JP 4093099 B2 JP4093099 B2 JP 4093099B2 JP 2003101315 A JP2003101315 A JP 2003101315A JP 2003101315 A JP2003101315 A JP 2003101315A JP 4093099 B2 JP4093099 B2 JP 4093099B2
Authority
JP
Japan
Prior art keywords
temperature
thermal resistance
temperature sensor
sensor
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003101315A
Other languages
Japanese (ja)
Other versions
JP2004309243A (en
Inventor
宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003101315A priority Critical patent/JP4093099B2/en
Publication of JP2004309243A publication Critical patent/JP2004309243A/en
Application granted granted Critical
Publication of JP4093099B2 publication Critical patent/JP4093099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【0001】
【発明の属する分野】
本発明は、液体クロマトグラフ等の分析機器や産業用機器に用いられる、液体の漏れを検出する液漏れ検出装置に関する。
【0002】
【従来の技術】
液漏れ検出方法として、電気伝導度を検出する方式、屈折率変化を検出する方式、熱放散量(熱抵抗)の変化を検出する方式がある。電気伝導度を検出する方式では、装置が簡単で感度も高いという長所を有しているが、電気伝導度の低い液体は検出できない、電気伝導度を測定する電極の汚染・腐食で感度が低下するといった短所もある。屈折率を検出する方式では、検出可能な液体に制約はないが、装置が複雑となる短所がある。熱放散量の変化を検出する方式は、検出可能な液体に制限は無く、装置も比較的簡単であるが、周囲温度でセンサ出力が変化するという欠点がある。
【0003】
熱放散量検出型液漏れ検出装置の基本原理を図4に示す。サーミスタ等の温度センサ41には弱い熱量が与えられており、周囲温度より高い状態に保たれている。温度センサ41の出力電圧は温度によって変化するが、ゼロ点記憶機構45で得られる基準電圧と比較器43で比較する。温度センサ41に与える熱量をQ(W)、センサの周囲が空気の場合の周囲に対する熱抵抗をRa(℃/W)、周囲温度をT0(℃)とすると、温度センサ41の温度は熱量と熱抵抗で、ある平衡温度に達する。周囲が空気の場合の平衡温度をTa(℃)とすると、温度センサ の温度は(1)式で表される。
Ta=T0+Q・Ra………(1)
この温度Taをゼロ点記憶機構45に基準値記憶値として記憶させる。ここで、温度センサ41の周囲が液体に接すると、一般的には空気より液体のほうが熱抵抗が小さいので、周囲に対する熱抵抗が減少する。接液状態の熱抵抗がRb(℃/W)に変化すると、この時温度センサ41の温度は(2)式のT1に変化する。
T1=T0+Q・Rb………(2)
したがって、温度センサ41の周囲が空気の場合に対して(3)式のΔTの温度差が生じる。
ΔT=T1−Ta=Q(Rb−Ra)………(3)
比較器43を用い、ゼロ点記憶機構45に記憶させたTaとT1とを比較し、この温度差ΔTを検出することで、温度センサ41を液漏れ検出器として使用することができる。すなわち、基準値記憶値として温度センサ41の周囲が空気の場合のセンサ出力を記憶しておき、現在のセンサ出力値から基準値を引いた値をモニタし、液漏れなどにより液に触れたときその値が一定量変化したら、液漏れがあったとみなす。ここでは、温度差を検出するとしたが、サーミスタの抵抗など、温度と相関のある他の測定値を検出しても同様に動作する。
【0004】
上記熱放射量検出型液漏れ検出装置に関連する先行技術文献情報を調査したが発見されなかった。
【0005】
【発明が解決しようとする課題】
熱放散量検出型液漏れ検出装置において、上記のような方法では、温度センサ41の周囲が空気のときに基準値を測定して記憶し、周囲が液体になったときの比較基準値として使用するが、これは基準値記憶時と測定時の周囲温度T0が変化しないという前提がある。実際には周囲温度は変化するので、これを考慮して(3)式を計算しなおすと、基準値記憶時の周囲温度がT0a、測定時の周囲温度がT0Iのとき、温度センサ周囲が液体の場合と周囲が空気の場合の温度センサ41における温度差ΔTは(4)式で表される。
ΔT=(T0I+Q・Rb)−(T0a+Q・Ra)=(T0I−T0a)+Q(Rb−Ra)………(4)
つまり、液を検出した場合だけでなく、周囲温度が変化しても、温度センサ41の測定温度が変化してしまう。このようなセンサを液漏れセンサとして使用すると、温度変化があった場合、実際には液漏れがないのに液漏れを報告する、液が漏れたのに検出できない、という誤動作が起こる。
【0006】
このような問題を解決する手段としては次のような方法が考えられる。まず、温度センサに与える熱量を大きくし、温度センサの周囲の温度変化(T0I−T0a)が無視できるようにする。この方法は実現が容易であるが、温度センサ部分の温度が高くなるため、可燃性の液体には使用できないという欠点がある。次に、温度センサの周囲温度を測定し、温度変化を補正する方法がある。この方法では、温度センサの温度をあげることなく、温度センサ周囲の温度変化の影響を高精度で補正することができるが、温度センサ周囲の温度変化を測定するもう一つの温度センサが必要となる。
【0007】
有機溶剤を使用する液体クロマトグラフ等の機器では、センサ温度をあまりあげることができないので、温度補正によって温度変化を吸収する方法が有効である。ところが、(4)式では、基準値記憶時と測定時で熱量Qが変化しないことが前提となるが、一般的には熱量は周囲温度変化と共に変化する。これを考慮して(4)式を補正すると(5)式のように表される。
ΔT=(T0I+Qb・Rb)−(T0a+Qa・Ra)=(T0I−T0a)+Qb・Rb−Qa・Ra………(5)
これから、単に温度センサ周囲の温度を測定するだけでは補正は難しいことがわかる。
【0008】
本発明は、上記問題を解決するためになされたものであり、センサの周囲温度が変化しても正常に動作する液漏れセンサを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記問題を解決するために、本発明の液漏れセンサは、周囲温度より高い温度に加熱もしくは自己発熱した温度センサからの熱放散量が液体の有無により変化し、この変化を計測することにより液漏れを検出する液漏れ検出装置において、温度センサおよび温度センサの周囲温度を測定する手段を有し、温度センサに一定の熱量を供給する手段を有し、さらに温度センサが測定する温度と温度センサの周囲温度を測定する手段が測定する温度との差を測定する手段を有するものである。温度センサとしては、サーミスタ、熱電対、白金抵抗体等がある。温度センサに一定の熱量を供給する手段としては、例えば供給する熱量を設定する電力設定器と供給する熱量を測定する電力モニタおよび電力設定器における設定値と電力モニタからの測定値との差を無くすように動作する電力制御器との組み合わせがある。
【0010】
(4)式を変形し(4’)と表すことができる。
Q(Rb−Ra)=ΔT−(T0I−T0a)………(4’)
現在の温度センサの温度T0Iから、校正時に記憶した基準値記憶時の温度センサの温度T0aを引くことで、(4’)式のΔTが得られ、同様に、温度センサの周囲温度の現在温度から、校正時に記憶した周囲温度の基準値を引くことで、(4’)式の(T0I−T0a)が得られる。これらより、Q(Rb−Ra)を求めることができる。熱量Qは一定値となるように制御されているので、Q(Rb−Ra)は温度センサの、周囲が液の場合と周囲が空気の場合の熱抵抗変化に比例するため、これを判定基準と比較することで、液漏れが検出できる。
【0011】
また、本発明の液漏れセンサは、周囲温度より高い温度に加熱もしくは自己発熱した温度センサからの熱放散量が液体の有無により変化し、この変化を計測することにより液漏れを検出する液漏れ検出装置において、温度センサおよび温度センサの周囲温度を測定する手段を有し、温度センサに供給する熱量を測定する手段を有し、さらに温度センサが測定する温度と温度センサの周囲温度を測定する手段が測定する温度との差を測定する手段を有するものである。温度センサに供給する熱量を測定する手段としては、電力モニタ等がある。
【0012】
(1)式より、温度センサの熱抵抗は、このときの熱量をQ、周囲温度をT0とすると、(6)式のように求めることができる。
R=(T1−T0)/Q(℃/W)………(6)
熱量Qは熱量を測定する手段により求められるので、液漏れが起こっていないときの熱抵抗と現在の熱抵抗の差を求めることで、熱抵抗変化を求めることができ、液漏れが検出できる。
【0013】
また、本発明の液漏れセンサは、周囲温度より高い温度に加熱もしくは自己発熱した温度センサからの熱放散量が液体の有無により変化し、この変化を計測することにより液漏れを検出する液漏れ検出装置において、温度センサおよび温度センサの周囲温度を測定する手段を有し、温度センサと周囲温度との温度差を一定に保つ手段を有し、さらに温度センサが測定する温度と温度センサの周囲温度を測定する手段が測定する温度との差を測定する手段を有するものである。温度センサと周囲温度との温度差を一定に保つ手段としては、例えば温度センサと周囲温度との温度差を測定する2つの温度検出器と、温度差をあらかじめ設定しておく温度設定器と、実際の温度差と設定している温度差との差をなくすように温度センサに熱を供給するヒータの制御を行うヒータ駆動回路との組み合わせがある。
【0014】
温度センサの温度を一定に保つために必要な熱量は放散した熱量に等しい、という事実を用いて、熱の放散量を計測することで、周囲温度に依存しない液漏れ検出を行うことができる。式(2)は式(2’)のように変形できる。
T1−T0=Q・Rb………(2’)
ここで、温度センサと周囲温度との温度差を一定値ΔTsとすると、(2’)は(7)式のように表される。
ΔTs=Q・RB
Rb=ΔTs/Q………(7)
すなわち、温度センサに供給した熱量(電力)を測定することで、温度センサの熱抵抗Rbを測定することができる。この値から、校正時に記憶した、温度センサの周囲が空気の場合の熱抵抗Raを引くことで、熱抵抗変化が得られ、これをある閾値を比較することで液漏れが検出できる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照しながら詳細に説明する。本発明の液漏れ検出器の一実施例のブロック図を図1に示す。本発明の液漏れ検出器は、液漏れ検出用温度センサ1と、周囲温度測定用温度センサ2と、液漏れ検出用温度センサ基準温度記憶機構4と、周囲温度測定用温度センサ基準温度記憶機構5と、比較器7、8、10と、ヒーター12と、電流増幅器13と、電力モニタ14と、電力設定器15および電力制御器16から構成されている。液漏れ検出用温度センサ1および周囲温度測定用温度センサ2はサーミスタである。
【0016】
液漏れ検出用温度センサ1にはヒーター12から熱量Qが供給されている。ヒーター12には、電力モニタ14と電力制御器16により、電力設定器15に入力された一定の電力が常に供給されるようになっており、熱量Qは常に一定である。液漏れ検出用温度センサ1から、校正時に液漏れ検出用温度センサ基準温度記憶機構4に記憶した基準値を比較器7で引くことで(4’)式のΔTが得られ、同様に、周囲温度測定用温度センサ2から、校正時に周囲温度測定用温度センサ基準温度記憶機構5に記憶した基準値を比較器8で引くことで(4’)式の(T0I−T0a)が得られる。これらより、比較器10を用いてQ(Rb−Ra)を求めることができる。熱量Qは一定値となるように制御されているので、Q(Rb−Ra)は液漏れ検出用温度センサ1の、周囲が液の場合と周囲が空気の場合の熱抵抗変化に比例するため、これを判定基準と比較することで、液漏れが検出できる。
【0017】
図2に本発明の第2の実施例のブロック図を示す。本実施例は液漏れ検出用温度センサ1と、周囲温度測定用温度センサ2と、熱抵抗基準値記憶機構23と、比較器25、29と、熱抵抗測定器27と、ヒーター12および電力モニタ14から構成されている。
【0018】
本実施例の液漏れ検出装置は(6)式により液漏れ検出用温度センサ1の熱抵抗を直接求めることにより液漏れを検出するものである。液漏れ検出用温度センサ1にはヒーター12から熱量Qが供給されている。熱量Qは変動しても良いがその値は常に電力モニタ14により測定されている。液漏れ検出用温度センサ1と周囲温度測定用温度センサ2の温度差(T1−T0)が比較器25より得られ、これを熱抵抗測定器27において、電力モニタ14で求められる電力から計算される熱量Qで除すと、液漏れ検出用温度センサ1の周囲への熱抵抗Rbが直接計算できるので、校正時に熱抵抗基準値記憶機構23に記憶させておいた液漏れが起こっていない状態の熱抵抗Raと現在の熱抵抗Rbとを比較器29で比較する。周囲が空気の場合の熱抵抗は周囲が液で満たされた場合の熱抵抗より大きいので、例えばRbがRaより50%減少したら液漏れとみなす、という判定を行うことにより液漏れを検出することができる。
【0019】
電力モニタ14の構成を図5に示す。電力モニタ14は抵抗51と、サーミスタ53および電圧計55から構成されている。抵抗51は抵抗値Rを有している。サーミスタ53を抵抗51により電圧Vccでプルアップし、そのときのサーミスタ電圧Vthを電圧計55でモニタする。この回路において、サーミスタ53における電流Ithは8式で示される。
Ith=(Vcc−Vth)/R………(8)
したがって、サーミスタ53の発熱電力Pthは9式で求められる。
Pth=Ith・Vth=Vth(Vcc−Vth)/R………(9)
VccおよびRはあらかじめ決まっている値であるので、発熱電力Pthは電圧計55によりVthを測定することにより常にモニタすることができる。
【0020】
図3に本発明の第3の実施例のブロック図を示す。本実施例は液漏れ検出用温度センサ1と、周囲温度測定用温度センサ2と、ヒーター12と、ヒーター駆動回路35と、温度設定器33と、電力モニタ14と、熱抵抗測定器27と、比較器30、31、39および熱抵抗基準値記憶機構23から構成されている。
【0021】
本実施例の液漏れ検出装置は(7)式により、液漏れ検出用温度センサ1と周囲温度測定用温度センサ2との温度差を一定に保つことで液漏れ検出用温度センサ1の熱抵抗を測定でき、これにより液漏れを検出するものである。液漏れ検出用温度センサ1はヒーター12により熱量Qが供給され周囲温度より高温に保たれている。液漏れ検出用温度センサ1と周囲温度測定用温度センサ2との温度差ΔTsが比較器30により常に測定されている。温度設定器33には液漏れ検出用温度センサ1と周囲温度測定用温度センサ2との温度差があらかじめ設定されており、温度設定器33に設定されている値と比較器30で測定されるΔTsとの差が比較器31により測定される。比較器31からの信号はヒーター駆動回路35に伝えられ、液漏れ検出用温度センサ1と周囲温度測定用温度センサ2との温度差ΔTsが温度設定器33に設定された温度と常に一致するように制御される。また、ヒーター12に供給される熱量Qは電力モニタ14により測定されており、この熱量Qと液漏れ検出用温度センサ1と周囲温度測定用温度センサ2との温度差ΔTsを用いて(7)式に従って熱抵抗測定器27により液漏れ検出用温度センサ1の熱抵抗が計算される。校正時に熱抵抗基準値記憶機構23に記憶させておいた液漏れが起こっていない状態の熱抵抗Raと現在の熱抵抗Rbとを比較器39で比較する。例えばRbがRaより50%減少したら液漏れとみなす、という判定を行うことにより液漏れを検出することができる。
【0022】
以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内で種々の変更を行うことができる。例えば、上記実施例では液漏れ検出用温度センサ1の熱抵抗を測定することにより液漏れを検出しているが、熱伝導度を測定することにより液漏れを検出することも可能である。この場合は、周囲が空気の場合の熱伝導度は周囲が液で満たされた場合の熱伝導度より小さいので、例えばRbがRaの150%に達したら液漏れとみなす、ということで判定を行うことができる。
【0023】
【発明の効果】
本発明によれば、液漏れ検出用温度センサの周囲温度を測定し、さらに液漏れ検出用温度センサに供給する熱量を一定に保っているので、周囲温度が変化しても液漏れを正確に検出することができる。また、液漏れ検出用温度センサの周囲温度を測定し、さらに液漏れ検出用温度センサに供給する熱量を直接測定することにより、周囲温度が変化しても液漏れを正確に検出することを可能としている。また、液漏れ検出用温度センサの周囲温度を測定し、さらに液漏れ検出用温度センサと周囲温度の差を一定に保つことにより周囲温度が変化しても液漏れを正確に検出することを可能としている。
【図面の簡単な説明】
【図1】本発明の液漏れ検出装置の一実施例のブロック図である。
【図2】本発明の液漏れ検出装置の第二の実施例のブロック図である。
【図3】本発明の液漏れ検出装置の第三の実施例のブロック図である。
【図4】従来の熱放散量検出型液漏れ検出装置の基本原理図である。
【図5】電力モニタの構成図である。
【符号の説明】
1---液漏れ検出用温度センサ
2---周囲温度測定用温度センサ
4---液漏れ検出用温度センサ基準温度記憶機構
5---周囲温度測定用温度センサ基準温度記憶機構
7、8、10---比較器
12---ヒーター
13---電流増幅器
14---電力モニタ
15---電力設定器
16---電力制御器
[0001]
[Field of the Invention]
The present invention relates to a liquid leak detection device for detecting a liquid leak, which is used in analytical equipment such as a liquid chromatograph and industrial equipment.
[0002]
[Prior art]
As a liquid leakage detection method, there are a method for detecting electrical conductivity, a method for detecting a change in refractive index, and a method for detecting a change in the amount of heat dissipation (thermal resistance). The method of detecting electrical conductivity has the advantage that the device is simple and has high sensitivity, but liquids with low electrical conductivity cannot be detected. Sensitivity decreases due to contamination and corrosion of the electrode for measuring electrical conductivity. There are also disadvantages. In the method of detecting the refractive index, there is no restriction on the detectable liquid, but there is a disadvantage that the apparatus becomes complicated. The method for detecting the change in the amount of heat dissipation has no limitation on the detectable liquid and the apparatus is relatively simple, but has the disadvantage that the sensor output changes at the ambient temperature.
[0003]
FIG. 4 shows the basic principle of the heat dissipation amount detection type liquid leakage detection device. The temperature sensor 41 such as a thermistor is given a weak amount of heat and is kept at a higher temperature than the ambient temperature. Although the output voltage of the temperature sensor 41 varies depending on the temperature, the reference voltage obtained by the zero point storage mechanism 45 is compared with the comparator 43. If the amount of heat given to the temperature sensor 41 is Q (W), the thermal resistance to the ambient when the sensor is air is Ra (° C / W), and the ambient temperature is T0 (° C), the temperature of the temperature sensor 41 is the amount of heat. A certain equilibrium temperature is reached with thermal resistance. If the equilibrium temperature is Ta (° C) when the ambient is air, the temperature of the temperature sensor is expressed by equation (1).
Ta = T0 + Q · Ra (1)
This temperature Ta is stored in the zero point storage mechanism 45 as a reference value storage value. Here, when the surroundings of the temperature sensor 41 are in contact with the liquid, the liquid generally has a smaller thermal resistance than the air, so that the thermal resistance with respect to the surroundings decreases. When the thermal resistance in the wetted state changes to Rb (° C./W), the temperature of the temperature sensor 41 at this time changes to T1 in the equation (2).
T1 = T0 + Q · Rb (2)
Therefore, a temperature difference of ΔT in the equation (3) occurs when the surroundings of the temperature sensor 41 are air.
ΔT = T1-Ta = Q (Rb-Ra) (3)
The temperature sensor 41 can be used as a liquid leak detector by comparing Ta and T1 stored in the zero point storage mechanism 45 using the comparator 43 and detecting this temperature difference ΔT. That is, when the sensor output when the surroundings of the temperature sensor 41 is air is stored as the reference value storage value, the value obtained by subtracting the reference value from the current sensor output value is monitored, and the liquid is touched due to liquid leakage or the like If the value changes by a certain amount, it is considered that there is a liquid leak. Here, the temperature difference is detected, but the same operation is performed even if other measured values correlated with temperature, such as resistance of the thermistor, are detected.
[0004]
Although prior art literature information related to the thermal radiation amount detection type liquid leak detection device was investigated, it was not found.
[0005]
[Problems to be solved by the invention]
In the heat dissipation amount detection type liquid leakage detection device, in the method as described above, when the temperature sensor 41 is surrounded by air, the reference value is measured and stored, and used as a comparison reference value when the periphery becomes liquid. However, this presupposes that the ambient temperature T0 at the time of storing the reference value and at the time of measurement does not change. Actually, the ambient temperature changes, and recalculating equation (3) in consideration of this, when the ambient temperature at the time of storing the reference value is T0a and the ambient temperature at the time of measurement is T0I, the temperature sensor ambient is liquid. The temperature difference ΔT in the temperature sensor 41 when the surroundings are air is expressed by equation (4).
ΔT = (T0I + Q · Rb) − (T0a + Q · Ra) = (T0I−T0a) + Q (Rb−Ra) (4)
That is, not only when the liquid is detected, but also when the ambient temperature changes, the measured temperature of the temperature sensor 41 changes. When such a sensor is used as a liquid leakage sensor, when there is a temperature change, a malfunction occurs in which the liquid leakage is reported even though there is no actual liquid leakage, or the liquid leakage cannot be detected.
[0006]
The following methods can be considered as means for solving such problems. First, the amount of heat given to the temperature sensor is increased so that the temperature change (T0I-T0a) around the temperature sensor can be ignored. This method is easy to implement, but has the disadvantage that it cannot be used for flammable liquids because the temperature of the temperature sensor portion becomes high. Next, there is a method of correcting the temperature change by measuring the ambient temperature of the temperature sensor. In this method, the influence of the temperature change around the temperature sensor can be corrected with high accuracy without increasing the temperature of the temperature sensor, but another temperature sensor for measuring the temperature change around the temperature sensor is required. .
[0007]
In a device such as a liquid chromatograph using an organic solvent, the sensor temperature cannot be increased so much, and a method of absorbing a temperature change by temperature correction is effective. However, equation (4) assumes that the amount of heat Q does not change when the reference value is stored and when measured, but in general, the amount of heat changes as the ambient temperature changes. When this is taken into account and the equation (4) is corrected, it is expressed as the following equation (5).
ΔT = (T0I + Qb · Rb) − (T0a + Qa · Ra) = (T0I−T0a) + Qb · Rb−Qa · Ra (5)
From this, it can be seen that correction is difficult simply by measuring the temperature around the temperature sensor.
[0008]
The present invention has been made to solve the above problem, and an object of the present invention is to provide a liquid leakage sensor that operates normally even if the ambient temperature of the sensor changes.
[0009]
[Means for Solving the Problems]
In order to solve the above problem, the liquid leakage sensor of the present invention is a liquid leakage sensor in which the amount of heat dissipated from a temperature sensor heated or self-heated to a temperature higher than the ambient temperature changes depending on the presence or absence of liquid, and the change is measured by measuring this change. In a liquid leak detection device for detecting a leak, a temperature sensor and means for measuring an ambient temperature of the temperature sensor, a means for supplying a constant amount of heat to the temperature sensor, and a temperature and temperature sensor measured by the temperature sensor The means for measuring the ambient temperature has a means for measuring the difference from the temperature measured. Examples of the temperature sensor include a thermistor, a thermocouple, and a platinum resistor. As a means for supplying a constant amount of heat to the temperature sensor, for example, a power setting unit for setting the amount of heat to be supplied, a power monitor for measuring the amount of heat to be supplied, and a difference between a set value in the power setting unit and a measured value from the power monitor. There are combinations with power controllers that operate to eliminate.
[0010]
Equation (4) can be transformed and expressed as (4 ′).
Q (Rb−Ra) = ΔT− (T0I−T0a) (4 ′)
By subtracting the temperature T0a of the temperature sensor at the time of storing the reference value stored at the time of calibration from the temperature T0I of the current temperature sensor, ΔT of the equation (4 ′) is obtained. Similarly, the current temperature of the ambient temperature of the temperature sensor From (4 '), (T0I-T0a) is obtained by subtracting the reference value of the ambient temperature stored at the time of calibration. From these, Q (Rb-Ra) can be obtained. Since the quantity of heat Q is controlled to be a constant value, Q (Rb-Ra) is proportional to the change in thermal resistance of the temperature sensor when the surrounding is liquid and when the surrounding is air. By comparing with, liquid leakage can be detected.
[0011]
The liquid leakage sensor of the present invention is a liquid leakage sensor that detects the liquid leakage by measuring the change in the amount of heat dissipated from the temperature sensor that is heated to a temperature higher than the ambient temperature or self-heating. The detection device has a temperature sensor and a means for measuring the ambient temperature of the temperature sensor, has a means for measuring the amount of heat supplied to the temperature sensor, and further measures the temperature measured by the temperature sensor and the ambient temperature of the temperature sensor. It has a means to measure the difference with the temperature which a means measures. Examples of means for measuring the amount of heat supplied to the temperature sensor include a power monitor.
[0012]
From equation (1), the thermal resistance of the temperature sensor can be obtained as in equation (6), where Q is the amount of heat and T0 is the ambient temperature.
R = (T1-T0) / Q (° C./W) (6)
Since the amount of heat Q is obtained by means for measuring the amount of heat, by obtaining the difference between the thermal resistance when no liquid leakage occurs and the current thermal resistance, a change in thermal resistance can be obtained, and liquid leakage can be detected.
[0013]
The liquid leakage sensor of the present invention is a liquid leakage sensor that detects the liquid leakage by measuring the change in the amount of heat dissipated from the temperature sensor that is heated to a temperature higher than the ambient temperature or self-heating. The detection device has a temperature sensor and a means for measuring the ambient temperature of the temperature sensor, has a means for maintaining a constant temperature difference between the temperature sensor and the ambient temperature, and further measures the temperature measured by the temperature sensor and the surroundings of the temperature sensor. The means for measuring temperature has means for measuring a difference from the temperature to be measured. As means for keeping the temperature difference between the temperature sensor and the ambient temperature constant, for example, two temperature detectors for measuring the temperature difference between the temperature sensor and the ambient temperature, a temperature setting device for setting the temperature difference in advance, There is a combination with a heater drive circuit that controls the heater that supplies heat to the temperature sensor so as to eliminate the difference between the actual temperature difference and the set temperature difference.
[0014]
By measuring the amount of heat dissipated using the fact that the amount of heat necessary to keep the temperature of the temperature sensor constant is equal to the amount of heat dissipated, it is possible to detect liquid leakage independent of the ambient temperature. Equation (2) can be transformed into Equation (2 ′).
T1−T0 = Q · Rb (2 ′)
Here, assuming that the temperature difference between the temperature sensor and the ambient temperature is a constant value ΔTs, (2 ′) is expressed as shown in Equation (7).
ΔTs = Q · RB
Rb = ΔTs / Q (7)
That is, the thermal resistance Rb of the temperature sensor can be measured by measuring the amount of heat (electric power) supplied to the temperature sensor. From this value, by subtracting the thermal resistance Ra stored at the time of calibration when the surroundings of the temperature sensor is air, a change in thermal resistance can be obtained, and a liquid leak can be detected by comparing this with a certain threshold value.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. A block diagram of an embodiment of the liquid leak detector of the present invention is shown in FIG. The liquid leak detector of the present invention includes a liquid leak detection temperature sensor 1, an ambient temperature measurement temperature sensor 2, a liquid leak detection temperature sensor reference temperature storage mechanism 4, and an ambient temperature measurement temperature sensor reference temperature storage mechanism. 5, comparators 7, 8, 10, heater 12, current amplifier 13, power monitor 14, power setting unit 15, and power controller 16. The liquid leak detection temperature sensor 1 and the ambient temperature measurement temperature sensor 2 are thermistors.
[0016]
The liquid leak detection temperature sensor 1 is supplied with a heat quantity Q from a heater 12. The heater 12 is always supplied with constant power input to the power setting unit 15 by the power monitor 14 and the power controller 16, and the heat quantity Q is always constant. By subtracting the reference value stored in the liquid leak detection temperature sensor reference temperature storage mechanism 4 at the time of calibration with the comparator 7 from the liquid leak detection temperature sensor 1, ΔT in the equation (4 ′) is obtained. By subtracting the reference value stored in the ambient temperature measurement temperature sensor reference temperature storage mechanism 5 by the comparator 8 from the temperature measurement temperature sensor 2, (T0I-T0a) in the equation (4 ′) is obtained. From these, Q (Rb−Ra) can be obtained using the comparator 10. Since the amount of heat Q is controlled to be a constant value, Q (Rb−Ra) is proportional to the change in thermal resistance of the liquid leak detection temperature sensor 1 when the surrounding is liquid and the surrounding is air. By comparing this with the criterion, liquid leakage can be detected.
[0017]
FIG. 2 shows a block diagram of the second embodiment of the present invention. In this embodiment, the liquid leak detection temperature sensor 1, the ambient temperature measurement temperature sensor 2, the thermal resistance reference value storage mechanism 23, the comparators 25 and 29, the thermal resistance measurement instrument 27, the heater 12 and the power monitor. 14.
[0018]
The liquid leakage detection device of this embodiment detects liquid leakage by directly obtaining the thermal resistance of the temperature sensor 1 for liquid leakage detection using equation (6). The liquid leak detection temperature sensor 1 is supplied with a heat quantity Q from a heater 12. The amount of heat Q may vary, but the value is always measured by the power monitor 14. A temperature difference (T1-T0) between the temperature sensor 1 for detecting liquid leakage and the temperature sensor 2 for measuring ambient temperature is obtained from the comparator 25, and this is calculated from the power obtained by the power monitor 14 in the thermal resistance measuring device 27. Since the thermal resistance Rb to the surroundings of the temperature sensor 1 for detecting liquid leakage can be directly calculated by dividing by the amount of heat Q, the liquid leakage stored in the thermal resistance reference value storage mechanism 23 at the time of calibration has not occurred. The comparator 29 compares the thermal resistance Ra and the current thermal resistance Rb. Since the thermal resistance when the surroundings are air is larger than the thermal resistance when the surroundings are filled with liquid, for example, if the Rb is reduced by 50% from Ra, the liquid leakage is detected by determining that the liquid leakage is considered. Can do.
[0019]
The configuration of the power monitor 14 is shown in FIG. The power monitor 14 includes a resistor 51, a thermistor 53, and a voltmeter 55. The resistor 51 has a resistance value R. The thermistor 53 is pulled up by the resistor 51 at the voltage Vcc, and the thermistor voltage Vth at that time is monitored by the voltmeter 55. In this circuit, the current Ith in the thermistor 53 is expressed by eight equations.
Ith = (Vcc−Vth) / R (8)
Accordingly, the heat generation power Pth of the thermistor 53 is obtained by the following equation (9).
Pth = Ith · Vth = Vth (Vcc−Vth) / R (9)
Since Vcc and R are predetermined values, the heat generation power Pth can always be monitored by measuring Vth with the voltmeter 55.
[0020]
FIG. 3 shows a block diagram of a third embodiment of the present invention. In this embodiment, the liquid leak detection temperature sensor 1, the ambient temperature measurement temperature sensor 2, the heater 12, the heater drive circuit 35, the temperature setting device 33, the power monitor 14, the thermal resistance measurement device 27, The comparator 30, 31, 39 and the thermal resistance reference value storage mechanism 23 are configured.
[0021]
The liquid leak detection apparatus of this embodiment is a thermal resistance of the liquid leak detection temperature sensor 1 by keeping the temperature difference between the liquid leak detection temperature sensor 1 and the ambient temperature measurement temperature sensor 2 constant according to equation (7). Thus, leakage of liquid can be detected. The temperature sensor 1 for detecting liquid leakage is supplied with a heat quantity Q by a heater 12 and is kept at a temperature higher than the ambient temperature. The temperature difference ΔTs between the liquid leak detection temperature sensor 1 and the ambient temperature measurement temperature sensor 2 is constantly measured by the comparator 30. The temperature setter 33 is preset with a temperature difference between the temperature sensor 1 for detecting liquid leakage and the temperature sensor 2 for measuring the ambient temperature, and is measured by the comparator 30 with the value set in the temperature setter 33. The difference from ΔTs is measured by the comparator 31. The signal from the comparator 31 is transmitted to the heater drive circuit 35 so that the temperature difference ΔTs between the liquid leak detection temperature sensor 1 and the ambient temperature measurement temperature sensor 2 always matches the temperature set in the temperature setter 33. Controlled. Further, the amount of heat Q supplied to the heater 12 is measured by the power monitor 14, and using this amount of heat Q and the temperature difference ΔTs between the temperature sensor 1 for detecting liquid leakage and the temperature sensor 2 for measuring ambient temperature (7) The thermal resistance of the liquid leak detection temperature sensor 1 is calculated by the thermal resistance measuring device 27 according to the equation. The comparator 39 compares the thermal resistance Ra stored in the thermal resistance reference value storage mechanism 23 at the time of calibration with no liquid leakage and the current thermal resistance Rb. For example, the liquid leakage can be detected by determining that the liquid leakage is considered when Rb is reduced by 50% from Ra.
[0022]
As mentioned above, although the Example of this invention was described, this invention is not limited to the said Example, A various change can be made within the range of the summary of this invention described in the claim. . For example, in the above embodiment, the liquid leakage is detected by measuring the thermal resistance of the temperature sensor 1 for detecting liquid leakage, but it is also possible to detect the liquid leakage by measuring the thermal conductivity. In this case, since the thermal conductivity when the surrounding is air is smaller than the thermal conductivity when the surrounding is filled with liquid, for example, when Rb reaches 150% of Ra, it is considered that the liquid leaks. It can be carried out.
[0023]
【The invention's effect】
According to the present invention, since the ambient temperature of the liquid leak detection temperature sensor is measured and the amount of heat supplied to the liquid leak detection temperature sensor is kept constant, the liquid leak can be accurately detected even if the ambient temperature changes. Can be detected. In addition, by measuring the ambient temperature of the liquid leak detection temperature sensor and directly measuring the amount of heat supplied to the liquid leak detection temperature sensor, it is possible to accurately detect the liquid leak even if the ambient temperature changes. It is said. In addition, by measuring the ambient temperature of the liquid leak detection temperature sensor and keeping the difference between the liquid leak detection temperature sensor and the ambient temperature constant, it is possible to accurately detect the liquid leak even if the ambient temperature changes. It is said.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of a liquid leakage detection apparatus of the present invention.
FIG. 2 is a block diagram of a second embodiment of the liquid leakage detection apparatus of the present invention.
FIG. 3 is a block diagram of a third embodiment of the liquid leakage detection apparatus of the present invention.
FIG. 4 is a basic principle diagram of a conventional heat dissipation amount detection type liquid leakage detection device.
FIG. 5 is a configuration diagram of a power monitor.
[Explanation of symbols]
1 --- Temperature sensor for detecting liquid leakage 2 --- Temperature sensor for measuring ambient temperature 4 --- Temperature sensor for detecting liquid leakage Reference temperature storage mechanism 5 --- Temperature sensor for detecting ambient temperature Reference temperature storage mechanism 7 8, 10 --- Comparator 12 --- Heater 13 --- Current amplifier 14 --- Power monitor 15 --- Power setting device 16 --- Power controller

Claims (3)

周囲温度より高い温度に加熱もしくは自己発熱した温度センサと、
温度センサの周囲温度を測定する周囲温度測定センサと、
前記温度センサに一定の熱量を供給する熱供給手段と、
校正時に前記温度センサにより測定した温度を記憶する基準温度記憶手段と、
校正時に前記周囲温度測定センサにより測定した温度を記憶する周囲基準温度記憶手段とを有し、
前記温度センサにより測定した現在の温度と前記基準温度記憶手段に記憶した温度との差と、前記周囲温度測定センサにより測定した現在の温度と前記周囲基準温度記憶手段に記憶した温度との差と、前記熱供給手段から供給する熱量とから、熱抵抗変化を算出することを特徴とする液漏れ検出装置。
A temperature sensor that is heated to a temperature higher than the ambient temperature or that self-heats;
An ambient temperature measurement sensor for measuring the ambient temperature of the temperature sensor;
Heat supply means for supplying a constant amount of heat to the temperature sensor;
Reference temperature storage means for storing the temperature measured by the temperature sensor during calibration;
Ambient reference temperature storage means for storing the temperature measured by the ambient temperature measurement sensor at the time of calibration,
The difference between the current temperature measured by the temperature sensor and the temperature stored in the reference temperature storage means, and the difference between the current temperature measured by the ambient temperature measurement sensor and the temperature stored in the ambient reference temperature storage means A liquid leakage detection device that calculates a change in thermal resistance from the amount of heat supplied from the heat supply means.
周囲温度より高い温度に加熱もしくは自己発熱した温度センサと、
温度センサの周囲温度を測定する周囲温度測定センサと、
前記温度センサに供給する熱量を測定する熱量測定手段と、
前記温度センサにより測定した現在の温度と前記周囲温度測定センサで測定した温度との差を前記熱量測定手段により測定した熱量で除して熱抵抗を算出する熱抵抗測定手段と、
校正時に前記熱抵抗測定手段により測定した熱抵抗を記憶する熱抵抗基準値記憶手段とを有し、
前記熱抵抗測定手段により測定した現在の熱抵抗と、前記熱抵抗基準値記憶手段に記憶した熱抵抗との差から熱抵抗変化を算出することを特徴とする液漏れ検出装置。
A temperature sensor that is heated to a temperature higher than the ambient temperature or that self-heats;
An ambient temperature measurement sensor for measuring the ambient temperature of the temperature sensor;
A calorie measuring means for measuring the calorie supplied to the temperature sensor;
A thermal resistance measuring means for calculating a thermal resistance by dividing a difference between a current temperature measured by the temperature sensor and a temperature measured by the ambient temperature measuring sensor by a calorific value measured by the calorimetric measuring means;
Thermal resistance reference value storage means for storing the thermal resistance measured by the thermal resistance measurement means during calibration,
A liquid leak detection apparatus, wherein a change in thermal resistance is calculated from a difference between a current thermal resistance measured by the thermal resistance measurement means and a thermal resistance stored in the thermal resistance reference value storage means.
周囲温度より高い温度に加熱もしくは自己発熱した温度センサと、
温度センサの周囲温度を測定する周囲温度測定センサと、
前記温度センサと前記周囲温度測定センサとの温度差を設定する温度差設定手段と、
前記温度差設定手段で定められた温度差を保つように前記温度センサに熱量を供給する手段と、
前記温度センサに供給する熱量を測定する熱量測定手段と、
前記温度差設定手段に設定した温度差と前記熱量測定手段により測定した熱量から熱抵抗を算出する熱抵抗測定手段と、
校正時に前記熱抵抗測定手段により測定した熱抵抗を記憶する熱抵抗基準値記憶手段とを有し、
前記熱抵抗測定手段により測定した現在の熱抵抗と、前記熱抵抗基準値記憶手段に記憶した熱抵抗との差から熱抵抗変化を算出することを特徴とする液漏れ検出装置。
A temperature sensor that is heated to a temperature higher than the ambient temperature or that self-heats;
An ambient temperature measurement sensor for measuring the ambient temperature of the temperature sensor;
Temperature difference setting means for setting a temperature difference between the temperature sensor and the ambient temperature measurement sensor;
Means for supplying heat to the temperature sensor so as to maintain a temperature difference determined by the temperature difference setting means;
A calorie measuring means for measuring the calorie supplied to the temperature sensor;
Thermal resistance measuring means for calculating thermal resistance from the temperature difference set in the temperature difference setting means and the amount of heat measured by the calorie measuring means;
Thermal resistance reference value storage means for storing the thermal resistance measured by the thermal resistance measurement means during calibration,
A liquid leak detection apparatus, wherein a change in thermal resistance is calculated from a difference between a current thermal resistance measured by the thermal resistance measurement means and a thermal resistance stored in the thermal resistance reference value storage means.
JP2003101315A 2003-04-04 2003-04-04 Liquid leak detection device Expired - Lifetime JP4093099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101315A JP4093099B2 (en) 2003-04-04 2003-04-04 Liquid leak detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101315A JP4093099B2 (en) 2003-04-04 2003-04-04 Liquid leak detection device

Publications (2)

Publication Number Publication Date
JP2004309243A JP2004309243A (en) 2004-11-04
JP4093099B2 true JP4093099B2 (en) 2008-05-28

Family

ID=33465148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101315A Expired - Lifetime JP4093099B2 (en) 2003-04-04 2003-04-04 Liquid leak detection device

Country Status (1)

Country Link
JP (1) JP4093099B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185927A1 (en) * 2017-04-07 2018-10-11 株式会社島津製作所 Liquid leakage detection device
US11953458B2 (en) * 2019-03-14 2024-04-09 Ecolab Usa Inc. Systems and methods utilizing sensor surface functionalization

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721337B2 (en) * 2005-10-04 2011-07-13 オルガノ株式会社 Valve leak detection method and apparatus
CN104075453A (en) * 2013-03-29 2014-10-01 海尔集团公司 Water heater water leakage detection device
CN104075454A (en) * 2013-03-29 2014-10-01 海尔集团公司 Water heater water leakage detection method
CN107589210B (en) * 2016-07-07 2020-01-03 株式会社岛津制作所 Column oven for liquid chromatograph and liquid chromatograph
JP7147594B2 (en) 2019-01-28 2022-10-05 株式会社島津製作所 chromatography detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185927A1 (en) * 2017-04-07 2018-10-11 株式会社島津製作所 Liquid leakage detection device
JPWO2018185927A1 (en) * 2017-04-07 2019-11-21 株式会社島津製作所 Liquid leak detection device
US11953458B2 (en) * 2019-03-14 2024-04-09 Ecolab Usa Inc. Systems and methods utilizing sensor surface functionalization

Also Published As

Publication number Publication date
JP2004309243A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US7607823B2 (en) Leak detector comprising a self-heated thermistor control circuit
CN103105506B (en) The wind gage of the thermal time constant of detecting sensor
JP2918062B2 (en) Current meter
US20120003726A1 (en) Apparatus and method for calibration of non-contact thermal sensors
JP5358789B2 (en) Adaptive temperature controller
WO2016088332A1 (en) Liquid level detection circuit, liquid level meter, container provided with liquid level meter, and vaporizer using container
JP6830265B2 (en) Liquid level gauge, vaporizer equipped with it, and liquid level detection method
JP4093099B2 (en) Liquid leak detection device
US6763711B1 (en) Air flow sensor using measurement of rate of heat loss
US11946888B2 (en) Fault detection in a thermal sensor device
US6132083A (en) Real-time measuring method
US20050092078A1 (en) Pulsed thermistor sensor
US20150185086A1 (en) Thermometer using differential temperature measurements
RU2438121C1 (en) Method of determining parameters of gaseous medium and apparatus for realising said method
JP2008185424A (en) Detector of gas concentration
US20240053209A1 (en) Thermometer with a diagnostic function
KR20180028127A (en) Temperature measure apparatus of thermocouple and data measure system for performance verification test of marine large engine using the same
JP2017106740A (en) Abnormal temperature detection circuit
JPH0566160A (en) Calorimetric unit and method
JP2001281182A (en) Humidity detector
KR20140066439A (en) Method for improve the accuracy of vehicle sensors using reference voltage compensation and device thereof
JP7342674B2 (en) gas sensor
JP2004093321A (en) Bridge circuit type detector
JPS5923369B2 (en) Zero-level heat flow meter
RU2269102C1 (en) Mode of determination of temperature with a semi-conducting thermistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

EXPY Cancellation because of completion of term