TW527690B - Method for combining TCS-SiN barrier with dual gate CMOS device - Google Patents

Method for combining TCS-SiN barrier with dual gate CMOS device Download PDF

Info

Publication number
TW527690B
TW527690B TW91104508A TW91104508A TW527690B TW 527690 B TW527690 B TW 527690B TW 91104508 A TW91104508 A TW 91104508A TW 91104508 A TW91104508 A TW 91104508A TW 527690 B TW527690 B TW 527690B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor device
barrier layer
dielectric
substrate
Prior art date
Application number
TW91104508A
Other languages
Chinese (zh)
Inventor
Shi-Jung Suen
Original Assignee
Promos Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promos Technologies Inc filed Critical Promos Technologies Inc
Priority to TW91104508A priority Critical patent/TW527690B/en
Application granted granted Critical
Publication of TW527690B publication Critical patent/TW527690B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A formation method of diffusion barrier layer in a semiconductor device is provided. First, a high dielectric constant gate dielectric layer is formed on the substrate. Then, a chemical vapor deposition process using reaction of tetrachlorosilane and ammonia is performed to form a silicon nitride barrier layer on top of the high dielectric constant gate dielectric layer. The silicon nitride barrier greatly reduces the impurity diffusion from the upper gate layer. The semiconductor device that consists of the silicon nitride barrier layer and its manufacturing method are also introduced.

Description

527690 五、發明說明(1) 發明領域: 本發明係有關於一種金氧半場效電晶體(M0SFET )裝 置之製造’特別是有關於形成一種擴散阻障層,適用於雙 閘極互補式金氧半導體(CM〇s )裝置,其在pM〇s部份中需 要硼摻雜閘極電極。 相關技術說明: 互補式金氧半電路係一般所熟習之運用nMOS及pMOS裝 置之積體電路。在傳統的CMOS裝置中,閘極電極係摻雜磷 以形成nMOS及pMOS兩部分的n+閘極,對於較短的通道長度 而吕’亦即0 · 25微米(# m)以下,必需在pM〇s的部分使用 硼所形成之P+摻雜複晶矽閘極以將短通道效應降到最低。 因此,包含一具有p型閘極電極之p 一通道M0S電晶體及一 具有η型閘極電極之η —通道M0S電晶體之CMOS裝置稱作雙 閘極CMOS 。 高介電常數(high-k )介電質,例如Zr02、Hf 02、527690 V. Description of the invention (1) Field of the invention: The present invention relates to the manufacture of a metal-oxide-semiconductor field-effect transistor (MOSFET) device. In particular, it relates to the formation of a diffusion barrier layer, which is suitable for dual-gate complementary metal-oxide. Semiconductor (CM0s) devices that require boron-doped gate electrodes in the pMos portion. Relevant technical description: Complementary metal-oxide-semiconductor circuits are integrated circuits that are familiar with nMOS and pMOS devices. In traditional CMOS devices, the gate electrode is doped with phosphorous to form the n + gates of both nMOS and pMOS. For short channel lengths, that is, 0. 25 microns (# m) or less, it must be at pM. The part of 0s uses P + doped complex crystalline silicon gate formed by boron to minimize the short channel effect. Therefore, a CMOS device including a p-channel M0S transistor with a p-type gate electrode and an n-channel M0S transistor with an n-type gate electrode is called a dual-gate CMOS. High-k dielectrics such as Zr02, Hf 02,

A I? 〇3等’係已被提出之具潛力的閘極介電質以解決7 〇奈米 (nm )世代以下之傳統熱氧化閘極介電質微縮化問題。使 用咼介電常數閘極介電質之雙閘極C Μ 0 S裝置之一困難係棚 滲透。在pMOS部份中,發現硼在熱處理期間從閘極電極經 由高介電常數介電質擴散進入通道區。硼滲透進入通道造 成低場電洞移動率(l〇w — field hole mobility)降低及 起始電壓(V t )下降。有鑑於此,本發明在於獲得一種使 用高介電常數閘極介電質而無硼滲透之雙閘極CM〇s裝置。 發明概述:A I? 〇3 etc. have been proposed as potential gate dielectrics to solve the problem of traditional thermal oxidation of gate dielectrics down to 70 nanometers (nm) generation. One of the two-gate CM 0 S devices with 咼 dielectric constant dielectric is difficult to penetrate. In the pMOS part, it was found that boron diffused into the channel region from the gate electrode through the high-dielectric constant dielectric during the heat treatment. The penetration of boron into the channel caused a reduction in low-field hole mobility (l0w — field hole mobility) and a decrease in initial voltage (V t). In view of this, the present invention is to obtain a double-gate CMOS device using a high-dielectric-gate dielectric without boron infiltration. Summary of the invention:

0593-6998TWF(n);90071;SPIN.ptd 第4頁 527690 五、發明說明(2) 本發明之目 散阻障層之方法 本發明之另 方法,以增加起 力。 又本發明之 堆疊中結合一擴 散。 本發明藉由 置入一運用四氯 (tetrachl〇r〇s )層來達成上述 或其他雜質自閘 並不像傳統運用 (d i chloros i 1 a 層在南溫製程期 根據上述之 成一擴散阻障層 成一高介電常數 之化學氣相沉積 氮化矽阻障層, 之擴散。 根據上述之 一半導體裝置的 的在於提供一種在半導體裝置中形成一擴 以防止硼滲透。 一目的在於提供一種製造一半導體裝置的 始電壓及低場電動移動率下降的抵抗能 目的在於提供一種半導體裝置,其在閘極 散阻障層,以阻擋來自閘極電極之雜質擴 在閘極電極與高介電常數閘極介電質之間 矽烷所形成之氮化矽0593-6998TWF (n); 90071; SPIN.ptd page 4 527690 V. Description of the invention (2) Purpose of the present invention A method for dispersing a barrier layer Another method of the present invention to increase the force. A diffusion is combined in the stack of the present invention. The present invention achieves the above or other impurity self-braking by placing a layer of tetrachoros. It does not form a diffusion barrier based on the above during the south temperature process during the dichloros i 1 a layer. A high-k chemical vapor-deposited silicon nitride barrier layer is formed and diffused. According to one of the above-mentioned semiconductor devices, it is provided to form a diffusion in the semiconductor device to prevent boron infiltration. An object is to provide a fabrication A semiconductor device has a resistance to a decrease in starting voltage and electric mobility in a low field. The purpose is to provide a semiconductor device that disperses a barrier layer in a gate to prevent impurities from the gate electrode from spreading on the gate electrode and high dielectric constant. Silicon nitride formed by silane between gate dielectrics

llane-based silicon nitride, TCS-SiN 及其他目的。此TCS-SiN層係用以抑制硼 極電極擴散進入基底。再者,tCS—SiN層 二氣矽烷所形成之氮化矽 ne-based silicon nitride, DCS-SiN) 間會明顯地分解氫。 目的,本發明提供一種在半導體裝置中形 之方法,包括下列步驟:在一基底上方形 閘極介電層;以及利用四氣矽烷與氨反應 ,程在高介電常數閘極介電層上方形成二 藉以阻擋來自後續所形成的閘極層其雜質 另一目的,本發明提供一種在基底上掣生 方法,包括下列步驟:在一基底上方形=llane-based silicon nitride, TCS-SiN and other purposes. This TCS-SiN layer is used to suppress the diffusion of the boron electrode into the substrate. In addition, the tCS-SiN layer ne-based silicon nitride (DCS-SiN) formed by two gas silanes will decompose hydrogen significantly. Purpose, the present invention provides a method for forming a semiconductor device, which includes the following steps: a square gate dielectric layer on a substrate; and using tetragas silane and ammonia to react over a high dielectric constant gate dielectric layer The second purpose is to form a second layer to block impurities from the gate layer formed later. The present invention provides a method for activating on a substrate, including the following steps: a square on a substrate =

0593-6998TWF(n);90071;SPIN.ptd 527690 五、發明說明(3) 一高介電常數閘極介電層;剎田_〆 巧i日π接制和利用四氣矽烷與氨反應之化學 :1、: Ϊ二:Γ成一氮化矽阻障層;&氮化矽阻障層上方 矽阻r ;及ί ::層;圖案化高介電常數閘極介電層、氮化 佈植以在基底中接結構;以及藉由離子 括」之目的’本發明提供-種半導體裝置,包 化石"1 r / ί電極及一高介電常數閘極介電質之間之氮 介ί中利用四氯石夕烷與氨反應之化學氣相沉積 車:二障層’藉以阻擋閘極電極之雜質擴散。 季乂佳貝施例之砰細說明: π a日以:實施例係對一雙閘極CM0S裝置之M0S部分作詳細 ΐ二f二熟習此技藝人士亦了解到電晶體亦可為-雙 二耕你二置之nMOS部分,其並以掺雜相反極性或導電的 雜質作適度改變。 請參照第1圖,其繪示出一半導體基底1〇之局部剖面 圖。基底10包括一淺摻雜n型雜質之單晶石夕。非必需地在 氣(NH3)或氧化氣(N〇)的環境下進行回火,以在基底 0上形成一厚度3到1 〇埃的薄氮化層丨2。此氮化層1 2 一般 為氮化矽或氮氧化矽。 之後,藉由在氮化層12上沉積一高介電常數(k)介 電材料以形成一厚度2〇到2〇〇埃的閘極介電層14。此高介 電常數層14之k值在8到1 〇〇〇的範圍且可利用金屬氧化物 矽酸鹽材料來形成。金屬氧化物包含Zr〇2、Hf〇2、Aij 、 Τι〇2及Taj3。矽酸鹽包含ZrSi〇4及Hf Si〇4。此高介電2常3數 第6頁 0593-6998TWF(n);90071;SPIN.ptd 527690 五、發明說明(4) ^ -------- 層14亦了稭由低壓化學氣相沉積(CVD )、金屬有機CVD、 噴射式氣相/儿積(jet Vap〇r dep〇siti〇n)、濺鍍沉積等 技術來形成。纟本實施例巾,此層14係藉由沉積一金屬膜 並在含氧的環境下回火而形成。 隨著閘極介電層1 4的形成,請參照第2圖,在沉積閘 極介電層14之前,沉積一厚度5到2〇埃(人)的氮化矽薄 層16。此氮化矽層16係作為一阻障層,其大幅地抑制摻雜 物(例如y硼、磷或砷)滲透入基底丨〇。根據本發明一重 要特欲’係利用四氣矽烷(tetrach 1〇r〇si lane,S Μ、) 與氨(NI )反應之化學氣相沉積製程來沉積氮化矽(以 下稱作” TCS-SiN”)。此丁 cs —SiN相較於利用二氯矽烷 (dichlorosiUne,SiH2Cl2)與氨(NH3)反應之 f 知方 法(以下稱作"DCS-Si N’,)而言,有較佳的熱穩定性。如 第6及7圖所示,DCS-SiN含有的Si-H鍵結在高溫時分解氫 而助長蝴滲透。相反地,TCS_SiN含有的Ν —η鍵結直至至 1 0 50 °C仍穩定。因此在後續高溫製程期間,TCS_SiN並不 會分解氫。在本實施例中,TCS_SiN層16係在72 5 °C到825 °C的溫度範圍以低溫化學氣相沉積(LpCVD )製程來形 成。 請參照第3圖,一導電層1 8係形成於S i N層層1 6上方以 作為一M0S電晶體之閘極電極。此層1 8亦可為各種導電材 料且較佳為複晶矽。形成複晶矽的習知技術,例如CVD, 亦可用來沉積此層1 8。在本實施例中,係在6 2 5 °C以上的 溫度沉積複晶矽且厚度約7 5 0到1 8 0 0埃。之後的源極/汲0593-6998TWF (n); 90071; SPIN.ptd 527690 V. Description of the invention (3) A high-dielectric constant gate dielectric layer; Chemistry: 1 ,: 22: Γ into a silicon nitride barrier layer; & silicon resistor r above the silicon nitride barrier layer; and ί :: layer; patterned high dielectric constant gate dielectric layer, nitride Implanted to connect the structure in the substrate; and the purpose of the present invention is to provide a semiconductor device, including fossils " 1 r / ί electrode and a high dielectric constant gate dielectric between the dielectric The chemical vapor deposition vehicle using tetrachloroxanthane and ammonia reaction: a second barrier layer to prevent the impurity diffusion of the gate electrode. Ji Bijiabe ’s example of banging: π a day: the embodiment is to make a detailed description of the M0S part of a double-gate CM0S device. The second person who is familiar with this art also understands that the transistor can also be-double two. Develop your nMOS part, and change it by doping impurities of opposite polarity or conductivity. Please refer to FIG. 1, which illustrates a partial cross-sectional view of a semiconductor substrate 10. The substrate 10 includes a single crystal doped with n-type impurities. Tempering is optionally performed in an atmosphere of NH3 or oxidizing gas (NO) to form a thin nitride layer 2 on the substrate 0 with a thickness of 3 to 10 angstroms. The nitride layer 1 2 is generally silicon nitride or silicon oxynitride. Thereafter, a gate dielectric layer 14 having a thickness of 20 to 200 angstroms is formed by depositing a high dielectric constant (k) dielectric material on the nitride layer 12. The k value of this high dielectric constant layer 14 is in the range of 8 to 1,000 and can be formed using a metal oxide silicate material. Metal oxides include Zr02, Hf02, Aij, T02, and Taj3. The silicate contains ZrSiO4 and HfSiO4. This high-dielectric 2 often 3 pages 6 059-6998 TWF (n); 90071; SPIN.ptd 527690 V. Description of the invention (4) ^ -------- Layer 14 is also made of low-pressure chemical vapor It is formed by deposition (CVD), metal organic CVD, jet vapor deposition (jet vapor deposition), sputtering deposition, and other techniques. In the towel of this embodiment, this layer 14 is formed by depositing a metal film and tempering it in an oxygen-containing environment. With the formation of the gate dielectric layer 14, please refer to FIG. 2, before depositing the gate dielectric layer 14, a thin silicon nitride layer 16 is deposited to a thickness of 5 to 20 angstroms. The silicon nitride layer 16 serves as a barrier layer, which greatly inhibits dopants (such as y boron, phosphorus, or arsenic) from penetrating into the substrate. According to an important feature of the present invention, a silicon nitride (hereinafter referred to as "TCS-") is deposited using a chemical vapor deposition process in which tetrach silane lane (SM) is reacted with ammonia (NI). SiN "). Compared with the known method (hereinafter referred to as " DCS-Si N ',), the butyl cs-SiN has better thermal stability than the known method using dichlorosiUne (SiH2Cl2) and ammonia (NH3). . As shown in Figures 6 and 7, the Si-H bond contained in DCS-SiN decomposes hydrogen at high temperatures to promote butterfly penetration. In contrast, the N—η bond contained in TCS_SiN is stable up to 1050 ° C. Therefore, TCS_SiN does not decompose hydrogen during subsequent high-temperature processes. In this embodiment, the TCS_SiN layer 16 is formed by a low temperature chemical vapor deposition (LpCVD) process in a temperature range of 72 5 ° C to 825 ° C. Referring to FIG. 3, a conductive layer 18 is formed above the SiN layer 16 to serve as a gate electrode of a MOS transistor. This layer 18 may also be various conductive materials and is preferably polycrystalline silicon. Conventional techniques for forming polycrystalline silicon, such as CVD, can also be used to deposit this layer. In this embodiment, the polycrystalline silicon is deposited at a temperature above 625 ° C and has a thickness of about 750 to 180 angstroms. Source / drain

〇593-6998TWF(n);90071 ;SPIN.ptd 第 7 頁 527690 五、發明說明(5) 極區佈植將使此層1 8變成導電。 將2二透過蝕刻’例如活性離子蝕刻、化學電 水蝕』或,、他非寺向性蝕刻技術,以圖案化這些層丨8、 1 6、1 4、1 2而定義出一閘極結構2 〇。 、在第5圖中,箭號21表示離子佈植,用以形成源極及 汲極區22。同時,閘極電極層丨8變成導電。在本實施例 中,係植入一p型摻雜物,例如硼或二氟化硼(b〇r〇n di fluoride ),以形成—pM〇s電晶體。若所要的是nM〇s電 晶體,亦可植入一η型摻雜物,例如砷或磷。此閘極結構 20係供作下方基底1〇部分之佈植罩幕。側向分離的源極/ 汲極區22定義出位於閘極結構2〇下方的通道區24。合宜的 佈植劑里在5 X 1 014到5 X 1 Ο” at〇ms/cm2,且佈植能量在2 到80 keV範圍之間。 ^源極/沒極區22的活化可在一個或一個以上之不同的 高溫步驟中同時進行,通常伴隨著金屬化製程而進行。然 而,若需要的話,源極/汲極區2 2亦可在此階段進行回 火。舉例而言,此回火係一快速熱回火(rapid thermal annealing, RTA),溫度約 900 t:到 ι〇75 χ:,時間約3〇 到 6 0秒’且在氬氣、氦氣或氮氣的惰氣環境下。〇593-6998TWF (n); 90071; SPIN.ptd page 7 527690 V. Description of the invention (5) The polar region implantation will make this layer 18 conductive. The gate electrode structure is defined by patterning these layers by etching “two active etching, such as reactive ion etching, chemical electro-water etching,” or other non-unidirectional etching techniques. 8, 16, 6, 1, 4, and 2 〇. In FIG. 5, an arrow 21 indicates ion implantation, which is used to form a source and a drain region 22. At the same time, the gate electrode layer 8 becomes conductive. In this embodiment, a p-type dopant, such as boron or boron difluoride, is implanted to form a -pM0s transistor. If an nMOS transistor is desired, an n-type dopant such as arsenic or phosphorus can also be implanted. The gate structure 20 is used as a covering mask for the 10 part of the lower substrate. The laterally separated source / drain regions 22 define a channel region 24 below the gate structure 20. A suitable implant is in the range of 5 X 1 014 to 5 X 1 0 ″ at 0 ms / cm2, and the implantation energy is in the range of 2 to 80 keV. One or more different high-temperature steps are performed simultaneously, usually with a metallization process. However, if required, the source / drain regions 22 can also be tempered at this stage. For example, this tempering It is a rapid thermal annealing (RTA), with a temperature of about 900 t: to ι075 × χ, a time of about 30 to 60 seconds, and an inert gas atmosphere of argon, helium or nitrogen.

在上述咼溫步驟期間,在閘極電極丨8内的摻雜物,例 如硼或其他雜質,可能會經由高介電常數閘極介電層丨4擴 散進入通道區2 4。然而,位於閘極電極丨8與高介電常數閘 極介電層1 4之間的TCS-S i N層1 6大幅地阻擋擴散途徑而使 得摻雜物無法進入基底1 〇。During the above-mentioned soaking step, dopants in the gate electrode 8 such as boron or other impurities may diffuse into the channel region 24 through the high-dielectric constant gate dielectric layer 4. However, the TCS-S i N layer 16 located between the gate electrode 8 and the high-k gate dielectric layer 14 greatly blocks the diffusion path so that the dopant cannot enter the substrate 10.

0593-6998TWF(n);90071;SPIN.ptd 第8頁 5276900593-6998TWF (n); 90071; SPIN.ptd page 8 527690

根據上述實施例的步驟 介電之產生出一具有高介一具有高介電常數閘極 其不容許硼滲透。因此,t甲亟介電之pMOS電晶體, 分中需要硼摻雜閘極電極==f別有助於製造在PM0S部 斤。门^ ,电设之雙閘極CMOS裝置。 弟8圖係繪不出根據本每 層之雙閘極CMOS裝置示惫閉X貝也列之、、、口合丁^一3』阻障 所繪示的部件係標示相;:數值J ;於第1到5圖之實施例 述。此CMOS裝置2形成有门作的為,且在此不加以贅 .^ ^ ^ ^ ^ t „ .Λ t θθ0 ^# ιμ ^ π ic φ ^ ® λλ 牛導體基底1〇表面形成有彼The steps according to the above embodiments produce a gate with high dielectric and high dielectric constant which does not allow boron to penetrate. Therefore, a pMOS transistor that requires dielectrics requires a boron-doped gate electrode, which is helpful for manufacturing the PMOS transistor. Gate ^, a double-gate CMOS device. Brother 8 can't draw the component phase shown by the double-gate CMOS device shown in this layer, showing the exhaustion of the X-ray barrier. The number of components is shown in the figure :: value J; The embodiments shown in Figures 1 to 5 are described. This CMOS device 2 is formed with gates and will not be repeated here. ^ ^ ^ ^ ^ T „. Λ t θθ0 ^ # ιμ ^ π ic φ ^ ®

此不同導電性質的Ρ -井區4及〇 —井區6,即所謂的雙井 (tWin tub)作用區。注意到井區的建構並未受限於實施 例所述。在兩電晶體區的界面係形成一溝槽隔離8藉以分 離上述電晶體區。在此雙閘極CMOS裝置2中,m〇S電晶體的 閘極電極與通道同類型。因此,在pM〇s部分之閘極^極18 係掺雜删或其他p型雜質。在nMOS部分之閘極電極丨8係換 雜磷、砷或其他n型雜質。閘極堆疊20中的TCS-SiN層Y/防 止雜質滲透進入通道區,特別是硼。These P-well regions 4 and 0-well regions 6 of different conductive properties are the so-called tWin tub active regions. It is noted that the construction of the well area is not limited to that described in the embodiment. A trench isolation 8 is formed at the interface between the two transistor regions to separate the transistor regions. In this double-gate CMOS device 2, the gate electrode of the MOS transistor is the same type as the channel. Therefore, the gate electrode 18 in the pMos part is doped with p-type impurities or other p-type impurities. The gate electrode of the nMOS part is replaced with doped phosphorus, arsenic, or other n-type impurities. The TCS-SiN layer Y / in the gate stack 20 prevents impurities from penetrating into the channel region, especially boron.

雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此項技藝者,在不脫離本發明之精 神和範圍内,當可作更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make changes and retouching without departing from the spirit and scope of the present invention. The scope of protection shall be determined by the scope of the attached patent application.

0593-6998TWF(η);90071;SPIN.p t d0593-6998TWF (η); 90071; SPIN.p t d

527690 圖式簡單說明 為讓本發明之上述目的、特徵和優點能更明顯易懂, 下文特舉較佳實施例,並配合所附圖式,作詳細說明如 下: 第1到5圖係繪示出根據本發明實施例之製造pM0S電晶 體步驟之剖面示意圖; 第6圖係繪示出DCS-SiN膜之SiH鍵濃度與回火溫度之 函數關係圖; 第7圖係繪示出TCS-SiN膜之NH鍵濃度與回火溫度之函 數關係圖; 第8圖係繪示出在閘極堆疊中結合TCS-SiN阻障層之雙 閘極CMOS裝置示意圖。 [符號說明] 2〜CMOS裝置; 4〜p —井區; 6〜η —井區; 8〜溝槽隔離; 10〜半導體基底; 1 2〜氮化層; 14〜高介電常數介電層; 16〜TCS-SiN 層; 1 8〜閘極電極層; 2 0〜閘極結構; 2 1〜離子佈植; 2 2〜源極/汲極區。527690 Brief description of the drawings In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, the following exemplifies the preferred embodiments, and in conjunction with the attached drawings, the detailed description is as follows: Figures 1 to 5 are drawings Fig. 6 is a schematic cross-sectional view of a step of manufacturing a pM0S transistor according to an embodiment of the present invention; Fig. 6 is a graph showing the relationship between the SiH bond concentration of DCS-SiN film and the tempering temperature; Fig. 7 is a graph showing TCS-SiN The relationship between the film's NH bond concentration and the tempering temperature; Figure 8 is a schematic diagram of a dual-gate CMOS device incorporating a TCS-SiN barrier layer in a gate stack. [Symbol description] 2 ~ CMOS device; 4 ~ p—well area; 6 ~ η—well area; 8 ~ trench isolation; 10 ~ semiconductor substrate; 1 ~ 2 nitride layer; 14 ~ high dielectric constant dielectric layer 16 to TCS-SiN layer; 18 to gate electrode layer; 20 to gate structure; 21 to ion implantation; 2 to source / drain region.

0593-6998TWF(n);90071;SPIN.ptd 第10頁0593-6998TWF (n); 90071; SPIN.ptd Page 10

Claims (1)

527690 六、申請專利範圍 1. 一種在半導體裝置中形成一擴散阻障層之方法,包 括下列步驟: 一基底上 用四氣矽 閘極介電 所形成的 如申請專 阻障層之 係在8到1 如申請專 阻障層之 列群族之 如申請專 阻障層之 範圍。 如申請專 阻障層之 學氣相沉 如申請專 阻障層之 ,在該基 一種在基 在 利 電常數 自後續 2. 一擴散 電常數 3. 一擴散 自於下 4. 一擴散 2 0埃的 5. 一擴散 低壓化 一擴散 電層前 7. 步驟: 在 方形成一高介電常數閘極介電層;以及 烷與氨反應之化學氣相沉積製程在該高介 層上方形成一氮化石夕阻障層,藉以阻擋來 閘極層其雜質之擴散。 利範圍第1項所述之在半導體裝置中形成 方法,其中該高介電常數閘極介電層之介 0 0 0的範圍。 利範圍第1項所述之在半導體裝置中形成 方法,其中該高介電常數閘極介電層係擇 一:金屬氧化物及石夕酸鹽類。 利範圍第1項所述之在半導體裝置中形成 方法,其中該氮化矽阻障層之厚度在5到 利範圍第1項所述之在半導體裝置中形成 方法,其中在7 2 5 °C到8 2 5 °C的溫度下藉由 積製程形成該氮化矽阻障層。 利範圍第1項所述之在半導體裝置中形成 方法,更包括在形成該高介電常數閘極介 底上方形成一氮化層的步驟。 底上製造一半導體裝置的方法,包括下列 基底上方形成一高介電常數閘極介電層;527690 VI. Scope of patent application 1. A method for forming a diffusion barrier layer in a semiconductor device, including the following steps: A substrate formed by using a four-gas silicon gate dielectric as in the application of a special barrier layer at 8 To the range of 1 if applying for the barrier layer. For example, if you apply for a special barrier layer to learn the vapor deposition, as in the application for a special barrier layer, in this kind of basic electric constant since the follow-up 2. a diffusion electric constant 3. a diffusion from the lower 4. a diffusion 2 0 5. A diffusion low voltage before a diffusion electrical layer 7. Steps: forming a high dielectric constant gate dielectric layer on the side; and a chemical vapor deposition process in which alkane and ammonia react to form a layer over the high dielectric layer The nitride stone barrier layer is used to block the diffusion of impurities from the gate layer. The method for forming a semiconductor device according to item 1, wherein the high-k gate dielectric layer has a dielectric range of 0 0 0. The method for forming a semiconductor device as described in the first item of the invention, wherein the high-dielectric-constant gate dielectric layer is selected from the group consisting of metal oxides and oxalates. The method for forming a semiconductor device according to claim 1, wherein the thickness of the silicon nitride barrier layer is 5 to 5. The method for forming a semiconductor device according to claim 1, wherein at 7 2 5 ° C The silicon nitride barrier layer is formed by a build-up process at a temperature of 8 2 5 ° C. The method for forming a semiconductor device described in item 1 further includes the step of forming a nitride layer over the high-dielectric-constant gate substrate. A method for manufacturing a semiconductor device on the bottom includes the following steps: forming a high dielectric constant gate dielectric layer over a substrate; 0593-6998TWF(n);90071;SPIN.ptd 第11頁 527690 六、申請專利範圍 利用四氣矽烷與氨反應之化學氣相沉積製程形成一氮 化矽阻障層; 在該氮化矽阻障層上方形成一閘極電極層; 圖案化該高介電常數閘極介電層、該氮化矽阻障層及 該閘極電極層以形成一閘極結構;以及 藉由離子佈植以在該基底中形成源極/汲極區。 8. 如申請專利範圍第7項所述之在基底上製造一半導 體裝置的方法,其中該高介電常數閘極介電層之介電常數 係在8到1 0 0 0的範圍。 9. 如申請專利範圍第7項所述之在基底上製造一半導 體裝置的方法,其中該高介電常數閘極介電層係擇自於下 列群族之一:金屬氧化物及石夕酸鹽類。 I 0.如申請專利範圍第7項所述之在基底上製造一半導 體裝置的方法,其中該氮化矽阻障層之厚度在5到2 0埃的 範圍。 II .如申請專利範圍第7項所述之在基底上製造一半導 體裝置的方法,其中在725 °C到825 °C的溫度下藉由低壓化 學氣相沉積製程形成該氮化矽阻障層。 1 2.如申請專利範圍第7項所述之在基底上製造一半導 體裝置的方法,更包括在形成該高介電常數閘極介電層 前,在該基底上方形成一氮化層的步驟。 1 3.如申請專利範圍第7項所述之在基底上製造一半導 體裝置的方法,其中該半導體裝置係一具有P型閘極電極 之pMOS電晶體。0593-6998TWF (n); 90071; SPIN.ptd Page 11 527690 6. Scope of patent application: A silicon nitride barrier layer is formed by a chemical vapor deposition process using tetragas silane and ammonia reaction; the silicon nitride barrier Forming a gate electrode layer above the layer; patterning the high dielectric constant gate dielectric layer, the silicon nitride barrier layer, and the gate electrode layer to form a gate structure; and ion implantation to A source / drain region is formed in the substrate. 8. The method for manufacturing a semi-conductor device on a substrate as described in item 7 of the scope of the patent application, wherein the dielectric constant of the high-dielectric-constant gate dielectric layer is in the range of 8 to 100. 9. The method for manufacturing a semiconductor device on a substrate as described in item 7 of the scope of patent application, wherein the high-dielectric-constant gate dielectric layer is selected from one of the following groups: metal oxides and oxalic acid Salt. I 0. The method for manufacturing a semi-conductive device on a substrate as described in item 7 of the scope of the patent application, wherein the thickness of the silicon nitride barrier layer is in a range of 5 to 20 angstroms. II. The method for manufacturing a semiconductor device on a substrate as described in item 7 of the patent application scope, wherein the silicon nitride barrier layer is formed by a low pressure chemical vapor deposition process at a temperature of 725 ° C to 825 ° C . 1 2. The method for manufacturing a semiconductor device on a substrate as described in item 7 of the scope of patent application, further comprising the step of forming a nitride layer over the substrate before forming the high-k gate dielectric layer. . 1 3. The method for manufacturing a half-conductor device on a substrate as described in item 7 of the scope of patent application, wherein the semiconductor device is a pMOS transistor having a P-type gate electrode. 0593 -6998TWF(η);90071;SPIN.ptd 第12頁 W7690 六 申請專利範圍 導體1壯4署# #1115第13項戶斤& n a底上製造一半 子佈:。’ 4 ’其中藉由植入綳或二氟化硼來實施該離 體裝1置5.:方V"/範圍第7項所述之在基底上製造-半導 <nM〇S電晶體,、中邊半導體裝置係-具有η型閘極電極 導體1裝6置項在t底上製造—半 植。 /、中稭由植入砷或&來貫施該離子佈 體裝置的方專直利φ乾圍/第7項所述之在基底上製造一半導 極電極之渴4半導體裝置係一包含一具有P型閘 道MOS電晶體;c:s裝電置晶體及-具有η型閑 介電當齡ϋ^、體々衣置’包括—介於一間極電極及一高 石夕垸血-:施”電質之間之氮化石夕阻障層,其中利用四氯 介電H申Λ專利範圍第18項月之半導體裝置,其中該高 20 4 W;丨電層之介電常數係在8到1 0 0 0的範圍。 介電常數:"Λ電^圍擇第自 1 8:之"^ 及石夕酸鹽類。 下列群族之一:金屬氧化物 2 1 ·如申請專利範圍第1 8 ^ 化石夕阻障層之厚度在5到2〇i矣的^導體裝置,其中該乳 0593-6998TWF(n);90071;SPIN.ptd 第13 527690 六、申請專利範圍 2 2.如申請專利範圍第18項之半導體裝置,其中在725 °C到8 2 5 °C的溫度下藉由低壓化學氣相沉積製程形成該氮 化石夕阻障層。 其中該半 其中該半 其中該半 2 3 .如申請專利範圍第1 8項之半導體裝置 導體裝置係一具有P型閘極電極之pMOS電晶體 24.如申請專利範圍第1 8項之半導體裝置 導體裝置係一具有η型閘極電極之nMOS電晶體 2 5 .如申請專利範圍第1 8項之半導體裝置 導體裝置係一包含一具有P型閘極電極之P —通道M0S電晶 體及一具有η型閘極電極之η —通道M0S電晶體之CMOS裝 置。 _0593 -6998TWF (η); 90071; SPIN.ptd Page 12 W7690 VI Application scope of patents Conductor 1 Zhuang 4 Department # # 1115 Item 13 households & n a half of the sub-fabric :. '4' wherein the ex vivo device is implemented by implanting gadolinium or boron difluoride. 5: Fang V " / Scope Item 7 Manufacturing on a Substrate-Semiconductor < nM0S Transistor ,, Middle-side semiconductor device system-has n-type gate electrode conductors, 1 device and 6 items are manufactured on the bottom-half planting. / 、 The straw is implanted with arsenic or & to apply the ion cloth device to the device. Φ dry circumference / The thirst for manufacturing half of the conducting electrode on the substrate as described in item 7 4 The semiconductor device includes one With P-gate MOS transistor; c: s mounted crystal and-with η-type idle dielectric current age ϋ, body-mounted equipment 'includes-between an electrode and a high Shi Xixue blood-: The barrier layer of nitrided nitride between dielectric materials is applied to the semiconductor device using tetrachlorodielectric H to apply for the 18th month of the patent scope, wherein the height is 20 4 W; the dielectric constant of the dielectric layer is 8 The range is from 1 to 0 0 0. Dielectric constant: " Λ 电 ^ is selected from 1 8: of " ^ and oxalates. One of the following groups: metal oxide 2 1 · If a patent is applied for The 18th ^ conductor device with a thickness of 5 to 20 矣 of the fossil evening barrier layer, in which the milk 0591-6998TWF (n); 90071; SPIN.ptd No. 13 527690 6. Application for patent scope 22 2. For example, the semiconductor device under the scope of patent application No. 18, wherein the nitride barrier layer is formed by a low-pressure chemical vapor deposition process at a temperature of 725 ° C to 8 2 5 ° C. One half of the half of the half of the half. If the semiconductor device conductor device of the patent application item 18 is a pMOS transistor with a P-type gate electrode 24. The semiconductor device conductor device of the patent application item 18 It is an nMOS transistor with n-type gate electrode 25. The semiconductor device conductor device such as the scope of application for patent No. 18 includes a P-channel M0S transistor with a p-type gate electrode and an n-type transistor. Gate electrode η —CMOS device of channel M0S transistor. _ 0593-6998TWF(n);90071;SPIN.ptd 第14頁0593-6998TWF (n); 90071; SPIN.ptd Page 14
TW91104508A 2002-03-11 2002-03-11 Method for combining TCS-SiN barrier with dual gate CMOS device TW527690B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91104508A TW527690B (en) 2002-03-11 2002-03-11 Method for combining TCS-SiN barrier with dual gate CMOS device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91104508A TW527690B (en) 2002-03-11 2002-03-11 Method for combining TCS-SiN barrier with dual gate CMOS device

Publications (1)

Publication Number Publication Date
TW527690B true TW527690B (en) 2003-04-11

Family

ID=28788536

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91104508A TW527690B (en) 2002-03-11 2002-03-11 Method for combining TCS-SiN barrier with dual gate CMOS device

Country Status (1)

Country Link
TW (1) TW527690B (en)

Similar Documents

Publication Publication Date Title
US20030141560A1 (en) Incorporating TCS-SiN barrier layer in dual gate CMOS devices
JP4938262B2 (en) Semiconductor device and manufacturing method thereof
TWI315083B (en) Offset spacers for cmos transistors
US8629009B2 (en) Programmable high-k/metal gate memory device
CN103035527B (en) The nitrogen passivation of source electrode and drain recesses
KR100757026B1 (en) Method for fabricating semiconductor device
TW578270B (en) CMOS of semiconductor device and method for manufacturing the same
JP2004111922A (en) Gate dielectric and method therefor
JPH0870053A (en) Manufacture of semiconductor device
TW201110239A (en) Method and structure for threshold voltage control and drive current improvement for high-k metal gate transistors
KR20060121725A (en) Semiconductor device and manufacturing method thereof
KR102201114B1 (en) Method and gate ructure for threshold voltage modulation in transistors
TW201017730A (en) Implantation method for reducing threshold voltage for high-k metal gate device
US20070052026A1 (en) Semiconductor device and method of manufacturing the same
US20070200160A1 (en) Semiconductor device and method of fabricating the same
JPH0992728A (en) Complementary mosfet transistor and fabrication thereof
US20080146012A1 (en) Novel method to adjust work function by plasma assisted metal incorporated dielectric
US7253485B2 (en) Semiconductor device and manufacturing method thereof
US8304333B2 (en) Method of forming a high-k gate dielectric layer
US20080142910A1 (en) Semiconductor device
US20060081928A1 (en) Isolation spacer for thin SOI devices
US20050208764A1 (en) Integrated circuit metal silicide method
JP3768871B2 (en) Manufacturing method of semiconductor device
US5882962A (en) Method of fabricating MOS transistor having a P+ -polysilicon gate
TW527690B (en) Method for combining TCS-SiN barrier with dual gate CMOS device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees