TW526605B - Method of forming an amorphous layer of a semiconductor structure using a high energy beam - Google Patents

Method of forming an amorphous layer of a semiconductor structure using a high energy beam Download PDF

Info

Publication number
TW526605B
TW526605B TW90123916A TW90123916A TW526605B TW 526605 B TW526605 B TW 526605B TW 90123916 A TW90123916 A TW 90123916A TW 90123916 A TW90123916 A TW 90123916A TW 526605 B TW526605 B TW 526605B
Authority
TW
Taiwan
Prior art keywords
layer
single crystal
buffer layer
semiconductor
forming
Prior art date
Application number
TW90123916A
Other languages
Chinese (zh)
Inventor
Kurt W Eisenbeiser
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of TW526605B publication Critical patent/TW526605B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

High quality epitaxial layers of compound semiconductor materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline compound semiconductor layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. To further relieve strain in the accommodating buffer layer, at least a portion of the accommodating buffer layer is exposed to a high energy beam anneal process to cause the accommodating buffer layer to become amorphous, providing a true compliant substrate for subsequent layer growth.

Description

526605 A7 B7 五、發明説明(1 ) 本專利申請已歸檔於美國專利申請案號09/689583中,歸 檔日期爲2000年1 0月1 2日 發明領域 本發明大體與用以形成半導體裝置之方法有關,尤其與 一種使用一高能光束以形成一非晶形層,以利後續生長一 單晶形材料之方法有關。 發明背景 絕大部份的半導體離散裝置及積體電路都是以矽爲材料 所製造而成,至少在某種程度上是因爲低成本、高品質單 晶形矽基材的容易取得所致。諸如所謂的合成半導體材料 之類的其他半導體材料具有物理屬性包括比矽更寬的帶隙 及/或更高的遷移率,或是使這些材料非常適用於特定半導 體裝置的直接帶隙。可惜,合成半導體材料的成本通常遠 高於矽,並且不如矽那樣容易形成大型晶圓。坤化鎵 (Gallium arsenide ; GaAs)(最容易取得的合成半導體材料) 晶圓的最大直徑只有大約150毫米(mm)。相反地,可取得 的最大碎晶圓具有大約300 mm的直徑,並且最廣泛使用的 是200 mm。150 mm GaAs晶圓的成本高於對應的碎晶圓許 多倍。其他的合成半導體材料晶圓更不容易取得,並且成 本比GaAs更高。 因爲合成半導體材料有適合的特性,並且因爲目前其一 般成本高及較無法取得大容積形式,所以許多年來一直嘗 試在異質基材上生長合成半導體材料薄膜。然而,爲了實 現最佳的合成半導體材料特性,需要高結晶品質的單晶形 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 526605 A7 B7 五、發明説明(2 ) 膜。例如,已嘗試在鍺、矽及各種絕緣體上生長單晶形合 成半導體材料層。這些嘗試一直尚未成功,因爲主晶與生 長晶間的晶格不匹配,導致所產生的合成半導體材料薄膜 的結晶品質不佳。 如果能以低成本取得高品質單晶形合成半導體材料薄膜 ,則有助於以低成本在該薄膜上製造各種半導體裝置,其 成本低於在合成半導體材料的大容積晶圓上製造此類裝置 的成本,也低於在合成半導體材料之大容積晶圓上此類材 料的磊晶膜中製造此類裝置的成本。此外,如果能夠在諸 如矽晶圓的大容積晶圓上體現高品質單晶形合成半導體材 料的薄膜,則可利用矽及合成半導體材料的最佳特性來實 現整合裝置結構。 因此,需要有一種半導體結構,其能夠於另一種單晶形 材料之上提供一種高品質單晶形合成半導體膜,以及需要 有一種製造此類結構的方法。 圖式簡單説明 本發明將藉由實例來進行解説,但本發明未限定在其相 關附圖内,其中相似的參照代表相似的元件,並且其中: 圖1、2、3、9、10顯示根據本發明各種具體實施例之裝 置結構的斷面圖; 圖4以圖表顯示可獲得的最大膜厚度與主晶和生長結晶覆 蓋層間晶格不匹配間的關係; 圖5顯TF包括单晶形容納緩衝層之結構的南解析度透射式 電子顯微照片(Transmission Electron Micrograph); 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 526605 A7 _____B7 五、發明説明(3 ) ' 圖6顯不一含有單晶形容納缓衝層之結構的χ射線繞射光 譜; 圖7顯示一含有非晶形氧化物層之結構的高解析度透射式 電子顯微照片;以及 圖8顯示一含有非晶形氧化物層之結構的又射線繞射光譜。 熟知技藝人士應明白,圖中的元件是爲簡化及清楚的目 的所緣製,並且不一定按照比例。例如,相對於其他元件 ,圖中邵份元件的尺寸可能過度放大,以利於更容易瞭解 本發明的具體實施例。 圖式詳細説明 圖1顯示根據本發明一項具體實施例之半導體結構2 〇之 一部份的斷面原理圖,此半導體結構適合在一基材上生長 一單晶形薄膜(諸如一合成半導體層)。半導體結構2〇包括 一單晶形基材22、含有一單晶形材料的容納缓衝層24以及 一退火罩(anneal cap)層30。在此文中,術語「單晶形」應 具有半導體產業内常用的意義。術語「單晶形」應代表屬 於單晶或大體上屬於單晶的材料,並且應包含具有相當少 量缺陷(諸如矽或矽化鍺或混合物之基材中常發現的位錯等 等)的材料,以及半導體產業中常發現之此類材料的磊晶層 。同時,術語「退火」應代表任何能改變—結晶結構(例如 自單印形變爲非晶形)的方法(X射線、電子光束、離子 光束…等)。 根據本發明一項具體實施例,結構20還包括位於基材22 /、谷納緩衝層2 4之間的非晶形中間層2 8。結構2 〇還可包括526605 A7 B7 V. Description of the invention (1) This patent application has been filed in US Patent Application No. 09/689583, filed on October 1, 2000. Field of the Invention The present invention is generally related to a method for forming a semiconductor device. It is related, in particular, to a method of using a high-energy light beam to form an amorphous layer to facilitate subsequent growth of a single crystal material. BACKGROUND OF THE INVENTION The vast majority of semiconductor discrete devices and integrated circuits are manufactured using silicon as a material, at least in part due to the availability of low-cost, high-quality single-crystal silicon substrates. Other semiconductor materials, such as so-called synthetic semiconductor materials, have physical properties including a wider band gap and / or higher mobility than silicon, or direct band gaps that make these materials very suitable for specific semiconductor devices. Unfortunately, the cost of synthetic semiconductor materials is usually much higher than silicon, and it is not as easy to form large wafers as silicon. Gallium arsenide (GaAs) (the most accessible synthetic semiconductor material) The maximum diameter of a wafer is only about 150 millimeters (mm). In contrast, the largest shardable wafers available have a diameter of approximately 300 mm, and the most widely used is 200 mm. The cost of a 150 mm GaAs wafer is many times higher than the corresponding shredded wafer. Other synthetic semiconductor material wafers are more difficult to obtain and cost more than GaAs. Because synthetic semiconductor materials have suitable properties, and because they are currently generally expensive and less capable of obtaining large volume forms, attempts have been made to grow synthetic semiconductor material films on heterogeneous substrates for many years. However, in order to achieve the best characteristics of synthetic semiconductor materials, a single crystal form with high crystalline quality is required. -4- The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 526605 A7 B7. 5. Description of the invention ( 2) Membrane. For example, attempts have been made to grow single crystal synthetic semiconductor material layers on germanium, silicon, and various insulators. These attempts have not been successful because the lattice mismatch between the main crystal and the grown crystals has resulted in poor crystal quality of the resulting thin film of the synthetic semiconductor material. If high-quality single crystal thin film of synthetic semiconductor materials can be obtained at low cost, it will help to manufacture various semiconductor devices on the film at low cost, which is lower than manufacturing such devices on large-volume wafers of synthetic semiconductor materials. The cost is also lower than the cost of manufacturing such devices in an epitaxial film of such materials on a large volume wafer of synthetic semiconductor materials. In addition, if a thin film of a high-quality single-crystal synthetic semiconductor material can be embodied on a large-volume wafer such as a silicon wafer, the best characteristics of silicon and synthetic semiconductor materials can be used to realize an integrated device structure. Therefore, there is a need for a semiconductor structure that can provide a high-quality single-crystal synthetic semiconductor film over another single-crystal material, and a method for manufacturing such a structure. The drawings briefly explain the present invention will be explained by examples, but the present invention is not limited to the related drawings, wherein similar references represent similar elements, and in which: Figures 1, 2, 3, 9, and 10 show Sectional views of the device structure of various specific embodiments of the present invention; Figure 4 graphically shows the relationship between the maximum film thickness available and the lattice mismatch between the main crystal and the growing crystal overlay; Figure 5 shows that TF includes a single crystal form to accommodate South resolution Transmission Electron Micrograph of the structure of the buffer layer; This paper is scaled to the Chinese National Standard (CNS) A4 (210 x 297 mm) 526605 A7 _____B7 V. Description of the invention (3) FIG. 6 shows an X-ray diffraction spectrum of a structure containing a single-crystal containing buffer layer; FIG. 7 shows a high-resolution transmission electron micrograph of a structure containing an amorphous oxide layer; and FIG. 8 shows a Diffraction diffraction spectrum of a structure containing an amorphous oxide layer. Those skilled in the art should understand that the components in the figures are made for simplicity and clarity and are not necessarily to scale. For example, compared to other components, the dimensions of the components in the figure may be excessively enlarged to facilitate easier understanding of specific embodiments of the present invention. DETAILED DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of a part of a semiconductor structure 20 according to a specific embodiment of the present invention. This semiconductor structure is suitable for growing a single crystal thin film (such as a synthetic semiconductor) on a substrate. Floor). The semiconductor structure 20 includes a single crystal substrate 22, a receiving buffer layer 24 containing a single crystal material, and an annealing cap layer 30. In this article, the term "single crystal form" should have the meaning commonly used in the semiconductor industry. The term "single crystal form" shall represent materials that are single crystals or substantially single crystals, and shall include materials with a relatively small number of defects (such as dislocations commonly found in substrates of silicon or germanium silicide or mixtures, etc.), and The epitaxial layer of such materials often found in the semiconductor industry. At the same time, the term "annealing" shall mean any method (X-ray, electron beam, ion beam, etc.) that can change the crystalline structure (for example, from a single print to an amorphous shape). According to a specific embodiment of the present invention, the structure 20 further includes an amorphous intermediate layer 28 located between the substrate 22 and the valley buffer layer 24. Structure 2 can also include

526605 發明説明 一模板層(未顯示)介於容納緩衝層與一後續生長之罩層之 間,或者,層30可同時作爲後續在容納緩衝層上生長單^ 形層之-罩及-模板。如下文中將詳細説明的,模板層= 助於在容納缓衝層上引發生長單晶形層。非晶形中間^有 助於減緩容納緩衝層中的應變,並藉此協助 質的容納緩衝層。 長回〜日〇 口 日根據本發明一項具體實施例,基材22是一單晶形半導體 晶圓,最好是大直徑的單晶形半導體晶圓。晶圓的材料可 屬於周期表第…族,並且最好是第IVA族的材料。第…族 半導體材料的實例包括♦、冑、混合㈣鍺、混合梦與碳 、混合f、鍺與碳等等。基材22最好是包含矽或鍺的晶圓 ,並且最好是如半導體業產中使用的高品質單晶形矽晶圓 。容納緩衝層24最好是基礎基材上磊晶生長的單晶形氧化 物或氮化物材料。根據本發明一項具體實施例,非晶形中 間層28係在基材22上生長,並位於基材22與生長的容納緩 衝層2 4之間’其方式是在生長容納緩衝層2 4期間氧化基材 22。非晶形中間層係用來減緩由於基材與缓衝層間晶格常 數差異而導致單晶形容納緩衝層可能會發生的應變。在本 文中’晶格常數代表在表面平面上所測量之單元原子間的 距離。如果非晶形中間層未減緩此類的應變,則應變會導 致容納緩衝層内結晶結構中的缺陷。接著,容納缓衝層内 結晶結構中的缺陷,將導致難以實現在容納緩衝層上沉積 或生成的薄膜中的高品質結晶結構。 容纳緩衝層24最好是選用與基礎基材結晶相容及與覆蓋 本紙張尺度適财S S家標準(CNS) A4規格(210X297公爱)526605 Description of the invention A template layer (not shown) is interposed between the holding buffer layer and a subsequent growth mask layer. Alternatively, the layer 30 can be used simultaneously as a mask and a template for growing a single-layer layer on the holding buffer layer. As will be explained in detail below, the template layer = helps to initiate growth of a single crystal layer on the containing buffer layer. The amorphous middle ^ helps to reduce the strain in the receiving buffer layer, and thereby assists the qualitative receiving buffer layer. Long back ~ day 0 port day According to a specific embodiment of the present invention, the substrate 22 is a single crystal semiconductor wafer, preferably a large diameter single crystal semiconductor wafer. The material of the wafer may belong to Group… of the periodic table, and is preferably a material of Group IVA. Group ... Examples of semiconductor materials include 胄, ytterbium, mixed europium germanium, mixed dream and carbon, mixed f, germanium and carbon, and the like. The substrate 22 is preferably a wafer containing silicon or germanium, and is preferably a high-quality single crystal silicon wafer as used in the semiconductor industry. The containing buffer layer 24 is preferably an epitaxially grown single crystal oxide or nitride material on a base substrate. According to a specific embodiment of the present invention, the amorphous intermediate layer 28 is grown on the substrate 22 and is located between the substrate 22 and the growing accommodating buffer layer 24, which is oxidized during the growth of the accommodating buffer layer 24.材料 22。 Substrate 22. The amorphous intermediate layer is used to reduce the strain that may occur in the single crystal receiving buffer layer due to the difference in the lattice constant between the substrate and the buffer layer. In this context, the 'lattice constant' represents the distance between unit atoms measured on the surface plane. If the amorphous intermediate layer does not mitigate such strains, the strains can cause defects in the crystalline structure within the containment buffer layer. Next, defects in the crystalline structure in the accommodating buffer layer will make it difficult to achieve a high-quality crystalline structure in a thin film deposited or formed on the accommodating buffer layer. The containing buffer layer 24 is preferably selected to be compatible with and cover the crystal of the base substrate. This paper is suitable for standard S, S, and A4 specifications (210X297).

裝 玎Pretend

526605 A7 _____B7 五、發明説明(5 ) ^成半導體材料(例如,一層單晶形之合成半導體材料)結 晶5的單晶形氧化物或氮化物材料。例如,此類的材料 可能是具有與基材匹配且與後續加諸其上的半導體材料匹 配I晶格結構的氧化物或氮化物。容納緩衝層所適用的材 料包括氧化金屬,諸如驗土金屬歛酸鹽、驗土金屬錐酸鹽 、鹼土金屬铪酸鹽、鹼土金屬钽酸鹽、鹼土金屬釕酸鹽、 驗土金屬說酸鹽、驗土金屬訊酸鹽、驗土金屬鎖基飼欽礦 (alkalme earth metal tin-based per〇vskites)、驗土金屬鋁酸 鹽、鑭鋁酸鹽、氧化鑭銑及氧化釓。另外,容納緩衝層也 可使用諸如氮化鎵、氮化鋁及氮化硼之類的各種氮化物。 這二材料大α卩伤疋絕緣體,雖然(例如)總釕酸鹽是導體。 一般而言,這些材料是金屬氧化物或金扁氮化物,尤其, 故些金屬氧化物或金屬氮化物係一鈣鈦礦結構,包括至少 兩個不同的金屬元素。在某些特定應用中,金屬氧化物或 金屬氮化物可能包括三個或三個以上不同的金屬元素。 "非晶形中間層28最好是藉由將基材22表面氧化所形成的 氧化物,尤其是由氧化矽所組成。非晶形中間層2 8的厚度 足以減緩因基材22與容納緩衝層24的晶格常數間不匹配所 導致的應變。通常,非晶形中間層2 8的厚度大約是〇 5到5 nm ° 退火罩層30可包括任何在一退火程序時,能防止層24( 或其郅份)不必要的品質降低的材料。根據本發明各種具體 實施例,層3 0包含一層單晶形材料,諸如一單晶形半導體 材料。例如,右一單晶形合成半導體層形成於容納緩衝層 • 8 - 本紙張尺度適用中國國豕標準(CNS) A4規格(210X297公复) 526605 A7 ___ B7______ 五、發明説明(6 ) 24上,則層30可包含一薄層之該單晶形合成半導體層。 圖2顯示根據本發明另一項具體實施例之半導體結構4〇 之一部份的斷面圖。結構4〇類似於前文説明的半導體結構 20,除了 一額外之單晶形合成半導體材料層26形成於退火 罩層3 0上之外。根據本具體實施例之一觀點,結構4 〇可包 含位於模板層30與覆蓋於上之合成半導體材料層間的一額 外缓衝層。當谷納緩衝層之晶格常數無法適當匹配覆蓋之 單晶形材料層時,由(例如)一半導體或合成半導體材料所 形成的額外緩衝層係用來提供晶格補償。 可按照特定半導體結構的需求,從第丨πA與VA族元素 (III-V半導體合成物)、混合ΙΠ_ν合成物、第Π(Α與b)與 VIA族元素(π _νΐ半導體合成物),以及混合^^…合成物 中選用合成半導體層26(以及容納緩衝層)的材料。實例包 括砰化鎵(GaAs)、砷化鎵銦(GaInAs)、斗化鎵-(GaA1As) 、蹲化銦(InP)、硫化鎮(CdS)、碲化福汞(CdHgTe)、涵化 鋅(ZnSe)、硒化鋅硫(ZnSSe)等等。適合的模板材料以化學 方式鍵合在容納緩衝層2 4表面上的選取部位,並提供後續 合成半導體層2 6磊晶生長集結(nucieati〇n)的部位。下文中 將討論適用於模板的材料。 圖3顯tf根據本發明另一項示範性具體實施例之半導體結 構3 4之一部份的斷面原理圖。結構3 4類似於結構4 〇,除了 結構3 4包括由層2 8及24之一部份形成的非晶形緩衝材料 3 6° 如下文中的詳細説明,可用如上述的類似方法來形成非 -9 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 526605 A7 B7526605 A7 _____B7 V. Description of the invention (5) ^ Forming a semiconductor material (for example, a layer of single crystal synthetic semiconductor material) crystal 5 single crystal oxide or nitride material. For example, such a material may be an oxide or nitride that has an I-lattice structure that matches the substrate and a semiconductor material that is subsequently added to it. Materials suitable for containing the buffer layer include oxidized metals, such as earth test metal salt, earth test metal capric acid salt, alkaline earth metal phosphonate, alkaline earth metal tantalate, alkaline earth metal ruthenate, earth test metal salt , Soil test metal salt, soil test metal lock base feed metal (alkalme earth metal tin-based per ovskites), soil test metal aluminate, lanthanum aluminate, lanthanum oxide milling and thorium oxide. In addition, various kinds of nitrides such as gallium nitride, aluminum nitride, and boron nitride can be used as the storage buffer layer. These two materials have a large alpha 卩 damage to the insulator, although (for example) total ruthenate is a conductor. Generally speaking, these materials are metal oxides or flat gold nitrides. In particular, these metal oxides or metal nitrides have a perovskite structure and include at least two different metal elements. In some specific applications, metal oxides or metal nitrides may include three or more different metal elements. " The amorphous intermediate layer 28 is preferably an oxide formed by oxidizing the surface of the substrate 22, especially silicon oxide. The thickness of the amorphous intermediate layer 28 is sufficient to reduce the strain caused by the mismatch between the lattice constants of the substrate 22 and the buffer layer 24. Generally, the thickness of the amorphous intermediate layer 28 is about 5 to 5 nm. The annealing cap layer 30 may include any material that can prevent an unnecessary degradation of the layer 24 (or its component) during an annealing process. According to various embodiments of the present invention, the layer 30 comprises a single crystal material, such as a single crystal semiconductor material. For example, the right single-crystal synthetic semiconductor layer is formed on the containing buffer layer. 8-This paper size is applicable to China National Standard (CNS) A4 specification (210X297 public copy) 526605 A7 ___ B7______ 5. Description of the invention (6) 24, The layer 30 may include a thin layer of the single crystal synthetic semiconductor layer. FIG. 2 shows a cross-sectional view of a portion of a semiconductor structure 40 according to another embodiment of the present invention. The structure 40 is similar to the semiconductor structure 20 described above, except that an additional single-crystal synthetic semiconductor material layer 26 is formed on the annealing cap layer 30. According to one aspect of this embodiment, the structure 40 may include an additional buffer layer between the template layer 30 and the synthetic semiconductor material layer overlying it. When the lattice constant of the Gona buffer layer cannot properly match the covered single crystal material layer, an additional buffer layer formed of, for example, a semiconductor or synthetic semiconductor material is used to provide lattice compensation. According to the requirements of specific semiconductor structures, from ππA and VA group elements (III-V semiconductor composites), mixed ΙΠ_ν compounds, Π (Α and b) and VIA elements (π _νΐ semiconductor composites), and The material of the synthetic semiconductor layer 26 (and the buffer layer) is selected from the mixture. Examples include gallium (GaAs), gallium indium arsenide (GaInAs), gallium- (GaA1As), indium (InP), sulfide (CdS), mercury telluride (CdHgTe), zinc sulfide ZnSe), zinc sulfur selenide (ZnSSe), and the like. A suitable template material is chemically bonded to a selected part on the surface of the containing buffer layer 24, and provides a site for subsequent synthetic semiconductor layer 26 epitaxial growth accumulation (nucieation). Materials suitable for the template are discussed below. Fig. 3 shows a schematic sectional view of a part of a semiconductor structure 314 according to another exemplary embodiment of the present invention. Structure 34 is similar to structure 4 except that structure 34 includes an amorphous buffer material 36 formed by one of layers 28 and 24. As described in detail below, non--9 can be formed in a similar manner as described above. -This paper size applies to Chinese National Standard (CNS) A4 (210X 297 mm) 526605 A7 B7

五、發明説明(7 ) 晶形材料36,其方式是先形成一容納緩衝層及一V. Description of the invention (7) The crystalline material 36 is formed by first forming a containing buffer layer and a

局部3 8中提供了一個 >層。非晶形材料3 6的行成在結構3 4的 個眞正合乎標準的基材,以利後續處理 ,例如,合成半導體層26的形成,以及在第二部份4〇中的 一單晶形氧化物材料,此材料可用以形成諸如波導器等之 裝置。 層30可在材料36形成時作爲一退火罩,亦可作爲後續之 半導體層26形成的一模板。根據本具體宵施例,層3〇的厚 度足以提供一適合生長層26之模板(至少生長一單分子層 (monolayer)),並且夠薄以允許層26形成一大體上無缺陷 的卓晶形半導體合成物。 下列非限制性、作例證的實例説明根據本發明各種替代 具體實施例之結構20、40與34中可用的各種材料組合。這 些70全疋用來説明,並且本發明不限定於這些作例證的實 實例1 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 526605 A7 發明説明(8 、根據本發明一項具體實施例,單晶形基·材22係指向(ι〇〇) 万向的矽質基材。矽質基材可能是(例如)用來製造互補金 屬氧化物半·導體(CM〇S)積體電路中常用的矽質基材,其直 徑大約爲200到300 mm。根據本發明的此項具體實施例,容 、”内緩衝層24疋SrzBa^zTiO3單晶形層,其中z介於範圍 内,而非晶形中間層是在介於矽基材與容納緩衝層間之界 面上形成的氧化矽(SiOx)層。所選用的z値是爲了獲得緊密 匹配對應之後續形成之層(例如,層2 6)之晶格常數的一個 或一個以上晶格常數。容納緩衝層的厚度大約在2到1〇()11111 的範圍内,並且最好是大約10mn的厚度:一般而言,希望 谷納緩衝層的厚度足以隔離後續形成的層與基材,以獲得 所希望的電子及光學特性。厚度大於i〇〇 的層通常較少 提供額外的優點,卻增加不必要的成本;然而,若需要, 仍可製造較厚的層。氧化矽非晶形中間層厚度大約在〇 5到 5 nm的範圍内,並且最好是大約丨5到2.5 厚度。 根據本發明的此項具體實施例,材料層2 6是一砷化鎵 (GaAs)或砷化銘鎵(A1GaAs)層,其厚度大約是1 nm到大約 100微米(μιη),並且最好是大約〇 5 μιη到10 μιη的厚度。厚 度通常視該層準備作何種應用而定。爲了促進在單晶形氧 化物上磊晶生長砷化鎵或砷化鋁鎵,將藉由覆蓋氧化層來 形成模板層。模板層最好是Ti_As、Sr-〇-As、Sr-Ga-0 或S r - A1 - 〇的1到1 〇層單分子層。藉由較佳實例,已證實 Ti-As或Sr-Ga-Ο的1到2層單分子層可成功生長GaAs層。 實例2 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A7 B7 五、發明説明(9 、根據本發明進一步具體實施例,單晶形基材22是如上文 所述的一矽質基材。容納緩衝層24是立體或斜方晶相之鳃 或鋇锆酸鹽或給酸鹽的單晶形氧化物,而非晶形中間層是 f介於矽基材與容納緩衝層間之界面上形成的氧化矽層。 谷納緩衝層的厚度大約在2到1〇〇 nm的範圍内,並且最好是 至少5 nm的厚度,以確保足夠的結晶及表面品質,並且是 由單晶形 SrZr〇3、BaZr03、SrHf03、BaSn03 或 BaHf03 所組 例如 了在大約700 C的溫度下生長一 BaZr〇3單晶形氧 化層。所產生之結晶氧化物的晶格結構相對於基材矽晶格 結構呈現4 5度的旋轉。 由廷些锆酸鹽或铪酸鹽材料所形成的容納緩衝層適合在 磷化銦(InP)系統中生長合成半導體材料:層26之合成半導 月豆材料了把疋(例如)厚度大約是1 · 0 nm到1 0 μ m的嶙化銦 (InP)、坤化銦鎵(InGaAs)、砷化铭銦(AiinAs)或磷珅化鋁 鋼嫁(AlGalnAsP)。適用於此結構的模板層是锆-坤(Zr_ As)、錐-嶙(Zr_p)、铪 KHf-As)、铪-鱗(Hf_p)、錯· 氧 KS 卜 0_As)、總-氧-嶙(Sr-0-Ρ)、!貝-氧-绅(Ba-〇-As)、銦-鳃_氧(1114卜〇)或鋇氧磷(Ba-〇_p)的1到ι〇 層單分子層’並且最好是這些材料其中之一的1到2層單分 子層。藉由實例,就鋇锆酸鹽容納緩衝層而言,表面係以 錘的1到2層單分子層終止,之後接著沈積坤的丨到2層單分 子層以形成Z r - A s模板。然後,在模板層上生長以嶙化 铜系統爲材料的合成半導體材料的單晶形層。所產生之合 成半導體材料的晶格結構呈現相對於容納緩衝層晶格結構 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 526605 A7 ________B7 五、發明説明(1〇 ) 的45度旋轉,並且不匹配(1〇〇)Inp的晶格小於2 5%,並且 最好小於大約1 . 〇 %。 實例3 根據本發明進一步具體實施例,提供一適合生長丨^^^材 料磊晶膜之結構,覆蓋於矽基材上。如上文所述,基材最 好是矽晶圓。適合的容納緩衝層材料是SrxBai χΤί〇3,其中 X介於0到1範圍内,厚度大約在2到1〇〇 nm,並且最好是大 約5到15 nm的厚度。H-V]:合成半導體材料可能是(例如)鋅 亞硒酸鹽(ZnSe)或鋅硫亞硒酸鹽(ZnSSe)。適用於此材料系 統的模板層包括鋅-氧(211-〇)的i到1〇層單分子層,之後接 著過量的鋅的1到2層單分子層,之後是位於表面上的鋅亞 硒酸鹽。或者,模板層可能是(例如)丨到丨〇層單分子層的 銳-硫(Sr-S),之後接著是ZnSeS。 實例4 本發明的此項具體實施例是圖2所示之結構4 〇的實例, 包括介於該容納緩衝層與層2 6間的一額外緩衝層(未顯示) 。基材22、單晶形氧化層24及單晶形合成半導體材料層26 可能類似於實例1中所說明對應項。額外緩衝層係用來緩和 應變,其中應變是由於容納緩衝層晶格與層2 6的單晶形材 料晶格間不匹配所致。該緩衝層可能是一層鍺或GaAs、一 砷化鋁鎵(AlGaAs)、一磷化銦鎵(InGaP)、一磷化鋁鎵 (AlGaP)、一砷化銦鎵(InGaAs)、一磷化鋁銦(A1Inp)、一 磷砷化鎵(GaAsP)或一磷化銦鎵(InGaP)的應變補償超晶格 。根據此具體實施例的一項觀點,該緩衝層包括一 • 13- 本紙張尺度適用巾@ a家標準(CNS) A4規格(210 X 297公爱) 526605 A7A > layer is provided in Part 38. The rows of the amorphous material 36 are formed on the substrate of the structure 3 4 to conform to the standard substrate for subsequent processing, for example, the formation of the synthetic semiconductor layer 26 and a single crystal form in the second part 40. An oxide material that can be used to form devices such as waveguides. The layer 30 can be used as an annealing cover when the material 36 is formed, or it can be used as a template for the subsequent formation of the semiconductor layer 26. According to this specific embodiment, the thickness of layer 30 is sufficient to provide a template suitable for growing layer 26 (at least a monolayer is grown), and thin enough to allow layer 26 to form a substantially defect-free epitaxial semiconductor. composite. The following non-limiting, illustrative examples illustrate various combinations of materials available in structures 20, 40, and 34 according to various alternative embodiments of the present invention. These 70 full marks are used for illustration, and the present invention is not limited to these exemplified real examples. 1 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm). 526605 A7 Description of the invention (8. According to the present invention In a specific embodiment, the single crystal base material 22 is a omnidirectional silicon substrate. The silicon substrate may be, for example, used to make a complementary metal oxide semi-conductor (CM). S) The silicon substrate commonly used in integrated circuits has a diameter of about 200 to 300 mm. According to this specific embodiment of the present invention, the "inner buffer layer 24 疋 SrzBa ^ zTiO3 single crystal layer, where z Is within the range, and the amorphous intermediate layer is a silicon oxide (SiOx) layer formed on the interface between the silicon substrate and the containing buffer layer. Z 値 is selected to obtain a closely matched corresponding subsequent layer ( For example, one or more of the lattice constants of layer 2 6). The thickness of the containing buffer layer is in the range of about 2 to 10 (11111), and preferably about 10 mn: In general, It is hoped that the thickness of the valley buffer layer is sufficient to isolate subsequent formation Layers and substrates to achieve the desired electronic and optical properties. Layers thicker than 100 generally provide fewer advantages and add unnecessary costs; however, thicker layers can still be made if needed The thickness of the amorphous intermediate layer of silicon oxide is in the range of about 0.5 to 5 nm, and preferably about 5 to 2.5. According to this embodiment of the present invention, the material layer 26 is a gallium arsenide ( GaAs) or A1GaAs layer, with a thickness of about 1 nm to about 100 micrometers (μιη), and preferably a thickness of about 0.05 μm to 10 μιη. The thickness usually depends on the application for which the layer is intended It depends. In order to promote the epitaxial growth of gallium arsenide or aluminum gallium arsenide on a single crystal oxide, a template layer will be formed by covering the oxide layer. The template layer is preferably Ti_As, Sr-O-As, Sr- 1 to 10 monolayers of Ga-0 or S r-A1-〇. With preferred examples, it has been proven that 1 to 2 monolayers of Ti-As or Sr-Ga-O can successfully grow GaAs layers Example 2 -11-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) A7 B7 Explanation (9) According to a further specific embodiment of the present invention, the single crystal substrate 22 is a silicon substrate as described above. The accommodating buffer layer 24 is a gill or barium zirconate or a three-dimensional or orthorhombic phase. Single crystal oxide, and the amorphous intermediate layer is a silicon oxide layer formed on the interface between the silicon substrate and the containing buffer layer. The thickness of the Gona buffer layer is in the range of 2 to 100 nm. And preferably at least 5 nm in thickness to ensure sufficient crystallization and surface quality, and is composed of a single crystal form SrZr〇3, BaZr03, SrHf03, BaSn03 or BaHf03, for example, grown at a temperature of about 700 C A BaZrO3 single crystal oxide layer. The lattice structure of the resulting crystalline oxide exhibits a rotation of 45 degrees relative to the silicon lattice structure of the substrate. The containment buffer layer formed from these zirconate or osmate materials is suitable for growing synthetic semiconductor materials in an indium phosphide (InP) system: the synthetic semiconducting moon bean material of layer 26 has a thickness of, for example, approximately Indium hafnium (InP), indium gallium (InGaAs), indium arsenide (AiinAs), or aluminum phosphide steel (AlGalnAsP) from 1.0 nm to 10 μm. The template layers suitable for this structure are zirconium-kun (Zr_As), cone- 嶙 (Zr_p), 铪 KHf-As), 铪 -scale (Hf_p), wrong · oxygen KS (0_As), total-oxygen-嶙 ( Sr-0-P) ,! 1 to ι0 monolayers of shell-oxygen-gentle (Ba-〇-As), indium-gill-oxygen (1114), or barium oxyphosphorus (Ba-〇_p) and preferably these materials One of them has 1 to 2 monolayers. By way of example, as far as the barium zirconate-containing buffer layer is concerned, the surface is terminated with 1 to 2 monomolecular layers of a hammer, and then Kun to 2 monolayers are deposited to form a Zr-As template. Then, a single-crystal layer of a synthetic semiconductor material using a copper halide system as a material is grown on the template layer. The lattice structure of the produced synthetic semiconductor material is relative to the lattice structure of the containing buffer layer. -12- This paper size applies Chinese National Standard (CNS) A4 specifications (210 X 297 mm) 526605 A7 ________B7 V. Description of the invention (1 〇) 's 45 degree rotation, and the lattice of the unmatched (100) Inp is less than 25%, and preferably less than about 1.0%. Example 3 According to a further specific embodiment of the present invention, a structure suitable for growing epitaxial film of a material is provided on a silicon substrate. As mentioned above, the substrate is preferably a silicon wafer. A suitable material for containing the buffer layer is SrxBai χΤ〇3, where X is in the range of 0 to 1, the thickness is about 2 to 100 nm, and preferably it is about 5 to 15 nm. H-V]: Synthetic semiconductor materials may be, for example, zinc selenite (ZnSe) or zinc thioselenate (ZnSSe). Suitable template layers for this material system include zinc to oxygen (211-〇) i to 10 monomolecular layers, followed by 1 to 2 monomolecular layers of excess zinc, followed by zinc selenite on the surface Acid salt. Alternatively, the template layer may be, for example, sharp-sulfur (Sr-S) through a single molecular layer, followed by ZnSeS. Example 4 This embodiment of the present invention is an example of the structure 40 shown in FIG. 2 and includes an additional buffer layer (not shown) between the containing buffer layer and the layer 26. The substrate 22, the single crystal oxide layer 24, and the single crystal synthetic semiconductor material layer 26 may be similar to the corresponding items described in Example 1. The additional buffer layer is used to relax the strain, which is caused by the mismatch between the lattice of the buffer layer and the single crystal material of layer 26. The buffer layer may be a layer of germanium or GaAs, an aluminum gallium arsenide (AlGaAs), an indium gallium phosphide (InGaP), an aluminum gallium phosphide (AlGaP), an indium gallium arsenide (InGaAs), or an aluminum phosphide. Strain-compensated superlattice of indium (A1Inp), gallium phosphorous arsenide (GaAsP), or indium gallium phosphide (InGaP). According to an aspect of this specific embodiment, the buffer layer includes a • 13-applicable towel @ a home standard (CNS) A4 specification (210 X 297 public love) 526605 A7

χ 1· X超印格,其中χ値介於〇至i之間的範圍内。根據 另^項觀點,該緩衝層包括一 InyGaiyp超晶格,其中y俊 於0至,1〈間的I巳圍内。藉由改變X値或y値(視情況而定) :晶格常數會隨之橫跨超晶格從下到上改變,以產生基礎 氧:物與覆盍單晶形材料之晶格常數間的匹配。同樣亦可 文又諸如岫面所列出之其他材料的組成結構,以用相似的 =式來操縱該額外緩衝層的晶格常數。超晶格的厚度大約 爲50到500 nm,並且最好是大約1〇〇到2〇〇 的厚度。此結 構的模板可與實例丨中説明的模板相同。或者,緩衝層可能 是厚度爲1到50 nm的的單晶形鍺,並且最好是大約2到2〇 nm的厚度。在使用鍺緩衝層的過程中,可使用厚度大約一 個單分子層的鍺-鳃(Ge_Sr)或鍺·鈦(Ge_Ti)的模板層,以χ 1. · X super-Ingrid, where χ 値 is in the range of 0 to i. According to another aspect, the buffer layer includes an InyGaiyp superlattice, where y is within the range of 0 to 1,1. By changing X 値 or y 値 (as the case may be): the lattice constant will then change from bottom to top across the superlattice to generate the basic oxygen: Match. The composition of other materials, such as those listed in the above description, can also be used to manipulate the lattice constant of the additional buffer layer with a similar formula. The thickness of the superlattice is about 50 to 500 nm, and preferably about 100 to 200. The template of this structure can be the same as that described in the example. Alternatively, the buffer layer may be a single crystal form of germanium having a thickness of 1 to 50 nm, and preferably a thickness of about 2 to 20 nm. In the process of using a germanium buffer layer, a template layer of germanium-gill (Ge_Sr) or germanium-titanium (Ge_Ti) with a thickness of about a single molecular layer can be used to

作爲後~生長單晶形材料層的集結部位。形成氧化層的方 式是覆蓋單分子層鳃或單分子層鈦,以作爲後續沈積單晶 形鍺的集結部位。單分子層鳃或單分子層鈦提供第一單分 子層鍺可鍵合的集結部位。 實例5 此實例同樣説明圖2所示之結構4〇中適合使用的材料。 基材材料22、容納緩衝層24、單晶形合成半導體材料層26 及模板層3 0可能與實例2中所說明對應項相同。此外,在 該容納緩衝層與一覆蓋單晶形材料層之間插入一額外緩衝 層。該額外緩衝層(一單晶形材料)可能是(例如)一坤化銦 鎵(InGaAs)或坤化銦鋁(InAlAs)的粒級層(graded layer)。 根據此具體實施例的一項觀點,該緩衝層包括InGaAs,其 -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 526605 A7 B7 五、發明説明(12 ) 中銅的成分介於0至大約47%之間。該額外緩衝層的厚度最 好是大約ίο到3〇nm。將缓衝層成分&GaAs改成inGaAs, 可提供基礎單晶形氧化材料與單晶形合成半導體材料覆蓋 層間的晶格匹配。如果容納緩衝層24與單晶形材料層26間 晶格不匹配,則此類緩衝層特別有用。 實例6 此只例k供在結構3 4中有用的範例性材料,如圖$所示 。基材材料22、模板層30及單晶形材料層26可與實例工中 所説明對應項相同。 非晶形材料36是由非晶形中間層材料(例如,如上文所述 層28之材料)與容納緩衝層材料(例如,如上文所述層二斗之 材料)之組合所適當形成的一非晶形氧化物層。例如,非晶 形層36可包括SiO^SrzBa^TiO3的組合(其中z介於〇至j 的範圍),其於退火程序期間至少部份組合或混合以在結構 34的區域38中形成非晶形氧化物材料36。 層24、28及36的厚度會因應用而異,並且可依據如期望 的各層之隔離特性、包含層26之材料類型等等的因素而異 。根據本具體實施例一項示範性觀點,种料3 6之厚度大約 爲2 nm至大約1〇〇 ηιη,最好是大約2至1〇 nm,並且以大約 5至6 nm最佳。 請重新參考圖1至3,基材22是諸如單晶形矽基材之類的 單晶形基材。單晶形基材的結晶結構之特徵,在於晶格常 數及晶格方向。類似地,容納緩衝層24也是單晶形材料, 且其單晶形材料晶格的特徵在於晶格常數及結晶方向。容 -15- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 526605 A7 _ B7__ 五、發明説明(13 ) 納緩衝層與單晶形基材的晶格常數必須緊密匹配,或者, 必須某一晶體方向在相對另一晶體方向旋轉之時,能達成 大體上晶格常數的匹配。在此文中,「大體上相等」及「 大體上匹配」表TF晶格常數間有充份的相似點’足以在基 礎層上生長南品質結晶層。 圖4顯7F可達成之南結晶品質生長晶體層的厚度’與主晶 和生長晶晶格常數之間的不匹配的函數關係。曲線4 2描述 的是向結晶品質材料的界限。曲線4 2右邊的區域代表含有 大量瑕症的層。由於晶格間互相匹配,因此理論上能夠在 主晶上生長無限厚度、高品質的磊晶層。當晶格常數的不 匹配遞增時,可達成的、高品質結晶層的厚度則迅速遞減 。例如,作爲參考點,如果主晶與生長層間的晶格常數不 匹配超過大約2 %,超過大約20 nm的單晶形磊晶層即無法 生成。 根據本發明一項具體實施例,基材22是以(100)或(111) 爲方向的單晶形矽晶圓,而容納緩衝層24則是鳃鋇鈦酸鹽 層。達成這兩種材料之晶格常數大體上匹配的方式,爲將 鈦酸鹽材料晶體方向往相對於矽質基材晶圓晶體方向4 5。 旋轉。在此範例中,如果厚度夠厚,則非晶形中間層2 8結 構中所包含的氧化矽層係用來降低鈦酸鹽單晶形層的應變 ,因爲鈦酸鹽單晶形層的應變會導致主4晶圓與生長鈦酸 鹽層的晶格常數不匹配。結果,根據本發明一項具體實施 例,可達成一高品質、厚的單晶形層鈦酸鹽層。 請參考圖2至3,層26是一磊晶生長單晶形材料層,並且 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 526605 A7 B7 五、發明説明(14 ) 該結晶材料的特徵在於晶格常數及晶體方向。根據本發明 一項具體實施例,層2 6的晶格常數不同於基材2 2的晶格常 數。爲了達成高結晶品質的磊晶生長單晶形層,容納緩衝 層必須具有高結晶品質。此外,爲了達成高結晶品質的層 2 6,希望主晶(在此情況下,主晶是單晶形容納緩衝層)與 生長晶體的晶格常數之間大體上匹配。配合正確選用的材 料,由於生長晶體的晶體方向會相對於主晶方向旋轉,所 以可達成晶格常數大體上匹配。如果生長晶體是砷化鎵、 砷化鋁鎵、鋅亞硒酸鹽或鋅硫亞硒酸鹽,而容納緩衝層是 單晶形SrxBa^TiCb,則可達成這兩種材料的晶格常數大 體上匹配,其中會將生長層的晶體方向往相對於主單晶形 氧化物方向旋轉4 5。。同樣地,如果主晶材料是鳃或鋇錘 酸鹽或鳃或鋇铪酸鹽或鋇鍚氧化物,而層2 6是磷化銦或坤 化鎵銦或砷化鋁銦,則可達成晶格常數大體上匹配,其方 式是將生長晶體層的方向往相對於主氧化物晶體方向旋轉 4 5。。在某些情況中,主晶氧化物與生長層之間的結晶緩 衝層可用來降低生長單晶形層中的應變,因爲晶格常數的 微幅差異會導致應變。藉此,將可達成較佳的生長單晶形 層結晶品質。 下文説明根據本發明一項具體實施例之製造諸如圖1至3 所示之結構之半導體結構的方法。此方法的開始步骤是提 供一種包括矽或鍺的單晶形半導體基材。根據本發明一較 佳具體實施例,該半導體晶基材是具有(ί 00)方向的矽質晶 圓。該基材最好是以軸線爲方向,或頂多偏離軸線大約 -17- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X 297公釐) 526605 五、發明説明(π 补了 ί 少—部份具有裸面,雖然基材的其他 Π刚著其他結構’如下文所述。在本文中,術語 已清除基材該料表面,以移除氧化物、淳染 質材料4所皆知,财具有高度反應性,並 :谷易形成天然氧化物。術語「裸」即有意包含此類的 4化物。也可能故意在半導體基材上生長薄型氧化石夕 ,二而此類的生長氧化物不是根據本發明之方法的必要項 。局了磊晶生長單晶形氧化層以覆蓋單晶形基材,必須先 去^天然氧化層’以曝露基礎基材的結晶結構。下列的方 法最好是藉由分子束磊晶附生(m〇lecular beam响叫; MBE)#來進行,雖然根據本發明也可使用其他的羞晶附生方 法。藉由先在MBE裝置中熱沈積薄層的鳃、鋇、鳃與鋇的 组合或其他驗土金屬或驗土金屬組合,可去除天然氧化物 。在使用鳃的情況下,接著將基材加熱到大約75〇β(:,使鳃 與天然氧化矽層產生化學反應。鳃係用來分解氧化矽,而 =下無氧化矽的表面。所產生的表面包括鳃、氧及矽,並 呈現整齊的2x1結構。整齊的2xl結構形成模板,用以有序 生長單晶形氧化物的覆蓋層。該模板提供必要的化學及物 理特性,以集結一結晶生長的覆蓋層。 根據本發明替代具體實施例,可轉換天然氧化矽並準備 基材表面,以生長單晶形氧化層,其方式是在低溫下藉由 MBE在基材表面上沈積如氧化锶、氧化鳃鋇或氧化鋇之類 的驗土金屬氧化物,接著將結構加熱到大約750°C。在此溫 度下,氧化想與天然氧化矽間發生的固態反應導致天然氧 -18· 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)It serves as an assembly site for the post-growth single crystal material layer. An oxide layer is formed by covering a single molecular layer gill or a single molecular layer titanium as a gathering site for subsequent deposition of single crystal germanium. The monomolecular gill or monolayer titanium provides a cluster site where the first monolayer germanium can bond. Example 5 This example also illustrates materials suitable for use in the structure 40 shown in FIG. 2. The base material 22, the containing buffer layer 24, the single crystal synthetic semiconductor material layer 26, and the template layer 30 may be the same as the corresponding items described in Example 2. In addition, an additional buffer layer is interposed between the containing buffer layer and a layer covering the single crystal material. The additional buffer layer (a single crystalline material) may be, for example, a graded layer of indium gallium (InGaAs) or indium aluminum (InAlAs). According to an aspect of this specific embodiment, the buffer layer includes InGaAs, which is -14- this paper size applies Chinese National Standard (CNS) A4 specifications (210X 297 mm) 526605 A7 B7 V. Description of the invention (12) Copper The composition is between 0 and about 47%. The thickness of the additional buffer layer is preferably about ˜30 nm. Changing the buffer layer composition & GaAs to inGaAs can provide lattice matching between the base single crystal form oxide material and the single crystal form synthetic semiconductor material cover layer. Such buffer layers are particularly useful if the lattice between the containment buffer layer 24 and the single crystalline material layer 26 is mismatched. Example 6 This example k is provided as an exemplary material useful in the structure 34, as shown in FIG. The base material 22, the template layer 30, and the single crystal material layer 26 may be the same as the corresponding items described in the example process. The amorphous material 36 is an amorphous shape suitably formed by a combination of an amorphous intermediate layer material (for example, the material of layer 28 as described above) and a buffer layer material (for example, a material of layer two as described above). Oxide layer. For example, the amorphous layer 36 may include a combination of SiO ^ SrzBa ^ TiO3 (where z is in the range of 0 to j), which is at least partially combined or mixed during the annealing process to form an amorphous oxide in the region 38 of the structure 34物 材料 36。 Material 36. The thickness of layers 24, 28, and 36 will vary depending on the application and may vary depending on factors such as the desired isolation characteristics of the layers, the type of material containing layer 26, and the like. According to an exemplary aspect of the specific embodiment, the thickness of the seed material 36 is about 2 nm to about 100 nm, preferably about 2 to 10 nm, and most preferably about 5 to 6 nm. Referring back to FIGS. 1 to 3, the substrate 22 is a single crystal substrate such as a single crystal silicon substrate. The crystal structure of a single crystal substrate is characterized by its lattice constant and its orientation. Similarly, the accommodating buffer layer 24 is also a single crystalline material, and the crystal lattice of the single crystalline material is characterized by a lattice constant and a crystal direction. Rong-15- This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 526605 A7 _ B7__ V. Description of the invention (13) The lattice constants of the nanobuffer layer and the single crystal substrate must closely match, Alternatively, when a certain crystal direction is rotated with respect to another crystal direction, it is necessary to achieve a matching of a substantially lattice constant. In this article, there are sufficient similarities between the "substantially equal" and "substantially matched" tables of TF lattice constants' enough to grow a South-quality crystal layer on the base layer. Fig. 4 shows the function of the mismatch between the thickness of the growing crystal layer of the South Crystal Quality achievable in 7F and the lattice constants of the main crystal and the growing crystal. Curve 42 describes the boundaries to crystalline quality materials. The area to the right of curve 4 2 represents the layer containing a large number of imperfections. Due to the matching of the lattices, an epitaxial layer of infinite thickness and high quality can be grown on the main crystal in theory. As the lattice constant mismatch increases, the thickness of the achievable, high-quality crystalline layer decreases rapidly. For example, as a reference point, if the lattice constant mismatch between the main crystal and the growth layer exceeds about 2%, a single crystal epitaxial layer exceeding about 20 nm cannot be formed. According to a specific embodiment of the present invention, the substrate 22 is a single crystal silicon wafer with a direction of (100) or (111), and the containing buffer layer 24 is a gill barium titanate layer. The way to achieve a substantially matching lattice constant of these two materials is to direct the crystal orientation of the titanate material relative to the crystal orientation of the silicon substrate wafer 4 5. Spin. In this example, if the thickness is thick enough, the silicon oxide layer included in the amorphous intermediate layer 28 structure is used to reduce the strain of the titanate single crystal layer, because the strain of the titanate single crystal layer will As a result, the lattice constants of the main 4 wafer and the growing titanate layer do not match. As a result, according to a specific embodiment of the present invention, a high-quality, thick single-crystal layer titanate layer can be achieved. Please refer to Figures 2 to 3. Layer 26 is an epitaxially grown single crystal material layer, and -16- This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 mm) 526605 A7 B7 V. Description of the invention (14) The crystalline material is characterized by a lattice constant and a crystal orientation. According to a specific embodiment of the present invention, the lattice constant of the layer 26 is different from the lattice constant of the substrate 22. In order to achieve an epitaxially grown single crystal layer of high crystal quality, the accommodating buffer layer must have high crystal quality. In addition, in order to achieve a layer 2 6 of high crystal quality, it is desirable that the main crystal (in this case, the main crystal is a single-crystal-containing buffer layer) and the lattice constant of the growing crystal are generally matched. With the correct selection of materials, the crystal constant of the growing crystal will be rotated relative to the main crystal, so that the lattice constants can be roughly matched. If the growth crystal is gallium arsenide, aluminum gallium arsenide, zinc selenite, or zinc sulfenite, and the containment buffer layer is single crystal SrxBa ^ TiCb, the lattice constants of these two materials can be achieved. Up-matching, where the crystal direction of the growth layer is rotated 4 5 with respect to the direction of the main single crystal oxide. . Similarly, if the main crystal material is gill or barium hammered acid salt or gill or barium osmium salt or barium hafnium oxide, and layer 26 is indium phosphide or indium gallium indium or indium aluminum arsenide, the crystal can be achieved. The lattice constants are roughly matched by rotating the direction in which the crystal layer is grown relative to the direction of the main oxide crystal 4 5. . In some cases, a crystalline buffer layer between the main crystalline oxide and the growth layer can be used to reduce strain in the growing single crystal layer, as small differences in lattice constants can cause strain. Thereby, better crystal quality of the single crystal layer can be achieved. The following describes a method of manufacturing a semiconductor structure such as the structure shown in FIGS. 1 to 3 according to a specific embodiment of the present invention. The method begins with a single crystal semiconductor substrate comprising silicon or germanium. According to a preferred embodiment of the present invention, the semiconductor crystal substrate is a silicon crystal circle having a direction of (00). The substrate is preferably oriented along the axis, or at most about -17 away from the axis. This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 526605 V. Description of the invention Some have a bare surface, although the other Π of the substrate has other structures, as described below. In this article, the term has been used to remove the surface of the substrate to remove oxides and chromatin materials. 4 It is highly reactive, and it is easy to form natural oxides. The term "naked" intentionally includes such compounds. It is also possible to intentionally grow thin oxide oxides on semiconductor substrates, and such growth oxides It is not necessary for the method according to the present invention. In order to cover the single crystal substrate by epitaxial growth of a single crystal oxide layer, the natural oxide layer must be removed first to expose the crystal structure of the base substrate. The following method is best It is performed by molecular beam epitaxy (MBE) #, although other methods of epitaxy can also be used according to the present invention. By first thermally depositing a thin layer in the MBE device Gill, barium, a combination of gill and barium or Other soil inspection metals or combination of soil inspection metals can remove natural oxides. In the case of using gills, the substrate is then heated to about 75 ° β (:, which makes the gills react with the natural silicon oxide layer. The gill system is used for To decompose silicon oxide, and the surface without silicon oxide. The resulting surface includes gills, oxygen, and silicon, and presents a neat 2x1 structure. The neat 2xl structure forms a template for the orderly growth of single crystal oxides Cover layer. The template provides the necessary chemical and physical properties to gather a crystal-grown cover layer. According to an alternative embodiment of the present invention, the natural silicon oxide can be converted and the surface of the substrate can be prepared to grow a single crystal oxide layer. The method is to deposit a soil test metal oxide such as strontium oxide, barium oxide or barium oxide on the surface of the substrate by MBE at a low temperature, and then heat the structure to about 750 ° C. At this temperature, the oxidation The solid state reaction with natural silicon oxide results in natural oxygen-18. This paper size applies to China National Standard (CNS) A4 (210X 297 mm)

526605 A7 B7 五、發明説明(16 ) 化矽還原,並在基材表面上留下具有锶、氧及矽的有序 2 X 1結構。再次,以此方式形成模板,用以接著生長有序 單晶形氧化物層。 根據本發明一項具體實施例,在去除基材表面上的氧化 碎後,將基材冷卻到大約200到800°C範圍内的溫度,並且 藉由分子束系晶生長在模板層上生長總鈥酸鹽層。MBE方 法k打開MBE裝置中的閘門(開始,以曝露總、鈥 及氧的來源。鳃與鈦的比率大約是丨· 1。氧氣分壓最初設定 在最小値,以利於以每分鐘大約〇3到〇5 nm的生長速度來 生長推測的鳃鈦酸鹽。在初步引發生長锶鈦酸鹽後,將氧 氣分壓遞增到大於最初的最小値。氧氣過壓會導致在基礎 基材與生長中之鳃鈦酸鹽層之間的界面上生長非晶形氧化 矽層。生長氧化矽層起因於氧氣會通過生長中之锶鈦酸鹽 層擴散到位於基礎基材表面上氧氣與矽產生化學反應的界 面。鳃鈦酸鹽生長成爲有序單晶形,並且具有相對於有序 2 X 1結晶結構之基礎基材旋轉4 5。的結晶方向。否則,鳃鈦 酸鹽層可能存在錢,這是因爲$基材與生長晶體之間晶 格常數微幅不匹配所致,而在非晶形氧化矽中間層可減緩 此類的應變。 在總欽酸鹽層生長到所希望的厚度後,接著藉由模板層 來覆蓋單晶形鳃鈦酸鹽,以促進後續生長所希望之材料的 磊晶層。就後續生長砷化鎵層而言,覆蓋麵生長的鳃鈦 酸鹽單晶形層的方式爲,以⑻層單分子層鈇、節層單 分子層鈇-氧或丨到2層單分子層總_氧來終止生長。在形成 -19- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 526605 五 A7 B7、發明説明(17 ) 此覆蓋層後,接著沈澱砷,以形成T i - A s鍵合、T i - Ο - A s 键合或Sr-0-As。其中任一種都可形成適合沈積及形成砷 化鎵單晶形層的模板。在形成模板後,接著導入鎵,以與 坤及砷化鎵產生化學反應。或者,可在覆蓋層上沈積鎵, 以形成Sr· 0 _ G a鍵合,並且導入與鎵反應的砷,以形成 GaAs 0 圖5顯示根據本發明所製造之半導體材料的高解析度透射 式電子顯微照片(Transmission Electron Micrograph ; TEM) 。單晶體SrTi03容納緩衝層24係在矽基材22上磊晶生長。 於此生長程序中,會形成非晶形界面層2 8以減緩因晶格不 匹配所導致的應變。然後,使用一適當模板,以在層2 4之 上磊晶生長GaAs合成半導體層26。 . 圖6顯示包含使用容納緩衝層24在矽基材22上生長之 GaAs合成半導體層2 6之一結構的X射線繞射光譜。光譜的 峰値表示容納緩衝層24及GaAs合成半導體層26都是單晶體 並且係朝著(100)的方向。 如上所述,本發明的這些結構可包括介於該容納緩衝層 與層26間的一額外緩衝層。此情形中,在沈積單晶形層26 之前,會先形成覆蓋於該模板層上的緩衝層。如果緩衝層 是合成半導體超晶格,則可在如上文所述的模板上藉由(例 如)MBE來沈積此類的超晶格。如果用鍺層來取代緩衝層, 則會修改上述的方法,以最後的鳃層或鈦層來覆蓋鳃鈦酸 鹽單晶形層,然後藉由沈積鍺,以利於與鳃或鈦產生化學 反應。然後,可在此模板上直接沈積鍺緩衝層。 裝 玎526605 A7 B7 V. Description of the invention (16) Silicon reduction and leaving an ordered 2 X 1 structure with strontium, oxygen and silicon on the surface of the substrate. Again, a template is formed in this manner to subsequently grow an ordered single crystal oxide layer. According to a specific embodiment of the present invention, after removing the oxidized debris on the surface of the substrate, the substrate is cooled to a temperature in the range of about 200 to 800 ° C, and the template layer is grown by molecular beam system crystal growth. “Acid layer. The MBE method opens the gate in the MBE device (beginning with exposure to total, oxygen, and oxygen sources. The ratio of gill to titanium is approximately 丨 1. The partial pressure of oxygen is initially set to a minimum of 値, which is beneficial to approximately 0.33 per minute. The speculative gill titanate is grown to a growth rate of 0.05 nm. After the initial initiation of the growth of strontium titanate, the partial pressure of oxygen is increased to greater than the initial minimum 値. Overpressure of oxygen will cause the base substrate and growth An amorphous silicon oxide layer is grown on the interface between the gill titanate layers. The growth of the silicon oxide layer is due to the diffusion of oxygen through the growing strontium titanate layer to the surface of the base substrate which causes a chemical reaction between oxygen and silicon. Interface. The gill titanate grows into an ordered single crystal form and has a crystallographic orientation that rotates 5 to 5. relative to the base substrate with an ordered 2 X 1 crystal structure. Otherwise, there may be money in the gill titanate layer. Because the lattice constant between the substrate and the growing crystal is slightly mismatched, the amorphous silicon oxide intermediate layer can slow down such strains. After the total salt layer has grown to the desired thickness, then borrow From the template layer The single crystal gill titanate is covered to promote the subsequent growth of the epitaxial layer of the desired material. For the subsequent growth of the gallium arsenide layer, the way to cover the growth of the gill titanate single crystal layer is as follows: Layer monolayer 鈇, nodal monolayer 鈇 -oxygen, or total to 2 monolayer _ oxygen to stop the growth. In the formation -19- This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 public) (Centi) 526605 five A7 B7, description of the invention (17) After this cover layer, arsenic is then precipitated to form a T i-A s bond, T i-0-A s bond, or Sr-0-As. Any one Both can form a template suitable for the deposition and formation of a gallium arsenide single crystal layer. After the template is formed, gallium is then introduced to produce a chemical reaction with Kun and gallium arsenide. Alternatively, gallium can be deposited on the cover layer to form Sr · 0 _ G a is bonded, and arsenic that reacts with gallium is introduced to form GaAs 0 Figure 5 shows a high-resolution transmission electron micrograph (TEM) of a semiconductor material manufactured according to the present invention. Single crystal The SrTi03 containing buffer layer 24 is epitaxially grown on a silicon substrate 22. During the growth process, an amorphous interface layer 28 is formed to reduce the strain caused by the lattice mismatch. Then, an appropriate template is used to epitaxially grow the GaAs synthetic semiconductor layer 26 on the layer 24. Figure 6 An X-ray diffraction spectrum showing a structure including one of the GaAs synthetic semiconductor layer 26 grown on the silicon substrate 22 using the containing buffer layer 24. The peak of the spectrum indicates that the containing buffer layer 24 and the GaAs synthetic semiconductor layer 26 are both single crystals and It is in the direction of (100). As mentioned above, the structures of the present invention may include an additional buffer layer between the receiving buffer layer and the layer 26. In this case, a buffer layer covering the template layer is formed before the single crystal layer 26 is deposited. If the buffer layer is a synthetic semiconductor superlattice, such a superlattice can be deposited on the template as described above by, for example, MBE. If a germanium layer is used instead of the buffer layer, the above method will be modified to cover the gill titanate single crystal layer with the last gill layer or titanium layer, and then deposit germanium to facilitate a chemical reaction with the gill or titanium . A germanium buffer layer can then be deposited directly on this template. Pretend

線 -20- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 526605Line -20- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 526605

發明説明(18 圖3所不< 結構34的形成方式可能是,生長一容納缓衝 層、在基板22上形成一非晶形氧化物層,以及在容納緩衝 層上生長層2 6,如上文所述。然後,將該容納緩衝層及非 晶形氧化物層曝露於一高能光束(例如,χ射線、離子或電 子光束退火程序,使容納缓衝層的結晶結構足以從單晶 形變土爲非晶形,#由形成非晶形層,使非晶形氧化物層 與目前的非晶形纟納緩衝層的組合形成一單一 #晶形氧化 物材料36。 根據本發明,材料36係將該容納緩衝層與區域38中之非 晶形氧化物層曝露高能光束之退火程序所形成(在防護 局部4 0以免接觸該能量光束的情況下)。 局部40可藉各種方式避免接觸該能量光束。例如,可單 純掃描區域38上方,使局部38曝露於—能量光束中。或者 ’可於局部40上形成一遮罩’以保護局部4〇免受該能量光 束照射。適當之遮罩材料需視能量光束之種類而定。例如 ,當使用-離子光束執行該退火程序時,適#之遮罩 包括諸如氧切之氧化物、諸如氮切之氮化物以及 於半導體裝置之製造的金屬。同樣地,當㈣火 - X射線或電子光束退火程序時,適當之遮罩材 ς 如鉅、鎢及金之金屬。 苑 利用高能光束退火技術,有幾個有利的原因。尤其 種退火技術使材料36形成,而不f讓整個結構Μ曝露於j 熱源中,僅一局邵38需曝露於能量并击 、 、把重先束中。另外,高能# 束退火能促進結構34中各種層(例如, # + 、J 層24,其中典型地 •21 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 526605Description of the invention (18 FIG. 3 < Structure 34 may be formed by growing a containment buffer layer, forming an amorphous oxide layer on the substrate 22, and growing a layer 26 on the containment buffer layer, as above The exposure buffer layer and the amorphous oxide layer are then exposed to a high-energy beam (for example, an X-ray, ion, or electron beam annealing procedure) so that the crystalline structure of the storage buffer layer is sufficient to change from a single crystal to a non-crystalline one. The crystalline form # is formed by forming an amorphous layer, so that the combination of the amorphous oxide layer and the current amorphous susceptor buffer layer forms a single #crystalline oxide material 36. According to the present invention, the material 36 is the containing buffer layer and area The amorphous oxide layer in 38 is formed by the annealing process of exposing the high energy beam (in the case of protecting the local 40 from the energy beam). The local 40 can avoid contact with the energy beam in various ways. For example, it can simply scan the area Above part 38, expose part 38 to the energy beam. Or 'may form a mask on part 40' to protect part 40 from the energy beam. Appropriate The cover material depends on the type of energy beam. For example, when performing the annealing process using an -ion beam, suitable masks include oxides such as oxygen cuts, nitrides such as nitrogen cuts, and semiconductor devices. Metals. Similarly, suitable materials for masking materials, such as giant, tungsten, and gold, are used during the beating-X-ray or electron beam annealing process. There are several advantageous reasons for using high-energy beam annealing techniques. Especially for annealing The technology enables the material 36 to be formed without exposing the entire structure M to the j heat source. Only one round of Shao 38 needs to be exposed to energy and strike the beam first. In addition, high-energy # beam annealing can promote various Layers (for example, # +, J layer 24, which is typically • 21-this paper size applies to China National Standard (CNS) A4 specifications (210 X 297 mm) 526605

匕含具有-較其他層爲高之原子量的料)有利的能量吸收。 當利用電子或離子光束以形成層36時,該退火程序(至少 郡份)係因帶電粒子(例如,電子或離子)衝擊層24及/或層 28中的原子,導致這些層變成非晶形。該帶電力子光束二 經聚焦,以將大部份光束能量集中於一需退火之層,亦可 集中於-層之特定區域。另夕卜,在電子光束退火程序的情 形中,包含較重原子的層較易吸收其能量。因此,m 包含諸如鳃及/或鈦等較重之原子時,層24會吸收較 包含諸如GaAs之材料)爲多的能量。於此情形中,可利用該 電子光束以導致層24變爲非晶形,而層26則維持單晶形。 圖7顯示根據圖3所示之本發明具體實施例所製造之半導 體材料的高解析度透射式電子顯微照片。根據本具體實施 例,單晶體SrTi〇3谷納缓衝層係在矽基材2 2上磊晶生長。 如上文所述,於此生長製程期間,有一非晶形界面層形成 。接著,在容納緩衝層上面形成GaAs層26,並且將容納緩 衝層經過退火處理,以形成非晶形氧化物材料36。 圖8顯示包含GaAs合成半導體層26及形成於矽基材22上 的非晶形氧化物材料36之結構的X射線繞射光譜。光譜的 峰値表示GaAs合成半導體層2 6是單晶體並且係朝向(丨〇〇) 方向形成,40至50度附近的無峰値表示材料3 6是非晶形。 如上文所述的方法説明一種藉由分子束磊晶生長方法來 形成半導體結構的方法,其中該半導體結構包含一矽基材 、一覆蓋氧化物層及一單晶形砷化鎵合成半導體層。還可 藉由化學蒸汽化沉積(chemical vapor deposition ; CVD)、 -22- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)It contains materials with a higher atomic weight than the other layers) and has a favorable energy absorption. When electron or ion beams are used to form layer 36, the annealing process (at least the county) is caused by charged particles (eg, electrons or ions) striking the atoms in layer 24 and / or layer 28, causing these layers to become amorphous. The charged sub-beam is focused to focus most of the beam energy on a layer to be annealed, or on a specific region of the -layer. In addition, in the case of an electron beam annealing procedure, a layer containing heavier atoms is more likely to absorb its energy. Therefore, when m contains heavier atoms such as gills and / or titanium, layer 24 will absorb more energy than materials containing GaAs). In this case, the electron beam can be used to cause layer 24 to become amorphous, while layer 26 maintains a single crystal form. Fig. 7 shows a high-resolution transmission electron micrograph of a semiconductor material manufactured according to the embodiment of the present invention shown in Fig. 3. According to this embodiment, the single crystal SrTi03 nano-buffer layer is epitaxially grown on the silicon substrate 22. As mentioned above, during this growth process, an amorphous interface layer is formed. Next, a GaAs layer 26 is formed on the containing buffer layer, and the containing buffer layer is annealed to form an amorphous oxide material 36. Fig. 8 shows an X-ray diffraction spectrum of a structure including a GaAs synthetic semiconductor layer 26 and an amorphous oxide material 36 formed on a silicon substrate 22. The peak 値 of the spectrum indicates that the GaAs synthetic semiconductor layer 26 is a single crystal and is formed in the (0) direction. The non-peak 値 near 40 to 50 degrees indicates that the material 36 is amorphous. The method described above illustrates a method for forming a semiconductor structure by a molecular beam epitaxial growth method, wherein the semiconductor structure includes a silicon substrate, a cover oxide layer, and a single crystal gallium arsenide semiconductor layer. Can also be used for chemical vapor deposition (CVD), -22- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm)

裝 玎Pretend

五、發明説明(20 ) 金屬有機化學蒸汽沉積(metal organic chemical vapor deposition ; MOCVD)、遷移率增強型蟲晶生長(migration enhanced epitaxy ; MEE)、原子層系晶生長(atomic layer epitaxy ; ALE)、物理蒸汽化沉積(physical vapor deposition ;PVD)、化學溶劑沉積(chemical solution deposition ; CSD)、脈衝雷射沉積(pulsed laser deposition ; PLD )等等來 進行此項方法。另外,藉由類似的方法,還可生長其他的 單晶形容納緩衝層,諸如,驗土金屬鈥酸鹽、驗土金屬錘 酸鹽、驗土金屬給酸鹽、驗土金屬赵酸鹽、驗土金屬釩酸 鹽、驗土金屬釘酸鹽、驗土金屬就酸鹽、鎖基#5鈥礦(tin-based perovskites)、鋼链酸鹽、氧化钪及氧化乱。另外 ,藉由諸如MBE的類似方法,還可沈積其他的第111 - V及 II-VI族單晶形合成半導體層,以覆蓋單晶形氧化物容納緩 衝層。 蟲晶生長之材料的每種變異,都使用適當的模板,以利 於開始生長相關材料。例如,如果容納緩衝層是一鹼土金 屬锆酸鹽,則可藉由薄型錘層來覆蓋氧化物。沈積锆之後 ,接著沈積要與錘產生化學反應的坤或磷,作爲分別沈積 砷化銦鎵、坤化銦鋁或磷化銦的前導。同樣地,如果單晶 形氧化物容納緩衝層是一鹼土金屬铪酸鹽,則可藉由薄型 铪層來覆蓋氧化層。沈積铪之後,接著沈積要與铪產生化 學反應的砷或磷,作爲分別生長坤化銦鎵、砷化銦鋁或磷 化銦層的前導。在類似的方法中,可用鳃或鳃暨氧層來覆 蓋鳃鈦酸鹽,並且用鋇或鋇暨氧層來覆蓋鋇鈦酸鹽。沈積 -23- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 526605 A7 發明説明(2! ^述各項 < 後,接著沈積要與覆蓋材料產生化學反應的砷 或磷’以形成用來沈積合成半導體材料層的模板,其中合 成半導體材料層包料化銦鎵、坤化脑或嶙化鋼。 “圖9顯不根據本發明進一步具體實施例之裝置結構$ 〇的 ,,圖。裝置結構50包括單晶形半導體基材52,其最好是 單阳形矽晶圓。單晶形半導體基材52包括”及“兩個區域 。、概括地由虛線5 6所指示的一電子半導體組件係(至少部份 )於區域53中形成。電子組件%可能是電阻器、電容器、 諸如一極體或電晶體之類的主動式半導體組件,或者諸如 互補金屬氧化物半導體(CM〇s)積體電路之類的積體電路。 例如,電子半導體組件56可能是一 CMOS積體電路,設定 來執行數位信號處理,或執行相當適合矽積體電路的另一 種功能。可藉由眾所皆知且半導體產業中廣泛實施的傳統 半導體處理來形成區域53中的電子半導體組件。 一旦形成了裝置56,至少區域53的一部份表面上以及區 域54的表面即會移除半導體組件56處理期間可能在區域幻 中形成或沈積的層,以提供一裸矽表面。眾所皆知,裸矽 表面具有鬲度反應性,並且裸表面上可迅速形成天然氧化 矽層。會在裸表面上的天然氧化物層上沈澱鋇或鋇暨氧層 ,並且與氧化表面產生化學反應,以形成一第一模板層(未 顯示)。根據本發明一項具體實施例,藉由一分子束蟲晶生 長程序來形成單晶形氧化物材料58,以覆蓋模板層。在模 板層上沈澱包括鋇、鈦暨氧的反應物,以形成單晶形氧化 物層。首先,於沈積期間,將氧氣分壓維持在接近與鋇及 -24· _______— 本紙張疋度適用中國國家標準(CNS) A4規格(210X 297公釐) 526605 A7 ' _______ B7 五、發明説明(22 ) 鈦完全反應所須的最小限度,以形成單晶形鎖欽酸鹽層。 然後,遞增氧氣分壓以提供氧氣過壓,並允許氧氣通常生 長中的單晶形氧化物層擴散。通過鋇鈦酸鹽層擴散的氧氣 會與位於表面上的矽產生化學反應,用以在位於矽基材與 單晶形氧化物之間的界面上形成氧化矽非晶形材料5 7。 根據本發明一項具體實施例,沈積單晶形氧化物層的步 驟是藉沈積一第二模板層60所終止的,該第二模板層可能 是1到1 0層單分子層的鈦、鋇、鳃、鋇暨氧、鈦暨氧或鳃 暨氧。然後,藉由一分子束磊晶生長程序來沈積一單晶形 半導體材料層64 ,以覆蓋第二模板層。沈積層64的第一步 驟是在模板上沈積一層砷。第一步驟之後,接著沈積鎵及 砷,以形成單晶形砷化鎵。 根據此具體實施例的一項觀點,形成半導體層6 〇之後, 區域54之單晶形鈥酸鹽層和介於基材52及該鈥酸鹽層間的 氧化石夕層曝露於一高能光束退火程序中;使該鈸酸鹽和氧 化物層形成一非晶形氧化材料62。接著,另一合成半導體 層66磊晶生長於層64之上,利用上述相關於層64之技術, 形成合成半導體層67。或者,上述退火程序可在生成額外 之合成半導體層66之後。然而,在生長層66之前先形成非 晶形層62較佳,因其爲層66的生長提供一眞正合乎標準的 基材。沉積於區域53中層66的材料包含的瑕疵數量可能比 區域54中的材料66層中的瑕疵數量爲多,因區域53中之層 6 0、6 4内的任何應變皆未透過一退火程序減緩。 根據本發明進一步具體實施例,括地由虛線6 8所指示的 -25- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 526605 五 、發明説明(a 裝 二半導體組件係(至少部份)於合成半導體層66上形成。可 猎由製造砷化鎵或其他第ΠΙ-ν族合成半導體材料裝置中使 2的傳統處理步驟來形成半導體組件68。半導體組件68可 能是任何的主動型或被動型組件,並且最好是一半導體雷 射、一電磁輻射(例如,從紅外線到遠紫外線輻射的光線) 發射裝置、一電磁輻射偵測器(諸如一光檢測器)、一異質 結雙極性電晶體(heterojuncti〇n bipolar transistor ; ΗΒΤ)、 一高頻MESFET或其他充分利用合成半導體材料物理特性的 組件。可形成線條70所指示的金屬導體;以利於電氣耦合 裝置68及裝置56,以此方式建置一整合裝置,該整合裝置 至少包括矽基材中形成的一組件及單晶形合成半導體材料 層中形成的一裝置。雖然已説明之作爲例證的結構5 〇是在 一矽基材5 2上形成的結構,並且具有一鋇(或鳃)鈦酸鹽層 及一砷化鎵層66,但是可使用本發表中他處所説明的其: 單晶形基材、氧化層及其他單晶形合成半導體層來製造類 似的裝置。 ^ 線 如上所述,根據本發明一項具體實施例,局部Η並未曝 露於一退火程序中,故材料58仍維持其單晶形之形式。單 晶形材料5 8可用來形成(例如)介於利用基材5 2形成的一裝 置(諸如裝置56)與另一裝置間的一波導器(wave guide)。 圖1 0顯示根據本發明另一項具體實施例之一半導體結構 72的圖式。結構72包括單晶形半導體基材74,諸如包含區 域75及區域76的單晶形夕晶圓。將使用半導體產業中常用 的傳統矽裝置處理技術,在區域7 5中形成虛線7 8所指示的 26- 本紙張尺度適用中國®家標準(CNS) A4規格(210 X 297公釐) 526605 A7 ______B7 五、發明説明(24 ) 電子組件。使用類似於如上述的方法步驟,來形成一單晶 形氧化材料9 6及一中間非晶形氧化矽材料9 8 ,以覆蓋於基 材74上。揍著形成一模板層80及其後的一單晶形半導體層 8 2,以覆蓋於該單晶形氧化物層之上。接著,將該單晶形 氧化物及氧化矽薄膜曝露於一高能光束退火程序中,以於 區域76中形成一非晶形氧化物材料84。藉由類似於上述用 以形成該單晶形氧化物材料的方法步驟來形成一額外單晶 形氧化物層86,以覆蓋層82,並且,藉由類似於用以形成 層82的方法步驟來形成一額外單晶形半導體層9〇,以覆蓋 單曰ej形氧化物層86。可將單晶形氧化物層86合意地曝露於 一額外退火程序中,以使其材料變爲非晶形。然而,根據 本具體實施例之各種觀點,層86仍保持其單晶形之形式。 根據本發明一項具體實施例,會從合成半導體材料來形成 層82及90的至少其中一層。 通名會在卓曰曰形半導體層8 2的至少一邵份上形成虛線9 2 所指示的半導體組件。根據本發明一項具體實施例,半導 體組件9 2可包含場效電晶體,在某種程度上,該場效電晶 體的閘介電質係由單晶形氧化物層8 6所形成。此外,可使 用單晶形半導體層9 0來建置該場效電晶體的閘電極。根據 本發明一項具體實施例,會從族合成物來形成單晶 形半導體層82,並且半導體組件92是充分利用第πΐ- V族組 件材料的高機動物理特性的射頻(RF)放大器。根據本發明 更進一步具體實施例,線條9 4所指示的電氣互連以電氣方 式使組件7 8及組件9 2互連。 -27· 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 526605 A7 B7 五、發明説明(25 ) 顯然地,這些具有合成半導體部份及第IV族半導體部份 的積體電路具體實施例都是用來解説本發明具體實施例, 而不是用來限制本發明。尚有其他組合的多樣性及本發明 的其他具體實施例。例如,合成半導體部份可包括發光二 極體、光檢測器、二極體等等,而第IV族半導體可包括數 位邏輯、記憶體陣列以及可在傳統MOS積體電路上形成的 大部份結構。藉由運用本發明的具體實施例,現在更容易 合併適合用合成半導體材料運作的裝置與適合用第IV族半 導體材料運作或容易形成並且便宜的其他組件。如此可縮 小裝置、降低製造成本並增加良率及可靠度。 雖然未説明,但是在晶圓上只形成合成半導體電子組件 的過程中,可使用單晶形第IV族晶圓。如此,該晶圓實質 上是在製造用來覆蓋晶圓之單晶形合成f導體層内的合成 半導體電子組件的期間所使用的「處理」晶圓。因此,可 在直徑至少約200毫米且可能是至少約300毫米之晶圓上的 第III-V或II-VI族半導體材料内形成電子組件。 藉由使用此類型基材,相對低價的「處理」晶圓克服合 成半導體晶圓的易碎性質,其方式是將此類晶圓放置在相 對更耐用且容易製造的基礎材料上。因此,可形成一種積 體電路,以便能夠在合成半導體材料内形成所有的電氣組 件,尤其是所有的主動式電子裝置,即使基材本身可包括 第IV族半導體材料。與相對小型且更易碎、傳統的合成半 導體晶圓相比,因爲能夠以更經濟且更容易的方式來處理 大型基材,所以可降低合成半導體裝置的製造成本。 -28- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 裝 玎V. Description of the invention (20) metal organic chemical vapor deposition (MOCVD), migration enhanced epitaxy (MEE), atomic layer epitaxy (ALE), Physical vapor deposition (PVD), chemical solution deposition (CSD), pulsed laser deposition (PLD), etc. are used to perform this method. In addition, by a similar method, other single crystal form buffer layers can be grown, such as soil test metal salt, soil test hammer salt, soil test metal salt, soil test salt, Soil test metal vanadate, soil test metal nail salt, soil test metal salt, tin-based perovskites (tin-based perovskites), steel chain salt, hafnium oxide, and oxidation disorder. In addition, by similar methods such as MBE, other 111-V and II-VI single-crystal composite semiconductor layers can be deposited to cover the single-crystal oxide-containing buffer layer. Each variation of the worm-crystal growing material uses an appropriate template to facilitate the start of growth of the relevant material. For example, if the containment buffer layer is an alkaline earth metal zirconate, the oxide can be covered by a thin hammer layer. After the deposition of zirconium, the Kun or Phosphorus to be chemically reacted with the hammer is deposited as a precursor for the deposition of InGaAs, KunAl, or InP, respectively. Similarly, if the single crystal oxide containing buffer layer is an alkaline earth metal osmium salt, the oxide layer may be covered by a thin rhenium layer. After the deposition of thorium, arsenic or phosphorus to be chemically reacted with thorium is then deposited as a precursor for growing layers of indium gallium, indium aluminum arsenide, or indium phosphide, respectively. In a similar method, gill titanate can be covered with gill or gill cum oxygen layer, and barium titanate can be covered with barium or gill cum oxygen layer. Deposition-23- This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 526605 A7 Description of the invention (2! ^ The following items < then deposit arsenic or chemical reaction with the covering material Phosphorus' to form a template for depositing a layer of synthetic semiconductor material, wherein the layer of synthetic semiconductor material is clad with indium gallium, kunhuan or hafnium steel. "Figure 9 shows a device structure according to a further specific embodiment of the invention The device structure 50 includes a single crystalline semiconductor substrate 52, which is preferably a single male silicon wafer. The single crystalline semiconductor substrate 52 includes "and" two regions. In general, the dotted line 5 6 The indicated electronic semiconductor component is (at least partially) formed in area 53. The electronic component may be a resistor, a capacitor, an active semiconductor component such as a pole or transistor, or a complementary metal oxide Semiconductor (CM0s) integrated circuits, such as integrated circuits. For example, the electronic semiconductor component 56 may be a CMOS integrated circuit, set to perform digital signal processing, or to implement a silicon integrated circuit that is quite suitable Another function. Electronic semiconductor components in region 53 can be formed by conventional semiconductor processing that is well known and widely implemented in the semiconductor industry. Once the device 56 is formed, at least a portion of the surface of region 53 and the region 54 The surface will remove the layers that may be formed or deposited in the region during the processing of the semiconductor device 56 to provide a bare silicon surface. It is well known that bare silicon surfaces are highly reactive, and natural materials can form quickly on bare surfaces. Silicon oxide layer. Barium or barium and oxygen layer will be precipitated on the natural oxide layer on the bare surface, and will react with the oxidized surface to form a first template layer (not shown). According to a specific implementation of the present invention For example, a single crystal oxide material 58 is formed by a molecular beam worm crystal growth process to cover the template layer. A reactant including barium, titanium, and oxygen is precipitated on the template layer to form a single crystal oxide layer. First, during the deposition, the partial pressure of oxygen is maintained close to that of barium and -24 · _______— This paper is compliant with China National Standard (CNS) A4 (210X 297 mm) 526605 A 7 '_______ B7 V. Description of the invention (22) The minimum required for complete reaction of titanium to form a single crystal lock salt layer. Then, the partial pressure of oxygen is increased to provide oxygen overpressure and allow oxygen to grow normally. The single crystal oxide layer diffuses. The oxygen diffused through the barium titanate layer chemically reacts with the silicon on the surface to form a silicon oxide at the interface between the silicon substrate and the single crystal oxide. Crystalline material 57. According to a specific embodiment of the present invention, the step of depositing a single crystal oxide layer is terminated by depositing a second template layer 60, which may be 1 to 10 layers of single molecules Layer of titanium, barium, gill, barium and oxygen, titanium and oxygen, or gill and oxygen. Then, a single crystal semiconductor material layer 64 is deposited by a molecular beam epitaxial growth process to cover the second template layer. The first step in depositing layer 64 is to deposit a layer of arsenic on the template. After the first step, gallium and arsenic are deposited to form a single crystal form of gallium arsenide. According to an aspect of this specific embodiment, after the semiconductor layer 60 is formed, the single crystal form of the region 54 and the oxide layer between the substrate 52 and the acid layer are exposed to a high energy beam annealing. In the process; the osmium salt and oxide layer are formed into an amorphous oxide material 62. Next, another synthetic semiconductor layer 66 is epitaxially grown on the layer 64, and the above-mentioned technique related to the layer 64 is used to form a synthetic semiconductor layer 67. Alternatively, the above annealing process may be performed after the additional synthetic semiconductor layer 66 is generated. However, it is preferred to form the amorphous layer 62 before growing the layer 66, as it provides a substrate that is justified for the growth of the layer 66. The material deposited in layer 66 in region 53 may contain more defects than the material in layer 66 in region 54. Any strain in layers 60, 64 in region 53 is not mitigated through an annealing process. . According to a further specific embodiment of the present invention, the paper size indicated by the dotted line 6 8 -25- This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 526605 V. Description of the invention (a with two semiconductor components The system is (at least partially) formed on the synthetic semiconductor layer 66. The semiconductor component 68 can be formed by conventional processing steps in the fabrication of gallium arsenide or other Group III-ν synthetic semiconductor material devices. The semiconductor component 68 may be Any active or passive component, and preferably a semiconductor laser, an electromagnetic radiation (e.g., light from infrared to far ultraviolet radiation) emitting device, an electromagnetic radiation detector (such as a light detector), A heterojunction bipolar transistor (HBT), a high-frequency MESFET, or other components that take full advantage of the physical properties of synthetic semiconductor materials. Metal conductors indicated by line 70 can be formed; this is beneficial to electrical coupling devices 68 and Device 56 to build an integrated device in this manner. The integrated device includes at least a component formed in a silicon substrate and a single crystal structure. A device formed in a semiconductor material layer. Although the structure 50, which has been described as an example, is a structure formed on a silicon substrate 52, and has a barium (or gill) titanate layer and a gallium arsenide layer 66, but similar devices described elsewhere in this publication: single crystal substrates, oxide layers, and other single crystal synthetic semiconductor layers can be used to make similar devices. ^ As described above, according to a specific embodiment of the present invention The local radon is not exposed to an annealing process, so the material 58 still maintains its single crystal form. The single crystal material 58 can be used to form, for example, a device (such as a device) formed between the substrate 5 2 56) A wave guide with another device. FIG. 10 shows a diagram of a semiconductor structure 72 according to another embodiment of the present invention. The structure 72 includes a single crystal semiconductor substrate 74, such as Single-crystal wafers containing regions 75 and 76. The traditional silicon device processing technology commonly used in the semiconductor industry will be used to form regions 7 5 indicated by dashed lines 7 8 26- This paper standard applies to China® standards ( CNS) A4 specification (210 X 297 mm) 526605 A7 ______B7 V. Description of the invention (24) Electronic components. The method steps similar to the above are used to form a single crystal oxide material 9 6 and an intermediate amorphous silicon oxide material 9 8 to cover On the substrate 74. A template layer 80 and a single crystal semiconductor layer 8 2 are formed next to cover the single crystal oxide layer. Then, the single crystal oxide and the oxide are oxidized. The silicon thin film is exposed to a high-energy beam annealing process to form an amorphous oxide material 84 in the region 76. An additional single crystal form is formed by steps similar to the method steps described above for forming the single crystal oxide material. The oxide layer 86 covers the layer 82, and an additional single crystal semiconductor layer 90 is formed to cover the single ej-shaped oxide layer 86 by a method similar to that used to form the layer 82. The single crystalline oxide layer 86 may be desirably exposed to an additional annealing process to make its material amorphous. However, according to various viewpoints of this specific embodiment, the layer 86 still maintains the form of its single crystal form. According to a specific embodiment of the present invention, at least one of the layers 82 and 90 is formed from a synthetic semiconductor material. The semiconductor device indicated by the dashed line 9 2 will be formed on at least one portion of the semiconductor layer 8 2 by a common name. According to a specific embodiment of the present invention, the semiconductor device 92 may include a field effect transistor. To a certain extent, the gate dielectric of the field effect transistor is formed by a single crystal oxide layer 86. In addition, a single crystal semiconductor layer 90 can be used to build the gate electrode of the field effect transistor. According to a specific embodiment of the present invention, a single crystal semiconductor layer 82 is formed from a family composition, and the semiconductor component 92 is a radio frequency (RF) amplifier that fully utilizes the high mobility physical characteristics of the material of the πΐ-V group component. According to a still further specific embodiment of the present invention, the electrical interconnection indicated by the line 9 4 electrically interconnects the component 78 and the component 92. -27 · This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 526605 A7 B7 V. Description of the invention (25) Obviously, these products have the product of synthetic semiconductors and Group IV semiconductors. The specific embodiments of the body circuit are used to explain the specific embodiments of the present invention, rather than to limit the present invention. There are other combinations of diversity and other specific embodiments of the invention. For example, synthetic semiconductor parts can include light-emitting diodes, photodetectors, diodes, and so on, while Group IV semiconductors can include digital logic, memory arrays, and most parts that can be formed on traditional MOS integrated circuits structure. By using specific embodiments of the present invention, it is now easier to combine devices suitable for operation with synthetic semiconductor materials and other components suitable for operation with Group IV semiconductor materials or easily formed and inexpensive. This reduces equipment, reduces manufacturing costs, and increases yield and reliability. Although not illustrated, in the process of forming only synthetic semiconductor electronic components on a wafer, a single crystal Group IV wafer may be used. As such, the wafer is essentially a "processing" wafer used during the manufacture of a synthetic semiconductor electronic component within a single-crystal composite f-conductor layer that covers the wafer. Thus, electronic components can be formed in a III-V or II-VI semiconductor material on a wafer having a diameter of at least about 200 mm and possibly at least about 300 mm. By using this type of substrate, relatively low-cost “handling” wafers overcome the fragile nature of synthetic semiconductor wafers by placing such wafers on a relatively more durable and easily manufactured base material. Therefore, an integrated circuit can be formed so that all electrical components can be formed in a synthetic semiconductor material, especially all active electronic devices, even if the substrate itself can include a Group IV semiconductor material. Compared to relatively small and more fragile, traditional synthetic semiconductor wafers, the manufacturing cost of synthetic semiconductor devices can be reduced because large substrates can be processed more economically and easily. -28- This paper size applies to Chinese National Standard (CNS) A4 (210X297 mm)

線 526605 A7 一 —___ B7_, _ 五、發明説明(26 ) 於前面的規格説明中,已參考特定具體實施例來説明本 發明。然而,熟知技藝人士應明白本發明的各種修改並且 容易修改,而不會脱離如下文中申請專利範圍所提供之本 發明的範疇。因此,規格説明暨附圖應視爲解説,而不應 視爲限制,並且所有此類的修改皆屬本發明範_内。 上述已説明關於特定具體實施例的優勢、其他優點及問 題解決方案。但是,可導致任何優勢、優點及解決方案發 生或更顯著的優勢、優點、問題解決方案及任何元件,不 應被理解爲任何或所有申請專利範圍的關鍵、必要項或基 本功能或元件。本文中所使用的術語「包括」、「包含」 或其任何其他的變化,都是用來涵蓋非專有内含項,使得 包括元件清單的程序、方法、物品或裝置不僅包括這些元 件,而且還包括未明確列出,或此類製程、方法、物品或 裝置固有的其他元件。 -29- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Line 526605 A7 I —___ B7_, _ V. Description of the Invention (26) In the foregoing specification, the invention has been described with reference to specific embodiments. However, those skilled in the art should understand the various modifications of the present invention and can easily modify them without departing from the scope of the present invention provided by the scope of patent application below. Therefore, the specifications and drawings should be regarded as illustrations, not as limitations, and all such modifications are within the scope of the present invention. The foregoing has described advantages, particular advantages, and problem solutions for particular embodiments. However, any advantage, advantage, or solution that results in or more significant advantage, advantage, problem solution, or any element should not be construed as a key, necessary item, or basic function or element of any or all patented scope. The terms "including," "including," or any other variation thereof, are used herein to encompass non-proprietary inclusions, such that a program, method, article, or device that includes a list of components includes not only those components, but also It also includes other elements not explicitly listed, or inherent to such processes, methods, articles, or devices. -29- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

526605 A8 B8 C8 广____D8 六、申請專利範圍 1 * 一種製造一半導體結構之方法,該方法包括下列步驟: •提供一單晶形半導體基材; 晶磊生長一單晶形容納緩衝層,以覆蓋該單晶形半導 體基材; 於該蟲晶生長之步驟中’於該單晶形半導體基材與該 單晶形氧化物層之間形成一非晶形氧化物層;以及 將該單晶形容納緩衝層之一部份曝露於一高能光束退 火程序中,以形成一非晶形緩衝材料。 2. 如申請專利範圍第1項之製造一半導體結構之方法,進 一步包含形成一退火罩層之步驟。 3. 如申請專利範圍第1項之製造一半導體結構之方法,進 一步包含於一邵份的該單晶形容納緩衝層上形成一遮罩 之步驟。 4 ·如申請專利範圍第1項之製造一半導體結構之方法,進 一步包含於該罩層上方形成一單晶形層之步驟。 5.如申請專利範圍第1項之製造一半導體結構之方法,進 一步包括在該單晶形半導體基材上形成一第一模板層之 步驟。 6·如申請專利範圍第1項之製造一半導體結構之方法,進 一步包括至少在一部份的該單晶形半導體基材中形成一 半導體裝置之步驟。 7.如申請專利範圍第丨項之製造一半導體結構之方法,其 中該形成一非晶形氧化物層之步驟,包含將至少一部份 的該單晶形容納緩衝層曝露於一離子光束退火程序中。 -30-526605 A8 B8 C8 Wide ____D8 6. Scope of patent application 1 * A method for manufacturing a semiconductor structure, the method includes the following steps: • providing a single crystal semiconductor substrate; epitaxial growth of a single crystal receiving buffer layer, Covering the single crystal semiconductor substrate; forming an amorphous oxide layer between the single crystal semiconductor substrate and the single crystal oxide layer in the step of growing the worm crystal; and describing the single crystal Part of the nanobuffer layer is exposed to a high-energy beam annealing process to form an amorphous buffer material. 2. The method for manufacturing a semiconductor structure, as described in the first item of the patent application scope, further comprising the step of forming an annealing cap layer. 3. The method for manufacturing a semiconductor structure, as described in the first item of the patent application scope, further comprising the step of forming a mask on the single crystal receiving buffer layer. 4. The method for manufacturing a semiconductor structure according to item 1 of the patent application scope, further comprising the step of forming a single crystal layer over the cap layer. 5. The method for manufacturing a semiconductor structure according to item 1 of the patent application scope, further comprising the step of forming a first template layer on the single crystal semiconductor substrate. 6. The method for manufacturing a semiconductor structure according to item 1 of the patent application scope, further comprising the step of forming a semiconductor device in at least a part of the single crystal semiconductor substrate. 7. The method for manufacturing a semiconductor structure according to the scope of the patent application, wherein the step of forming an amorphous oxide layer includes exposing at least a part of the single crystal form buffer layer to an ion beam annealing process in. -30- 526605 A8 B8 C8 請專利範圍 — ^--— 8. 如申請專利範圍第丨項之製造—半導體結構之方法,並 .中該形成一非晶形氧化物層之步聲,包含將至少 ,、 的該單晶形容納緩衝層曝露於—電子光束退火^序^伤 9. 如申請專利範圍第丨項之製造_半導體結構之^法,其 中孩形成一非晶形氧化物層之步驟,包含將至少一部j分 的該單晶形容納緩衝層曝露於—χ射線光束退火程序^ 10· —種製造一半導體結構之方法,此半導體結構具有—單 晶形層形成於一基材上,該方法包括下列步驟: 提供一單晶形半導體基材; 晶系生長一單晶形容納緩衝層,以覆蓋該單晶形半導 體基材; 於該蟲晶生長之步驟中,於該單晶形半導體基材與該 單晶形氧化物層之間同時形成一非晶形氧化物層; 於該單晶形容納緩衝層上生成一罩層;以及 將至少一部份的該單晶形容納緩衝層以一高能光束退 火程序退火,以形成一非晶形缓衝材4。 11.如申請專利範圍第10項之方法,進一步包括於該罩層上 形成一遮罩。 1 2 .如申請專利範圍第i 〇項之製造一半導體結構之方法,其 中該退火步驟包含將至少一部份的該單晶形容納緩衝層 曝露於一離子光束退火程序中。 1 3 .如申請專利範圍第1 0項之製造一半導體結構之方法,其 中該退火步驟包含將至少一部份的該單晶形容納緩衝層 曝露於一電子光束退火程序中。 , -31 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 14. 申請專利範圍 如申請專利範圍第10項之製造一半導體結構之方法,其 .中孩退驟包含將至少一部份的該單晶形容納缓衝層 曝露射線光束退火程序中。 1 5 . 16. 17. 18. C8 D8 一 一半導體裝置的方法,該方法包括以下步驟; ^一單晶形第IV族半導體基材; 晶蟲生長一單晶形容納緩衝層,以覆蓋該單晶形半導 體基材; 於該系晶生長之步驟中,於該單晶形第IV族半導體基 材與該單晶形氧化物層之間形成一非晶形氧化矽層; 於該單晶形容納緩衝層上生成一合成半導體層;以及 將至少一邵份的該單晶形容納緩衝層以一高能光束退 火程序退火’以形成一非晶形緩衝材料。 如申請專利範圍第1 5項之形成一半導體裝置之方法,其 中該退火步驟包含將至少一部份的該單晶形容納緩衝層 曝露於一離子光束退火程序中。 如申請專利範圍第1 5項之形成一半導體裝置之方法,其 中該退火步驟包含將至少一部份的該單晶形容納緩衝層 曝露於一電子光束退火程序中。 · 如申請專利範圍第1 5項之形成一半導體裝置之方法,其 中該退火步驟包含將至少一部份的該單晶形容纳緩衝層 曝露於一X射線光束退火程序中。 -32- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)526605 A8 B8 C8 Patent scope — ^-— 8. If the method of manufacturing a patent application item 丨 method of semiconductor structure, and the step of forming an amorphous oxide layer, including at least ,, The single crystal receiving buffer layer is exposed to-electron beam annealing ^ sequence ^ wound 9. Such as the manufacturing method of the patent application 丨 method of semiconductor structure ^ method, wherein the step of forming an amorphous oxide layer, including at least A portion of the single crystal form containing buffer layer is exposed to a x-ray beam annealing procedure ^ 10 · A method of manufacturing a semiconductor structure having a single crystal layer formed on a substrate, the method The method includes the following steps: providing a single-crystal semiconductor substrate; growing a single-crystal receiving buffer layer in a crystal system to cover the single-crystal semiconductor substrate; and in the step of growing the worm-crystal, the single-crystal semiconductor substrate is grown. Forming an amorphous oxide layer between the material and the single crystal form oxide layer; generating a cover layer on the single crystal form holding buffer layer; and at least a part of the single crystal form holding buffer layer is formed by high Beam annealing procedure annealed to form an amorphous buffer material 4. 11. The method of claim 10, further comprising forming a mask on the mask layer. 1 2. The method of manufacturing a semiconductor structure according to item i 0 of the patent application scope, wherein the annealing step includes exposing at least a portion of the single crystal form containing buffer layer to an ion beam annealing process. 13. The method of manufacturing a semiconductor structure according to item 10 of the patent application, wherein the annealing step includes exposing at least a portion of the single crystal form containing buffer layer to an electron beam annealing process. , -31-This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm). 14. The scope of patent application, such as the method of manufacturing a semiconductor structure under item 10 of the patent scope, includes the following steps. At least a portion of the single crystal form accommodates the buffer layer during an exposure beam annealing process. 1 5. 16. 17. 18. C8 D8-a method of a semiconductor device, the method includes the following steps; ^ a single crystal group IV semiconductor substrate; the crystal worm grows a single crystal receiving buffer layer to cover the A single crystal semiconductor substrate; in the step of growing the series of crystals, forming an amorphous silicon oxide layer between the single crystal group IV semiconductor substrate and the single crystal oxide layer; A synthetic semiconductor layer is formed on the nano-buffer layer; and at least one part of the single-crystal containing buffer layer is annealed by a high-energy beam annealing process to form an amorphous buffer material. For example, the method for forming a semiconductor device according to item 15 of the patent application, wherein the annealing step includes exposing at least a part of the single crystal form buffer layer to an ion beam annealing process. For example, the method for forming a semiconductor device according to item 15 of the patent application, wherein the annealing step includes exposing at least a part of the single crystal form accommodating buffer layer to an electron beam annealing process. · The method for forming a semiconductor device as described in claim 15 of the patent application, wherein the annealing step includes exposing at least a portion of the single crystal form buffer layer to an X-ray beam annealing process. -32- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW90123916A 2000-10-12 2001-09-27 Method of forming an amorphous layer of a semiconductor structure using a high energy beam TW526605B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US68958300A 2000-10-12 2000-10-12

Publications (1)

Publication Number Publication Date
TW526605B true TW526605B (en) 2003-04-01

Family

ID=24769070

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90123916A TW526605B (en) 2000-10-12 2001-09-27 Method of forming an amorphous layer of a semiconductor structure using a high energy beam

Country Status (3)

Country Link
AU (1) AU2001296272A1 (en)
TW (1) TW526605B (en)
WO (1) WO2002031872A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213412A (en) * 1982-06-04 1983-12-12 Hitachi Ltd Semi-conductor device and manufacture thereof
JPS61108187A (en) * 1984-11-01 1986-05-26 Seiko Epson Corp Semiconductor photoelectronic device
FR2650704B1 (en) * 1989-08-01 1994-05-06 Thomson Csf PROCESS FOR THE MANUFACTURE BY EPITAXY OF MONOCRYSTALLINE LAYERS OF MATERIALS WITH DIFFERENT MESH PARAMETERS
US5478653A (en) * 1994-04-04 1995-12-26 Guenzer; Charles S. Bismuth titanate as a template layer for growth of crystallographically oriented silicon

Also Published As

Publication number Publication date
WO2002031872A1 (en) 2002-04-18
AU2001296272A1 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
TW507301B (en) Semiconductor structure including a partially annealed layer and method of forming the same
TW515098B (en) Heterojunction tunneling diodes and process for fabricating the same
TW516231B (en) Apparatus for fabricating semiconductor structures
TWI235491B (en) Integrated circuit
US7211852B2 (en) Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
US5760426A (en) Heteroepitaxial semiconductor device including silicon substrate, GaAs layer and GaN layer #13
TW546686B (en) Mixed-signal semiconductor structure, device including the structure, and methods of forming the device and the structure
TW567525B (en) Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
US20030015704A1 (en) Structure and process for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same including intermediate surface cleaning
TW531786B (en) Semiconductor structures having a compliant substrate
US20020088970A1 (en) Self-assembled quantum structures and method for fabricating same
TW526605B (en) Method of forming an amorphous layer of a semiconductor structure using a high energy beam
US20020003239A1 (en) Semiconductor structure and device including a carbon film and method of forming the same
TW523809B (en) Monolithic optical system and process for fabricating same
TW540124B (en) Structure and method for fabricating semiconductor structures and devices utilizing perovskite stacks
TW507317B (en) Semiconductor structure having high dielectric constant material
TW543143B (en) Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate with an intermetallic layer
US20020000584A1 (en) Semiconductor structure and device including a monocrystalline conducting layer and method for fabricating the same
US20020003238A1 (en) Structure including cubic boron nitride films and method of forming the same
US6693033B2 (en) Method of removing an amorphous oxide from a monocrystalline surface
TW517282B (en) Structure and method for fabricating semiconductor devices
TW506169B (en) Optical structure on compliant substrate and process for fabricating same
TW494476B (en) Hybrid semiconductor structure and device
US20030019423A1 (en) Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant gallium nitride substrate
TW546692B (en) Structure and method for fabricating complementary III-V structures and devices utilizing the formation of a compliant substrate for materials used to form the same