TW515097B - Compound semiconductor hall sensor and process for fabricating same - Google Patents

Compound semiconductor hall sensor and process for fabricating same Download PDF

Info

Publication number
TW515097B
TW515097B TW090120275A TW90120275A TW515097B TW 515097 B TW515097 B TW 515097B TW 090120275 A TW090120275 A TW 090120275A TW 90120275 A TW90120275 A TW 90120275A TW 515097 B TW515097 B TW 515097B
Authority
TW
Taiwan
Prior art keywords
layer
single crystal
oxide
substrate
semiconductor
Prior art date
Application number
TW090120275A
Other languages
Chinese (zh)
Inventor
Lyndee Hilt
Jamal Ramdani
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of TW515097B publication Critical patent/TW515097B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00

Abstract

High quality epitaxial layers of compound semiconductor materials (1113) suitable for use in connection with Hall-effect devices can be grown overlying large silicon wafers (1101) by first growing an accommodating buffer layer (1110) on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (1109) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.

Description

515097 A7 B7 五、發明説明(1 ) 本申請書已經在美國以專利‘申請書序號09 = 642558在 2000年8月18號提出申請。 發明範圍 本發明大致上與半導體結構和裝置及其製造方法相關, 且更特定地與使用合成半導體薄膜,例如銦砷化物(InAs) 和/或鎵砷銻化物(GaAsSb)薄膜增長在單晶矽半導體基材上 之霍耳感測器之製造及使用相關。515097 A7 B7 V. Description of the invention (1) This application has been filed in the United States under the patent ‘Application No. 09 = 642558 on August 18, 2000. Scope of the Invention The present invention is generally related to semiconductor structures and devices and methods of making the same, and more specifically to the use of synthetic semiconductor films, such as indium arsenide (InAs) and / or gallium arsenide (GaAsSb) films, grown on monocrystalline silicon. The manufacture and use of Hall sensors on semiconductor substrates are related.

裝 發明背景Background of the Invention

線 絕大多數之半導體個別裝置和積體電路係由矽所製造, 至少一部份是因爲便宜、南品質之早晶碎基材之可得性。 例如被稱爲合成半導體材料之其他材料具有包括使這些材 料比某些形式之半導體裝置較具優勢之比矽寬之能階差和 /或較高之遷移率或直接能階差之物理屬性。不幸地,合 成半導體材料通常比矽要貴的多且不能如矽之大晶圓之可 得。砷化鎵(GaAs),最容易得到之合成半導體材料,只在 約1 50毫米(mm)直徑之晶圓可得。相反地,矽晶圓可到約 300毫米可得,且在200毫米係爲廣泛地可得。150毫米之 GaAs晶圓比他們之矽對應物貴上許多倍。其他合成半導體 材料之晶圓甚至更不可得且比GaAs要更昂貴。 因爲合成半導體材料之需要特性和因爲以其大塊形式之 現在通常之高成本和低可得性,已經有許多年企圖增長合 成半導體材料之薄膜在異質基材上。爲了達成合成半導體 材料之最佳特性,然而,需要高晶矽品質之單晶矽薄膜。 已經企圖,例如,增長單晶矽合成半導體材料之層在鍺、 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(2 ) 矽及許多絕缘體上。大致上這些企圖都不成功,因爲在寄 主晶體和增長晶體之間之晶格不符導致低晶矽品質之合成 半導體材料之產生薄膜。 假如高品質單晶矽合成半導體材料之大面積薄膜可以以 低成本得到,許多的半導體裝置可以有利地以比製造這樣 之裝置在合成半導體材料之大塊晶圓上或是以這樣材料之 磊晶薄膜在合成半導體材料之大塊晶圓上還低成本之薄膜 製造。此外,假如可以實現高品質單晶矽合成半導體材料 之薄膜在如矽晶圓之大塊晶圓上,可以達成例如,舉例來 説,光電裝置,例如雷射二極體、發光二極體、光二極體 或是異質接合穿燧裝置,其利用矽和合成半導體材料兩者 之最佳性質。 霍耳裝置,例如,霍耳感測器,通常爲使用於偵測磁場 之四極裝置。在典型之霍耳感測器中,半導體層具有用以 在經過半導體層之第一方向中通過電流之兩電極及兩額外 電極用以偵測與在當被偵測之磁場通過半導體層時之電流 橫切之電壓。 當成本最重要時,霍耳感測器通常使用η-形式之矽及 GaAs於較高溫度能力,因爲其較大能階差。此外,inAs、 銦銻化物(InSb)及其他半導體材料獲得普及性因爲其較高 載子遷移率,導致矽霍耳感測器之通常10-20 k赫茲上之較 大敏感性及頻率響應能力。例如,InAs霍耳感測器具有對 溫度不甚依賴之輸出電壓、對於脈衝電壓噪音有好之穩定 性、低補償偏移及低噪音性質於低磁場感測。 -5- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The vast majority of individual semiconductor devices and integrated circuits are made of silicon, at least in part because of the availability of inexpensive, southern-quality pre-crystallized substrates. Other materials, such as synthetic semiconductor materials, have physical properties including energy steps that are wider than silicon and / or higher mobility or direct energy steps that make these materials more advantageous than some forms of semiconductor devices. Unfortunately, synthetic semiconductor materials are usually more expensive than silicon and are not available as large wafers as silicon. Gallium arsenide (GaAs), the most readily available synthetic semiconductor material, is only available on wafers with a diameter of about 150 millimeters (mm). In contrast, silicon wafers are available up to about 300 mm, and are widely available at 200 mm. 150mm GaAs wafers are many times more expensive than their silicon counterparts. Wafers of other synthetic semiconductor materials are even less available and more expensive than GaAs. Because of the required properties of synthetic semiconductor materials and because of their generally high cost and low availability now in bulk, there have been many years of attempts to grow thin films of synthetic semiconductor materials on heterogeneous substrates. In order to achieve the best characteristics of synthetic semiconductor materials, however, single crystal silicon films with high crystal quality are required. Attempts have been made, for example, to increase the layer of monocrystalline silicon synthetic semiconductor materials in germanium, -4- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 515097 A7 B7 V. Description of the invention (2) Silicon And many insulators. In general, these attempts were unsuccessful because the lattice mismatch between the host crystal and the growing crystal resulted in a thin film of synthetic semiconductor material of low crystalline silicon quality. If large-area thin films of high-quality monocrystalline silicon synthetic semiconductor materials can be obtained at low cost, many semiconductor devices can be advantageously fabricated on large wafers of synthetic semiconductor materials or epitaxially with such materials. Thin films are also manufactured on large wafers of synthetic semiconductor materials at low cost. In addition, if a thin film of high-quality single crystal silicon synthetic semiconductor material can be realized on a large wafer such as a silicon wafer, for example, an optoelectronic device such as a laser diode, a light emitting diode, Photodiodes or heterojunction piercing devices utilize the best properties of both silicon and synthetic semiconductor materials. Hall devices, such as Hall sensors, are usually four-pole devices used to detect magnetic fields. In a typical Hall sensor, the semiconductor layer has two electrodes for passing current in a first direction through the semiconductor layer and two additional electrodes for detecting and detecting when a detected magnetic field passes through the semiconductor layer. The voltage at which the current crosses. When cost is most important, Hall sensors usually use η-form silicon and GaAs at higher temperature capabilities because of their larger energy steps. In addition, inAs, indium antimonide (InSb), and other semiconductor materials have gained popularity because of their higher carrier mobility, resulting in the greater sensitivity and frequency response capabilities of silicon Hall sensors typically at 10-20 kHz . For example, the InAs Hall sensor has an output voltage that is not very dependent on temperature, has good stability against pulse voltage noise, low offset compensation, and low noise properties for low magnetic field sensing. -5- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 玎Pretend

線 515097 A7 B7 五、發明説明(3 ) 因爲發展中_之電子工業,對於霍耳感測器之需求快速地 成長。隨著需求增加,需要對於高度敏感性,在廣泛之溫 度範圍下有大之電子遷移率之材料。霍耳感測器材料與半 導體基材之相容性係爲重要的,因爲霍耳感測器通常使用 在包括其他半導體基材之整合裝置中。InAs係爲用於使用 在霍耳感測器中之良好材料,因爲其與其他III-V合成半導 體材料比較起來之高電子遷移率。過去使用InAs之一困難 點係爲,然而,缺乏其晶格與InAs相符以致能高品質InAs 薄膜之增長之絕緣基材。例如,藉由分子光束磊晶(MBE) 增長之現有InAs薄膜在GaAs上呈現7%之晶格不符,其產 生許多不適之差排在InAs/GaAs介面,因此降低InAs薄膜 之電子性質,例如電子遷移率。 因此,存在一半島體結構之需要,其提供高品質單晶矽 合成半導體薄膜,例如InAs,在另一單晶石夕材料,例如 GaAs或矽之半導體基材及用以製造這樣結構之製程。 圖式簡述 本發明藉由範例之方式説明但不限制在隨附之圖式,其 中相似參考編號指示相似元件,且其中: 圖1 -3以剖面,概要地説明根據本發明之許多具體實施例 之裝置結構; 圖4以圖說明在最大可獲得薄膜厚度與在寄生晶體與增 長之晶體結構覆蓋層之間之晶格不符之間之關係; 圖5説明包括單晶矽容納緩衝區層之結構之高解析度傳 輸電子微圖; -6 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(4 ) 圖6説明包括單晶石夕容納緩衝區層之結構之X射線繞射光 譜; 圖7説明包括非晶石夕氧化物層之結構之高解析度傳輸電 子微圖; 圖8説明包括非晶碎氧化物層之結構之X射線繞射光譜; 圖9以剖面,概要地説明根據本發明之一具體實施例之 單一積體電路;以及 裝 圖10 -11以剖面,概要地説明根據本發明之尚一例示之具 體實施例之裝置結構。 熟悉此技藝之人士將會了解在圖中之元件爲了簡單性和 清楚性而説明,所以不需要依比例緣畫。例如,在圖中某 些元件之尺寸可能相對於其他元件誇大以幫助增進對本發 明之具體實施例之了解。 圖式之詳細説明Line 515097 A7 B7 V. Description of the invention (3) Because of the developing electronics industry, the demand for Hall sensors is growing rapidly. As demand increases, there is a need for materials that are highly sensitive to large electron mobility over a wide temperature range. The compatibility of Hall sensor materials with semiconductor substrates is important because Hall sensors are often used in integrated devices that include other semiconductor substrates. InAs is a good material for use in Hall sensors because of its high electron mobility compared to other III-V synthetic semiconductor materials. One of the difficulties in using InAs in the past has been, however, the lack of an insulating substrate whose lattice matches that of InAs to enable the growth of high-quality InAs films. For example, the existing InAs film grown by molecular beam epitaxy (MBE) exhibits a 7% lattice mismatch on GaAs, which results in many uncomfortable differences in the InAs / GaAs interface, thus reducing the electronic properties of InAs films, such as Mobility. Therefore, there is a need for a peninsula structure that provides high-quality monocrystalline silicon synthetic semiconductor films, such as InAs, and another monocrystalline material, such as a semiconductor substrate of GaAs or silicon, and a process for manufacturing such a structure. Brief Description of the Drawings The present invention is illustrated by way of example but not limited to the accompanying drawings, in which similar reference numbers indicate similar elements, and in which: Figures 1-3 schematically illustrate many specific implementations according to the present invention in cross section. Example device structure; Figure 4 illustrates the relationship between the maximum achievable film thickness and the lattice mismatch between the parasitic crystal and the growing crystal structure cover; Figure 5 illustrates the inclusion of a single crystal silicon containing buffer layer Structure of high-resolution transmission electron micrograph; -6-This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 515097 A7 B7 V. Description of the invention (4) Figure 6 illustrates the inclusion of single crystal X-ray diffraction spectrum of the structure containing the buffer layer; Figure 7 illustrates a high-resolution transmission electron micrograph of a structure including an amorphous oxide layer; Figure 8 illustrates an X-ray structure including an amorphous broken oxide layer Diffraction spectrum; FIG. 9 schematically illustrates a single integrated circuit according to a specific embodiment of the present invention in a cross-section; and FIGS. 10-11 illustrate the specific embodiment according to a still further example of the present invention in a cross-section. Examples of the device configuration application. Those skilled in the art will understand that the components in the figure are illustrated for simplicity and clarity, so there is no need to draw to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of specific embodiments of the invention. Detailed description of the schema

線 本發明提供其減少在InAa和底下絕緣基材之間之晶格不 符到少於約2%之樣板且提供一種增長InAs在半導體基材 或層上之方法,藉此允許霍耳感測器與互補金氧化矽積體 電路之單一整合。 圖1以剖面,概要地説明根據本發明之具體實施例之半 導體基材20之一部份。半導體基材20包括單晶矽基材22、 包括單晶矽材料之容納緩衝區層24、及單晶矽合成半導體 材料之層26。在此上下文中,詞“單晶矽”具有通常使用在 半導體業中之意義。該詞係指單晶體或是基本上是單晶體 之材料且包括這些具有通常在矽或是鍺或是矽和鍺混合物 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(5 ) 之基材中發現之相對小數目之瑕疵,如差排等等之材料, 及通常在半導體業經常發現之這樣材料之磊晶層。 根據本發明之一具體實施例,基材20也包括位在基材22 和容納緩衝區層24之間之非晶矽中間層28。基材20也可能 包括在容納緩衝區層和合成半導體層26之間之樣板層30。 如同將會在下面解釋地更完全,樣板層幫助起始合成半導 體層在容納緩衝區層上之增長。非晶矽中間層幫助釋放在 容納緩衝區層之壓力且藉此,幫助高晶矽品質之容納緩衝 區層之增長。 根據本發明之具體實施例,基材22係爲最好是大直徑之 單晶矽半導體晶圓。該晶圓可以是從週期表之IV群來之材 料且最好係爲從IVA群中來之材料。IV群半導體材料之例 子包括矽、鍺、混合之矽及鍺、混合之矽及碳、混合之 矽、鍺和碳等等。偏好地,基材22係爲包含矽或是鍺之晶 圓且最好係爲使用在半導體業中使用之高品質單晶矽矽晶 圓。容納緩衝區層24較佳爲單晶矽氧化物或是氮材料磊晶 增長在底下之基材上。根據本發明之一具體實施例,在層 24增長期間,藉由基材22之氧化,增長非晶矽中間層28在 基材22上,在介於基材22和該增長之容納緩衝區層之間之 介面。非晶矽中間層作爲釋放否則可能出現在單晶矽容納 緩衝區層之壓力,其源起於基材及緩衝區層之晶格常數之 差異。當在此使用時,晶格常數係指在表面平面中所測量 之單元之原子間之距離。假如這樣壓力並沒有被非晶矽中 間層所釋放,該壓力可能導致在容納緩衝區層之晶矽結構 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)The present invention provides a template that reduces the lattice misalignment between InAa and the underlying insulating substrate to less than about 2% and provides a method for growing InAs on a semiconductor substrate or layer, thereby allowing Hall sensors to be used. Single integration with complementary gold silicon oxide integrated circuits. Fig. 1 schematically illustrates a part of a semiconductor substrate 20 according to a specific embodiment of the present invention in a section. The semiconductor substrate 20 includes a single crystal silicon substrate 22, a buffer region 24 including a single crystal silicon material, and a layer 26 of a single crystal silicon synthetic semiconductor material. In this context, the word "single crystal silicon" has a meaning commonly used in the semiconductor industry. This term refers to single crystals or materials that are basically single crystals and includes those materials that are usually in silicon or germanium or a mixture of silicon and germanium. This paper applies Chinese National Standard (CNS) A4 specifications (210 X 297 mm) 515097 A7 B7 V. The relatively small number of defects found in the base material of the invention description (5), such as the materials of the differential row, etc., and the epitaxial layer of such materials often found in the semiconductor industry. According to a specific embodiment of the present invention, the substrate 20 also includes an amorphous silicon intermediate layer 28 located between the substrate 22 and the accommodating buffer layer 24. The substrate 20 may also include a template layer 30 between the containment buffer layer and the synthetic semiconductor layer 26. As will be explained more fully below, the template layer helps initiate the growth of the synthetic semiconductor layer on the containment buffer layer. The amorphous silicon intermediate layer helps to release the pressure in the accommodating buffer layer and thereby helps the growth of the crystalline buffer layer of high crystalline silicon quality. According to a specific embodiment of the present invention, the substrate 22 is a single crystal silicon semiconductor wafer, preferably a large diameter. The wafer may be a material from the IV group of the periodic table and is preferably a material from the IVA group. Examples of Group IV semiconductor materials include silicon, germanium, mixed silicon and germanium, mixed silicon and carbon, mixed silicon, germanium and carbon, and the like. Preferably, the substrate 22 is a wafer containing silicon or germanium, and is preferably a high-quality single crystal silicon wafer used in the semiconductor industry. The containing buffer layer 24 is preferably a single crystal silicon oxide or a nitrogen material epitaxially grown on the underlying substrate. According to a specific embodiment of the present invention, during the growth of the layer 24, the amorphous silicon intermediate layer 28 is grown on the substrate 22 by the oxidation of the substrate 22, and between the substrate 22 and the growing buffer zone layer. Interface. The release of the intermediate layer of amorphous silicon that might otherwise occur in the single-crystal silicon containing buffer layer is due to the difference in the lattice constants of the substrate and buffer layer. As used herein, the lattice constant refers to the distance between atoms of a unit as measured in the surface plane. If this pressure is not released by the amorphous silicon interlayer, the pressure may cause the crystalline silicon structure in the buffer layer to be accommodated. -8- This paper size applies to China National Standard (CNS) A4 (210X 297 mm)

裝 玎 t 515097 A7 B7 五、發明説明(6 ) 中之瑕戚。在容納緩衝區層之晶石夕結構中之瑕症,接著, 可能使得達成在單晶矽合成半導體層26中之高品質晶矽結 構係爲困難的。 容納緩衝區層24較佳爲選擇其與底下基材和與覆蓋之合 成半導體材料之晶矽相容性之單晶矽氧化物或是氮材料。 例如,該材料可能係爲具有晶格結構基本上與基材和/或 相繼地應用之半導體材料相符之氧化物或氮化物。適合於 容納緩衝區層之材料包括金屬氧化物,例如驗土元素鈇酸 鹽、鹼土元素錘酸鹽、鹼土元素铪酸鹽、鹼土元素鈕酸 鹽、鹼土元素釕酸鹽、鹼土元素鈮酸鹽、鹼土元素釩酸 鹽、鈥鈣礦氧化物例如驗土元素以錫爲基礎之鈥#5礦、鑭 铭酸鹽、鑭銳氧化物和亂氧化物。此外,許多氮氧化物, 例如鎵氮化物、鋁氮化物及硼氮化物,也可使用於容納緩 衝區層。雖然鳃釕酸鹽係爲導體,但大多數這些材料係爲 絕緣體。通常,這些材料係爲金屬氧化物或是金屬氮化 物,且更特定地,這些金屬氧化物或氮化物通常包括至少 兩不同金屬元素。在某些特定應用中,該金屬氧化物或是 氮化物可能包括三或是更多不同之金屬元素。 非晶碎介面層28較佳爲藉由基材22表面之氧化形成之氧 化物且最好由矽氧化物所組成。層28之厚度足夠釋放造成 基材22和容納緩衝區層24之晶格常數間之不符之壓力。通 常,層28具有在接近0.5-5奈米範圍中之厚度。 當需要特別半導體基材時,可以從任何IIIA和VA群元素 (III-V半導體合成物)、混合之m-γ合成物、Π(Α或B)和 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 515097 A.7 B7 五、發明説明(7 ) VIA群元素(II-VI半導體合成物)及混合之π-νΐ合成物中選 擇層26之合成半導體材料。範例包括嫁砰化物(GaAs)、嫁 銦砷化物(GalnAs)、鎵鋁砷化物(GaAlAa)、銦嶙化物 (InP)、鎘硫化物(CdS)、鎘汞碲化物(CdHgTe)、鋅硒化物 (ZnSe)、鋅硫硒化物(ZnSSe)等等。適合之樣板材料化學地 黏合至容納緩衝區層24之表面在選擇之地方,且提供地點 用以相繼之合成半導體層26之磊晶增長之成核。樣板30適 合之材料在下面討論。 圖2以剖面,説明根據本發明之一進一步具體實施例之 半導體結構40之一部份。結構40相似於先前描述之半導體 結構2 0,除了額外缓衝區層3 2位於容納緩衝區層2 4和單晶 矽合成半導體材料26之層之間。特定地,額外緩衝區層係 位於合成半導體材料之樣板層3 0和覆蓋層之間。當容納緩 衝區層之晶格常數不能合適地符合覆蓋之單晶矽合成半導 體材料層時’由半導體或是合成半導體材料形成之額外緩 衝區層作爲提供晶格補償。 圖3以剖面,概要地説明根據本發明之另一例示具體實 施例之半導體結構34之一部份。結構34相似於結構20,除 了結構34包括非晶矽層36,而不是容納緩衝區層24和非晶 矽介面層28和額外半導體層38。 如同在下面解釋地更詳細,非晶矽層3 6可以由首先以相 似於上述之方式,形成容納緩衝區層和非晶矽介面層而形 成。單晶秒半導體層38之後(藉由系晶增長)形成以覆蓋該 單晶碎容納緩衝區層。該容納緩衝區層之後暴露至回火製 -10- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(8 ) 程以轉換該單晶矽容納緩衝區層至非晶矽層。以此方式♦ 成之非晶矽層36包括從容納緩衝區和介面層兩者來i材 料’其中該非晶碎層可能或不會汞齊化。因此,声%了 乂 包含一或是二非晶矽層。在基材22和半導體層38之間之非 晶石夕層36之形成(相繼於層38之形成)釋放在層22和%間之 壓力且提供眞的相容基材於相繼製程一例如,合成半事㈣ 層26之形成。 一起與圖1和2之先前描述之製程係適合用於增長單晶梦 合成半導體層在單晶秒基材上。然而,與圖3一起描述之 包括轉換單晶矽容納緩衝區層至非晶矽氧化層之製程,較 佳用於增長單晶矽合成半導體層,因爲其允許任何在層% 之壓力被釋放。 ㈢ 半導體層38可以包括在本申請書中描述之與合成半導體 材料層26或是額外緩衝區層32相關之任何材料。例如,層 3 8可以包括單晶矽…群或是單晶矽合成半導體材料。 根據本發明之一具體實施例,半導體層38作爲在層36形 成期間之回火覆蓋且作爲於隨後半導體層26形成之樣板。 因此’層38最好足夠厚以提供合適之樣板於層26之增長 (至少一單層)和足夠薄以允許層38形成基本上沒有瑕疵之 單晶碎半導體合成物。 根據本發明之另一具體實施例,半導體層38包括其足夠 厚以形成在層38内之裝置之合成半導體材料(例如,在上 討論關於合成半導體層26時之材料)。在該情況下,根據 本發月之半導體結構並不包括合成半導體層26。換句話 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x 297公釐) 515097 A7 B7 五、發明説明(9 ) 説,根據該具體實施例之半導體結構僅包括一合成半導體 層配置在非晶矽氧化層36之上。 下面非限制之説明範例説明根據本發明之許多選擇之具 體實施例之有用於結構20、40和34中之許多材料結合。這 些範例僅爲説明性且並不指本發明限制於這些説明性之範 例0 範例1 根據本發明之一具體實施例,單晶矽基材22係爲在(100) 方向之矽基材。矽基材可以是,例如,通常用於製造互補 金氧半導體(CMOS)積體電路中之具有約200-3 00奈米直徑 之矽基材。根據本發明之此具體實施例,容納緩衝區層24 係爲3ι:ζΒα1-ζΊΠ03,其中z範圍從0至1,之單晶矽層,而非 晶碎中間層係爲碎氧化物層(SiOx)形成在碎基材和容納緩 衝區層之間之介面。選擇Z之値以獲得緊密地符合相繼形 成之層26之相對應晶格常數之一或更多晶格常數。該容納 緩衝區層可以具有約2至約100奈米(nm)之厚度且較佳具有 約10奈米之厚度。通常,需要容納緩衝區層厚度足夠厚以 將合成半導體層與基材隔離以獲得需要之電氣和光學性 質。比100奈米後之層通常提供很少之額外好處且同時不 需要地增加成本;然而,假如需要的話,可以製造較厚之 層。矽氧化物之非晶矽中間層可以具有約0.5-5奈米厚度且 最好是約1.5-2.5奈米之厚度。 根據本發明之該具體實施例,合成半導體材料層26係爲 具有約1奈米至約100微米厚度之鎵砷化物(GaAs)或是鋁鎵 12 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(1〇 ) 砷化物(AlGaAs)之層且最好約0.5微米至10微米之厚度。爲 了方便鎵坤化物或是鋁鎵砷化物之磊晶增長在單晶矽氧化 物上,藉由覆蓋矽氧化物層形成樣板層。該樣板層最好爲 欽-坤、鐵-氧-碎、魏-嫁-氧或總-|g-氧之1-10之單層。藉 由較佳範例之方法,鈦-砷或是鳃-鎵-氧之1 -2單層已經顯 示成功地增長鎵珅化物層。 範例2 根據本發明之尚一具體實施例,單晶矽基材22係爲如上 所述之碎基材。容納緩衝區層係爲立方晶系或立方晶系相 位之锶或鋇結酸鹽或是铪酸鹽之單晶氧化物,其具有矽氧 化物之非晶矽中間層形成在矽基材和容納缓衝區層間之介 面。該容納緩衝區層具有約2-100奈米之厚度,且最好具 有至少5奈米之厚度以確保合適之晶矽和表面品質且其由 單晶矽 SrZr03、BaZr03、SrHf03、BaSn03 或 BaHF03 形 成。例如,BaZr03之單晶矽氧化物層可以在約700°C之溫 度增長。產生之晶矽氧化物之晶格結構呈現相對於基材矽 晶格結構之4 5度旋轉。 由這些锆酸鹽或是铪酸鹽材料形成之容納緩衝區層係適 合於合成半導體材料在銦麟化物(InP)系統中之增長。合成 半導體材料可以是,例如,銦辨化物(InP)、銦嫁砰化物 (InGaAs)、鋁銦砷化物(AllnAs)或是鋁鎵銦砷磷化物 (AlGalnAsP),其具有1.0奈米至1〇微米之厚度。此結構之 適合樣板係爲錘-砷(Zr-As)、錘-磷(Zr-P)、铪-砷(Hf-As)、 給-嶙(Hf-P)、鳃·氧-砷(Sr-0-As)、鳃-氧-蹲(Sr-0-Ρ)、鋇- -13- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Installation t 515097 A7 B7 V. Defects in the description of the invention (6). Defects in the spar structure that accommodates the buffer layer may, in turn, make it difficult to achieve a high-quality crystalline silicon structure system in the single crystal silicon synthetic semiconductor layer 26. The accommodating buffer layer 24 is preferably a single-crystal silicon oxide or a nitrogen material that is compatible with the underlying substrate and the crystalline silicon of the synthetic semiconductor material covered. For example, the material may be an oxide or nitride having a lattice structure that is substantially consistent with the substrate and / or the semiconductor material used successively. Materials suitable for containing the buffer layer include metal oxides, such as soil test element osmium salt, alkaline earth element hammer acid salt, alkaline earth element osmium salt, alkaline earth element thionate, alkaline earth element ruthenate, alkaline earth element niobate , Alkaline earth element vanadates, calcium mineral oxides such as soil-based element tin-based ore, lanthanate, lanthanum oxide, and chaotic oxides. In addition, many oxynitrides, such as gallium nitride, aluminum nitride, and boron nitride, can also be used to accommodate the buffer layer. Although gill ruthenates are conductors, most of these materials are insulators. Generally, these materials are metal oxides or metal nitrides, and more specifically, these metal oxides or nitrides usually include at least two different metal elements. In some specific applications, the metal oxide or nitride may include three or more different metal elements. The amorphous broken interface layer 28 is preferably an oxide formed by the oxidation of the surface of the substrate 22, and is preferably composed of silicon oxide. The thickness of the layer 28 is sufficient to release the pressure that causes the lattice constants between the substrate 22 and the buffer zone layer 24 to be inconsistent. Generally, layer 28 has a thickness in the range of approximately 0.5-5 nanometers. When special semiconductor substrates are needed, any of the IIIA and VA group elements (III-V semiconductor composites), mixed m-γ composites, Π (Α or B), and this paper size are applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 515097 A.7 B7 V. Description of the invention (7) VIA group element (II-VI semiconductor composition) and mixed π-νΐ composition selected layer 26 of synthetic semiconductor material. Examples include GaAs, GalnAs, GaAlAa, InP, CdS, CdHgTe, Zinc Selenide (ZnSe), zinc sulfur selenide (ZnSSe), and so on. A suitable template material is chemically bonded to the surface of the containing buffer layer 24 at a selected location, and a location is provided for nucleation of the epitaxial growth of the successive synthetic semiconductor layer 26. Suitable materials for the template 30 are discussed below. FIG. 2 illustrates, in cross section, a portion of a semiconductor structure 40 according to a further embodiment of the present invention. The structure 40 is similar to the semiconductor structure 20 previously described, except that an additional buffer layer 32 is located between the layer containing the buffer layer 24 and the layer of the single crystal silicon composite semiconductor material 26. Specifically, the additional buffer layer is located between the template layer 30 and the cover layer of the synthetic semiconductor material. When the lattice constant of the buffer region layer does not properly fit the covered single crystal silicon synthetic semiconductor material layer ', an additional buffer region layer formed of a semiconductor or a synthetic semiconductor material is used to provide lattice compensation. Fig. 3 schematically illustrates a part of a semiconductor structure 34 according to another exemplary embodiment of the present invention in a cross section. Structure 34 is similar to structure 20, except that structure 34 includes an amorphous silicon layer 36 instead of containing the buffer layer 24, the amorphous silicon interface layer 28, and the additional semiconductor layer 38. As explained in more detail below, the amorphous silicon layer 36 may be formed by first forming a receiving buffer layer and an amorphous silicon interface layer in a manner similar to that described above. The single crystal second semiconductor layer 38 is then formed (by the growth of the system crystal) to cover the single crystal fragment holding buffer layer. The storage buffer layer is then exposed to the tempering system. -10- This paper size applies Chinese National Standard (CNS) A4 specifications (210 X 297 mm) 515097 A7 B7. 5. Description of the invention (8) process to convert the single crystal silicon Hold the buffer layer to the amorphous silicon layer. The amorphous silicon layer 36 formed in this manner includes materials from both the containment buffer and the interface layer, where the amorphous shredded layer may or may not be amalgamated. Therefore, the sound level is low. 乂 contains one or two amorphous silicon layers. The formation of the amorphous stone layer 36 (subsequent to the formation of layer 38) between the substrate 22 and the semiconductor layer 38 releases the pressure between the layers 22 and% and provides a compatible substrate in a sequential process. For example, Formation of a synthetic half-effect layer 26. Together with the previously described processes of Figures 1 and 2, the process is suitable for growing single crystal dreams. A synthetic semiconductor layer is on a single crystal second substrate. However, the process described in conjunction with Figure 3, including the conversion of the single crystal silicon containing buffer layer to the amorphous silicon oxide layer, is better for growing single crystal silicon synthetic semiconductor layers because it allows any pressure in the layer to be released. ㈢ The semiconductor layer 38 may include any material described in this application in relation to the synthetic semiconductor material layer 26 or the additional buffer layer 32. For example, the layer 38 may include a group of single crystal silicon ... or a single crystal silicon composite semiconductor material. According to a specific embodiment of the present invention, the semiconductor layer 38 serves as a tempered cover during the formation of the layer 36 and serves as a template for the subsequent formation of the semiconductor layer 26. Therefore, the 'layer 38 is preferably thick enough to provide a suitable template for the growth of the layer 26 (at least a single layer) and thin enough to allow the layer 38 to form a single crystal shredded semiconductor composition that is substantially free of defects. According to another specific embodiment of the present invention, the semiconductor layer 38 includes a synthetic semiconductor material that is thick enough to form a device within the layer 38 (e.g., the materials discussed above in relation to the synthetic semiconductor layer 26). In this case, the semiconductor structure according to the present month does not include the synthetic semiconductor layer 26. In other words -11-This paper size applies the Chinese National Standard (CNS) A4 specification (21 × 297 mm) 515097 A7 B7 V. Description of the invention (9) Said that the semiconductor structure according to this specific embodiment includes only one synthesis The semiconductor layer is disposed on the amorphous silicon oxide layer 36. The following non-limiting illustrative examples illustrate a number of specific embodiments in accordance with the present invention having many material combinations for use in structures 20, 40, and 34. These examples are merely illustrative and do not mean that the present invention is limited to these illustrative examples. Example 1 According to a specific embodiment of the present invention, the single crystal silicon substrate 22 is a silicon substrate in the (100) direction. The silicon substrate may be, for example, a silicon substrate having a diameter of about 200 to 3 00 nanometers which is commonly used in manufacturing complementary metal-oxide-semiconductor (CMOS) integrated circuits. According to this specific embodiment of the present invention, the containing buffer layer 24 is a single-layered silicon layer with a thickness of 3m: ζΒα1-ζΊΠ03, and the z-range is a fragmented oxide layer (SiOx ) Forming an interface between the broken substrate and the buffer layer. The 値 of Z is selected to obtain one or more lattice constants that closely correspond to the corresponding lattice constants of successively formed layers 26. The buffer layer may have a thickness of about 2 to about 100 nanometers (nm) and preferably a thickness of about 10 nanometers. Generally, the buffer layer needs to be thick enough to isolate the synthetic semiconductor layer from the substrate to obtain the required electrical and optical properties. Layers below 100 nanometers usually provide very little additional benefit and at the same time increase costs unnecessarily; however, thicker layers can be made if needed. The amorphous silicon interlayer of silicon oxide may have a thickness of about 0.5-5 nanometers and preferably a thickness of about 1.5-2.5 nanometers. According to the specific embodiment of the present invention, the synthetic semiconductor material layer 26 is made of gallium arsenide (GaAs) or aluminum gallium with a thickness of about 1 nanometer to about 100 micrometers. The paper size is applicable to the Chinese National Standard (CNS) A4 specification. (210 X 297 mm) 515097 A7 B7 V. Description of the invention (10) A layer of arsenide (AlGaAs) and preferably a thickness of about 0.5 microns to 10 microns. In order to facilitate the epitaxial growth of gallium oxide or aluminum gallium arsenide on single crystal silicon oxide, a template layer is formed by covering the silicon oxide layer. The sample layer is preferably a single layer of Qin-Kun, iron-oxygen-broken, Wei-married-oxygen or 1-10 of total- | g-oxygen. By way of a better example, titanium-arsenic or gill-gallium-oxygen 1-2 monolayers have been shown to successfully grow gallium halide layers. Example 2 According to a specific embodiment of the present invention, the single crystal silicon substrate 22 is a crushed substrate as described above. The accommodating buffer layer system is a single crystal oxide of strontium or barium sulphate or osmium salt in cubic or cubic phase, and an amorphous silicon intermediate layer having silicon oxide is formed on the silicon substrate and contains Interface between buffer layers. The buffer zone layer has a thickness of about 2-100 nanometers, and preferably has a thickness of at least 5 nanometers to ensure suitable crystalline silicon and surface quality and is formed of single crystal silicon SrZr03, BaZr03, SrHf03, BaSn03 or BaHF03 . For example, a single crystal silicon oxide layer of BaZr03 can grow at a temperature of about 700 ° C. The lattice structure of the resulting crystalline silicon oxide exhibits a 45-degree rotation relative to the substrate silicon lattice structure. The containment buffer layer formed from these zirconate or osmium salt materials is suitable for the growth of synthetic semiconductor materials in indium phosphonium (InP) systems. The synthetic semiconductor material may be, for example, indium discrimination (InP), indium dopant (InGaAs), aluminum indium arsenide (AllnAs), or aluminum gallium indium arsenide phosphide (AlGalnAsP), which has a thickness of 1.0 nanometer to 10%. Thickness in microns. Suitable samples for this structure are hammer-arsenic (Zr-As), hammer-phosphorus (Zr-P), thorium-arsenic (Hf-As), donor-thorium (Hf-P), gill-oxygen-arsenic (Sr -0-As), gill-oxygen-squat (Sr-0-P), barium--13- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

515097 A7515097 A7

__ B7 T發明説明(11 ) :~" 乳=申(Ba-0-As)、銦-總_氧(In_Sr-〇)或是鋇_氧_鱗(np) 且最好爲這些材料其中之一之卜2單層。藉由用於鋇錘酸 鹽容納緩衝區層之範例之方法,該表面以锆之^單層結 束,隨後沉積砷之1-2單層以形成锆_砷樣板。從銦磷化物 系統來之合成半導體材料之單晶矽層之後增長在樣板層 上。該合成半導體材料之產生之晶格結構呈現相對於容納 缓衝區層晶格結構45度旋轉和對(1〇〇)InP之晶格不符少於 2.5%且最好少於約1 〇〇/〇。 範例3 根據本發明之尚一具體實施例,提供一結構,其適合用 於II-VI群材料之磊晶薄膜之增長以覆蓋矽基材。該基材最 好係爲如上所述之石夕晶圓。合適之容納緩衝區層材料爲 3]^:^1^丁丨〇3,其中又範圍從〇至1,其具有2-1〇〇奈米之厚度 且最好是約5-15奈米之厚度。Π_νι合成半導體材料可以 是’例如,鋅硒化物(ZnSe)或是鋅硫硒化物(ZnSSe)。於此 材料系統之合適樣板包括鋅-氧(Zn-O)之1-1〇單層,相繼以 鋅之多餘之1-2單層,相繼以鋅之硒化在表面上。或者, 樣板可以是,例如,鳃-硫(8卜幻之^0單層,繼之以 ZnSeS 〇 範例4 本發明之具體實施例係爲説明在圖2之結構40之範例。 基材22、單晶矽氧化物層24和單晶矽合成半導體材料層26 可以相似於這些描述在範例1中。此外,額外緩衝區層3 2 作爲消除可能由容納缓衝區層之晶體晶格和單晶矽半導體 •14-本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 515097 A7 B7 五、發明説明(12 ) 材料之晶格不符所產生之任何壓力。緩衝區層3 2可以是錯 或是GaAs、铭鎵坤化物(AlGaAs)、銦鎵嶙化物(InGaP)、I呂 鎵璘化物(AlGaP)、銦鎵珅化物(InGaAs)、铭銦嶙化物 (AllnP)、銦鎵砷磷化物(InGaAsP)或是銦鎵磷化物(InGaP) 壓力補償之超級晶格之層。根據本具體實施例之一觀點, 緩衝區層32包括G a A s ΧΡ ^ · x超級晶格,其中X値範圍從〇至 1。根據另一觀點,緩衝區層32包括IiiyGa^yP超級晶格, 其中y値範圍從0至1。藉由變化X或y的値,如該情況之可 能,晶格常數從底部到頂端變化超越該超級晶格以產生底 下氧化物和覆蓋合成半導體材料之晶格常數間之符合。其 他材料之合成物,例如這些列在上面的,也可以相似地變 化以相同方式操縱層32之晶格常數。超級晶格可以具有 50-500奈米之厚度且最好具有約100-200奈米之厚度。於此 結構之樣板可以與描述在範例1中之相同。或者,緩衝區 層32可以係爲具有1-50奈米厚度之單晶矽鍺之層且最好具 有約2-20奈米之厚度。在使用鍺緩衝層中,不論是具有約 一單層之鍺-鳃(Ge-Sr)或是鍺-鈦(Ge-Ti)之樣板層可以使用 爲用於單晶矽合成半導體材料層之相繼增長之成核地點。 氧化物層之形成以鳃之單層或是鈦之單層其中之一覆蓋以 作爲單晶矽鍺之隨後沉積之成核地點。鳃或鈦之單層提供 鍺之第一單層可以黏合之成核地點。 範例5 此範例也説明使用於説明在圖2之結構40之材料。基材 材料22、容納緩衝區層24、單晶矽合成半導體材料層26和 -15- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(13 ) 樣板層30可以如描述在上在圖2中之這些相同。此外,緩 衝區層32插入在容納緩衝區層和覆蓋單晶矽合成半導體材 料層之間。該緩衝層,進一步之單晶碎半導體材料,可以 是,例如,銦鎵坤化物(InGaAs)或是銦链坤化物(InAlAs) 之等級層。根據本具體實施例之一觀點,緩衝區層32包括 InGaAs,其中銦合成物從〇至約47%變化。緩衝區層最好 具有約10-30奈米之厚度。變化緩衝區層之合成從GaAs至 InGaAs作爲提供底下單晶矽氧化物材料和單晶矽合成半導 體材料之覆蓋層間之晶格符合。假如在容納緩衝區層24和 單晶矽合成半導體材料層26之間有晶格不符合時,這樣之 緩衝區層特別地有利。 範例6 此範例提供有用在結構3 4之例示材料,如圖3中説明。 合適材料22、樣板層30和單晶矽合成半導體材料層26可以 與描述在上在範例1中相關之材料相同。 非晶矽層36係爲適合由非晶矽中間層材料(例如,如上所 述之層2 8之材料)及容納緩衝區層材料(例如,如上所述之 層24之材料)之混合而形成之非晶矽氧化物層。例如,非 晶矽層36可以包括Si〇x和SrzBabzTiOd其中z之範圍從〇至1) 之混合,其在回火製程期間,結合或混合至少部份以形成 非晶碎氧化物層3 6。 非晶碎層36之厚度可以因不同應用而變化且可以取決於 因素如層36之需要絕緣性質、包含層26之半導體材料之型 式等等。根據本具體實施例之一例示觀點,層3 6之厚度係 16 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 裝 訂 五、發明説明(14 ) 約2奈米至約100奈米,較佳約2-10奈米且最好約5-6奈米。 層3 8包括其可以磊晶增長在單晶石夕氧化物材料,如同用 於形成容納緩衝區層24之材料之單晶矽合成半導體材料。 根據本發明之一具體實施例,層38包括如這些包括層26之 相同材料。例如,假如層26包括GaAs,層38也包括 GaAs。然而,根據本發明之其他具體實施例,層3 8可以包 括不同於這些使用於形成層26之材料。根據本發明之一例 示之具體實施例,層38約爲1單層,約1〇〇奈米厚。 再次參考圖1-3’基材22係爲如單晶碎碎基材之單晶碎基 材。單晶矽基材之晶矽結構之特徵爲晶格常數和晶格方 向。以相似的方式,容納缓衝區層24也爲單晶矽材料且該 單晶碎材料之晶格之特徵爲晶格常數和晶體方向。容納緩 衝區層和單晶矽基材之晶格常數必須緊密地符合或者,必 須是在相對於另一晶體方向之一晶體方向之旋轉上,達成 晶格常數之基本上符合。在此上下文中,該詞“基本上相 等’’和“基本上符合”意指晶格常數之間有足夠之相似性以 允許南品質之晶碎層在底下層上增長。 圖4以圖説明高晶矽品質之增長晶體層之可達成厚度之 關係爲在寄生晶體和增長晶體之晶格常數間不符之函數。 曲線42説明高晶矽品質材料之界線。曲線42之右邊之面積 代表傾向於多晶矽之層。沒有晶格不符的話,理論上可能 增長無限厚、南品質之羞晶層在寄生晶體上。當晶格常數 之不符增加,可達成之高品質晶矽之厚度快速地減少。當 作一參考點,例如,假如在寄生晶體和增長層間之晶格常 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(15 ) 數不符超過約2%時,超過約20奈米之單晶矽磊晶層就不 能達成。 # 裝 根據本發明之一具體實施例,基材22係爲(100)或(111)方 向之單晶矽矽晶圓而容納缓衝區層24係爲鳃鋇鈦酸鹽之 層。在這兩材料間之晶格常數之基本上相符藉由旋轉欽酸 鹽材料之晶體方向相對於石夕基材晶圓之晶體方向4 5 °而達 成。加入,在此範例爲石夕氧化物層,在非晶碎介面層2 8之 結構中,假如其有足夠厚度的話,作爲減少可能從寄生矽 晶圓和增長鈦酸鹽層之晶格常數之不符而產生在鈦酸鹽單 晶矽層中之壓力。結果,根據本發明之一具體實施例,高 品質、厚的、單晶梦欽酸鹽層係爲可達成的。__ B7 T invention description (11): ~ " Milk = Shen (Ba-0-As), Indium-Total_Oxygen (In_Sr-〇) or Barium_Oxygen_Scale (np) and preferably these materials among them One of the Bu 2 single layer. By the method used as an example of the barium hammer acid salt containing buffer layer, the surface was terminated with a single layer of zirconium, and then a 1-2 single layer of arsenic was deposited to form a zirconium-arsenic template. A single crystal silicon layer of a synthetic semiconductor material from an indium phosphide system is then grown on the template layer. The resulting lattice structure of the synthetic semiconductor material exhibits a 45-degree rotation relative to the lattice structure of the containing buffer layer and is less than 2.5% and preferably less than about 100% of the lattice of (100) InP. 〇. Example 3 According to a specific embodiment of the present invention, a structure is provided, which is suitable for the growth of epitaxial films of II-VI group materials to cover a silicon substrate. The substrate is preferably a shixi wafer as described above. A suitable material for containing the buffer layer is 3] ^: ^ 1 ^ 丁 丨 〇3, which in turn ranges from 0 to 1, which has a thickness of 2-100 nanometers and preferably about 5-15 nanometers. thickness. The Π_νι synthetic semiconductor material may be, for example, zinc selenide (ZnSe) or zinc sulfur selenide (ZnSSe). A suitable model for this material system includes a 1-1 single layer of zinc-oxygen (Zn-O), followed by a 1-2 single layer of zinc, followed by selenization of zinc on the surface. Alternatively, the template may be, for example, a gill-sulfur monolayer of ^ 0, followed by ZnSeS. Example 4 A specific embodiment of the present invention is an example of the structure 40 illustrated in FIG. 2. The single crystal silicon oxide layer 24 and the single crystal silicon synthetic semiconductor material layer 26 may be similar to those described in Example 1. In addition, the additional buffer layer 3 2 serves as a crystal lattice and single crystal that may be eliminated by the buffer layer containing the buffer layer. Silicon Semiconductor • 14- This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X 297 mm) 515097 A7 B7 V. Description of the invention (12) Any pressure caused by the lattice of the material does not match. The buffer layer 3 2 can Is it wrong or GaAs, AlGaAs, InGaP, AlGaP, InGaAs, AllnP, InGaAs (InGaAsP) or indium gallium phosphide (InGaP) pressure-compensated superlattice layer. According to one aspect of this embodiment, the buffer layer 32 includes a GaAs XP x ^ x superlattice, where X 値The range is from 0 to 1. According to another perspective, the buffer layer 32 includes IiiyGa ^ y P superlattice, where y 値 ranges from 0 to 1. By changing the X or y 値, if this is possible, the lattice constant changes from the bottom to the top beyond the superlattice to produce the underlying oxide and overlay synthesis The correspondence between the lattice constants of semiconductor materials. Compositions of other materials, such as those listed above, can also be similarly changed to manipulate the lattice constants of layer 32 in the same way. Superlattices can have a range of 50-500 nm And preferably has a thickness of about 100-200 nm. The template for this structure may be the same as that described in Example 1. Alternatively, the buffer layer 32 may be a single crystal silicon germanium having a thickness of 1-50 nm. And preferably has a thickness of about 2-20 nanometers. In the case of using a germanium buffer layer, whether it is a sample of germanium-gill (Ge-Sr) or germanium-titanium (Ge-Ti) with a single layer The layer can be used as a nucleation site for the successive growth of the single crystal silicon synthetic semiconductor material layer. The formation of the oxide layer is covered with either a single layer of gills or a single layer of titanium for subsequent deposition of single crystal silicon germanium Nucleation site. A single layer of gill or titanium provides the first order of germanium A nucleation site that can be bonded. Example 5 This example also illustrates the material used in the structure 40 illustrated in Figure 2. Base material 22, containing buffer layer 24, monocrystalline silicon synthetic semiconductor material layer 26, and -15.-This paper The dimensions apply to the Chinese National Standard (CNS) A4 specifications (210 X 297 mm) 515097 A7 B7 V. Description of the invention (13) The template layer 30 can be the same as described above in Figure 2. In addition, the buffer layer 32 is inserted Between the containing buffer layer and the layer covering the single crystal silicon synthetic semiconductor material. The buffer layer, and further the single crystal broken semiconductor material, may be, for example, a grade layer of InGaAs or InAlAs. According to one aspect of this embodiment, the buffer layer 32 includes InGaAs, where the indium composition varies from 0 to about 47%. The buffer layer preferably has a thickness of about 10-30 nm. The composition of the variable buffer layer ranges from GaAs to InGaAs as a lattice conformation between the cover layers that provide the underlying single crystal silicon oxide material and the single crystal silicon composite semiconductor material. Such a buffer layer is particularly advantageous if there is a lattice mismatch between the containing buffer layer 24 and the single crystal silicon composite semiconductor material layer 26. Example 6 This example provides illustrative materials useful in Structure 34, as illustrated in Figure 3. The suitable material 22, the template layer 30, and the single crystal silicon composite semiconductor material layer 26 may be the same materials as those described in Example 1 above. The amorphous silicon layer 36 is formed by a mixture of an amorphous silicon intermediate layer material (for example, the material of layer 28 as described above) and a buffer layer material (for example, the material of layer 24 as described above). Amorphous silicon oxide layer. For example, the amorphous silicon layer 36 may include a mixture of SiOx and SrzBabzTiOd, where z ranges from 0 to 1), which is combined or mixed during the tempering process to form an amorphous shredded oxide layer 36. The thickness of the amorphous shredded layer 36 may vary for different applications and may depend on factors such as the required insulating properties of the layer 36, the type of semiconductor material including the layer 26, and so on. According to an exemplified viewpoint of this specific embodiment, the thickness of the layer 36 is 16 and the paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm). Binding 5. Description of the invention (14) about 2 nm to about 100 Nanometers, preferably about 2-10 nanometers and most preferably about 5-6 nanometers. The layer 38 includes a monocrystalline silicon oxide material which can be epitaxially grown on the monocrystalline silicon oxide material, like a monocrystalline silicon synthetic semiconductor material used to form a material for containing the buffer layer 24. According to a specific embodiment of the present invention, the layer 38 includes the same materials as those including the layer 26. For example, if layer 26 includes GaAs, layer 38 also includes GaAs. However, according to other embodiments of the present invention, the layer 38 may include materials other than those used to form the layer 26. According to an exemplary embodiment of the present invention, the layer 38 is about 1 single layer and about 100 nanometers thick. Referring again to Figures 1-3 ', the substrate 22 is a single crystal crushed substrate such as a single crystal crushed substrate. The crystalline silicon structure of a single crystal silicon substrate is characterized by a lattice constant and a lattice direction. In a similar manner, the accommodating buffer layer 24 is also a single crystal silicon material and the lattice of the single crystal fragment material is characterized by a lattice constant and a crystal orientation. The lattice constants that contain the buffer zone layer and the single crystal silicon substrate must closely match, or, must basically achieve the lattice constants in rotation relative to one of the crystal directions of the other crystal direction. In this context, the terms "substantially equal" and "substantially coincide" mean that there is sufficient similarity between the lattice constants to allow the crystalline fragmentation layer of south quality to grow on the underlying layer. Figure 4 illustrates The relationship between the achievable thickness of the growing crystal layer of high-crystalline silicon quality is a function of the discrepancy between the lattice constants of the parasitic crystal and the growing crystal. Curve 42 illustrates the boundary of high-crystalline silicon quality materials. The area to the right of curve 42 represents the Layers of polycrystalline silicon. If there is no lattice mismatch, theoretically it is possible to grow infinitely thick, southern-quality shame crystal layers on parasitic crystals. When the lattice constant discrepancy increases, the thickness of the high-quality crystalline silicon that can be achieved rapidly decreases. As a reference point, for example, if the lattice between the parasitic crystal and the growth layer is often -17- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 515097 A7 B7 V. Description of the invention (15) When the number does not exceed about 2%, a single crystal silicon epitaxial layer exceeding about 20 nanometers cannot be achieved. # According to a specific embodiment of the present invention, the substrate 22 is a single crystal in the (100) or (111) direction. Crystal Silicon The circular buffer zone 24 is a layer of gill barium titanate. The lattice constants between the two materials are basically consistent with each other by rotating the crystal orientation of the acetic acid salt material relative to that of the Shixi substrate wafer. The crystal orientation is reached at 45 °. Addition, in this example is the Shi Xi oxide layer, in the structure of the amorphous broken interface layer 28, if it has a sufficient thickness, as a possible reduction from parasitic silicon wafers and growth of titanium The difference in the lattice constant of the acid salt layer causes a pressure in the titanate single crystal silicon layer. As a result, according to a specific embodiment of the present invention, a high-quality, thick, single-crystal Mengqin salt layer is acceptable. Reached.

仍參考圖1-3,層26係爲磊晶增長之單晶矽材料之層,且 該晶矽材料之特徵也是晶體晶格常數和晶體方向。根據本 發明之一具體實施例,層26之晶格常數與基材22之晶格常 數不同。爲了達成在此磊晶增長之單晶矽層中之高晶矽品 質,容納緩衝區層必須具有高晶矽品質。此外,爲了達成 高晶矽品質在層26中,在寄生晶體,在此情況下,爲單晶 矽容納緩衝區層和增長晶體之間之基本上符合係需要的。 適當的選擇材料加上相對於寄生晶體之方向旋轉增長晶體 之晶體方向,可以達成晶格常數之該基本上符合。假如增 長晶體爲鎵坤化物、链嫁珅化物、鋅晒化物或是鋅硫磁化 物而容納緩衝區層爲單晶矽SrxBa1-xTi03時,該兩材料之 晶體晶格常數之基本上符合可以達成,其中增長層之晶體 方向相對於寄生單晶矽氧化物之方向旋轉45。。相似地, -18- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(16 假如寄生材料係爲锶或是鋇錘酸鹽或是锶或是鋇給酸鹽或 是鋇錫氧化物且合成半導體層爲銦磷化物或是鎵銦砷化物 或是鋁銦珅化物時,晶體晶格常數之基本上符合可以藉由 旋轉增長晶體層之方向相對於寄生氧化物晶體45。。在某 些情況下,在寄生氧化物和增長之合成半導體層間之晶梦 半導體緩衝區層可以用於減少在增長單晶矽合成半導體層 中之可能由晶格常數之小差異而產生之壓力。可以藉此達 成在增長單晶矽合成半導體層之較佳晶矽品質。 裝 根據本發明之一具體實施例,下面範例説明用於製造半 導體結構之製程,如描述在圖1-3中之結構。該製程藉由 才疋供包括碎或是褚之早晶碎半導體基材而開始。根據本發 明之較偏好具體實施例,半導體基材係爲具有(100)方向之 碎晶圓。基材最好在軸上之方向,至多,偏移軸約0.5°。至 少一邵份之半導體基材具有裸表面,雖然基材之其他部 分,如下所描述,可能包含其他結構。該詞“裸”在此上下 文中意指在基材之部分中之表面已經被潔淨以移除任何氧 化物、污染物或其他外來材料。就如大家所熟知的,裸矽 係爲高度反應的且容易地形成自有之氧化物。該詞“裸,,意 指包括這樣之自有氧化物。雖然這樣之增長氧化物對於根 據本發明之製程並不是基本的,但薄碎氧化物也可能刻意 地增長在半導體基材上。爲了磊晶增長單晶矽氧化物層以 覆蓋該單晶矽基材,自有氧化物層必須首先被移除以暴露 底下基材之晶矽結構。雖然根據本發明其他磊晶製程也可 使用,但最好藉由分子光束磊晶(MBE)執行下面製程。自 -19- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(17 ) 有氧化物可以藉由首先熱沉積一薄層之鳃、鋇、鳃和鋇之 混合物或其他鹼土元素或是鹼土元素之混合物在MBE裝置 中而移除。在鳃使用之情況下,基材之後加熱至約750°C 之溫度以導致鳃與自有矽氧化物層反應。鳃作爲減少矽氧 化物以留下無矽氧化物之表面。該產生之表面,其呈現有 次序之2x1結構,包括鳃、氧和矽。該有次序之2x1結構形 成用於單晶矽氧化物之覆蓋層之有次序增長之樣板。該樣 板提供需要之化學和物理性質以成核覆蓋層之晶矽增長。 根據本發明之另一具體實施例,自有矽氧化物可以被轉 換且基材表面可以藉由MBE,在低溫下,藉由沉積鹼土元 素氧化物,例如鳃氧化物、鳃鋇氧化物或是鋇氧化物至基 材表面上且藉由相繼地加熱該結構至約750°C之溫度而準 備用於單晶矽氧化物層之增長。在該溫度下,固態反應發 生在銘氧化物和自有碎氧化物之間,導致自有碎氧化物之 還原且留下一具有鳃、氧、矽之有次序之2x1結構在基材 表面上。再次,此形成樣板於有次序之單晶梦氧化物層之 相繼增長。 根據本發明之一具體實施例,在從基材之表面移除矽氧 化物之後,冷卻基材至在約200-800°C範圍内之溫度且藉 由分子光束磊晶增長鳃鈦酸鹽之層在樣板層上。MBE藉由 由打開在MBE裝置中之活動遮板以暴露鳃、鈦和氧來源而 啓動。總和鈥之比例接近1 : 1。氧之部分壓力起始設至最 小値以在每分鐘約0.3-0.5奈米下增長化學計量之鳃、鈦酸 鹽。在鳃鈦酸鹽之起始增長之後,氧之部分壓力增加超過 -20- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(18 ) 起始最小値。氧之過度壓力導致非晶矽矽氧化物層之增長 在底下基材和增長鳃鈦酸鹽層間之介面。矽氧化物層之增 長係從氧之擴散經由增長之鐵欽酸鹽層至其中氧與碎在底 下基材之表面反應,而產生。鳃鈦酸鹽增長爲有次序之單 晶體,其具有晶體方向對於底下基材之有次序之2x1晶矽 結構旋轉45 ° 。否則因爲在矽基材和增長晶體間之晶格常 數之小不符,而可能存在鐵鈇酸鹽層中之壓力,在非晶碎 矽氧化物中間層中釋放。 在鳃鈦酸鹽層已經增長至需要之厚度之後,單晶矽鳃鈦 酸鹽由其導電至需要之合成半導體材料之磊晶層之相繼增 長之樣板層所覆蓋。爲了錯坤化物之層之相繼增長,鐵款 酸鹽單晶矽層之MBE增長可以藉由終結以鈦之1-2單層、 欽-氧之1-2早層或是銘-乳之1-2單層之增長而覆蓋。在該 覆蓋層形成之後,沉積砷以形成欽-砷能階、鈥-氧-砷能階 或是鳃-氧-砷。任何這些都形成適合樣板於鍺砷單晶矽層 之沉積與形成。在該樣板形成之後,鍺相繼地引進以與珅 和鍺砷化物形式反應。或者,鍺可以被沉積在覆蓋層上以 形成鳃-氧-鍺能階而砷隨後與鍺一起引進以形成GaAs。 圖5係爲根據本發明製造之半導體材料之高解析度傳輸 電子微圖。單晶體SrTi〇3容納緩衝區層24磊晶增長在矽基 材22上。在該增長製程期間,形成釋放因爲晶格不符所造 成之壓力之非晶碎介面層28。Ga As合成半導體層26之後使 用樣板層30磊晶增長。 圖6説明在包括GaAs合成半導體層26之結構使用容納緩 -21 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A7 B7 五、發明説明(19 ) 衝區層24增長在矽基材22所照之X-射線繞射光譜。在該光 譜之高峰指示容納緩衝區層24和GaAs合成半導體層26兩者 係爲單晶體且方向爲(100)。 説明在圖2之結構可以藉由討論在上之製程加上額外緩 衝區層沉積步驟而形成。在單晶矽合成半導體層之沉積之 前,該緩衝區層係形成以覆蓋在樣板層上。假如該缓衝區 層係爲合成半導體超級晶格時,這樣之晶格可以藉由MBE 沉積,例如在如上所述之樣板上。換過來,假如該缓衝區 層係爲鍺之層時,修改上面製程以用鳃或是鈦之最後層覆 蓋鳃鈦酸鹽單晶矽層,之後藉由沉積鍺以與鳃或是鈦反 應。該鍺緩衝區層可以之後直接地沉積在該樣板上。 説明在圖3,之結構34可以藉由增長容納缓衝區層而形 成,其形成非晶矽氧化物層在基材22上且增長半導體層38 在容納緩衝區層上如上所述。該容納緩衝區層和非晶矽氧 化物層之後暴露至回火製程足夠改變容納緩衝區層之晶矽 結構從單晶矽至非晶矽,藉此形成非晶矽層使得非晶矽氧 化物層和現在是非晶矽容納緩衝區之結合形成單一非晶矽 乳化物層36。層26之後相繼地增長在層38上。或者,回火 製程可以在層26增長之後執行。 根據該具體實施例之一觀點,層36藉由暴露基材22、容 納緩衝區層'非晶矽氧化物層和半導體層3 8至快速熱回火 製程約700°C至約1000°C之最高溫度且約10秒至約1〇分鐘 之處理時間而形成。然而,根據本發明,可以使用其他合 適之回火製程以轉換該容納緩衝區層至非晶矽層。例如, -22- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(2Q ) 雷射回火或是“傳統”熱回火製程(在適當之環境下)可以使 用於形成層36。當使用傳統熱回火以形成層36時,在回火 製程期間可能需要層30之一或更多成分之加壓以防止層38 之降級。例如,當層38包括GaAs時,回火環境最好包括砷 之加壓以緩和層38之降級。 如上所提醒,結構34之層38可能包括適合於層32或26之 任何材料。因此,跟層32或26—起描述之任何沉積或增長 方法可以利用以沉積層3 8。 圖7係爲説明在圖3根據本發明之具體實施例所製造之半 導體材料之高解析度傳輸電子爲圖(TEM)。根據該具體實 施例,單一晶體SfTi03容納缓衝區層24磊晶增長在矽基材 22上。在該增長製程期間’非晶梦介面層如上所述形成。 接著,GaAs層38形成在容納緩衝區層之上且暴露該容納緩 衝區層至回火製程以形成非晶矽氧化物層36。 圖8説明在包括GaAs合成半導體層3 8和非晶矽氧化物層 36形成在矽基材22上之結構上所照之X-射線繞射光譜。在 光譜中之高峰指示GaAs合成半導體層38係爲單晶體且方向 爲(100)且在40至50度附近缺少高峰指示層36係爲非晶矽。 描述在上之製程説明一種藉由分指光束磊晶之製程之用 以形成包括矽基材、覆蓋氧化物層和單晶碎鍺神化物合成 半導體層之半導體結構之製程。該製程也可藉由化學氣相 沉積(C VD)、金屬有機化學氣相沉積(MOCVD)、遷移增強 磊晶(MEE)、原子層磊晶(ALE)、物理氣相沉積(PVD)、化 學溶液沉積(CSD)、脈衝式雷射沉積(PLD)等等之製程而執 -23- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(21 ) 行。進一步地,藉由相似製程,其他單晶矽容納緩衝區 層,例如驗土元素鈥酸鹽、錯酸鹽、铪酸鹽、酸鹽、訊 故鹽、釘鹽及魏酸鹽、数#5礦氧化物例如以驗土元素錫 爲基礎之鈦鈣礦、鑭鋁酸鹽、鑭钪氧化物和釓氧化物也可 增長。進一步地,藉由如同MBE之相似製程,其他III-V和 II-VI單晶碎合成半導體層可以沉積以覆蓋單晶碎氧化物容 納緩衝區層。 每個合成半導體材料和單晶矽氧化物容納緩衝區層之變 化使用合適樣板於起始合成半導體層之增長。例如,假如 該容納緩衝區層係爲鹼土元素锆酸鹽時,該氧化物可以由 結之薄層覆蓋。錘之沉積可以繼之以碎或是磷之沉積以與 锆反應作爲前導以分別地沉積銦鍺砷化物、銦鋁砷化物或 是銦磷化物。相似地,假如單晶矽氧化物容納緩衝區層係 爲鹼土元素铪酸鹽,該氧化物層可以由铪之薄層所覆蓋。 铪之沉積可以繼之以砷或是磷之沉積以與铪反應作爲前導 以分別地增長銦鍺砷化物、銦鋁砷化物或是銦磷化物。以 相似的方式,鳃鈦酸鹽可以以鳃或是鳃和氧之層所覆蓋而 銷欽酸鹽可以被鋇或鎖和氧之層所覆蓋。每個這些沉積可 以隨之以砷或磷之沉積以與該覆蓋材料反應以形成樣板用 於包括銦鍺砷化物、銦鋁砷化物或是銦磷化物之合成半導 體材料層之沉積。 圖9以剖面,概要地説明根據本發明之尚一具體實施例 之裝置結構900。裝置結構900包括單晶碎半導體基材 901’取好爲卓晶碎碎晶圓。早晶碎半導體基材901包括兩 -24 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Still referring to Figures 1-3, layer 26 is a layer of epitaxially grown single crystal silicon material, and the characteristics of the crystal silicon material are also the crystal lattice constant and crystal orientation. According to a specific embodiment of the present invention, the lattice constant of the layer 26 is different from the lattice constant of the substrate 22. In order to achieve the high-crystalline silicon quality in the epitaxially grown single-crystal silicon layer, the containing buffer layer must have high-crystalline silicon quality. In addition, in order to achieve high crystalline silicon quality in the layer 26, parasitic crystals, in this case, a single crystal silicon containing buffer layer and a growth crystal are basically required. Appropriate selection of the material and rotation of the crystal with respect to the direction of the parasitic crystal can basically achieve the lattice constant. If the growth crystal is a gallium compound, a chain compound, a zinc compound or a zinc-sulfur magnetide, and the buffer layer is a single-crystal silicon SrxBa1-xTi03, the crystal lattice constants of the two materials can be basically met. The crystal orientation of the growth layer is rotated 45 relative to the direction of the parasitic single crystal silicon oxide. . Similarly, -18- This paper size applies to the Chinese National Standard (CNS) A4 (210 X 297 mm) 515097 A7 B7 V. Description of the invention (16 If the parasitic material is strontium or barium hammer salt or strontium or When it is a barium salt or a barium tin oxide and the synthetic semiconductor layer is indium phosphide, gallium indium arsenide, or aluminum indium halide, the crystal lattice constant basically matches the direction in which the crystal layer can be grown by rotation. Relative to parasitic oxide crystal 45. In some cases, the crystal dream semiconductor buffer layer between the parasitic oxide and the growing synthetic semiconductor layer can be used to reduce the possibility of crystal growth in the growing monocrystalline silicon synthetic semiconductor layer. The pressure caused by the small difference in constants can be used to achieve a better quality of crystalline silicon in growing a single crystal silicon synthetic semiconductor layer. According to a specific embodiment of the present invention, the following example illustrates the process for manufacturing a semiconductor structure, such as The structure depicted in Figures 1-3. The process begins by providing semiconductor substrates including pre-crushed or pre-crushed semiconductor substrates. According to a preferred embodiment of the present invention, semiconductor substrates It is a broken wafer with a (100) direction. The substrate is preferably in the direction of the axis, at most, offset from the axis by about 0.5 °. At least one part of the semiconductor substrate has a bare surface, although other parts of the substrate, As described below, other structures may be included. The term "naked" in this context means that the surface in a portion of the substrate has been cleaned to remove any oxides, contaminants, or other foreign materials. As is well known Bare silicon is highly reactive and easily forms its own oxides. The word "naked" is meant to include such own oxides. Although such growing oxides are not essential to the process according to the invention However, thin oxides may also be intentionally grown on semiconductor substrates. In order to epitaxially grow a single crystal silicon oxide layer to cover the single crystal silicon substrate, the own oxide layer must first be removed to expose the underlying substrate Material silicon structure. Although other epitaxial processes can also be used according to the present invention, it is best to perform the following processes by molecular beam epitaxy (MBE). Since -19- This paper standard applies Chinese National Standard (CNS) A4 Grid (210 X 297 mm) 515097 A7 B7 V. Description of the invention (17) There can be oxides by first thermally depositing a thin layer of gills, barium, a mixture of gills and barium or other alkaline earth elements or a mixture of alkaline earth elements Removed in MBE device. In the case of gill use, the substrate is then heated to a temperature of about 750 ° C to cause the gill to react with its own silicon oxide layer. The gill acts to reduce silicon oxide to leave no silicon oxide The surface of the object. The resulting surface presents an ordered 2x1 structure including gills, oxygen, and silicon. The ordered 2x1 structure forms a template for the orderly growth of a monocrystalline silicon oxide overlay. The template Provide the required chemical and physical properties to grow crystalline silicon with a nucleation coating. According to another embodiment of the present invention, the own silicon oxide can be converted and the substrate surface can be MBE, at low temperature, by Deposition of alkaline earth element oxides, such as gill oxide, gill barium oxide, or barium oxide, onto the surface of the substrate and prepare the single crystal silicon oxide layer by successively heating the structure to a temperature of about 750 ° C Growth. At this temperature, a solid state reaction occurs between the oxide and its own fragmented oxide, resulting in the reduction of its own fragmented oxide and leaving an ordered 2x1 structure with gills, oxygen, and silicon on the substrate surface . Again, this formation template grows sequentially in the ordered single crystal dream oxide layer. According to a specific embodiment of the present invention, after the silicon oxide is removed from the surface of the substrate, the substrate is cooled to a temperature in the range of about 200-800 ° C and the gill titanate is grown by molecular beam epitaxy. Layer on the template layer. MBE is activated by opening a movable shutter in the MBE device to expose gills, titanium and oxygen sources. The sum 'ratio is close to 1: 1. The partial pressure of oxygen is initially set to a minimum level to grow stoichiometric gills, titanates at about 0.3-0.5 nanometers per minute. After the initial growth of gill titanate, the partial pressure of oxygen increased by more than -20- This paper size applies Chinese National Standard (CNS) A4 (210 X 297 mm) 515097 A7 B7 V. Description of the invention (18) Beginning 値. The excessive pressure of oxygen leads to the growth of the amorphous silicon silicon oxide layer at the interface between the underlying substrate and the gill titanate layer. The growth of the silicon oxide layer results from the diffusion of oxygen through the growing ferric acid salt layer to where the oxygen reacts with the surface of the broken substrate. Gill titanate grows into an ordered single crystal with a crystal orientation rotated 45 ° with respect to the ordered 2x1 crystalline silicon structure of the underlying substrate. Otherwise, because the lattice constant between the silicon substrate and the growing crystal is small, there may be pressure in the ferrite layer, which is released in the intermediate layer of amorphous and broken silicon oxide. After the gill titanate layer has grown to the required thickness, the single crystal silicon gill titanate is covered by its successively growing pattern layer that conducts electricity to the epitaxial layer of the required synthetic semiconductor material. In order to increase the growth rate of the complex layer, the MBE growth of the ferrous monocrystalline silicon layer can be terminated by a titanium 1-2 single layer, a chin-oxygen 1-2 early layer, or a Ming-Rubber 1 -2 single-layer growth and coverage. After the capping layer is formed, arsenic is deposited to form a Khin-arsenic energy level, an oxygen-arsenic energy level, or a gill-oxygen-arsenic level. Any of these forms a suitable template for the deposition and formation of germanium arsenic single crystal silicon layers. After the template was formed, germanium was successively introduced to react with thorium and germanium arsenide. Alternatively, germanium can be deposited on the cover layer to form a gill-oxygen-germanium energy level and arsenic is subsequently introduced with germanium to form GaAs. Fig. 5 is a high-resolution transmission electron micrograph of a semiconductor material manufactured according to the present invention. A single crystal SrTi03 containing buffer layer 24 is epitaxially grown on a silicon substrate 22. During this growth process, an amorphous fractured interface layer 28 is formed which releases the pressure caused by the lattice mismatch. GaAs is used to synthesize the semiconductor layer 26 and then epitaxially grown using the template layer 30. Figure 6 illustrates the use of a holding buffer in a structure that includes a GaAs synthetic semiconductor layer 26.-This paper size applies Chinese National Standard (CNS) A4 specifications (210 X 297 mm) A7 B7 V. Description of the invention (19) Punch layer 24 The X-ray diffraction spectrum of the silicon substrate 22 is increased. A peak at this spectrum indicates that both the containing buffer layer 24 and the GaAs synthetic semiconductor layer 26 are single crystals and the direction is (100). The structure illustrated in Figure 2 can be formed by discussing the above process plus additional buffer layer deposition steps. Prior to the deposition of the single crystal silicon synthetic semiconductor layer, the buffer layer was formed to cover the sample layer. If the buffer layer is a synthetic semiconductor superlattice, such a lattice can be deposited by MBE, such as on a template as described above. In other words, if the buffer layer is a layer of germanium, modify the above process to cover the gill titanate single crystal silicon layer with the last layer of gill or titanium, and then deposit germanium to react with gill or titanium . The germanium buffer layer can then be deposited directly on the template. As shown in Fig. 3, the structure 34 can be formed by growing the holding buffer layer, which forms an amorphous silicon oxide layer on the substrate 22 and the growing semiconductor layer 38 on the holding buffer layer as described above. The exposure buffer layer and the amorphous silicon oxide layer are subsequently exposed to the tempering process to sufficiently change the crystalline silicon structure of the accommodation buffer layer from single-crystal silicon to amorphous silicon, thereby forming an amorphous silicon layer such that the amorphous silicon oxide The combination of the layers and now the amorphous silicon containing buffer forms a single amorphous silicon emulsion layer 36. Layer 26 subsequently grows on layer 38 in succession. Alternatively, the tempering process may be performed after the layer 26 has grown. According to one aspect of this specific embodiment, the layer 36 is exposed to the substrate 22, the buffer layer, the amorphous silicon oxide layer, and the semiconductor layer 38 to a rapid thermal tempering process of about 700 ° C to about 1000 ° C It is formed at the highest temperature and a processing time of about 10 seconds to about 10 minutes. However, according to the present invention, other suitable tempering processes may be used to convert the containing buffer layer to the amorphous silicon layer. For example, -22- This paper size applies Chinese National Standard (CNS) A4 (210 X 297 mm) 515097 A7 B7 V. Description of the invention (2Q) Laser tempering or "traditional" thermal tempering process (where appropriate Environment) can be used to form the layer 36. When conventional thermal tempering is used to form layer 36, pressurization of one or more of the components of layer 30 may be required during the tempering process to prevent degradation of layer 38. For example, when the layer 38 includes GaAs, the tempering environment preferably includes a pressure of arsenic to mitigate the degradation of the layer 38. As reminded above, layer 38 of structure 34 may include any material suitable for layer 32 or 26. Therefore, any method of deposition or growth described with layers 32 or 26 may be utilized to deposit layers 38. FIG. 7 is a TEM diagram illustrating high-resolution transmission electrons of the semiconductor material manufactured in FIG. 3 according to a specific embodiment of the present invention. According to this embodiment, a single crystal SfTi03 containing buffer layer 24 is epitaxially grown on a silicon substrate 22. During this growth process, the 'amorphous dream interface layer is formed as described above. Next, a GaAs layer 38 is formed on the receiving buffer layer and the receiving buffer layer is exposed to a tempering process to form an amorphous silicon oxide layer 36. Fig. 8 illustrates an X-ray diffraction spectrum of a structure including a GaAs synthetic semiconductor layer 38 and an amorphous silicon oxide layer 36 formed on a silicon substrate 22. The peak in the spectrum indicates that the GaAs synthetic semiconductor layer 38 is a single crystal with a direction of (100) and the absence of the peak indicating layer 36 near 40 to 50 degrees is amorphous silicon. The process described above illustrates a process for forming a semiconductor structure including a silicon substrate, an overlying oxide layer, and a single crystal broken germanium compound by a process of epitaxial beam indexing. This process can also be performed by chemical vapor deposition (C VD), metal organic chemical vapor deposition (MOCVD), migration enhanced epitaxy (MEE), atomic layer epitaxy (ALE), physical vapor deposition (PVD), chemical The solution deposition (CSD), pulsed laser deposition (PLD) and other manufacturing processes are implemented. -23- This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 mm) 515097 A7 B7 V. Description of the invention ( 21) OK. Further, by a similar process, other single crystal silicon accommodates the buffer layer, such as soil test element's salt, acid salt, osmium salt, acid salt, old salt, nail salt and weirate, number # 5 Mineral oxides, such as titanite, lanthanum aluminate, lanthanum oxide, and ytterbium oxide, which are based on soil test element tin, can also grow. Further, by a similar process as MBE, other III-V and II-VI single crystal chip composite semiconductor layers can be deposited to cover the single crystal chip oxide containing buffer layer. Each change in the synthetic semiconductor material and single crystal silicon oxide containing buffer layer uses a suitable template for the growth of the starting synthetic semiconductor layer. For example, if the containment buffer layer is an alkaline earth element zirconate, the oxide may be covered by a thin layer of a knot. Hammer deposition can be followed by crushing or phosphorous deposition with zirconium as a precursor to deposit indium germanium arsenide, indium aluminum arsenide, or indium phosphide, respectively. Similarly, if the single crystal silicon oxide containing buffer layer is an alkaline earth element osmium salt, the oxide layer may be covered by a thin layer of rhenium. Thallium deposition can be followed by deposition of arsenic or phosphorus with a reaction with thorium as a precursor to grow indium germanium arsenide, indium aluminum arsenide, or indium phosphide, respectively. In a similar manner, gill titanate can be covered with gills or a layer of gills and oxygen while pinate can be covered by barium or a layer of oxygen and oxygen. Each of these deposits can then be deposited with arsenic or phosphorus to react with the covering material to form a template for the deposition of a layer of synthetic semiconductor material including indium germanium arsenide, indium aluminum arsenide, or indium phosphide. Fig. 9 schematically illustrates, in cross section, a device structure 900 according to still another embodiment of the present invention. The device structure 900 includes a single crystal chipped semiconductor substrate 901 ', which is taken as a chipped chip wafer. Pre-crushed semiconductor substrate 901 includes two -24-This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 mm)

裝 玎 t 515097 A7 B7 五、發明説明(22 ) 區域902和903。大致上由虛線911所指示之電子半導體元 件形成在區域902中。電子元件911可以是電阻器、電容 器、主動半導體元件,例如二極體或是電晶體,或是積體 電路,如MOS積體電路。例如,電子元件911可以是MOS 電路設定爲執行數位訊號處理或是矽積體電路完全適合之 其他功能。在區域902中之電子半導體元件可以藉由如同 在半導體業中熟知且廣泛地使用之傳統半導體處理而形 成。絕緣材料904之層,例如矽二氧化物之層等等可以覆 蓋電子半導體元件911。 在半導體元件911處理在區域902期間已經形成或沉積之 絕緣材料904和任何其他層從區域903之表面移除以提供裸 基材表面在那區域,例如,裸矽表面。如同所熟知的,裸 矽表面係爲高度反應的且自有矽氧化物層可以快速地形成 在該裸表面上。或者,鋇或是鋇和氧之層可以沉積至自有 氧化物層上,在區域903之表面上且之後與氧化之表面反 應以形成樣板層907。根據本發明之一具體實施例,藉由 分子光束磊晶(MBE)之製程形成單晶矽氧化物層906覆蓋該 樣板層。在該例示具體實施例之一觀點中,包含鋇、鈦和 氧之反應物沉積在樣板層上以形成單晶矽氧化物層。剛開 始在沉積期間,氧之部分壓力保持接近需要最小値以完全 地與鋇和鈦反應以形成單晶矽鋇鈦酸鹽層906。之後增加 氧之部分壓力以提供氧之加壓且允許氧擴散經由增長之單 晶矽氧化物層。擴散經由鋇鈦酸鹽之氧在區域903之表面 與矽反應以形成非晶矽層905在矽基材和單晶矽氧化物之 25 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 515097 A7 B7___ 五、發明説明(23 ) 間之介面。或者,包含從層905和906來之材料之非晶碎氧 化物層可以藉由羞晶地形成單晶硬氧化物層906和相繼地 熱處理該產生之結構以轉換該單晶矽氧化物至非晶矽氧化 物而形成,如下所討論。 根據本發明之一具體實施例,在沉積單晶矽氧化物層 906之步驟之後係爲沉積中間氧化物變換層908。變換層 908通常包括有次序、晶碎金屬氧化物,例如誤氧化物 (MgO)、鈕氧化物(TaO)或是錳氧化物(MnO)且最好由MBE 製程增長。在沉積轉變層908之步驟之後係爲沉積可以是 例如,鍺銻化物(GaSb)、InMgO或是MgAsO之1-10單層之 第二樣板層909。樣板層909作爲“種子”層以幫助覆蓋單晶 矽合成半導體層910之形成。在一較偏好之具體實施例 中,單晶矽合成半導體層910包括半導體材料,其特別地 適合於在高度可靠、敏感之霍耳感測器裝置之形成中使 用,例如InAs或是GaAsSb。 根據本發明之一觀點,在層908形成之後,其插入在基 材901和鈦酸鹽層之間之單晶矽鈦酸鹽層和矽氧化物層, 暴露至回火製程使得鈥酸鹽和氧化物層形成非晶碎氧化物 層。之後磊晶增長額外合成半導體層910在層908和909 上。或者,上述之回火製程可以在樣板層909或合成半導 體層910形成-之後執行。 根據本發明之尚一具體實施例,大致上由虛線912所指 示之半導體元件形成在合成半導體層910中。半導體元件 912可以藉由在銦砷化物或是其他III-V合成半導體材料裝 -26- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(24 ) 置之製造中傳統上使用之處理步驟而形成。半導體元件 912可以是任何主動或是被動元件且最好係爲霍耳感測 器、穿隧二極體、發光二極體、半導體雷射、光偵測器、 異質接合二極電晶體(HBT)、高頻MESFET或是利用合成半 導體材料之物理特性之好處之其他元件。由線913所概要 指示之金屬導體可以形成至電氣耦和裝置912和裝置911, 藉此履行包括至少一元件形成在矽基材中和一裝置形成在 單晶矽合成半導體材料層中之整合裝置。雖然説明之結構 900已經被描述爲形成在矽基材901上之結構且具有鋇鈦酸 鹽層906及InAs或是GaAsSb層910,但是可以使用其他單晶 矽基材、單晶矽氧化物層和其他單晶矽合成半導體層,如 同在此揭露其他地方所描述的,而製造。 圖10説明根據本發明之尚一具體實施例之半導體結構 1000。在該具體實施例中,結構1000係爲由合成半導體材 料之單晶矽磊晶層在單晶矽矽基材上形成之霍耳感測器。 結構1000包括單晶矽半導體基材1001,例如單晶矽矽晶 圓。根據上述之製程,非晶矽氧化物層1002最好形成以覆 蓋基材1001。容納緩衝區層1003形成以覆蓋基材1001和非 晶碎氧化物層1002。如上所描述,非晶碎氧化物層1〇〇2可 以藉由基材1001之氧化,在層1003增長期間,增長在基材 1001和增長乏容納緩衝區層1003之間之介面。容納緩衝區 層1003最好係爲爲其與底下基材和覆蓋之合成半導體材料 之晶矽相容性所選擇之單晶矽氧化物材料。在該具體實施 例中,其中基材1001係爲單晶矽矽且覆蓋之合成半導體材 -27- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Installation t 515097 A7 B7 V. Description of the invention (22) Areas 902 and 903. An electronic semiconductor element substantially indicated by a dotted line 911 is formed in the region 902. The electronic component 911 may be a resistor, a capacitor, an active semiconductor component, such as a diode or a transistor, or an integrated circuit such as a MOS integrated circuit. For example, the electronic component 911 may be a MOS circuit configured to perform digital signal processing or other functions that are completely suitable for a silicon integrated circuit. The electronic semiconductor elements in region 902 can be formed by conventional semiconductor processing as is well known and widely used in the semiconductor industry. A layer of insulating material 904, such as a layer of silicon dioxide, may cover the electronic semiconductor element 911. The insulating material 904 and any other layers that have been formed or deposited during semiconductor element 911 processing during region 902 are removed from the surface of region 903 to provide a bare substrate surface in that region, such as a bare silicon surface. As is well known, the bare silicon surface is highly reactive and its own silicon oxide layer can be quickly formed on the bare surface. Alternatively, barium or a layer of barium and oxygen may be deposited on the native oxide layer, on the surface of the region 903 and thereafter reacting with the oxidized surface to form a template layer 907. According to a specific embodiment of the present invention, a single crystal silicon oxide layer 906 is formed by a molecular beam epitaxy (MBE) process to cover the template layer. In one aspect of this illustrated embodiment, a reactant comprising barium, titanium, and oxygen is deposited on a template layer to form a single crystal silicon oxide layer. Initially during deposition, the partial pressure of oxygen remained close to the minimum required to fully react with barium and titanium to form a single crystal barium titanate layer 906. Partial pressure of oxygen is then increased to provide oxygen pressurization and allow oxygen to diffuse through the growing single crystal silicon oxide layer. Diffusion via barium titanate oxygen reacts with silicon on the surface of region 903 to form an amorphous silicon layer 905 on a silicon substrate and a single crystal silicon oxide 25 This paper is sized to Chinese National Standard (CNS) A4 (210X 297) (Mm) 515097 A7 B7___ V. Interface between invention description (23). Alternatively, an amorphous shattered oxide layer containing materials from layers 905 and 906 may be formed by forming a single crystal hard oxide layer 906 and sequentially heat-treating the resulting structure to convert the single crystal silicon oxide to a non-crystalline silicon oxide. Crystalline silicon oxide is formed as discussed below. According to a specific embodiment of the present invention, after the step of depositing the single crystal silicon oxide layer 906, an intermediate oxide conversion layer 908 is deposited. The conversion layer 908 typically includes ordered, crystalline and broken metal oxides, such as erroneous oxides (MgO), button oxides (TaO), or manganese oxides (MnO), and is preferably grown by the MBE process. After the step of depositing the conversion layer 908, a second template layer 909, which may be, for example, a 1-10 single layer of germanium antimonide (GaSb), InMgO, or MgAsO, is deposited. The template layer 909 serves as a "seed" layer to help cover the formation of the single crystal silicon synthetic semiconductor layer 910. In a preferred embodiment, the single crystal silicon synthetic semiconductor layer 910 includes a semiconductor material, which is particularly suitable for use in the formation of a highly reliable and sensitive Hall sensor device, such as InAs or GaAsSb. According to one aspect of the present invention, after the layer 908 is formed, the single crystal titanate layer and the silicon oxide layer interposed between the substrate 901 and the titanate layer are exposed to a tempering process such that the salt and The oxide layer forms an amorphous broken oxide layer. The epitaxial growth is then followed by an additional synthetic semiconductor layer 910 on layers 908 and 909. Alternatively, the aforementioned tempering process may be performed after the template layer 909 or the synthetic semiconductor layer 910 is formed. According to yet another embodiment of the present invention, a semiconductor element substantially indicated by a broken line 912 is formed in the composite semiconductor layer 910. The semiconductor element 912 can be loaded with indium arsenide or other III-V synthetic semiconductor materials. This paper is sized to the Chinese National Standard (CNS) A4 (210 X 297 mm) 515097 A7 B7 V. Description of the invention ( 24) It is formed by processing steps traditionally used in manufacturing. The semiconductor element 912 may be any active or passive element and is preferably a Hall sensor, a tunneling diode, a light emitting diode, a semiconductor laser, a photodetector, a heterojunction diode (HBT) ), High-frequency MESFETs, or other components that take advantage of the physical properties of synthetic semiconductor materials. The metal conductor indicated generally by the line 913 can be formed to the electrical coupling device 912 and the device 911, thereby performing an integrated device including at least one element formed in a silicon substrate and a device formed in a single-crystal silicon synthetic semiconductor material layer . Although the illustrated structure 900 has been described as a structure formed on a silicon substrate 901 and has a barium titanate layer 906 and an InAs or GaAsSb layer 910, other single crystal silicon substrates and single crystal silicon oxide layers may be used. And other monocrystalline silicon synthetic semiconductor layers are fabricated as described elsewhere herein. FIG. 10 illustrates a semiconductor structure 1000 according to yet another embodiment of the present invention. In this embodiment, the structure 1000 is a Hall sensor formed from a single crystal silicon epitaxial layer of a synthetic semiconductor material on a single crystal silicon substrate. The structure 1000 includes a single crystal silicon semiconductor substrate 1001, such as a single crystal silicon wafer. According to the above process, the amorphous silicon oxide layer 1002 is preferably formed to cover the substrate 1001. The accommodating buffer layer 1003 is formed to cover the substrate 1001 and the amorphous crushed oxide layer 1002. As described above, the amorphous crushed oxide layer 1002 can be grown by the oxidation of the substrate 1001 during the growth of the layer 1003, the interface between the substrate 1001 and the growth-accommodating buffer layer 1003. The buffer layer 1003 is preferably a single crystal silicon oxide material selected for its compatibility with the underlying substrate and the crystalline silicon of the synthetic semiconductor material covering it. In this specific embodiment, the substrate 1001 is a monocrystalline silicon and covered synthetic semiconductor material. -27- This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm)

裝 町Outfit

515097 A7 B7 五、發明説明(25 ) 料層係爲單晶石夕In As,層1003可以包括,例如,驗土元素 鈦酸鹽,例如鋇鈦酸鹽或是鳃鈦酸鹽、鹼土元素铪酸鹽例 如鎖給酸鹽或是銘給酸鹽或是驗土元素錯酸鹽例如鋇結酸 鹽或是鳃錘酸鹽。 中間氧化物轉變層1004最好形成以覆蓋層1003以減輕從 容納緩衝區層1003之晶體晶格和單晶矽半導體材料層之晶 格不符所產生之壓力。轉變層1004可以包括任何合適之氧 化物材料,例如錳氧化物(MnO)、鎂氧化物(MgO)或是鉦 氧化物(TaO)。在該例示具體實施例中,轉變層1〇〇4係爲 MgO之層且具有約10至約100奈米之厚度且最好約50奈米 之厚度。該厚度通常取決於該層準備要用之應用。爲了方 便銦坤化物在單晶矽氧化物上之磊晶增長,樣板層1 〇〇5可 以藉由覆蓋氧化物層而形成。該樣板層最好係爲鎵-銻、 鎵-鎂-銻、銦-鎂-氧或是鎂-砷-氧之1-10單層。 單晶矽合成半導體材料層1006之後最好藉由MBE形成以 覆蓋樣板層1005。合成半導體材料層1006最好包括高度敏 感性和具有在廣泛溫度範圍下之大電子遷移率例如InAs或 是GaAsSb之材料。在本發明之較偏好具體實施例中,層 1006包括具有從約10至1000奈米厚度之InAs之層。 根據説明在圖10之本發明之例示具體實施例,半導體裝 置結構1000包括InAs霍耳感測器裝置。製造InAs霍耳感測 器裝置之結構和方法對於熟悉此技藝的人士來説係爲已知 的。如同在圖10中説明,根據熟知之製造技術,在形成 InAs層1006之後,間隔開之導電電極1007和1008形成以覆 -28- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)515097 A7 B7 V. Description of the invention (25) The material layer is single crystal In As. The layer 1003 may include, for example, soil test element titanate, such as barium titanate or gill titanate, alkaline earth element. Acid salts such as lock acid salts or salt acid salts or soil test element acid salts such as barium sulphate or gill hammer salt. The intermediate oxide conversion layer 1004 is preferably formed to cover the layer 1003 to reduce the pressure generated from the mismatch between the crystal lattice of the buffer layer 1003 and the crystal lattice of the single crystal silicon semiconductor material layer. The conversion layer 1004 may include any suitable oxide material, such as manganese oxide (MnO), magnesium oxide (MgO), or thallium oxide (TaO). In this illustrated embodiment, the conversion layer 1000 is a layer of MgO and has a thickness of about 10 to about 100 nanometers, and preferably a thickness of about 50 nanometers. The thickness usually depends on the application for which the layer is intended to be used. In order to facilitate the epitaxial growth of indium sulfide on single crystal silicon oxide, the sample layer 1005 can be formed by covering the oxide layer. The sample layer is preferably a single layer of gallium-antimony, gallium-magnesium-antimony, indium-magnesium-oxygen, or magnesium-arsenic-oxygen. The single crystal silicon synthetic semiconductor material layer 1006 is preferably formed by MBE to cover the template layer 1005. The synthetic semiconductor material layer 1006 preferably includes a material that is highly sensitive and has a large electron mobility such as InAs or GaAsSb over a wide temperature range. In a preferred embodiment of the present invention, layer 1006 includes a layer of InAs having a thickness from about 10 to 1000 nanometers. According to an illustrative embodiment of the invention illustrated in FIG. 10, the semiconductor device structure 1000 includes an InAs Hall sensor device. The structure and method of manufacturing an InAs Hall sensor device are known to those skilled in the art. As illustrated in FIG. 10, according to well-known manufacturing techniques, after forming the InAs layer 1006, the spaced-apart conductive electrodes 1007 and 1008 are formed to cover -28- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 Mm)

裝 訂 f 515097 A7 B7 五、發明説明(26 ) 蓋層1006 °鈍化層10〇9形成以覆蓋電極1〇〇7和1008且隔絕 在電極間之區域。浮動半導體裝置1010之後形成在鈍化層 1009上且可以包括任何在此技藝中已知之合適裝置,例 如’加速度計。根據可得於熟悉此技藝之人士之傳統技 術,之後製造電氣連接至該裝置。假如裝置丨〇丨〇想要由單 晶♦材料形成時,層1009最好係爲單晶矽。 現在參考圖11,根據本發明之一具體實施例,提供一單 一積體電路。單一積體電路11 〇〇通常包括MOS電路1140電 氣地連接至霍耳感測器。在圖丨丨中,僅止於説明目的,且 沒有限制’ MOS電路1140係電氣地連接至]^^霍耳感測器 113 0,例如呈現在圖丨〇的。在該具體實施例中,半導體基 材11 〇 1係爲單晶硬石夕基材,例如矽晶圓且具有兩區域1102 和 1103。 根據本發明之該具體實施例,樣板層11〇8、非晶矽氧化 物層1109、單晶矽氧化物層1110、中間氧化物轉變層 1111、樣板層1112、單晶矽合成半導體材料層1113和電極 1114和1115由藉由這些參照圖1〇之霍耳感測器裝置之製造 所描述之相同材料和相同製程步驟所形成。爲了簡潔的緣 故這些元件之形成將不會額外地與圖11討論。 根據本發明之具體實施例,M0S電路1140首先使用熟知 於這些熟悉此技藝之人士之傳統製程步驟和技術形成在半 |導體基材1101中。MOS電路1140通常包括閘極電極11〇7、 閘極介電層1106和n+摻雜之區域11〇4和11〇5。閘極介電層 1106形成在基材no!之區域11〇2中,之後閘極電極η”形 -29 - 本紙張尺度適财S S家標準(CNS) A4祕(21GX 297公爱) 515097 A7 B7 五、發明説明(27 ) 成在閘極介電層1106上。執行選擇性之η-型式摻雜以形成 η+摻雜之區域1104和1105在基材11〇1内,沿著閘極電極 1107之相鄰側邊係爲MOS電晶體之源極、汲極或源極/汲 極區域。η+摻雜之區域1104和1105具有至少每立方公分約 1Ε18之原子之摻雜濃度。在積體電路之m〇s部分1140形成 之後,在製程期間所有形成之層從在區域丨丨〇3中之基材 1101之表面移除,其中霍耳感測器113〇將會形成。因此,Binding f 515097 A7 B7 V. Description of the invention (26) A cover layer 1006 ° passivation layer 1009 is formed to cover the electrodes 1007 and 1008 and to isolate the area between the electrodes. The floating semiconductor device 1010 is then formed on the passivation layer 1009 and may include any suitable device known in the art, such as an 'accelerometer. Electrical connections are then made to the device based on traditional techniques available to those skilled in the art. If the device is intended to be formed from a single crystal material, the layer 1009 is preferably a single crystal silicon. Referring now to FIG. 11, a single integrated circuit is provided in accordance with one embodiment of the present invention. The single integrated circuit 1 100 typically includes a MOS circuit 1140 electrically connected to a Hall sensor. In the figure, it is for illustrative purposes only, and there is no limitation. The MOS circuit 1140 is electrically connected to the Hall sensor 113 0, for example, as shown in FIG. In this embodiment, the semiconductor substrate 110 is a single crystal hard rock substrate, such as a silicon wafer, and has two regions 1102 and 1103. According to the specific embodiment of the present invention, the template layer 1108, the amorphous silicon oxide layer 1109, the single crystal silicon oxide layer 1110, the intermediate oxide transition layer 1111, the template layer 1112, and the single crystal silicon synthetic semiconductor material layer 1113 The and electrodes 1114 and 1115 are formed from the same materials and the same process steps described by the fabrication of these Hall sensor devices with reference to FIG. 10. For the sake of brevity, the formation of these elements will not be discussed additionally with FIG. According to a specific embodiment of the present invention, the MOS circuit 1140 is first formed in a semi-conductor substrate 1101 using traditional process steps and techniques familiar to those skilled in the art. The MOS circuit 1140 generally includes a gate electrode 1107, a gate dielectric layer 1106, and n + doped regions 1104 and 1105. The gate dielectric layer 1106 is formed in the region 102 of the substrate no !, and the gate electrode η "shape -29-This paper is suitable for SS Home Standard (CNS) A4 (21GX 297 public love) 515097 A7 B7 V. Description of the invention (27) is formed on the gate dielectric layer 1106. Selective η-type doping is performed to form η + doped regions 1104 and 1105 in the substrate 110, along the gate Adjacent sides of electrode 1107 are the source, drain, or source / drain regions of the MOS transistor. The η + doped regions 1104 and 1105 have a doping concentration of at least about 1E18 atoms per cubic centimeter. After the m0s portion 1140 of the integrated circuit is formed, all the formed layers are removed from the surface of the substrate 1101 in the area 丨 〇3 during the manufacturing process, in which the Hall sensor 113 will be formed. Therefore,

裝 裸矽基材提供用以霍耳感測器113 〇之相繼製程,例如在上 面提出之方法。 f 在MOS電路1140和霍耳感測器113〇兩者形成在基材11〇1 之後’製程持續以形成基本上完成之積體電路11〇〇。歐姆 接觸111 8和1119可以使用在此技藝中熟知之標準製程技術 分別地形成在閘極電極1107和電極1114上。絕緣層1121形 成在基材1101、MOS電路1140和霍耳感測器113〇上。絕緣 層1121之邵分之後移除以定義裝置在其中相互連接之接觸 開路。形成内連接溝渠在絕緣層丨丨2丨内以提供在接觸之間 之橫向連接。如圖11所説明,内連接112〇連接M〇s電晶體 之閘極電極至霍耳感測器1130之電極1114。鈍化層1116形 成在内連線1120和絕緣層1121上。在鈍化層1116形成之 後,裝置1117可以形成在霍耳感測器丨丨3 〇上在由電極丨丨i 4 和1115所定義之區域中。裝置1117可以是適合一起盥霍耳 感測器使用之任何浮動裝置,例如,加速度計。根據 可待於熟習此技藝〈人士之傳統技術,可以製造其他電氣 連接至㈣置和/或其他電氣<電子元件在積體電路謂 -30- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇 X 297公楚) 515097 A7 B7 五、發明説明(28 ) 内但是並沒有在該圖中説明。 清楚地,具有合成半導體部分和IV群之半導體部分之積 體電路之這些具體實施例意爲説明本發明之具體實施例而 並不限制本發明。有半導體裝置之其他結合之多樣性和本 發明之其他具體實施例落在本揭露之内。例如,合成半導 體部分可能包括發光二極體、光偵測器、二極體等等且IV 群半導體部分可以包括數位邏輯、記憶體陣列和可以形成 在傳統MOS積體電路中之大多數結構。藉由使用本發明之 具體實施例,整合在合成半導體材料中工作較佳之裝置與 在群IV半導體材料中工作較佳且容易地和/或不貴地形成 之其他元件較爲簡單。此允許裝置大小降低、製造成本下 降而產量和可靠性增加。 蠓 如在上述描述中所考慮的,單晶矽IV群晶圓也可以用在 只形成合成半導體電子元件在晶圓上。以此方式,晶圓基 本上係爲在合成半導體電子元件製造在單晶矽合成半導體 層覆蓋該晶圓期間使用之“處理”晶圓。所以,電子元件可 以形成在II-V或是II-IV半導體材料中在直徑至少接近200 毫米且可能至少接近300毫米之晶圓上。 藉由該型式基材之使用,相對地便宜之“處理,,晶圓藉由 放置其在相對地更耐久且容易製造之基礎材料上克服了合 成半導體晶圓之易碎性質。所以,可以形成積體電路使得 所有電子元件且特別地所有主動電子裝置,可以形成在合 成半導體材料内,即使基材本身可能包括IV群之半導體材 料。用於合成半導體裝置之製造成本應該減少,因爲比較 -31 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A7 B7 五、發明説明(29 ) 於相對小和更易碎之傳統合成半導體晶圓來説,更大之基 材可以更經濟地和更快速地處理。 在前面之規格中,本發明已經參照特定之具體實施例描 逑。然而,普通熟習此技藝之人士會了解許多修改和改變 可以達成而不需背離在下面申請專利範圍中所提之本發明 之範圍。因此,規格和圖形被視爲説明而不是限制的且所 有适樣足修改被視爲包括在本發明之範圍内。根據本發 明,例如,以銻爲基礎之材料之使用,例如銦銻化物 (InSb)、鋁銻化物(A1Sb)、銦鋁銻化物(][nAisb)、鎵銻化物 (GaSb)、銦鎵銻化物(InGaSb)和鋁鎵銻化物(A]iGaSb)於霍 耳政應王動層係爲可能的。熟習此技藝之人士將會了解, 本發明可以應用壬何霍耳效應《裝置或其他半導體裝置 結構在任何III-V或其他使用㈣確或其他合適之氧化物可 以與矽晶格符合之合成半導體中。 好處'其他優點和問題之解決方法已經用特定之旦 施例描述在上。然而,好處、優點、問題之解決方=任 何可以導致任何好處、優點或解決方法發生之或是變 明確的任何元素並不被理解爲任何或是所有中請專利範圍 之重要、必須之特點或是元素。如同在此使用的,該詞 “包含,,:”包括,,或是任何其他變異意指涵蓋非限制之包 括,使待包括一列元辛之劁趕 ^ σ . u 、万法、條文或是裝置並不 包括僅只這些元素但可以包括沒有表達地列出或是該製 程、万法、條文或裝置所固有之其他元素。Mounting the bare silicon substrate provides a sequential process for Hall sensors 113 °, such as the method proposed above. f After both the MOS circuit 1140 and the Hall sensor 113 are formed on the substrate 110, the process is continued to form a substantially completed integrated circuit 110. The ohmic contacts 111 8 and 1119 can be formed on the gate electrode 1107 and the electrode 1114 using standard process techniques well known in the art, respectively. An insulating layer 1121 is formed on the substrate 1101, the MOS circuit 1140, and the Hall sensor 113. The insulation layer 1121 is then removed to define the contact where the devices are interconnected in an open circuit. An interconnecting trench is formed within the insulating layer 2 to provide a lateral connection between the contacts. As illustrated in FIG. 11, the internal connection 112 is connected to the gate electrode of the Mos transistor to the electrode 1114 of the Hall sensor 1130. A passivation layer 1116 is formed on the interconnects 1120 and the insulating layer 1121. After the passivation layer 1116 is formed, the device 1117 may be formed on the Hall sensor 丨 丨 3 〇 in a region defined by the electrodes 丨 i 4 and 1115. The device 1117 may be any floating device suitable for use with a Hall sensor, such as an accelerometer. According to the traditional technology of the person who can be familiar with this technology, other electrical connections to the device and / or other electrical < electronic components in integrated circuits can be made -30- This paper size applies to China National Standard (CNS) A4 specifications (21〇X 297) 515097 A7 B7 5. In the description of the invention (28), but it is not illustrated in the figure. Clearly, these specific embodiments of an integrated circuit having a synthetic semiconductor portion and a semiconductor portion of an IV group are intended to illustrate specific embodiments of the invention and not to limit the invention. The diversity of other combinations of semiconductor devices and other specific embodiments of the present invention fall within this disclosure. For example, the synthetic semiconductor part may include light emitting diodes, photodetectors, diodes, etc. and the group IV semiconductor part may include digital logic, memory arrays, and most structures that can be formed in traditional MOS integrated circuits. By using specific embodiments of the present invention, it is relatively simple to integrate devices that work better in synthetic semiconductor materials and other elements that work better and are easily and / or inexpensively formed in group IV semiconductor materials. This allows for reduced device size, lower manufacturing costs and increased yield and reliability.蠓 As considered in the above description, single crystal silicon IV group wafers can also be used to form only synthetic semiconductor electronic components on the wafer. In this way, the wafer is basically a "processing" wafer used during the manufacture of synthetic semiconductor electronic components while the monocrystalline silicon synthetic semiconductor layer covers the wafer. Therefore, electronic components can be formed on II-V or II-IV semiconductor materials on wafers with a diameter of at least 200 mm and possibly at least 300 mm. With the use of this type of substrate, a relatively cheap "processing", the wafer overcomes the fragile nature of synthetic semiconductor wafers by placing it on a relatively more durable and easier to manufacture base material. Therefore, it can form Integrated circuits allow all electronic components, and in particular all active electronic devices, to be formed in synthetic semiconductor materials, even though the substrate itself may include semiconductor materials of group IV. The manufacturing cost for synthetic semiconductor devices should be reduced, as compared to -31 -This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 515097 A7 B7 V. Description of the invention (29) For the relatively small and more fragile traditional synthetic semiconductor wafers, larger substrates It can be processed more economically and faster. In the previous specifications, the present invention has been described with reference to specific embodiments. However, those skilled in the art will understand that many modifications and changes can be made without departing from the following. The scope of the invention as set forth in the claims. Therefore, the specifications and drawings are to be regarded as illustrative rather than restrictive, and Proper modification is considered to be included within the scope of the present invention. According to the present invention, for example, the use of antimony-based materials such as indium antimonide (InSb), aluminum antimonide (A1Sb), indium aluminum antimonide ( ] [nAisb), gallium antimonide (GaSb), indium gallium antimonide (InGaSb), and aluminum gallium antimonide (A) iGaSb) are possible in Hall's political system. Those familiar with this technology will understand The present invention can be applied to the non-Hall effect "device or other semiconductor device structure in any III-V or other synthetic semiconductors using accurate or other suitable oxides that can conform to the silicon lattice. Benefits' Other advantages and problems The solution has been described above with specific examples. However, any benefit, advantage, or solution to the problem = any element that can cause any benefit, advantage, or solution to occur or become clear is not to be understood as any Or all important, required features or elements of the patentable scope. As used herein, the term "comprising," "including," or any other variation is intended to cover non-limiting inclusion, To include a list of Yuan Xinzhi ^ σ. U, various methods, provisions or devices do not include only these elements but may include lists without expressions or other elements inherent to the process, methods, provisions or devices .

Claims (1)

A B c D 515097 六、申請專利範圍 1 · 一種單一積體電路,其包括: •一 MOS電路形成至少部分在單晶基材中; 一單晶合成半導體層覆蓋該單晶基材;以及 一霍耳感測器形成至少部分在該單晶合成半導體層, 該霍耳感測器電氣地連接至該MOS電路。 2.如申請專利範圍第1項之單一積體電路,其中該MOS電 路包括具有閘極電極之MOS電晶體且該霍耳感測器電氣 地連接至該閘極電極。 3·如申請專利範圍第1項之單一積體電路,其中該MOS電 路包括數位電路。 4·如申請專利範圍第1項之單一積體電路,其中該霍耳感 測器包括InAs層。 5·如申請專利範圍第1項之單一積體電路,其中該霍耳感 測器包括GaAsSb層。 6. —種半導體裝置,其包括: 一單晶半導體基材; 一氧化物層形成以覆蓋該基材; 一單晶合成半導體層形成以覆蓋該氧化物層;以及 一霍耳感測器至少形成部分在單晶合成半導體層中。 7. 如申請專利範圍第6項之半導體裝置,進一步包括中間 晶矽氧化物轉變層插入在該氧化物層和該單晶合成半導 體層之間。 8·如申請專利範圍第6項之半導體裝置,進一步包括樣板 層插入在該轉變層和該單晶合成半導體層之間。 -33- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)AB c D 515097 6. Scope of patent application 1. A single integrated circuit including: • a MOS circuit formed at least partially in a single crystal substrate; a single crystal synthetic semiconductor layer covering the single crystal substrate; and a huo An ear sensor is formed at least partially on the single crystal synthetic semiconductor layer, and the Hall sensor is electrically connected to the MOS circuit. 2. The single integrated circuit according to item 1 of the application, wherein the MOS circuit includes a MOS transistor having a gate electrode and the Hall sensor is electrically connected to the gate electrode. 3. The single integrated circuit according to item 1 of the patent application scope, wherein the MOS circuit includes a digital circuit. 4. A single integrated circuit as described in claim 1 wherein the Hall sensor includes an InAs layer. 5. The single integrated circuit as described in claim 1 wherein the Hall sensor includes a GaAsSb layer. 6. A semiconductor device comprising: a single crystal semiconductor substrate; an oxide layer is formed to cover the substrate; a single crystal synthetic semiconductor layer is formed to cover the oxide layer; and a Hall sensor is at least The formed portion is in a single crystal synthetic semiconductor layer. 7. The semiconductor device as claimed in claim 6 further comprising an intermediate crystalline silicon oxide conversion layer interposed between the oxide layer and the single crystal synthetic semiconductor layer. 8. The semiconductor device according to item 6 of the application, further comprising a template layer interposed between the conversion layer and the single crystal synthetic semiconductor layer. -33- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 515097 A8 B8 C8 D8 六、申請專利範圍 9·如申請專利_範圍第6項之半導體裝置,其中該單晶合成 半導體層包括從由InAs、GaAsSb和InSb所組成之群組中 選擇出之材料。 10·如申請專利範圍第7項之半導體裝置,其中該中間晶矽 氧化物轉變層包括從由MgO、TaO和MnO所組成之群組 中選擇出之材料。 11·如申請專利範圍第8項之半導體裝置,其中該樣板層包 括從由GaSb、InMgO和MgAsO所組成之群組中選擇出之 材料。 12·如申請專利範圍第6項之半導體裝置,其中該氧化物層 包括從由驗土元素歛酸鹽、驗土元素錯酸鹽和驗土元素 給酸鹽所組成之群組中選擇出之氧化物。 13. 如申請專利範圍第6項之半導體裝置,其中該氧化物層 包括從由 TaTi03、BaZr03、BaHf03、SrHf03 和 SrZr03 所 組成之群組中選擇出之氧化物。 14. 如申請專利範圍第6項之半導體裝置,其中該氧化物層 包括非晶矽氧化物層。 15. 如申請專利範圍第14項之半導體裝置,其中該氧化物層 包括以磊晶形成爲單晶氧化物層之非晶石夕氧化物且相繼 地熱處理以轉換該單晶氧化物至非晶矽氧化物。 16·如申請專利範圍第6項之半導體裝置,其中該基材包括 17.如申請專利範圍第16項之半導體裝置,進一步包括非晶 矽氧化矽形成於該氧化物層之下。 -34 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A8 B8 C8 D8 六、申請專利範圍 18·如申請專科範圍第6項之半導體裝置,其中該氧化物層 包括藉由熱處理單晶氧化物層形成之非晶矽氧化物。 19· 一種製造半導體裝置之方法,其包括下面步驟: 提供早晶半導體基材; 磊晶增長單晶氧化物層以覆蓋該基材; 增長單晶合成半導體結構以覆蓋該單晶氧化物,該單 晶合成半導體結構包括中間氧化物轉變層、樣板層和單 晶合成半導體層;以及 形成霍耳感測器至少部分在單晶合成半導體結構中。 20·如申請專利範圍第19項之方法,進一步包括在磊晶增長 之步驟期間,形成非晶矽氧化物層以使之位於單晶氧化 物層下之步驟。 21. 如申請專利範圍第20項之方法,進一步包括熱退火該單 晶氧化物層以轉換該單晶氧化物至非晶矽氧化物之進一 層之步驟。 22. 如申請專利範圍第19項之方法,其中增長單晶合成半導 體結構之步驟包括藉由從由MBE、MOCVD、CVD、 MEE、ALE、PVD、PLD和CSD所組成之群組中選擇出之 製程而增長之步驟。 23·如申請專利範圍第1 9項之方法,其中提供半導體基材之 步骤包括提供包含矽之單晶基材之步驟。 24·如申請專利範圍第23項之方法,進一步包括下面步驟: 形成數位積體電路至少部分在基材中;以及 形成内連線電氣地連接該數位積體電路和霍耳感測 -35- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A8 B8 C8 D8 六、申請專利範圍 器。 一 25·如申請專利範圍第24項之方法,其中形成數位積體電路 之步驟包括形成具有閘極電極之MOS電晶體且該霍耳感 測器電氣地連接至該閘極電極之步驟。 26· —種製造半導體裝置之方法,其包括下面步驟: 提供單晶半導體基材; 蟲晶增長單晶氧化物層以覆蓋該基材; 增長單晶合成半導體結構以覆蓋該單晶氧化物,該單 晶合成半導體結構包括中間氧化物轉變層、樣板層和單 晶合成半導體層,其中該單晶合成半導體層包含InAs以 及; 形成霍耳感測器至少部分在單晶合成半導體結構中。 27·如申請專利範圍第26項之方法,進一步包括在磊晶增長 之步驟期間,形成非晶石夕氧化物層而使之位於單晶氧化 物層下之步驟。 28.如申請專利範圍第27項之方法,進一步包括熱退火該單 晶氧化物層以轉換該單晶氧化物至非晶矽氧化物之進一 層之步驟。 29·如申請專利範圍第26項之方法,其中增長單晶合成半導 體結構之步驟包括藉由從由MBE、MOCVD、CVD、 MEE、ALE、PVD、PLD和CSD所組成之群組中選擇出之 製程而增長之步驟。 30.如申請專利範圍第26項之方法,進一步包括下面步驟: 形成數位積體電路至少部分在基材中;以及 -36- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A B c D 々、申請專利範圍 形成内連線電氣地連接該數位積體電路和霍耳感測 器。 31.如申請專利範圍第30項之方法,其中形成數位積體電路 之步驟包括形成具有閘極電極之MOS電晶體且該霍耳感 測器電氣地連接至該閘極電極之步驟。 32· —種製造半導體裝置之方法,其包括下面步驟: 提供單晶矽基材; 形成CMOS電路至少部分在矽基材中,該CMOS電路包 括具有閘極電極之MOS電晶體; 磊晶增長單晶氧化物層以覆蓋該基材; 在磊晶增長之步驟期間,形成氧化矽之非晶矽層而使 之位於該單晶氧化物層下; 形成中間氧化物轉變層以覆蓋單晶氧化物層; 增長單晶合成半導體結構以覆蓋該轉變層; 熱處理該單晶氧化物層以轉換該單晶氧化物至非晶矽 氧化物之額外層; 形成霍耳感測器至少部分從該單晶合成半導體結構; 以及 形成在霍耳感測器和閘極電極間之電氣連接。 33·如申請專利範圍第32項之方法,其中磊晶增長單晶氧化 物層之步驟包括磊晶增長從由鹼土元素鈦酸鹽、鹼土元 素铪酸鹽和鹼土元素錘酸鹽所組成之群組中選擇出之氧 化物層之步驟。 34.如申請專利範圍第33項之方法,其中磊晶增長單晶氧化 -37- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 515097 A B c D 六、申請專利範圍 物層之步驟_包括磊晶增長BaTi03層之步驟。 35.如申請專利範圍第3 2項之方法,進一步包括形成插入在 該轉變層和該單晶合成半導體結構之間之樣板層之步 驟。 36·如申請專利範圍第3 5項之方法,其中形成該樣板層之步 驟包括形成從由GaSb、InMgO和MgAsO所組成之群組中 選擇出之材料之樣板層。 37·如申請專利範圍第3 2項之方法,其中形成該中間氧化物 轉變層之步驟包括形成從由MgO、MnO和Ta〇所組成之 群組中選擇出之氧化物之轉變層。 -38- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)515097 A8 B8 C8 D8 6. Scope of Patent Application 9. If a semiconductor device is applied for patent_Scope item 6, the single crystal synthesis semiconductor layer includes materials selected from the group consisting of InAs, GaAsSb, and InSb. 10. The semiconductor device as claimed in claim 7 wherein the intermediate crystalline silicon oxide conversion layer includes a material selected from the group consisting of MgO, TaO, and MnO. 11. The semiconductor device according to item 8 of the application, wherein the template layer includes a material selected from the group consisting of GaSb, InMgO, and MgAsO. 12. The semiconductor device according to item 6 of the patent application, wherein the oxide layer includes one selected from the group consisting of a soil test element acid salt, a soil test element acid salt, and a soil test element donor acid salt. Oxide. 13. The semiconductor device as claimed in claim 6, wherein the oxide layer includes an oxide selected from the group consisting of TaTi03, BaZr03, BaHf03, SrHf03, and SrZr03. 14. The semiconductor device as claimed in claim 6, wherein the oxide layer includes an amorphous silicon oxide layer. 15. The semiconductor device according to item 14 of the application, wherein the oxide layer includes an amorphous stone oxide formed by epitaxial formation as a single crystal oxide layer and successively heat-treated to convert the single crystal oxide to amorphous Silicon oxide. 16. The semiconductor device according to item 6 of the patent application, wherein the substrate comprises 17. The semiconductor device according to item 16 of the patent application, further comprising amorphous silicon oxide formed under the oxide layer. -34-This paper size is applicable to Chinese National Standard (CNS) A4 specification (210 X 297 mm) 515097 A8 B8 C8 D8 VI. Application for patent scope 18 · If you apply for the semiconductor device in the scope of specialty No. 6, the oxide layer It includes an amorphous silicon oxide formed by heat-treating a single crystal oxide layer. 19. A method of manufacturing a semiconductor device, comprising the steps of: providing an early crystal semiconductor substrate; epitaxially growing a single crystal oxide layer to cover the substrate; growing a single crystal synthetic semiconductor structure to cover the single crystal oxide, the The single crystal synthetic semiconductor structure includes an intermediate oxide conversion layer, a template layer, and a single crystal synthetic semiconductor layer; and forming a Hall sensor is at least partially in the single crystal synthetic semiconductor structure. 20. The method of claim 19 in the scope of patent application, further comprising the step of forming an amorphous silicon oxide layer so as to be positioned under the single crystal oxide layer during the epitaxial growth step. 21. The method of claim 20, further comprising the step of thermally annealing the single crystal oxide layer to convert the single crystal oxide to a further layer of amorphous silicon oxide. 22. The method of claim 19, wherein the step of growing a single crystal synthetic semiconductor structure includes selecting from a group consisting of MBE, MOCVD, CVD, MEE, ALE, PVD, PLD, and CSD Steps to process growth. 23. The method of claim 19, wherein the step of providing a semiconductor substrate includes the step of providing a single crystal substrate including silicon. 24. The method of claim 23, further comprising the steps of: forming a digital integrated circuit at least partially in the substrate; and forming an interconnect to electrically connect the digital integrated circuit and the Hall sensing -35- This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 515097 A8 B8 C8 D8 6. Applicants for patent scope. 25. The method of claim 24, wherein the step of forming a digital integrated circuit includes the step of forming a MOS transistor having a gate electrode and the Hall sensor is electrically connected to the gate electrode. 26 · A method for manufacturing a semiconductor device, comprising the steps of: providing a single crystal semiconductor substrate; a worm crystal growing a single crystal oxide layer to cover the substrate; growing a single crystal synthetic semiconductor structure to cover the single crystal oxide, The single crystal synthetic semiconductor structure includes an intermediate oxide conversion layer, a template layer, and a single crystal synthetic semiconductor layer, wherein the single crystal synthetic semiconductor layer includes InAs; and a Hall sensor is formed at least partially in the single crystal synthetic semiconductor structure. 27. The method of claim 26, further comprising the step of forming an amorphous oxide oxide layer under the single crystal oxide layer during the epitaxial growth step. 28. The method of claim 27, further comprising the step of thermally annealing the single crystal oxide layer to convert the single crystal oxide to a further layer of amorphous silicon oxide. 29. The method of claim 26, wherein the step of growing a single crystal synthetic semiconductor structure includes selecting from a group consisting of MBE, MOCVD, CVD, MEE, ALE, PVD, PLD, and CSD Steps to process growth. 30. The method according to item 26 of the patent application scope, further comprising the steps of: forming a digital integrated circuit at least partially in the substrate; and -36- this paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 public) (Centi) 515097 AB c D 々 The scope of the patent application forms an interconnector to electrically connect the digital integrated circuit and the Hall sensor. 31. The method of claim 30, wherein the step of forming a digital integrated circuit includes the step of forming a MOS transistor having a gate electrode and the Hall sensor is electrically connected to the gate electrode. 32 · A method for manufacturing a semiconductor device, comprising the steps of: providing a single crystal silicon substrate; forming a CMOS circuit at least partially in the silicon substrate, the CMOS circuit including a MOS transistor having a gate electrode; and an epitaxial growth single A crystalline oxide layer to cover the substrate; during the epitaxial growth step, an amorphous silicon layer of silicon oxide is formed under the single crystal oxide layer; an intermediate oxide conversion layer is formed to cover the single crystal oxide Layers; growing a single crystal synthetic semiconductor structure to cover the conversion layer; heat treating the single crystal oxide layer to convert the single crystal oxide to an additional layer of amorphous silicon oxide; forming a Hall sensor at least partially from the single crystal A synthetic semiconductor structure; and an electrical connection formed between the Hall sensor and the gate electrode. 33. The method of claim 32, wherein the step of epitaxial growth of the single crystal oxide layer includes epitaxial growth from a group consisting of an alkaline earth element titanate, an alkaline earth element osmate, and an alkaline earth element hammer salt. Step of selecting the oxide layer in the group. 34. The method according to item 33 of the scope of patent application, in which epitaxial growth single crystal oxidation -37- This paper size is applicable to Chinese National Standard (CNS) A4 specification (210 X 297 mm) 515097 AB c D 6. Scope of patent application The physical layer step includes the step of epitaxially growing the BaTi03 layer. 35. The method of claim 32, further comprising the step of forming a template layer interposed between the conversion layer and the single crystal synthetic semiconductor structure. 36. The method of claim 35, wherein the step of forming the template layer includes forming a template layer of a material selected from the group consisting of GaSb, InMgO, and MgAsO. 37. The method of claim 32, wherein the step of forming the intermediate oxide conversion layer includes forming a conversion layer of an oxide selected from the group consisting of MgO, MnO, and Ta0. -38- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW090120275A 2000-08-18 2001-08-17 Compound semiconductor hall sensor and process for fabricating same TW515097B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US64255800A 2000-08-18 2000-08-18

Publications (1)

Publication Number Publication Date
TW515097B true TW515097B (en) 2002-12-21

Family

ID=24577094

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090120275A TW515097B (en) 2000-08-18 2001-08-17 Compound semiconductor hall sensor and process for fabricating same

Country Status (3)

Country Link
AU (1) AU2001279196A1 (en)
TW (1) TW515097B (en)
WO (1) WO2002016955A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181391A1 (en) * 2015-05-11 2016-11-17 Technion Research & Development Foundation Limited Image sensor and method of fabricating the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670213A (en) * 1969-05-24 1972-06-13 Tokyo Shibaura Electric Co Semiconductor photosensitive device with a rare earth oxide compound forming a rectifying junction
JPS57118683A (en) * 1981-01-17 1982-07-23 Toshiba Corp Manufacture of callium arsenide hall device
EP0548391B1 (en) * 1991-12-21 1997-07-23 Deutsche ITT Industries GmbH Offset compensated Hall-sensor
US5883564A (en) * 1994-04-18 1999-03-16 General Motors Corporation Magnetic field sensor having high mobility thin indium antimonide active layer on thin aluminum indium antimonide buffer layer
US5491461A (en) * 1994-05-09 1996-02-13 General Motors Corporation Magnetic field sensor on elemental semiconductor substrate with electric field reduction means
US5528067A (en) * 1995-05-08 1996-06-18 Hughes Aircraft Company Magnetic field detection
KR100338611B1 (en) * 1997-02-28 2002-05-27 오까다 도시 Magnetic sensor

Also Published As

Publication number Publication date
WO2002016955A3 (en) 2002-06-27
AU2001279196A1 (en) 2002-03-04
WO2002016955A2 (en) 2002-02-28

Similar Documents

Publication Publication Date Title
TW507301B (en) Semiconductor structure including a partially annealed layer and method of forming the same
TW494450B (en) Communicating device
TW515098B (en) Heterojunction tunneling diodes and process for fabricating the same
TW508834B (en) Integrated circuits with optical signal propagation
TW546686B (en) Mixed-signal semiconductor structure, device including the structure, and methods of forming the device and the structure
US7211852B2 (en) Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
US20020190232A1 (en) Structure and method for fabricating semiconductor structures and devices for detecting smoke
KR20040108771A (en) Method of growing monocrystalline oxide having a semiconductor device thereon
TW495996B (en) Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
TW567525B (en) Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
TW550640B (en) Structure and method for fabricating semiconductor structures and devices for detecting chemical reactant
TW503460B (en) Semiconductor structure including a magnetic tunnel junction and a process for fabricating same
TW515097B (en) Compound semiconductor hall sensor and process for fabricating same
TW544728B (en) Semiconductor structure, semiconductor device and process for fabricating the semiconductor structure
TW543143B (en) Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate with an intermetallic layer
TW497261B (en) Integrated circuits with optical interconnect
TW494476B (en) Hybrid semiconductor structure and device
TW540101B (en) Semiconductor structure and device including a monocrystalline conducting layer and method for fabricating the same
TW517282B (en) Structure and method for fabricating semiconductor devices
US20030015705A1 (en) Structure and method for fabricating semiconductor structures and devices with an energy source
TW536740B (en) Structure and method for fabricating semiconductor structures and devices utilizing binary metal oxide layers
TW546692B (en) Structure and method for fabricating complementary III-V structures and devices utilizing the formation of a compliant substrate for materials used to form the same
TW506169B (en) Optical structure on compliant substrate and process for fabricating same
TW578275B (en) Semiconductor structure and device including a monocrystalline compound semiconductor layer formed overlying a compliant substrate and a method of forming the same
TW518668B (en) Structure and method for fabricating a high-speed interface in semiconductor structures