TW503460B - Semiconductor structure including a magnetic tunnel junction and a process for fabricating same - Google Patents

Semiconductor structure including a magnetic tunnel junction and a process for fabricating same Download PDF

Info

Publication number
TW503460B
TW503460B TW090117916A TW90117916A TW503460B TW 503460 B TW503460 B TW 503460B TW 090117916 A TW090117916 A TW 090117916A TW 90117916 A TW90117916 A TW 90117916A TW 503460 B TW503460 B TW 503460B
Authority
TW
Taiwan
Prior art keywords
layer
group
oxide
patent application
item
Prior art date
Application number
TW090117916A
Other languages
Chinese (zh)
Inventor
Kurt Eisenbeiser
Jeffrey M Finder
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of TW503460B publication Critical patent/TW503460B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3213Exchange coupling of magnetic semiconductor multilayers, e.g. MnSe/ZnSe superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

High quality epitaxial layers of ferromagnetic materials can be grown overlying large silicon wafers (22) by first growing an accommodating buffer layer (24) on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. This technique permits the fabrication of devices (96) employing ferromagnetic materials on a monocrystalline semiconductor substrate. In particular, magnetic tunnel junction devices may be fabricated on silicon in accordance with this technique.

Description

503460 A7 B7 本專利申請於200()年7月24日提出美國專利申請,專利申 請案號爲09/624526。 發明範疇 本發明廣泛與半導體結構和裝置及其製造方法有關,尤503460 A7 B7 This patent application filed a U.S. patent application on July 24, 200 (). The patent application number is 09/624526. FIELD OF THE INVENTION The present invention is widely related to semiconductor structures and devices and methods of making the same.

其,本發明與磁性隧穿接面(MTJ)結構和裝置及在單結晶 半導體基板上製造MTJ裝置有關。 ° W 發明背景 磁性隧穿接面(MTJ)裝置在微電子產業界有數種應用。 例如,MTJ裝置可用來形成磁性非揮發性記憶體元件、磁 場感測器等等。 MTJ裝置通常包括兩層被一薄絕緣層分隔的強磁場層。 MTJ裝置製造方式通常是在鳃鈦酸鹽基板上形成強磁性及 、,€緣層。此類的基板相當昂貴,並且通常只能取得相當小 的形狀(例如,直徑小於約兩英吋的基板)。 MTJ裝置的性能通常會隨著強磁性膜結晶度遞增而遞增 。例如,就單結晶強磁性材料而言,每施加至強磁性層之 磁場總量的阻抗變化量通常大於相同材料之多晶體或非結 晶形式的阻抗變化量。此外,介於絕緣與強磁性層之間的 截然介面易於因降低裝置雜訊而改良MTJ裝置的性能。因 此’希望有在基板形成具有截然介面之單結晶強磁性及絕 緣材料的方法。 與在鳃鈦酸鹽基板上製造兑類裝置的高成本相比,如果 以低成本取得大面積高品質單結晶強磁性材料薄膜,則有 助於以低成本在該薄膜上製造各種半導體裝置。此外,如 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇X297公釐) A7 B7 五、發明説明(2 ) 果能夠在諸如矽晶圓的大容積晶圓上實現高品質單結晶強 磁性材料的薄膜,則可利用梦及強磁性材料的特性來=現 積體裝置結構。 、 时因此,需要有一種強磁性結構,其能夠提供優於另一種 單結晶材料(如半導體晶圓)的高品質單結晶合成強磁性膜 ,以及需要有一種製造此類結構的方法。具體而言,需要 有一種可在矽基板上磊晶生長的MTJ裝置,以此方式降低 MTJ裝置及製造單片集成梦裝S及電路的成本。 圖式簡單説明 本發明將藉由實例及附圖來進行解説,但本發明未限定 在這些實例及附圖心其中相似的參照代表相似的元件, 並且其中: 圖1至3顯示根據本發明各種具體實施例之裝置結構的 面原理圖; 以圖表顯示可獲得的最大膜厚度與主晶和生長結晶覆 蓋層間晶格不匹配間的關係; 圖5顯示在單結晶半$體基板上製造磁性随穿接面的斷面 原理圖; 圖6顯示在單結晶半導體基板上製造磁性隧穿接面疊層的 斷面原理圖; 圖7顯不圖6所不之模板層之裝置的斷面原理圖; 圖8顯示圖6所示之介於形成於單結晶半導體基板中之磁 性陵穿接面與積體邏輯元件之間之單片集成之裝置的斷面 原理圖;以及 -5- 本紙張尺度適财S國家標平(CNS) A4規格(2^· X 297公釐)The invention relates to a magnetic tunnel junction interface (MTJ) structure and device, and a method of manufacturing an MTJ device on a single crystal semiconductor substrate. ° W BACKGROUND OF THE INVENTION Magnetic tunnel junction (MTJ) devices have several applications in the microelectronics industry. For example, MTJ devices can be used to form magnetic non-volatile memory elements, magnetic field sensors, and the like. MTJ devices usually include two layers of strong magnetic fields separated by a thin insulating layer. The manufacturing method of the MTJ device is usually to form a ferromagnetic and a marginal layer on the gill titanate substrate. Such substrates are quite expensive and usually only obtain relatively small shapes (for example, substrates with a diameter of less than about two inches). The performance of MTJ devices usually increases with increasing crystallinity of the ferromagnetic film. For example, in the case of a single crystalline ferromagnetic material, the amount of change in impedance per total amount of magnetic field applied to the ferromagnetic layer is usually greater than the amount of change in impedance of polycrystalline or non-crystalline forms of the same material. In addition, the sharp interface between the insulating and ferromagnetic layers makes it easy to improve MTJ device performance by reducing device noise. Therefore, a method of forming a single crystal ferromagnetic and insulating material having a distinct interface on a substrate is desired. Compared with the high cost of manufacturing a hybrid device on a gill titanate substrate, if a large-area, high-quality single-crystal ferromagnetic material thin film is obtained at a low cost, it will help to manufacture various semiconductor devices on the thin film at a low cost. In addition, such as -4- this paper size applies Chinese National Standard (CNS) A4 specification (21 × 297 mm) A7 B7 V. Description of the invention (2) The result can achieve high quality on large-volume wafers such as silicon wafers The thin film of a single crystal ferromagnetic material can use the characteristics of dreams and ferromagnetic materials to = the current integrated device structure. Therefore, there is a need for a ferromagnetic structure that can provide a high-quality single crystal synthetic ferromagnetic film that is superior to another single crystal material (such as a semiconductor wafer), and a method for manufacturing such a structure. Specifically, there is a need for an MTJ device that can be epitaxially grown on a silicon substrate, in this way reducing the cost of the MTJ device and manufacturing the monolithic integrated dream-equipped S and circuits. The drawings briefly illustrate the present invention by way of examples and drawings, but the present invention is not limited to these examples and drawings, wherein similar references represent similar elements, and among which: FIGS. 1 to 3 show various examples according to the present invention. Schematic diagram of the device structure of the specific embodiment; a graph showing the relationship between the maximum film thickness available and the lattice mismatch between the main crystal and the growing crystal overlay; Figure 5 shows the fabrication of magnetic Schematic diagram of the cross-section of the junction surface; Figure 6 shows the schematic diagram of the cross-section of a magnetic tunnel junction junction stack on a single crystal semiconductor substrate; Figure 7 shows the schematic diagram of the device of the template layer shown in Figure 6 Figure 8 shows a schematic sectional view of the single-chip integrated device shown in Figure 6 between the magnetic ridge junction surface formed in the single crystal semiconductor substrate and the integrated logic element; and -5- the paper size Shicai S National Standard Flat (CNS) A4 Specifications (2 ^ · X 297 mm)

贫谷種具體實施例之其他裝置結 圖9至I8顯示根據本發明各稀i 構的斷面原理圖。 熟知技藝人士應明白,圖中的元件是簡化的圖解,並且 不需要按比例㈣。例如,相料其他元件,目中部份元 件的尺寸可能過度放大,以利於更容易瞭解本發 實施例。 圖式詳細説明 圖1顯示根據本發明一項具體實施例之微電子結構2〇之 -部份的斷面原理圖。微電子結構2G包括單結晶基板Μ、 ^含單結晶材料的容納緩衝層24以及強磁性材料層26,其 最好是單結晶。在此上下文中,術語「單結晶」應具有半 導體產業内常用的意義。術語「單結晶」應代表屬於單晶 或大體上屬於單晶的材料,並且應包含具有相當少量缺陷( 諸如矽或矽化鍺或混合物之基板中常發現的位錯等等)的材 料,以及半導體產業中常發現之此類材料的磊晶層。 根據本發明一項具體實施例,結構2〇還包括位於基板22 與容納緩衝層24之間的非結晶中間層28。結構2〇還可包括 位於容納緩衝層24與強磁性材料層26之間的模板層30。如 下文中詳細的説明,模板層有助於在容納緩衝層上開始生 長強磁性材料層。非結晶中間層有助於減緩容納緩衝層應 i ’並藉此協助生長向結晶品質容納緩衝層。 根據本發明一項具體實施蚵,基板22是單結晶矽晶圓, 最好是大尺寸單結晶矽晶圓。晶圓可能屬於周期表第IV族 材料’並且最好是第IVA族材料。第IV族半導體材料的實 -6- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Other Device Structures of the Lean Grain Specific Embodiments Figs. 9 to I8 show schematic sectional views of various lean structures according to the present invention. Those skilled in the art should appreciate that the elements in the figures are simplified diagrams and do not need to be scaled. For example, if other components are expected, the size of some of the components may be excessively enlarged to facilitate understanding of the embodiment of the present invention. Detailed description of the drawings Fig. 1 shows a schematic sectional view of a part of a microelectronic structure 20 according to a specific embodiment of the present invention. The microelectronic structure 2G includes a single crystal substrate M, a storage buffer layer 24 containing a single crystal material, and a ferromagnetic material layer 26, which is preferably a single crystal. In this context, the term "single crystal" should have its usual meaning in the semiconductor industry. The term "single crystal" shall represent materials that are single crystals or generally single crystals, and shall include materials with a relatively small number of defects (such as dislocations commonly found in substrates of silicon or germanium silicide or mixtures, etc.), as well as the semiconductor industry The epitaxial layer of such materials often found in China. According to a specific embodiment of the present invention, the structure 20 further includes an amorphous intermediate layer 28 between the substrate 22 and the containing buffer layer 24. The structure 20 may further include a template layer 30 between the containing buffer layer 24 and the ferromagnetic material layer 26. As explained in detail below, the template layer helps to start growing a layer of ferromagnetic material on the containment buffer layer. The amorphous intermediate layer helps to slow down the containment buffer layer i 'and thereby assists the growth towards a crystalline quality containment buffer layer. According to a specific implementation of the present invention, the substrate 22 is a single crystal silicon wafer, preferably a large-size single crystal silicon wafer. The wafer may be a Group IV material of the periodic table 'and is preferably a Group IVA material. Properties of Group IV semiconductor materials -6- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

503460 A7 _B7^_._ 五、發明説明(4 ) 例包括矽、鍺、混合矽與鍺、混合矽與碳、混合矽、鍺與 碳等等。基板22也可能屬於合成半導體材料。可按照特定 半導體結構的需求,從第IIIA與VA族元素(III-V半導體合 成物)、混合III-V合成物、第II(A與B)與VIA族元素(II-VI半導體合成物),以及混合II-VI合成物中選用基板2 2的 合成半導體材料。實例包括砷化鎵(GaAs)、砷化鎵銦 (GalnAs)、坤化鎵鋁(GaAlAs)、磷化銦(InP)、硫化鎘 (CdS)、碲化鎘汞(CdHgTe)、硒化鋅(ZnSe)、硒化鋅硫 (ZnSSe)等等。 基板22最好是包含矽或鍺的晶圓,並且最好是如半導體 業產中使用的高品質單結晶矽晶圓。容納緩衝層24最好是 基礎基板上羞晶生長的单結晶氧化物或氣化物材料。根據 本發明一項具體實施例,非結晶中間層28係在基板22上生 長,並位於基板22與生長的容納緩衝層24之間,其方式是 在生長容納緩衝層2 4期間氧化基板2 2。非結晶中間層係用 來減緩由於基板與緩衝層間晶格常數差異而導致容纳緩衝 層可能會發生的應變。在本文中,晶格常數代表在表面平 面上所測量之細胞原子間的距離。如果非結晶中間層未減 緩此類的應變,則應變會導致容納緩衝層中結晶結構中的 缺陷。接著,容納緩衝層中結晶結構中的缺陷將導致難以 實現強磁性材料層2 6中的高品質結晶結構。 容納緩衝層24最好是選用奏基礎基板結晶相容及與覆蓋 金屬氧化物材料結晶相容的單結晶氧化物或氮化物材料。 例如,此類的材料可能是具有大體上匹配基板及後續供應 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 503460 A7 B7 五、發明説明(5 ) 之強磁性材料之晶格結構的氧化物或氮化物。容納緩衝層 所適用的材料包括氧化金屬,諸如驗土金屬鈥酸鹽、驗土 金屬結酸鹽、驗土金屬給酸鹽、驗土金屬赵酸鹽、驗土金 屬釕酸鹽、鹼土金屬鈮酸鹽、鹼土金屬釩酸鹽、如鹼土金 屬錫基鈣鈦礦(alkaline earth metal tin_based perovskite)之類 的氧化鈣鈦礦、鹼土金屬鋁酸鹽、鑭鋁酸鹽、氧化鑭銳及 氧化亂。另外,容納緩衝層也可使用諸如氮化鎵、氮化鋁 及氮化硼之類的氮化物。這些材料大部份是隔離體,雖然( 例如)鳃、釕是導體。一般而言,這些材料是氧化金屬或氮 化金屬’尤其’這些氧化金屬或氮化金屬包括至少兩個不 同的金屬元素’並且具有|弓鈥礦晶格結構。在某些特定應 用中,氧化金屬或氮化金屬包括至少三個或三個以上不同 的金屬元素。 非結晶中間層2 8較佳是藉由將基板2 2表面氧化所形成的 氧化物’尤其是由氧化;?夕所組成。非結晶中間層2 8的厚度 足以減緩因基板22與容納緩衝層24的晶格常數間不匹配所 導致的應變。通常,非結晶中間層2 8的厚度大約是〇 · 5到5 毫微米(nm)。 可按照特定結構或應用的需求,選用層26的強磁性材料 。例如,適合強磁性材料層2 6的材料包括一般化學公式 (AxB^jJCCb’其中X介於〇至1範圍内,並且其中a是鋼或 钕,B是鳃、鋇、鈣或鉛、而c是Mn、(MnyC〇1-y)或 (ΜηζΝυ,其中y和z大於零且小於壹。 適合的模板材料以化學方式鍵合在容納緩衝層24表面上 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) B7 五、發明説明(6 ) 的選取部位,並提供後續強磁性材料層2 6磊晶生長集結 (nucleation)的部位。當使用時,模板層30的厚度介於1至 1〇層單分子層(monolayer)。 圖2顯示根據本發明另一項具體實施例之微電子結構40 之一部份的斷面圖。結構4〇類似於前文説明的結構20,除 了額外的絕緣層3 2係位於強磁性材料2 6上,以及第二額外 強磁性材料層33係形成於絕緣層32上以外。適合絕緣層32 的絕緣材料可包括配合容納緩衝層2 4所列出的任何絕緣材 料,而強磁性材料層3 3可包括配合層2 6所列出的任何強磁 性材料。層33通常大約1至6 nm,並且最好小於約2.5 nm。 圖3顯示根據本發明另一項示範性具體實施例之微電子結 構3 4之一部份的斷面原理圖。結構34類似於結構4〇,除了 結構34包括非結晶層36,而不是容納緩衝層24及非結晶介 面層2 8以夕卜。 如下文中的詳細説明,可用如上文所述的類似方法來形 成非結晶層3 6,其方式是先形成一容納緩衝層及一非結晶 介面層。然後,將容納緩衝層經過退火處理,以將單結晶 容納緩衝層轉換爲非結晶層。以此方式形成的非結晶層36 包括來自於容納緩衝層及介面層的材料,非結晶層可能是 或不是混合物(amalgamate)。因此,層36可包括一層或兩 層非結晶層。介於基板2 2與額外緩衝層3 2間形成的非結晶 層3 6(接著層32形成)減緩介於層22與32間的應力,並且 供眞正合乎標準的基板’以利後續處理-例如,強磁性材 料層26形成。 -9- i紙張尺度適财g S家標準(CNS) A4規格(21GX 297公复)"" -------- 503460 A7 ___ _B7 五、發明説明(7 ) 前文中配合圖1及2所説明的製程適用於在一單結晶基板 上生長單結晶強磁性材料層。然而,配合圖3所説明之包括 將單結晶容納緩衝層轉換成非結晶氧化物層的製造更適合 生長單結晶強磁性材料層,因爲其允許在形成層26之前先 減緩層3 2中的任何應力。 根據本發明一項具體實施例,於層3 6形成期間層3〇係作 爲退火罩(anneal cap),並且於後續強磁性材料層26形成期 間作爲模板。因此,層30的厚度最好是足以提供適合生長 層26之模板的厚度(至少一單分子層),並且是允許形成作 爲無缺陷單結晶層之層3 〇的薄度(通常小於約十層單分子層 )0 下列非限制性、作例證的實例説明根據本發明各種替代 具體實施例之結構20、40與結構34中可用的各種材料組合 這些疋全疋用來説明,並且本發明不限定於這些作例證 的實例。 實例1 根據本發明一項具體實施例,如圖!所示,單結晶基板 22係以(1〇〇)方向爲目的之矽基板。矽基板可能是(例如)用 來製造直徑大約爲200到300 mm之互補金屬氧化物半導體 (CMOS)積體電路中常用的碎基板。根據本發明的此項具體 實施例,容納緩衝層24是SrgBaNgTi〇3單結晶層,而非結日= 中間層是在介於矽基板與容納緩衝層間之界面上形成的氧 化石夕(SiOx)層。所選用的層24合成物是爲了獲得緊密匹配 對應之後續形成層26之晶格常數的_個或_個以格f -10-503460 A7 _B7 ^ _._ 5. Description of the invention (4) Examples include silicon, germanium, mixed silicon and germanium, mixed silicon and carbon, mixed silicon, germanium and carbon, and so on. The substrate 22 may also belong to a synthetic semiconductor material. According to the requirements of specific semiconductor structures, from IIIA and VA elements (III-V semiconductor composite), mixed III-V compounds, II (A and B) and VIA elements (II-VI semiconductor composite) And mixed semiconductor materials selected from the substrate II 2 in the mixed II-VI composition. Examples include gallium arsenide (GaAs), indium gallium arsenide (GalnAs), gallium aluminum (GaAlAs), indium phosphide (InP), cadmium sulfide (CdS), mercury cadmium telluride (CdHgTe), zinc selenide ( ZnSe), zinc sulfur selenide (ZnSSe), and the like. The substrate 22 is preferably a wafer containing silicon or germanium, and is preferably a high-quality single crystal silicon wafer as used in the semiconductor industry. The accommodating buffer layer 24 is preferably a single crystal oxide or gaseous material grown on the base substrate. According to a specific embodiment of the present invention, the amorphous intermediate layer 28 is grown on the substrate 22 and is located between the substrate 22 and the growing accommodation buffer layer 24 by oxidizing the substrate 2 2 during the growth of the accommodation buffer layer 24. . The amorphous intermediate layer is used to reduce the strain that may occur in the buffer layer due to the difference in the lattice constant between the substrate and the buffer layer. In this context, the lattice constant represents the distance between cell atoms as measured on the surface plane. If the amorphous intermediate layer does not relieve such strain, the strain can cause defects in the crystalline structure in the containment buffer layer. Next, defects in the crystal structure in the containing buffer layer will make it difficult to achieve a high-quality crystal structure in the ferromagnetic material layer 26. The accommodating buffer layer 24 is preferably a single crystal oxide or nitride material compatible with the crystals of the base substrate and the crystals of the covering metal oxide material. For example, this type of material may be a ferromagnetic material that has a substrate that roughly matches the substrate and subsequent supplies of this paper are applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) 503460 A7 B7 V. Description of the Invention (5) Lattice structure of oxides or nitrides. Materials suitable for containing the buffer layer include oxidized metals, such as soil test metal's acid salt, soil test metal sulphate, soil test metal salt, soil test Zhao salt, soil test ruthenate, alkaline earth metal niobium Acid salts, alkaline earth metal vanadates, perovskites such as alkaline earth metal tin-based perovskite, alkaline earth metal aluminates, lanthanum aluminates, lanthanum oxides, and oxide chaos. Alternatively, nitrides such as gallium nitride, aluminum nitride, and boron nitride can be used as the storage buffer layer. Most of these materials are insulators, although (for example) gills and ruthenium are conductors. In general, these materials are oxidized metals or nitrided metals', especially 'these oxidized metals or nitrided metals include at least two different metal elements' and have a bow-like lattice structure. In some specific applications, the metal oxide or metal nitride includes at least three or more different metal elements. The amorphous intermediate layer 28 is preferably composed of an oxide 'formed by oxidizing the surface of the substrate 2 2, especially by oxidation; The thickness of the amorphous intermediate layer 28 is sufficient to reduce the strain caused by the mismatch between the lattice constants of the substrate 22 and the storage buffer layer 24. Generally, the thickness of the amorphous intermediate layer 28 is about 0.5 to 5 nanometers (nm). The ferromagnetic material of layer 26 may be selected according to the requirements of a specific structure or application. For example, materials suitable for the ferromagnetic material layer 26 include the general chemical formula (AxB ^ jJCCb 'where X is in the range of 0 to 1 and where a is steel or neodymium, B is gill, barium, calcium or lead, and c Is Mn, (MnyC〇1-y) or (ΜηζΝυ, where y and z are greater than zero and less than one. A suitable template material is chemically bonded to the surface of the containing buffer layer 24-8-This paper size applies to Chinese national standards (CNS) A4 specification (210X297 public love) B7 V. The selected part of the invention description (6), and provided the subsequent ferromagnetic material layer 2 6 epitaxial growth nucleation site. When used, the thickness of the template layer 30 Between 1 to 10 monolayers. Figure 2 shows a cross-sectional view of a portion of a microelectronic structure 40 according to another embodiment of the present invention. Structure 40 is similar to structure 20 described previously. In addition to the additional insulating layer 32, which is located on the ferromagnetic material 26, and the second additional ferromagnetic material layer 33, which is formed on the insulating layer 32. The insulating material suitable for the insulating layer 32 may include a mating receiving buffer layer 2 4 Any of the listed insulation materials, while ferromagnetic materials 3 3 may include any of the ferromagnetic materials listed in the mating layer 26. The layer 33 is typically about 1 to 6 nm, and preferably less than about 2.5 nm. Figure 3 shows a microscale according to another exemplary embodiment of the present invention. A schematic sectional view of a part of the electronic structure 34. The structure 34 is similar to the structure 40, except that the structure 34 includes an amorphous layer 36 instead of the buffer layer 24 and the amorphous interface layer 28. As shown below Detailed description, similar methods as described above can be used to form the amorphous layer 36 by first forming a containing buffer layer and an amorphous interface layer. Then, the containing buffer layer is annealed to crystallize a single crystal. The containing buffer layer is converted into an amorphous layer. The amorphous layer 36 formed in this manner includes materials from the containing buffer layer and the interface layer, and the amorphous layer may or may not be an amalgamate. Therefore, the layer 36 may include one layer or Two non-crystalline layers. The non-crystalline layer 36 (formed from layer 32) formed between the substrate 22 and the additional buffer layer 32 reduces the stress between the layers 22 and 32, and is used to meet the standard substrate 'Eli Subsequent processing-for example, the formation of the ferromagnetic material layer 26. -9- i Paper size suitable for financial standards (CNS) A4 specifications (21GX 297 public) " " -------- 503460 A7 ___ _B7 V. Description of the Invention (7) The process described above with reference to Figs. 1 and 2 is suitable for growing a single-crystal ferromagnetic material layer on a single-crystal substrate. However, the description with Fig. 3 includes accommodating a single-crystal buffer layer The manufacture of the layer converted to an amorphous oxide is more suitable for growing a layer of a single crystalline ferromagnetic material because it allows any stress in the layer 32 to be relaxed before the layer 26 is formed. According to a specific embodiment of the present invention, the layer 30 is used as an annealing cap during the formation of the layer 36, and is used as a template during the subsequent formation of the ferromagnetic material layer 26. Therefore, the thickness of the layer 30 is preferably sufficient to provide a template (at least one monomolecular layer) suitable for the growth layer 26, and is thin enough to allow the formation of the layer 30 as a defect-free single crystal layer (typically less than about ten layers). Monolayer) The following non-limiting, exemplified examples illustrate various combinations of materials available in structures 20, 40 and 34 according to various alternative embodiments of the present invention. These are all used for illustration, and the present invention is not limited Take these examples for illustration. Example 1 According to a specific embodiment of the present invention, as shown in the figure! As shown, the single crystal substrate 22 is a silicon substrate having a (100) direction as a purpose. Silicon substrates can be, for example, shredded substrates commonly used in complementary metal-oxide-semiconductor (CMOS) integrated circuits with a diameter of approximately 200 to 300 mm. According to this specific embodiment of the present invention, the containing buffer layer 24 is a single crystal layer of SrgBaNgTi03, instead of the end of the day = the intermediate layer is SiOx formed on the interface between the silicon substrate and the containing buffer layer. Floor. The composition of layer 24 is selected to obtain a close match of the lattice constants of the subsequent subsequent formation of layer 26.

⑽460⑽460

數。例如,容納緩衝層的厚度大約在2 ηπ^〗10〇 nm的範圍 内,並且最好是大約1 〇 nm的厚度。一般而言,希望容納緩 衝層的厚度足以隔離強磁性層與基板,以獲得所希望的特 性。厚度低於100 nm的層通常提供較少的額外優點,並增 加不必要的成本;然而,若需要,可製造較厚的層。氧化 =非結晶中間層厚度大約在〇·5 nm到5 nm的範圍内,並且 最好是大約1.5 nm到2.5 nm的厚度。 根據本發明的此項具體實施例,強磁性材料層26是 USi*Mn〇3層,其厚度大約是5 nm到大約5〇〇,並且最好是 大約20 70 nm的厚度。厚度通常視所準備之層的應用 而定。 實例2 根據本發明另一項具體實施例,如圖3所示,提供適合 MTJ應用的結構。如上文所述,基板最好是♦晶圓。適合 的容納緩衝層材料是SrgBai-gTl〇3,其中g介於〇到i範圍内 ,厚度大約在2 nm到1〇〇 範圍内,並且最好是大約5 nm到15 nm的厚度。強磁性材料層26可能是(例如 )LaSl^Mn〇y並且層26和33的厚度大約是5nm到大約5〇Q, 並且最好是大約20咖到7〇 nm的厚度。介於強磁性層⑽ 3 3之間的層3 2包括SrgBabgTiCh,其中g介於〇到i範圍内, 厚度大約2.5 ηιπ。 請重新參考圖1至3 ’基板2*2是諸如單結晶梦或碎化嫁基 板之類的單結晶基板。單結晶基板結晶結構的特徵在於晶 格常數及晶格方向。在類似的方法中,容納緩衝層Μ也是 -11 - 本纸張尺度適用中國國豕標準(CNS) Α4規格(210 X 297公爱) ---- 503460 A7 B7 五、發明説明(9 ) 單結晶材料,並且單結晶材料晶格的特徵在於晶格常數及 晶體方向。容納緩衝層與單結晶基板的必須緊密匹配,或 者,必須某一晶體方向係對著另一晶體方向旋轉,才能達 成大體上晶格常數匹配。在此上下文中’ 「大體上寺於」 及「大體上匹配」表示晶格常數間有充足的相似點,而能 夠在基礎層上生長高品質結晶層。 圖4顯示可達成之高結晶品質生長晶體層厚度的關係,作 爲主晶與生長晶的晶格常數之間不匹配的函數。曲線4 2高 結晶品質材料的界限。曲線4 2右邊的區域代表具有大量缺 陷的層。由於晶格匹配,因此能夠在主晶上生長無限厚度 、高品質磊晶層。由於晶格常數不匹配遞增,所以可達成 、高品質結晶層的厚度迅速遞減。例如,作爲參考點,如 果主晶與生長層間的晶格常數不匹配超過大約2%,則無法 達成超過大約20 nm的單結晶系晶層。 根據本發明一項具體實施例,基板22是以(1〇〇)或(111) 爲方向的單結晶矽晶圓,而容納緩衝層2 4是鳃鋇鈦酸鹽層 。達成這兩種材料之晶格常數大體上匹配的方式爲,將鈦 酸鹽材料晶體方向往相對於碎基板晶圓晶體方向45°旋轉 。在此範例中,如果厚度夠厚,則非結晶中間層2 8結構中 所包含的氧化矽層係用來降低鈦酸鹽單結晶層應變,因爲 鈦酸鹽單結晶層應變會導致主矽晶圓與生長鈦酸鹽層的晶 格常數不匹配。結果,根據本發明一項具體實施例,可達 成高品質、更厚的單結晶層鈦酸鹽層。 請重新參考圖1至3,層26和33是磊晶生長強磁性材料層 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)number. For example, the thickness of the accommodating buffer layer is in a range of about 2 ηπ ^ 100 nm, and preferably a thickness of about 10 nm. In general, it is desirable that the thickness of the buffer layer is sufficient to isolate the ferromagnetic layer from the substrate to obtain the desired characteristics. Layers below 100 nm typically provide fewer additional advantages and add unnecessary costs; however, thicker layers can be made if needed. Oxidation = The thickness of the amorphous intermediate layer is in the range of about 0.5 nm to 5 nm, and preferably about 1.5 nm to 2.5 nm. According to this specific embodiment of the present invention, the ferromagnetic material layer 26 is a USi * MnO3 layer having a thickness of about 5 nm to about 500, and preferably a thickness of about 20 to 70 nm. The thickness usually depends on the application of the prepared layer. Example 2 According to another specific embodiment of the present invention, as shown in FIG. 3, a structure suitable for MTJ applications is provided. As mentioned above, the substrate is preferably a wafer. A suitable material for containing the buffer layer is SrgBai-gT103, where g is in the range of 0 to i, the thickness is in the range of about 2 nm to 100, and preferably the thickness is about 5 nm to 15 nm. The ferromagnetic material layer 26 may be, for example, LaSlMnOy and the thicknesses of the layers 26 and 33 are about 5 nm to about 50 nm, and preferably about 20 nm to 70 nm. The layer 3 2 between the ferromagnetic layers ⑽ 3 3 includes SrgBabgTiCh, where g is in the range of 0 to i, and the thickness is about 2.5 ηπ. Please refer to FIGS. 1 to 3 again. The substrate 2 * 2 is a single crystal substrate such as a single crystal dream or a broken substrate. The crystal structure of a single crystal substrate is characterized by a lattice constant and a lattice direction. In a similar method, the holding buffer layer M is also -11-this paper size is applicable to China National Standard (CNS) A4 specification (210 X 297 public love) ---- 503460 A7 B7 V. Description of the invention (9) Single A crystalline material and a single crystalline material are characterized by a lattice constant and a crystal orientation. The accommodating buffer layer and the single crystal substrate must be closely matched, or one crystal direction must be rotated toward the other crystal direction to achieve a substantially lattice constant match. In this context, “substantially similar” and “substantially matched” indicate that there are sufficient similarities between the lattice constants, and a high-quality crystalline layer can be grown on the base layer. Figure 4 shows the achievable relationship between the thickness of the growing crystal layer of high crystal quality as a function of the mismatch between the lattice constants of the main crystal and the growing crystal. Curve 4 2 Limits of high crystalline quality materials. The area to the right of curve 4 2 represents a layer with a large number of defects. Due to the lattice matching, infinite thickness and high-quality epitaxial layers can be grown on the main crystal. As the lattice constant mismatch increases, the thickness of the high-quality crystal layer can be rapidly decreased. For example, as a reference point, if the lattice constant mismatch between the main crystal and the growth layer exceeds approximately 2%, a single crystal system crystal layer exceeding approximately 20 nm cannot be achieved. According to a specific embodiment of the present invention, the substrate 22 is a single crystal silicon wafer with a direction of (100) or (111), and the containing buffer layer 24 is a gill barium titanate layer. The way to achieve a substantial matching of the lattice constants of the two materials is to rotate the crystal orientation of the titanate material by 45 ° with respect to the crystal direction of the broken substrate wafer. In this example, if the thickness is thick enough, the silicon oxide layer included in the amorphous intermediate layer 28 structure is used to reduce the strain of the titanate single crystal layer, because the strain of the titanate single crystal layer will cause the main silicon crystal The lattice does not match the lattice constant of the growing titanate layer. As a result, according to a specific embodiment of the present invention, a high-quality, thicker single crystal layer titanate layer can be achieved. Please refer to Figures 1 to 3 again. Layers 26 and 33 are epitaxially grown ferromagnetic material layers. -12- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 % 503460 A7 B7 五、發明説明(1〇 ) ,並且該結晶材料的特徵在於晶格常數及晶體方向。根據 本發明一項具體實施例,層26的晶格常數不同基板22的晶 格常數。爲了達成南結晶品質的系晶生長早結晶層’容納 緩衝層必須具有南結晶品質。此外^爲了達成τ%結晶品質 的層2 6 ^希望主晶(在此情況下’主晶是早結晶容納緩衝層 )與生長晶體的晶格常數之間大體上匹配。配合正確選用的 材料’由於生長晶體的晶體方向會相對於主晶方向旋轉’ 所以可達成晶格常數大體上匹配。在某些情況中,主晶氧 化物與生長金屬氧化物層之間的結晶緩衝層可用來降低生 長單結晶強磁性材料層的應變,因爲應變會導致晶格常數 的微幅差異。藉此可達成最佳的生長單結晶強磁性材料層 結晶品質 0 絕緣層3 2的特徵也在於晶格常數及晶格方向。根據本發 明一項具體實施例,選用的絕緣層3 2可經過定位,使層3 2 的晶格常數大體上匹配層2 6和3 3的晶格常數。 下文説明根據本發明一項具體實施例之製造諸如圖1至3 所示之結構之微電子結構的方法。方法的開始步驟是提供 一種包括矽的單結晶半導體基板。根據本發明較佳具體實 施例,半導體基板是具有(100)方向的矽晶圓。基板最好是 以軸線爲方向,最多偏離軸線大約0.5。。半導體基板的至 少一部份具有裸面,然而基板的其他部份可能圍繞著其他 結構,如下文所述。在此上下文中,術語「裸」表示已清 除基板的邵份表面,以去除氧化物、致污物或其他異質材 料。眾所皆知,裸矽具有高度反應性,並且很容易形成天 -13- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Device% 503460 A7 B7 V. Description of the invention (10), and the crystalline material is characterized by a lattice constant and a crystal orientation. According to a specific embodiment of the present invention, the lattice constant of the layer 26 is different from the lattice constant of the substrate 22. In order to achieve the south crystal quality, the crystalline growth early crystal layer 'accommodating buffer layer must have south crystal quality. In addition, in order to achieve a layer 2 6 of τ% crystal quality, it is desirable that the main crystal (in this case, the 'main crystal is an early-crystal-accommodating buffer layer) substantially match the lattice constant of the growing crystal. With the correct selection of the material, 'the crystal direction of the growing crystal will rotate relative to the main crystal', so the lattice constants can be roughly matched. In some cases, a crystalline buffer layer between the main crystalline oxide and the growing metal oxide layer can be used to reduce the strain of the growing single crystal ferromagnetic material layer because the strain causes a small difference in the lattice constant. This can achieve the best growth of the single crystal ferromagnetic material layer. Crystal quality 0 The insulating layer 3 2 is also characterized by the lattice constant and lattice direction. According to a specific embodiment of the present invention, the selected insulating layer 32 can be positioned so that the lattice constant of the layer 32 substantially matches the lattice constants of the layers 26 and 33. The following describes a method of manufacturing a microelectronic structure such as the structure shown in FIGS. 1 to 3 according to a specific embodiment of the present invention. The method begins by providing a single crystal semiconductor substrate including silicon. According to a preferred embodiment of the present invention, the semiconductor substrate is a silicon wafer having a (100) direction. The substrate is preferably oriented along the axis, and is offset from the axis by at most about 0.5. . At least a portion of a semiconductor substrate has a bare surface, but other portions of the substrate may surround other structures, as described below. In this context, the term "bare" means that the surface of the substrate has been removed to remove oxides, contaminants, or other foreign materials. As everyone knows, bare silicon is highly reactive and easily formed. -13- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 % 503460 A7 B7 五、發明説明(11 ) 然氧化物。術語「裸」包含此類的天然氧化物。還可能故 意在半導體基板上生長薄型氧化矽,然而此類的生長氧化 物不是根據本發明之方法的必要項。爲了磊晶生長單結晶 氧化層以覆蓋單結晶基板,必須先去除天然氧化層,以暴 露基礎基板的結晶結構。下列的方法最好是藉由分子束磊 晶生長(molecular beam epitaxy ; MBE)方法來實現,雖然根 據本發明也可使用其他的磊晶生長方法。藉由先在MBE裝 置中熱沈積薄層的鳃、鋇、鳃與鋇的組合或其他鹼土金屬 或鹼土金屬組合,以去除天然氧化物。在使用鳃的情況下 ,接著將基板加熱到大約750°C,使鳃與天然矽氧化層產生 化學反應。鳃係用來分解氧化矽,而留下無氧化矽表面。 1 * 爹 所產生的表面包括鳃、氧及矽,並呈現整齊的2 X 1結構。 整齊的2x 1結構形成模板,用以有序生長單結晶氧化物的 覆蓋層。模板提供必要的化學及物理特性,以集結結晶生 長的覆蓋層。 根據本發明替代具體實施例,可轉換天然氧化矽並準備 基板表面,以生長單結晶氧化層,其方式是在低溫下藉由 MBE在基板表面上沈積如氧化鳃、氧化鳃鋇或氧化鋇之類 的鹼土金屬氧化物,接著將結構加熱到大約750°C。在此溫 度下,氧化鳃與天然氧化矽間發生的固態反應導致天然氧 化矽還原,並在基板表面上留下具有鳃、氧及矽的整齊 2x1結構。再次,以此方式形成模板,用以接著生長有序 單結晶氧化物層。 根據本發明一項具體實施例,在去除基板表面上的氧化 -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Equipment% 503460 A7 B7 V. Description of the invention (11) Natural oxide. The term "naked" encompasses such natural oxides. It is also possible to intentionally grow thin silicon oxide on a semiconductor substrate, however such growth oxides are not necessary for the method according to the invention. In order to epitaxially grow a single crystal oxide layer to cover the single crystal substrate, the natural oxide layer must be removed first to expose the crystal structure of the base substrate. The following methods are best achieved by molecular beam epitaxy (MBE) method, although other epitaxial growth methods can be used according to the present invention. Natural oxides are removed by first thermally depositing a thin layer of gills, barium, a combination of gills and barium, or other alkaline earth metals or alkaline earth metals in an MBE device. In the case of gills, the substrate is then heated to approximately 750 ° C to chemically react the gills with the natural silicon oxide layer. The gill system is used to break down silica, leaving a silica-free surface. 1 * The surface produced by Daddy includes gills, oxygen, and silicon, and presents a neat 2 X 1 structure. The neat 2x1 structure forms a template for the orderly growth of a monocrystalline oxide overlay. The template provides the necessary chemical and physical properties to build up a crystal-grown overlay. According to an alternative embodiment of the present invention, a natural silicon oxide can be converted and a substrate surface can be prepared to grow a single crystal oxide layer by depositing, for example, gill oxide, gill oxide barium, or barium oxide on the surface of the substrate by MBE at a low temperature. Like alkaline earth metal oxides, the structure is then heated to about 750 ° C. At this temperature, the solid state reaction between the oxidized gills and natural silicon oxide results in the reduction of natural silicon oxide, leaving a neat 2x1 structure with gills, oxygen, and silicon on the substrate surface. Again, a template is formed in this manner to subsequently grow an ordered single crystal oxide layer. According to a specific embodiment of the present invention, the oxidation on the surface of the substrate is removed. -14- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm).

裝 蜷Pretend

矽後,將基板冷卻到大約200到80(rc範圍内的溫度,並且 藉由分子束磊晶生長在模板層上生長鳃鈦酸鹽層。MBE方 法從MBE裝置中的開孔活閘(〇pening shutte〇開始,以暴露 鳃、鈦及氧來源。鳃與鈦的比率大約是丨:丨。氧氣分壓最初 設定在最小値,以利於以每分鐘大約〇 3到〇 5 生長速 度來生長推測的鳃鈦酸鹽。在初步生長鳃鈦酸鹽後,將氧 氣分壓遞增到大約最初的最小値。氧氣過壓會導致在基礎 基板與生長中之鳃鈦酸鹽層之間的界面上生長非結晶氧化 矽。生長氧化矽層起因於氧氣會通過生長中之鳃鈦酸鹽層 擴散到位於基礎基板表面上氧氣與矽產生化學反應的表面 。鐵鈥酸鹽生長成爲有序單結晶,並且具有相對於整齊 2 X 1結晶結構之基礎基板旋轉4 5。的結晶方向。否則,總歛 酸鹽層可能存在應變,這是因爲矽基板與生長晶體之間晶 格常數微幅不匹配所致,而在非結晶氧化矽中間層可減緩 此類的應變。 在鳃鈦酸鹽生長到所希望的厚度後,接著藉由模板層來 覆蓋單結晶鳃鈦酸鹽,以促進後續生長所希望的材料蟲晶 層。例如,覆蓋ΜΒΕ生長的魏鈥酸鹽單結晶層的方式爲, 以1到2層單分子層鈥、1到2層單分子層欽-氧或1到2層單 分子層锶-氧來終止生長。在形成模板後(如果形成一層)之 後,使用ΜΒΕ或其他適合的技術生長強磁性材料。 藉由如上文所述的方法並加上絕緣層沈積步驟,即可形 成如圖2所示的結構。可使用前文中配合層24形成所説明 的方法,在層26上磊晶形成絕緣材料層32,除了層26與層 -15- 本纸張尺度適用中國國家標準(CNS) Α4規格(210Χ 297公釐) 503460After silicon, the substrate is cooled to a temperature in the range of about 200 to 80 (rc), and a gill titanate layer is grown on the template layer by molecular beam epitaxy. Pening shutte〇 began to expose gills, titanium, and oxygen sources. The ratio of gill to titanium is about 丨: 丨. The partial pressure of oxygen was initially set to a minimum of 値 to facilitate growth at a growth rate of about 〇. Gill titanate. After initial growth of gill titanate, increase the oxygen partial pressure to approximately the initial minimum 値. Oxygen overpressure will cause growth at the interface between the base substrate and the growing gill titanate layer Amorphous silicon oxide. The growth of the silicon oxide layer is due to the diffusion of oxygen through the growing gill titanate layer to the surface of the base substrate where oxygen reacts with silicon. The iron's salt grows into ordered single crystals, The crystalline orientation of the base substrate with respect to the neat 2 X 1 crystal structure is rotated by 4. 5. Otherwise, there may be strain in the total acid salt layer, because the lattice constant between the silicon substrate and the growing crystal is slightly different. This kind of strain can be mitigated in the intermediate layer of amorphous silica. After the gill titanate has grown to the desired thickness, the monocrystalline gill titanate is then covered by the template layer to promote subsequent growth. The desired material worm crystal layer. For example, the way to cover the single crystal layer of wei's salt of MBE is to cover 1 to 2 monomolecular layers, 1 to 2 monomolecular layers of oxo-oxygen, or 1 to 2 layers. A monolayer of strontium-oxygen is used to terminate the growth. After the template is formed (if a layer is formed), ferromagnetic materials are grown using MBE or other suitable techniques. By the method described above and adding an insulating layer deposition step, ie The structure shown in Fig. 2 can be formed. The method described above for the formation of the mating layer 24 can be used to epitaxially form an insulating material layer 32 on the layer 26, except for the layers 26 and -15. Standard (CNS) Α4 specification (210 × 297 mm) 503460

3 2之間最好不要形成非結晶介面層以外。因此,最好使用 有助於推測生長層26的條件來形成絕緣層。 圖3所示之結構3 4的形成方式可能是,生長容納緩衝層 、在基板2 2上形成非結晶氧化物層,如上文所述。然後, 將谷納緩衝層及非結晶氧化物層經過退火製程,使容納緩 衝層的結晶結構足以從單結晶變更成非結晶,藉由形成非 結晶層’使非結晶氧化物層與現在的非結晶容納緩衝層的 組合形成單一非結晶氧化物層36。接著在層32上生長層26 。或者’可接著實行退火製程以生長層26。 根據此具體實施例的一項觀點,形成層3 6的方式爲將基 板2 2、容納緩衝層、非結晶氧化物層及層3 〇或適合的覆蓋 層經過迅速熱退火製程,使用的最高溫度大約7〇(^c至大約 1000 C ’製程時間大約丨〇秒至大約丨〇分鐘。然而,根據本 發明’可採用其他適當的退火製程以將容納緩衝層轉換爲 非結晶層。例如,可使用雷射退火或「傳統」熱退火製程( 在適當的環境中)來形成層36。 強磁性層5 2(例如,(LakSn-OMnO3,其中k大於零且小於 豆)係使用賤渡沈積法蟲晶生長而成。具體而言,係以 (LakSri-k)Mn〇3爲目標,藉由RF磁電管濺渡法(面對面組態) 生長(LakSn-jJMnO3層。沈積的執行係使用氧氣作爲濺渡氣 體,並且基板溫度約爲4〇(TC。 如上文所述的方法説明一種藉由分子束磊晶生長和RF濺 渡法來形成半導體結構的方法,其中該半導體結構包含一 石夕基板、一覆蓋氧化物層及一強磁性材料層。還可能藉由It is preferable not to form an amorphous interface layer between 3 and 2. Therefore, it is preferable to form the insulating layer using conditions that are conducive to the speculative growth layer 26. The structure 34 shown in FIG. 3 may be formed by growing a buffer layer and forming an amorphous oxide layer on the substrate 22, as described above. Then, the Gona buffer layer and the amorphous oxide layer are subjected to an annealing process, so that the crystal structure of the buffer layer is sufficient to change from a single crystal to an amorphous phase. By forming the amorphous layer, the amorphous oxide layer and the current amorphous phase are formed. The combination of the crystalline containing buffer layers forms a single amorphous oxide layer 36. A layer 26 is then grown on the layer 32. Alternatively, an annealing process may be performed to grow the layer 26. According to an aspect of this specific embodiment, the method of forming the layer 36 is to subject the substrate 2 2, the containing buffer layer, the amorphous oxide layer and the layer 30 or a suitable cover layer to a rapid thermal annealing process, and the highest temperature used About 70 ° C to about 1000 ° C. The process time is about 10 seconds to about 10 minutes. However, according to the present invention, other suitable annealing processes may be used to convert the containing buffer layer into an amorphous layer. For example, the Layer 36 is formed using laser annealing or "traditional" thermal annealing processes (in the appropriate environment). The ferromagnetic layer 5 2 (eg, (LakSn-OMnO3, where k is greater than zero and less than beans) is deposited using a low-temperature deposition method Worm crystals grow. Specifically, the target is (LakSri-k) Mn〇3, and the (LakSn-jJMnO3 layer) is grown by RF magnetron sputtering method (face-to-face configuration). The deposition is performed using oxygen as the execution Gas is sputtered and the substrate temperature is about 40 ° C. The method described above illustrates a method for forming a semiconductor structure by molecular beam epitaxial growth and RF sputtering. The semiconductor structure includes a stone substrate, Covering the oxide layer and a ferromagnetic material layer may also by

裝 訂 % -16 -Binding% -16-

503460 A7 B7___ 五、發明説明(Η ) 化學蒸汽化澱積(chemical vapor deposition ; CVD)、金屬有 機化學蒸汽殿積(metal organic chemical vapor deposition ; MOCVD)、遷移率增強型系晶生長(migration enhanced epitaxy ; MEE)、原子層羞晶生長(atomic lay er epitaxy ;ALE)、物理蒸汽化澱積(physical vapor deposition ; PVD)、化學溶劑澱積(chemical solution deposition ; CSD)、 脈衝雷射澱積(pulsed laser deposition ; PLD)等等來實現此 項方法。另外,藉由類似的方法,還可生長其他的單結晶 容納緩衝層,諸如,驗土金屬鈥酸鹽、驗土金屬锆酸鹽、 驗土金屬給酸鹽、驗土金屬起酸鹽、驗土金屬釩酸鹽、驗 土金屬釕酸鹽、鹼土金屬鈮酸鹽、如鹼土金屬錫基鈣鈦礦 (alkaline earth metal tin-based perovskite)之類的氧化 #5 鈥礦 、鑭鋁酸鹽、氧化鑭钪及氧化釓。另外,藉由諸如MBE的 類似方法,還可沈積其他的金屬氧化物層,以覆蓋單結晶 氧化物容納緩衝層及/或強磁性層。 強磁性材料與單結晶氧化物層的每種變化都是使用適當 的模板層,以利於開始生長各別層。在此情況下,可依據 前文中配合生長層26所説明的方法來生長適當的模板材料。 圖5顯示根據本發明之半導體結構90的斷面原理圖。半 導體結構90包括單結晶半導體基板92、覆蓋基板92的單結 晶絕緣層94以及覆蓋絕緣層的磁性隧穿接面裝置96。根據 本發明一項具體實施例,絕緣層94是在基板上磊晶生長的 單結晶氧化物層。 圖6顯示廣泛類似於圖5所示之結構之半導體結構9 8的斷 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 503460 A7 B7 五、發明説明(15 ) 面原理圖。於圖6中,磁性隧穿接面9 6被描繪成覆蓋絕緣 層94的第一層100、覆蓋第一層100的第二層102以及覆蓋第 二層102的第三層104。根據本發明一項觀點,第一層100和 第三層104能夠呈現強磁性特性。在圖示的具體實施例中, 可在各自的基礎層上系晶生長第一層100和第二層102。此 外,第二層102是單結晶絕緣層。另外,第一層100和第三 層104的其中一層或兩層也可能是單結晶層。在特定較佳具 體實施例中,基板92是矽。絕緣層94最好包括選自由金屬 氧化物和金屬氮化物所組成之群組的單結晶材料。具體而 言,絕緣層94最好選自下列材料:鹼土金屬鈦酸鹽、鹼土 金屬錘酸鹽、驗土金屬給酸鹽、驗土金屬Ie酸鹽、驗土金 屬釩酸鹽、鹼土金屬釕酸鹽、鹼土金屬鈮酸鹽、包括屬錫 基鈣鈦礦的鈣鈦礦、鑭鋁酸鹽、氧化鑭銳、氧化釓、氧化 鎵及氮化鋁。 在特定較佳具體實施例中,第一層100最好是單結晶氧化 物,例如,藉摄礦#5鈥礦(manganite perovskite),但是可用 具有(A,B)C03合成物的任何適當材料所製成,其中A係選 自由鑭和钕所組成的群組,B係選自由鳃、鋇、鈣和鉛所 組成的群組,而C係選自Mn、(Mn,Co)和(Mn,Ni)所組成 的群組。 在特定較佳具體實施例中,第三層104最好是單結晶氧化 物,例如,#呈短礦#5鈥礦(ma'nganite perovskite),但是可用 前文中配合第一層100所説明的任何材料所製成。第二絕緣 層102最好是單結晶氧化物,其厚度介於1至6 nm之間的範 -18- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 五、發明説明(16 ) 圍内’並且最好晶格匹配於第一層刚。在特定較佳具體實 施例中,第二絕緣層102厚度小於25細,並且對第一層⑽ ,晶格匹配在約四百分比的範圍内。此外,第二絕緣層102 取好被建構以提供與第一層100的原子截然介面。第二絕緣 層102可用選自由下列項目所組成之群組的材料,包括:鹼 土金屬鈥酸鹽、驗土金屬锆酸鹽、驗土金屬給酸鹽、驗土 金屬姮酸鹽、鹼土金屬釩酸鹽、鹼土金屬釕酸鹽、鹼土金 屬說酸鹽、包含屬錫基㈣礦的賴礦、鑭銘酸鹽、氧化 鑭钪及氧化乳。 根據本發明進一步觀點,可根據廣泛已知的製造技術來 圖案化第一層100、第二層1。2和第三層104,以形成(至少 某種程度上)磁性隧穿接面裝置。藉由根據本發明在單結晶 (例如,矽)基板92上製造磁性隧穿接面裝置,由於單結$ 基板92有足夠的可擴充性,所以大體上可實現降低成本 圖7顯示廣泛類似於圖6所示之結構98之半導體結構ι〇6 的斷面原理圖,但是其還包括覆蓋絕緣層以的模板層US 。模板層118有利於終止絕緣層94,並可用氧氣及選自鳃 、鋇、鈣或鉛之元素爲材料所製成。模板層118的厚度最^ 介於是1到10層單分子層範圍内。 又 圖8顯示廣泛相似於圖5至7所示之結構之半導體結構 的斷面原理圖,並且進一步顯示積體邏輯元件13〇,如至少 部份形成於基板92中的金屬-氧化物半導體(例如,CM〇s) 電路。在較佳具體實施例中,邏輯元件13〇可藉由互相連接 108電氣連接至磁性隧穿接面。在圖示的具體實施例中,互 503460 A7 — —_____B7__ 五、發明説明(17 ) 相連接108將邏輯元件130連接至第二層102。 圖9顯示廣泛類似於圖5至8所示之結構之半導體結構112 的斷面原理圖。半導體112包括張力緩和層114,例如,位 於絕緣層94下的非結晶氧化物層。就這一點而言,非結晶 氧化物層114通常類似於前文配合圖1和2所説明的中間層 28 〇 圖10顯示廣泛類似於圖6所示之結構98之半導體結構116 的斷面原理圖。半導體結構116包括磁性隧穿接面96,其 位於第一電子接觸層120(其被形成於下方並電氣接觸第一 層100)與第二電子接觸層122(其覆蓋並電氣接觸第三層 104)之間。層120及122的其中一層或兩層最好包括單結晶 電子傳導氧化物層,並可用選自由(LakSivOCoOs、SrRu03 、SrCi*03和SrV03所組成之群組的材料所製成,其中k大於 零且小於壹。 圖1 1顯示半導體結構1 2 4的斷面原理圖,其包括但單結 晶(例如,矽)基板92、單結晶氧化物層94(最好是磊晶生 長以覆蓋基板92)以及磁性隧穿检面裝置96。磁性隧穿接 面裝置9 6最好包括以單結晶強磁性材料所製成的第一層 100、以單結晶絕緣材料所製成的第二層1〇2(其覆蓋並形成 與第一層100的原子截然介面)以及以強磁性材料所製成的 第三層104。第二層1〇2最好夠薄,以允許從該處進行隧穿 。第三層104有利於呈現有序-單結晶結構。在較佳具體實施 例中,第一層100、第二層102和第三層104都是在各自的基 礎層上磊晶生長單結晶材料。第二絕緣層102最好是選自由 -20 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 503460 A7503460 A7 B7___ V. Description of the invention (Η) Chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), migration enhanced epitaxy MEE), atomic lay epitaxy (ALE), physical vapor deposition (PVD), chemical solution deposition (CSD), pulsed laser deposition (pulsed laser deposition; PLD) and so on. In addition, by a similar method, other single crystal containing buffer layers can be grown, such as soil test metal's acid salt, soil test metal zirconate, soil test metal salt, soil test salt, Earth metal vanadates, earth metal ruthenates, alkaline earth metal niobates, oxidation # 5 such as alkaline earth metal tin-based perovskite, lanthanum aluminates, Lanthanum thorium oxide and thorium oxide. In addition, by a similar method such as MBE, other metal oxide layers can be deposited to cover the single crystal oxide containing buffer layer and / or the ferromagnetic layer. Each variation of the ferromagnetic material and the single crystalline oxide layer uses an appropriate template layer to facilitate the growth of the individual layers. In this case, an appropriate template material can be grown according to the method described above in conjunction with the growth layer 26. FIG. 5 shows a schematic sectional view of a semiconductor structure 90 according to the present invention. The semiconductor structure 90 includes a single crystalline semiconductor substrate 92, a single crystalline insulating layer 94 covering the substrate 92, and a magnetic tunnel junction device 96 covering the insulating layer. According to a specific embodiment of the present invention, the insulating layer 94 is a single crystal oxide layer epitaxially grown on a substrate. Fig. 6 shows the semiconductor structure 9 8 which is broadly similar to the structure shown in Fig. 5-17-This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 503460 A7 B7 V. Description of the invention (15 ) Surface schematic. In FIG. 6, the magnetic tunneling interface 96 is depicted as a first layer 100 covering the insulating layer 94, a second layer 102 covering the first layer 100, and a third layer 104 covering the second layer 102. According to an aspect of the present invention, the first layer 100 and the third layer 104 can exhibit strong magnetic properties. In the illustrated specific embodiment, the first layer 100 and the second layer 102 can be grown in a tethered manner on the respective base layers. In addition, the second layer 102 is a single crystalline insulating layer. In addition, one or both of the first layer 100 and the third layer 104 may be a single crystal layer. In a particularly preferred embodiment, the substrate 92 is silicon. The insulating layer 94 preferably includes a single crystalline material selected from the group consisting of a metal oxide and a metal nitride. Specifically, the insulating layer 94 is preferably selected from the following materials: alkaline earth metal titanate, alkaline earth metal hammer salt, earth test metal salt, earth test metal Ie salt, earth test metal vanadate, alkaline earth metal ruthenium Acid salts, alkaline earth metal niobates, including perovskites which are tin-based perovskites, lanthanum aluminates, lanthanum oxide, hafnium oxide, gallium oxide, and aluminum nitride. In a particularly preferred embodiment, the first layer 100 is preferably a single crystalline oxide, for example, Borgan # 5 'ore (manganite perovskite), but any suitable material having a (A, B) C03 composition may be used Made of, where A is selected from the group consisting of lanthanum and neodymium, B is selected from the group consisting of gills, barium, calcium, and lead, and C is selected from Mn, (Mn, Co), and (Mn , Ni). In a specific preferred embodiment, the third layer 104 is preferably a single crystalline oxide, for example, # 成 短 矿 # 5 'ore (ma'nganite perovskite), but it can be described in conjunction with the first layer 100 Made of any material. The second insulating layer 102 is preferably a single crystalline oxide with a thickness ranging from 1 to 6 nm. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm). 5. Invention Note (16) within the 'and preferably the lattice matches the first layer. In a particularly preferred embodiment, the thickness of the second insulating layer 102 is less than 25 micrometers, and for the first layer ⑽, the lattice matching is in the range of about four percent. In addition, the second insulating layer 102 is constructed to provide an atomic interface with the first layer 100. The second insulating layer 102 can be made of a material selected from the group consisting of: alkaline earth metal's acid salt, soil test metal zirconate, soil test metal salt, soil test metal salt, alkaline earth metal vanadium Acid salts, alkaline-earth metal ruthenates, alkaline-earth metal salts, lye mines containing tin-based arsenite, lanthanum salts, lanthanum oxide, and oxidized milk. According to a further aspect of the invention, the first layer 100, the second layer 1.2, and the third layer 104 may be patterned according to widely known manufacturing techniques to form (at least to some extent) a magnetic tunnel junction device. By manufacturing a magnetic tunnel junction device on a single crystalline (eg, silicon) substrate 92 according to the present invention, cost reduction can be achieved in general because the single junction $ substrate 92 is sufficiently expandable. FIG. 7 shows a broad similarity The cross-sectional schematic diagram of the semiconductor structure 106 of the structure 98 shown in FIG. 6, but it also includes a template layer US covering the insulating layer. The template layer 118 facilitates the termination of the insulating layer 94 and can be made of oxygen and an element selected from gill, barium, calcium, or lead. The thickness of the template layer 118 ranges from 1 to 10 monomolecular layers. FIG. 8 also shows a schematic sectional view of a semiconductor structure that is broadly similar to the structure shown in FIGS. 5 to 7, and further shows an integrated logic element 13, such as a metal-oxide semiconductor (at least partially formed in the substrate 92) For example, CMOs) circuit. In a preferred embodiment, the logic element 130 may be electrically connected to the magnetic tunneling interface through an interconnect 108. In the illustrated specific embodiment, each other 503460 A7 — — _____B7__ 5. Description of the invention (17) The connection 108 connects the logic element 130 to the second layer 102. FIG. 9 shows a schematic cross-sectional view of a semiconductor structure 112 broadly similar to the structure shown in FIGS. 5 to 8. The semiconductor 112 includes a tension relaxation layer 114, for example, an amorphous oxide layer under the insulating layer 94. In this regard, the amorphous oxide layer 114 is generally similar to the intermediate layer 28 previously described in conjunction with FIGS. 1 and 2. FIG. 10 shows a schematic cross-sectional view of a semiconductor structure 116 that is broadly similar to the structure 98 shown in FIG. 6. . The semiconductor structure 116 includes a magnetic tunneling interface 96 located on a first electronic contact layer 120 (which is formed below and electrically contacts the first layer 100) and a second electronic contact layer 122 (which covers and electrically contacts the third layer 104) )between. One or both of the layers 120 and 122 preferably include a single crystalline electron-conducting oxide layer, and may be made of a material selected from the group consisting of (LakSivOCoOs, SrRu03, SrCi * 03, and SrV03, where k is greater than zero And less than one. Figure 11 shows a schematic cross-sectional view of a semiconductor structure 1 2 4 including a single crystal (eg, silicon) substrate 92 and a single crystal oxide layer 94 (preferably epitaxial growth to cover the substrate 92). And a magnetic tunneling inspection device 96. The magnetic tunneling junction device 96 preferably includes a first layer 100 made of a single crystal ferromagnetic material, and a second layer 102 made of a single crystal insulating material (Which covers and forms an atomic interface with the first layer 100) and a third layer 104 made of a ferromagnetic material. The second layer 102 is preferably thin enough to allow tunneling from there. The three layers 104 are advantageous for presenting an ordered-single crystal structure. In a preferred embodiment, the first layer 100, the second layer 102, and the third layer 104 are all epitaxially grown single crystal materials on their respective base layers. The second insulating layer 102 is preferably selected from -20-this paper size applies to China Standard (CNS) A4 size (210X297 mm) 503460 A7

下列項目所組成之群组的電氣絕緣氧化物,包括:鹼土金 屬鈦酸鹽、鹼土金屬錘酸鹽、鹼土金屬铪酸鹽、鹼土金屬 ㈣m金鹽、驗土金屬㈣鹽、驗土金屬叙 酸鹽、包含屬-基鈣鈦礦的鈣鈦礦、鑭鋁酸鹽、氧化鑭銑 及氧化釓。4¾ 圖12顯示半導體結構126的斷面原理圖,其包括具有至少 部份形成於其中之邏輯元件13〇的基板92、絕緣層94及磁 性隧穿接面96。半導體結構126進一步包括非結晶氧化物 層114,以及電氣互相連接132,其被建構以將邏輯元件13〇 電氣耦合至層104。絕緣層94最好是以SrgBa^gTiOs爲材料 所製成的單結晶氧化物層,其中g値介於〇到i範圍内。單 結晶層102最好是厚度介於1至6 nmi間範圍内的氧化物, 並且對層1〇〇的晶格匹配在約四百分比的範圍内。本文中所 圖解及説明的各種半導體結構均可使用前文配合圖丨至3所 説明的處理技術製造。藉由在單結晶半導體基板92上製造 本文中所説明的磁性隧穿接面裝置,就能實現介於與基板 92關聯之磁性隧穿接面結構和微電子結構之間的單片集成。 圖13顯示積體磁性隧穿接面電路ι4〇的斷面原理圖。半導 體結構140包括覆蓋基板92的模板層142,以及絕緣層94。 如前文中配合圖1至3的説明,非結晶氧化物層n4有利於 在基板9 2上磊晶生長絕緣層9 4期間製造之。之後,有利於 在絕緣層94層製造第二模板層144。第二模板層144可促進 系晶生長第一強磁氧化物層100。根據較佳具體實施例,最 好在第一強磁氧化物層1〇〇上磊晶生長第二絕緣氧化物層 -21 - 本纸張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)The group of electrical insulating oxides consisting of: alkaline earth metal titanate, alkaline earth metal hammer salt, alkaline earth metal phosphonate, alkaline earth metal ㈣m gold salt, soil test metal ㈣ salt, soil test metal Salts, perovskites containing genus-based perovskites, lanthanum aluminates, lanthanum oxide mills, and hafnium oxide. Fig. 12 shows a schematic sectional view of a semiconductor structure 126, which includes a substrate 92 having a logic element 130 formed at least partially therein, an insulating layer 94, and a magnetic tunneling surface 96. The semiconductor structure 126 further includes an amorphous oxide layer 114 and an electrical interconnect 132 that is configured to electrically couple the logic element 130 to the layer 104. The insulating layer 94 is preferably a single crystalline oxide layer made of SrgBaggTiOs, where g 其中 is in the range of 0 to i. The single crystal layer 102 is preferably an oxide having a thickness in the range of 1 to 6 nmi, and the lattice matching of the layer 100 is in the range of about four percent. The various semiconductor structures illustrated and described herein can be fabricated using the processing techniques described above in conjunction with Figures 丨 3. By fabricating the magnetic tunneling junction device described herein on a single crystalline semiconductor substrate 92, monolithic integration between the magnetic tunneling junction structure and the microelectronic structure associated with the substrate 92 can be achieved. FIG. 13 shows a schematic sectional view of the integrated magnetic tunneling junction circuit ι40. The semiconductor structure 140 includes a template layer 142 covering the substrate 92 and an insulating layer 94. As explained in the foregoing with reference to Figs. 1 to 3, the amorphous oxide layer n4 is advantageous for manufacturing during the epitaxial growth of the insulating layer 94 on the substrate 92. After that, it is advantageous to manufacture the second template layer 144 on the insulating layer 94 layer. The second template layer 144 may promote the crystalline growth of the first ferromagnetic oxide layer 100. According to a preferred embodiment, it is best to epitaxially grow a second insulating oxide layer on the first ferromagnetic oxide layer 100. This paper size is applicable to China National Standard (CNS) A4 (210X 297 cm) (Centimeter)

裝 訂 % 503460Binding% 503460

102。 圖1 3的半導體結構140顯示第一層1〇〇、第二層1〇2及第三 層104的照相平版印刷圖案化過程,以允許磁性隨穿接面能 夠與基板92關聯的邏輯元件130單片集成。具體而言,電 氣互相連接134提供介於邏輯元件13〇與第一層1〇〇和第三層 104之每層之間的電氣接觸。具體而言,互相連接ι34被建 構以接觸第三層相關的電極136與第一層1〇〇相關的電極 13 8。在圖示具體實施例的背景下,可使用任何適合的方法 來生長單結晶層,包括MBE、MOCVD、MEE、CVD、PVD 、PLD、CSD和ALE。當然,若適用,則可採用這些技術來 生長本文中所解説的任何層。 根據本發明進一步觀點,形成模板層的方式可能是終止 生長基礎單結晶層,其具有1到丨〇層單分子層氧,以及選 自由鈇、鋇、#5和鉛所組成之群組的材料。 現在將配合圖14來説明製造磁性隧穿接面結構ι46的較佳 方法。首先提供單結晶矽基板92。之後,使用本文中所説 明的沈積方法的任何組合來連續沈積一些層,以形成半導 體疊層。在較佳具體實施例中,最好在基板92上沈積包括 SrgBa^gTiO3層的絕緣層94,其中g値介於零到壹範圍内。 然後在絕緣層94上沈積強磁性層1〇〇,強磁性層ι〇〇最好是 (A,B)C〇3合成物材料,其中A係選自由鑭和钕所組成的群 組,B係選自由鳃、鋇、鈣和鉛所組成的群組,而c係選自 Mn、(Mn,Co)和(Mn,Ni)所組成的群組。然後在層1〇〇上 沈積絕緣隧穿氧化物層102。然後,在層1〇2上沈積強磁性 -22- 本纸張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)102. The semiconductor structure 140 of FIG. 13 shows the photolithographic patterning process of the first layer 100, the second layer 102, and the third layer 104 to allow the logic element 130 whose magnetically-connected surface can be associated with the substrate 92. Monolithic integration. Specifically, the electrical interconnect 134 provides electrical contact between the logic element 13 and each of the first and third layers 100 and 104. Specifically, the interconnection 34 is constructed to contact the electrode 136 associated with the third layer and the electrode 13 8 associated with the first layer 100. In the context of the illustrated embodiment, any suitable method may be used to grow the single crystalline layer, including MBE, MOCVD, MEE, CVD, PVD, PLD, CSD, and ALE. Of course, if applicable, these techniques can be used to grow any of the layers illustrated herein. According to a further aspect of the present invention, the way to form the template layer may be to terminate the growth of a basic single crystal layer having 1 to 10 monomolecular layers of oxygen, and a material selected from the group consisting of thallium, barium, # 5 and lead . A preferred method of manufacturing the magnetic tunnel junction interface structure 46 will now be described with reference to FIG. First, a single crystal silicon substrate 92 is provided. Thereafter, any combination of the deposition methods described herein is used to successively deposit layers to form a semiconductor stack. In a preferred embodiment, an insulating layer 94 including a SrgBa ^ gTiO3 layer is preferably deposited on the substrate 92, where g 値 is in the range of zero to one. A ferromagnetic layer 100 is then deposited on the insulating layer 94. The ferromagnetic layer ιOO is preferably (A, B) C03 composite material, where A is selected from the group consisting of lanthanum and neodymium, and B Is selected from the group consisting of gill, barium, calcium and lead, and c is selected from the group consisting of Mn, (Mn, Co) and (Mn, Ni). An insulating tunneling oxide layer 102 is then deposited on layer 100. Then, deposit strong magnetism on layer 102. -22- This paper size is in accordance with China National Standard (CNS) A4 (210X 297 mm)

裝 % 503460 A7 B7 層104,適用的材料類似於層1 〇〇的材料。 圖15顯示廣泛相似於圖14所示結構146之半導體結構156 的斷面原理圖,用以進—步解説至少部份形成於基板92中 的非結晶層114及邏輯元件13〇。 圖16顯示廣泛相似於圖14所示之結構146之半導體結構 158的斷面原理圖,用以進一步解説圖案化層1〇〇、1〇=和 1044-層或-層以上的步驟,藉此產生各自節點15〇、 和154,其可相當於電壓或電流節點的任何期望組合。熟知 技藝人士應明白,圖案化層100、1〇2和1〇4之一層或一層以 上可產生任何期望組態的磁性隧穿接面裝置。 圖1 7顯示廣泛相似於圖1 6所示結構158之半導體結構丨6〇 的斷面原理圖,其進一步包括下列的額外步驟··沈積傳導 材料層180並圖案化層180,以產生各別的節點i64、166和 168。在特定較佳具體實施例中,適合於半導體基板16〇中 製造互相連接17〇,以將節點164至168的一個或一個以上節 點(例如,電極)連接至邏輯元件13〇。尤其,圖12至17所 示的方法及結構解説在單結晶半導體基板上製造磁性隨穿 接面裝置的優點,藉此允許磁性隧穿接面裝置能夠與基板 相關的邏輯元件單片集成。 圖18顯示半導體結構162的斷面原理圖,其包括下列額外 的步驟:在絕緣層9 4上沈積傳導氧化物層172,並且電氣 接觸強磁性層1〇〇。傳導氧化-物層172最好的製造步驟最好 是沈積選自由(LakSrlk)Co03、Si*Ru〇3、Si*Cr03 和 SrV〇3 所 組成之群組的材料,其中k大於零且小於壹。 -23- 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 503460 A7 B7Load% 503460 A7 B7 layer 104, suitable material is similar to the material of layer 100. FIG. 15 shows a schematic sectional view of a semiconductor structure 156, which is broadly similar to the structure 146 shown in FIG. 14, and is used to further explain the amorphous layer 114 and the logic element 13 which are at least partially formed in the substrate 92. FIG. 16 shows a schematic cross-sectional view of a semiconductor structure 158 that is broadly similar to the structure 146 shown in FIG. 14 to further explain the steps above the patterned layer 100, 10 =, and 1044-layer or -layer, thereby Respective nodes 150 and 154 are generated, which may correspond to any desired combination of voltage or current nodes. Those skilled in the art will appreciate that one or more of the patterned layers 100, 102, and 104 can produce a magnetic tunnel junction device of any desired configuration. FIG. 17 shows a cross-sectional schematic diagram of a semiconductor structure, which is broadly similar to the structure 158 shown in FIG. 16, which further includes the following additional steps: depositing a conductive material layer 180 and patterning the layer 180 to produce individual Nodes i64, 166, and 168. In a particularly preferred embodiment, it is suitable to fabricate interconnects 170 in the semiconductor substrate 160 to connect one or more nodes (e.g., electrodes) of the nodes 164 to 168 to the logic element 13o. In particular, the methods and structures shown in Figs. 12 to 17 illustrate the advantages of manufacturing a magnetic splice device on a single crystalline semiconductor substrate, thereby allowing the magnetic tunnel junction device to be monolithically integrated with the logic elements associated with the substrate. Fig. 18 shows a schematic sectional view of a semiconductor structure 162, which includes the following additional steps: a conductive oxide layer 172 is deposited on the insulating layer 94, and the ferromagnetic layer 100 is electrically contacted. The best manufacturing step of the conductive oxide layer 172 is to deposit a material selected from the group consisting of (LakSrlk) Co03, Si * Ru〇3, Si * Cr03, and SrV〇3, where k is greater than zero and less than one. . -23- This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) 503460 A7 B7

五、發明説明(21 於前面的説明書中,已參考特定具體實施例來説明本發 明。然而,熟知技藝人士應明白本發明的各種修改並且容 易修改,而不會脱離如下文中申請專利範例所提供之本發 明的範疇與精神。因此,説明書暨附圖應視爲解説,而不 應視爲限制,並且所有此類的修改皆屬本發明範疇内。 已説明關於特定具體實施例的優勢、其他優點及問題解 決方案。但是,可導致任何優勢、優點及解決方案發生或 更顯著的優勢、優點、問題解決方案及任何元件不應被理 解爲任何或所有申請專利範例的關鍵、必要項或基本功能 或元件。本文中所使用的術語Γ包括」、「包含」或其任 何其他的變化都是用來涵蓋非專有内含項,使得包括元件 清單的方法、方法、物品或裝置不僅包括這些元件,而且 還包括未明確列出或此類方法、方法、物品或裝置原有的 其他元件。 -24- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)V. Description of the invention (21 In the previous description, the invention has been described with reference to specific embodiments. However, those skilled in the art should understand the various modifications of the invention and easily modify them without departing from the patent application examples below. The scope and spirit of the present invention is provided. Therefore, the description and drawings should be regarded as illustrations, not as limitations, and all such modifications are within the scope of the present invention. Advantages, other advantages, and problem solutions. However, any advantage, advantage, and solution that can cause or become more significant, advantages, advantages, problem solutions, and any components should not be understood as the key and necessary of any or all patent application examples Item or basic function or element. As used herein, the term Γ includes "," includes "or any other variation thereof is used to encompass non-proprietary inclusions such that the method, method, article, or device includes a list of components Includes not only these elements, but also methods or methods, articles, or devices that are not explicitly listed or such Other elements. -24- This paper scales applicable Chinese National Standard (CNS) A4 size (210X 297 mm)

Claims (1)

•—種磁性隧穿接面結構包括: ,~單結晶半導體基板; 一單結晶絕緣層,以覆蓋該基板; M —第一層,其被磊晶生長以覆蓋該單結晶絕緣層,該 第層说夠呈現強磁性特性; —第二單結晶絕緣層,其被磊晶生長以覆蓋該第一層 ;以及 —第三層,以覆蓋該第二單結晶絕緣層,該第三層能 夠呈現強磁性特性。 2·如申請專利範圍第1項之結構,其中該第一層是單結晶。 3·如申請專利範園第2項之結構,其中該第三層是單結晶。 4 ·如申請專利範圍第1項之結構,其中該基板包含矽。 5 ·如申請專利範圍第4項之結構,該結構進一步包括一至 少部份形成於該基板中的CMOS電路。 6·如申請專利範圍第1項之結構,其中該單結晶絕緣層包 含一選自由金屬氧化物和金屬氮化物所組成之群組的材 料。 7 ·如申請專利範圍第6項之結構,其中該單結晶絕緣層包 含一選自由下列項目所組成之群組的材料,包括:驗土 金屬鈥酸鹽、驗土金屬結酸鹽、驗土金屬給酸鹽、驗土 金屬隹酸鹽、驗土金屬飢酸鹽、驗土金屬釕酸鹽、驗土 金屬鈮酸鹽、包含屬錫基鈣鈦礦的鈣鈦礦、鑭鋁酸鹽、 氧化鑭銃、氧化釓、氮化鎵及氮化鋁。 8 ·如申請專利範圍第6項之結構,其中該第一層包括一經 -25- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 刈3460• A magnetic tunnel junction structure includes: a single crystal semiconductor substrate; a single crystal insulating layer to cover the substrate; M — a first layer that is epitaxially grown to cover the single crystal insulating layer, the first layer The layer is said to exhibit strong magnetic properties;-a second single-crystal insulating layer, which is epitaxially grown to cover the first layer; and-a third layer, to cover the second single-crystal insulating layer, the third layer can present Strong magnetic properties. 2. The structure according to item 1 of the patent application scope, wherein the first layer is a single crystal. 3. The structure of item 2 of the patent application park, wherein the third layer is a single crystal. 4 · The structure according to item 1 of the patent application scope, wherein the substrate comprises silicon. 5. The structure according to item 4 of the scope of patent application, the structure further including at least a portion of the CMOS circuit formed in the substrate. 6. The structure according to item 1 of the scope of patent application, wherein the single crystalline insulating layer comprises a material selected from the group consisting of a metal oxide and a metal nitride. 7. The structure according to item 6 of the scope of patent application, wherein the single crystalline insulating layer comprises a material selected from the group consisting of: soil test metal's acid salt, soil test metal salt, soil test Metal salt, metal test salt, metal test salt, metal test ruthenate, metal test niobate, perovskite containing tin-based perovskite, lanthanum aluminate, Lanthanum hafnium oxide, hafnium oxide, gallium nitride and aluminum nitride. 8 · If the structure of the 6th scope of the patent application, where the first layer includes -25- this paper size applies Chinese National Standard (CNS) A4 specifications (210 X 297 mm) 刈 3460 ^^#5^.(manganiteperovskite)。 9..如申請專利範圍第6項之結構,其中該第一層包括一具 有一(AxBhdCO3合成物的材料,其中a係選自由鑭和钕 所組成的群組,B係選自由鳃、鋇、鈣和鉛所組成的群 組,並且χ介於〇至1範圍内,而c係選自 )(y大於0且小於或等於l)*(MnzNii z)(z大於〇且小於或 等於1 )所組成的群組。 10.如申請專利範圍第9項之結構,其中該第一層包括一單 結晶氧化物。 1 1 ·如申請專利範圍第9項之結構,該結構進一步包括一覆 益该卓結晶絕緣層的模板層。 1 2 ·如申请專利範圍第丨丨項之結構,其中該模板層終止該單 結晶絕緣層,並且包括一包含氧及一選自由鳃、鋇、鈣 和鉛所組成之群組之元素的層。 1 3 ·如申請專利範圍第1 2項之結構,其中該模板層的厚度爲 1到1 0層單分子層。 1 4 ·如申請專利範圍第6項之結構,其中該第三層包括一羥 鞋礦 #5 妖礦(manganite perovskite) 〇 15.如申請專利範圍第6項之結構,其中該第三層包括一具 有一(AxBNx)C〇3合成物的材料,其中a係選自由鑭和钕 所組成的群組,B係選自由鳃、鋇、鈣和鉛所組成的群 組,並且X介於OSi範圍内,而c係選自Mn、(MnyC〇iy) (y大於0且小於或等於丨)和(MllzNii z) (z大於〇且小於或 等於1 )所組成的群組。 -26- 本紙張尺度適用中國國家標準(CMS) A4規格(210 X 297公袭) 申請專利範圍 C8 D8^^ # 5 ^. (Manganiteperovskite). 9. The structure according to item 6 of the scope of patent application, wherein the first layer includes a material having an (AxBhdCO3 composition, wherein a is selected from the group consisting of lanthanum and neodymium, and B is selected from the group consisting of gill and barium Of calcium, calcium, and lead, and χ is in the range of 0 to 1, and c is selected from) (y is greater than 0 and less than or equal to 1) * (MnzNii z) (z is greater than 0 and less than or equal to 1 ). 10. The structure of claim 9 in which the first layer includes a single crystalline oxide. 1 1 · If the structure of item 9 of the scope of patent application, the structure further includes a template layer covering the crystalline insulation layer. 1 2 · The structure according to item 丨 丨 in the patent application range, wherein the template layer terminates the single crystalline insulating layer and includes a layer containing oxygen and an element selected from the group consisting of gill, barium, calcium and lead . 1 3 · The structure according to item 12 of the scope of patent application, wherein the thickness of the template layer is 1 to 10 monomolecular layers. 1 4 · The structure of item 6 in the scope of patent application, wherein the third layer includes a hydroxyl shoe mine # 5 妖 矿 (manganite perovskite) 〇 15. The structure of item 6 in the scope of patent application, wherein the third layer includes A material having an (AxBNx) C03 composition, where a is selected from the group consisting of lanthanum and neodymium, B is selected from the group consisting of gill, barium, calcium, and lead, and X is between OSi Within the range, and c is selected from the group consisting of Mn, (MnyCoiy) (y is greater than 0 and less than or equal to 丨) and (MllzNii z) (z is greater than 0 and less than or equal to 1). -26- This paper size applies to Chinese National Standard (CMS) A4 specification (210 X 297 public attack) Patent application scope C8 D8 6 .如申請專利範圍第1 5項之結構,其中該第三層包括—軍 •結晶氧化物。 17.如申請專利範圍第6項之結構,其中該第二單結晶絕緣 層包含一厚度爲1至6 nm的氧化物。 1 8 ·如申請專利範圍第丨7項之結構,其中該第二單結晶絕緣 層包含一晶格匹配於該第一層的材料。 19.如申請專利範圍第6項之結構,其中該第二單結晶絕緣 層包含一單結晶氧化物,其厚度小於2.5 nm,並且該氧 化物包括對第一層的晶格匹配約4百分比範園内的材料。 2 0 ·如申請專利範圍第i項之結構,其中該第二單結晶絕緣 層被建構以提供與該第一層之間的原子截然介面。 21·如申請專利範圍第6項之結構,其中該第二單結晶絕緣 層包含一選自由下列項目所组成之群組的材料,包括: 驗土金屬鈦酸鹽、鹼土金屬锆酸鹽、鹼土金屬給酸鹽、 驗土金屬赵酸鹽、驗土金屬飢酸鹽、驗土金屬釕酸鹽、 驗土金屬鈮酸鹽、包含屬錫基鈣鈦礦的鈣鈦礦、鑭鋁酸 鹽、氧化鑭銳及氧化釓。 22.如申請專利範圍第21項之結構,其中該第二單結晶絕緣 層包含一鹼土金屬鈦酸鹽。 23·如申請專利範圍第1項之結構,其中該第一層、第二單 結晶絕緣層及該第三層被圖案化以形成(在某種程度上) 磁性隧穿接面裝置。 一 24.如申請專利範圍第23項之結構,該結構進一步包括一至 少部份形成於該半導體基板中的積體邏輯元件。 -27- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 503460 ABCD 夂、申請專利範圍 25·如申請專利範圍第24項之結構,該結構進一步包括一互 •相連接’其被形成於並電氣互相連接該積體邏輯元件與 該磁性隧穿接面裝置。 2 6.如申請專利範圍第1項之結構,該結構進一步包括一非 結晶氧化物張力緩和層,其被形成於該單結晶絕緣層之 下。 2 7 ·如申請專利範圍第丨項之結構,該結構進一步包括一第 一電氣接觸層(其被形成於下方並電氣接觸該第一層)以 及第二電子接觸層(其覆蓋並電氣接觸該第三層)。 28·如申請專利範圍第27項之結構,其中該第一電氣接觸層 包含一單結晶電氣傳導氧化物層。 29.如申請專利範圍第28項之結構,其中該第一電氣接觸層 包含一選自由(LakSri_k)Co03、SrRu〇3、SrCr〇3和 SrV〇3 所組成之群組的材料,其中k大於Q且小於1。 3 0 · —種磁性隧穿接面結構包括: 一單結晶半導體基板; 單結晶氧化物層’其被蟲晶生長以覆蓋該基板; 一第一單結晶強磁性材料層,以覆蓋該單結晶氧化物 層; 一第二早結晶絕緣材料層,以覆蓋該第一層並形成與 該第一層之間的原子截然介面,該第二層夠薄以允許從 該處進行隧穿;以及 _ 一第三強磁性材料層,以覆蓋該第二層。 3 1 ·如申請專利範圍第3 〇項之結構,其中該第三層包含一具 -28· 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 州460 A86. The structure according to item 15 of the scope of the patent application, wherein the third layer comprises-a crystalline oxide. 17. The structure of claim 6 in which the second single crystal insulating layer comprises an oxide having a thickness of 1 to 6 nm. 18 · The structure according to item 7 of the patent application scope, wherein the second single-crystal insulating layer includes a material having a lattice matching the first layer. 19. The structure as claimed in claim 6 wherein the second single-crystal insulating layer comprises a single-crystalline oxide having a thickness of less than 2.5 nm, and the oxide includes a lattice matching of about 4% to the first layer. Materials in the park. 2 0. The structure of item i in the scope of the patent application, wherein the second single crystalline insulating layer is constructed to provide an atomic interface with the first layer. 21. The structure according to item 6 of the scope of patent application, wherein the second single crystalline insulating layer comprises a material selected from the group consisting of: earth test metal titanate, alkaline earth metal zirconate, alkaline earth Metal salt, metal test salt, metal test salt, metal test ruthenate, metal test niobate, perovskite containing tin-based perovskite, lanthanum aluminate, Lanthanum oxide and thorium oxide. 22. The structure of claim 21, wherein the second single crystalline insulating layer comprises an alkaline earth metal titanate. 23. The structure according to item 1 of the scope of patent application, wherein the first layer, the second single crystalline insulating layer, and the third layer are patterned to form (to some extent) a magnetic tunnel junction device. 24. The structure according to item 23 of the scope of patent application, the structure further comprising at least a part of the integrated logic element formed in the semiconductor substrate. -27- This paper size applies to Chinese National Standard (CNS) A4 specification (210 X 297 mm) 503460 ABCD 夂, patent application scope 25 · If the structure of the patent application scope item 24, the structure further includes a mutual connection 'It is formed on and electrically interconnects the integrated logic element and the magnetic tunnel junction interface device. 2 6. The structure according to item 1 of the scope of patent application, the structure further comprising an amorphous oxide tension relaxation layer formed under the single crystalline insulating layer. 2 7 · According to the structure of the scope of the patent application, the structure further includes a first electrical contact layer (which is formed below and electrically contacts the first layer) and a second electronic contact layer (which covers and electrically contacts the the third floor). 28. The structure of claim 27, wherein the first electrical contact layer includes a single crystalline electrically conductive oxide layer. 29. The structure of claim 28, wherein the first electrical contact layer comprises a material selected from the group consisting of (LakSri_k) Co03, SrRu〇3, SrCr〇3, and SrV〇3, where k is greater than Q is less than 1. A magnetic tunnel junction structure includes: a single crystal semiconductor substrate; a single crystal oxide layer that is grown by insect crystals to cover the substrate; a first single crystal ferromagnetic material layer to cover the single crystal An oxide layer; a second layer of early crystalline insulating material to cover the first layer and form a sharp atomic interface with the first layer, the second layer being thin enough to allow tunneling from there; and A third ferromagnetic material layer to cover the second layer. 3 1 · If the structure of the scope of patent application No. 30, where the third layer contains a -28 · This paper size applies to China National Standard (CNS) A4 specifications (210X 297 mm) State 460 A8 有一有序單結晶結構之材料層。 32··如申請專利範圍第3〇項之結構,其中該第一層、第二層 及第二層都包含一磊晶生長單結晶材料層。 33. 如申請專利範圍第30項之結構,其中該第一層包括—具 有一(AxB^JCO3合成物的材料,其中A係選自由鑭和钕 所组成的群組,B係選自㈣ϋ和鉛所組成的群 組,並且X介於0至1範圍内,而c係選自Mn、(MnyC〇iy L(y大於〇且小於或等於1)*(MnzNiiz)(z大於〇且小於或y 等於1)所組成的群組。 34. 如申請專利範圍第33項之結構,其中該第二層包含一選 自由下列項目所組成之群組的電氣絕緣氧化物,包括: 鹼土金屬鈦酸鹽、鹼土金屬锆酸鹽、鹼土金屬铪酸鹽、 鹼土金屬妲酸鹽、鹼土金屬釩酸鹽、鹼土金屬釕酸鹽、 鹼土金屬鈮酸鹽、包含屬錫基鈣鈦礦的鈣鈦礦、鑭鋁酸 鹽、氧化鑭銃及氧化釓。 35·如申請專利範圍第34項之結構,其中該第三層包括一具 有一(AJuJCO3合成物的材料,其中八係選自由鑭和钕 所組成的群組,B係選自由鳃、鋇、鈣和鉛所組成的群 組,並且X介於範圍内,而c係選自Mn、(MnyC〇iy )(y大於0且小於或等於1)*(MnzNik)(z大於〇且小於或 等於1)所組成的群組。 36. —種積體磁性隧穿接面電路包括: 一單結晶碎基板; 一積體邏輯電路,其至少部份形成於該矽基板内; | -29- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 六、申請專利範圍 一第一單結晶氧化物層,其被磊晶生長以覆蓋該矽基 .板; 一非結晶氧化物,其被形成於該第一單結晶氧化物層 之下; 一第二單結晶氧化物層,其包括一被磊晶形成以覆蓋 該第一單結晶氧化物層的強磁性材料; 一第三單結晶氧化物層,其包括一覆蓋該第二單結晶 氧化物層之電氣絕緣材料,該第三單結晶氧化物層夠薄 以允許從該處進行隧穿; 一第四氧化物層,其包括一被形成以覆蓋該第三單結 晶氧化物層的強磁性材料;以及 一電氣互相連接,其耦合該積體邏輯電路及該第四單 結晶氧化物層。 3 7 .如申請專利範圍第3 6項之電路,其中該積體邏輯電路包 括一 CMOS電路。 3 8 .如申請專利範圍第3 6項之電路,其中該第一單結晶氧化 物層包含一選自由下列項目所組成之群組的材料,包括 :鹼土金屬鈦酸鹽、鹼土金屬锆酸鹽、鹼土金屬铪酸鹽 、驗土金屬艇酸鹽、驗土金屬釩酸鹽、驗土金屬釕酸鹽 、鹼土金屬鈮酸鹽、包含屬錫基鈣鈦礦的鈣鈦礦、鑭鋁 酸鹽、氧化鑭銃及氧化釓。 3 9 .如申請專利範圍第3 8項之~電路,其中該第一單結晶氧化 物層包含一驗土金屬钦酸鹽。 4 0 .如申請專利範圍第3 8項之電路,其中該第一單結晶氧化 -30- 本纸張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 503460There is a layer of ordered monocrystalline material. 32. The structure of claim 30, wherein the first layer, the second layer, and the second layer all include an epitaxially grown single crystal material layer. 33. The structure of claim 30, wherein the first layer includes-a material having a (AxB ^ JCO3 composition, where A is selected from the group consisting of lanthanum and neodymium, and B is selected from the group consisting of rhenium and A group of lead, and X is in the range of 0 to 1, and c is selected from Mn, (MnyCoiy L (y is greater than 0 and less than or equal to 1) * (MnzNiiz) (z is greater than 0 and less than or y is equal to the group consisting of 1) 34. The structure according to item 33 of the patent application scope, wherein the second layer includes an electrically insulating oxide selected from the group consisting of: alkaline earth metal titanic acid Salt, alkaline earth metal zirconate, alkaline earth metal phosphonate, alkaline earth metal phosphonate, alkaline earth metal vanadate, alkaline earth metal ruthenate, alkaline earth metal niobate, perovskite containing tin-based perovskite, Lanthanum aluminate, lanthanum osmium oxide and praseodymium oxide. 35. The structure according to item 34 of the patent application, wherein the third layer includes a material having a (AJuJCO3 composition, of which eight series are selected from the group consisting of lanthanum and neodymium Group B is selected from the group consisting of gill, barium, calcium and lead, and X Is within the range, and c is selected from the group consisting of Mn, (MnyCoily) (y is greater than 0 and less than or equal to 1) * (MnzNik) (z is greater than 0 and less than or equal to 1). 36. — A kind of integrated magnetic tunneling junction circuit includes: a single crystal broken substrate; an integrated logic circuit formed at least partially in the silicon substrate; | -29- This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 mm) 6. Scope of patent application-a first single crystalline oxide layer, which is epitaxially grown to cover the silicon substrate. A non-crystalline oxide, which is formed on the first single crystalline oxide Under the material layer; a second single crystalline oxide layer including a ferromagnetic material formed by epitaxy to cover the first single crystalline oxide layer; a third single crystalline oxide layer including a covering the An electrical insulating material for a second single crystal oxide layer, the third single crystal oxide layer is thin enough to allow tunneling therefrom; a fourth oxide layer includes a third oxide layer formed to cover the third single crystal A ferromagnetic material of an oxide layer; and an electrical interconnection, which Combine the integrated logic circuit and the fourth single crystal oxide layer. 37. The circuit of item 36 in the scope of patent application, wherein the integrated logic circuit includes a CMOS circuit. The circuit of item 6, wherein the first single crystalline oxide layer comprises a material selected from the group consisting of: alkaline earth metal titanate, alkaline earth metal zirconate, alkaline earth metal phosphonate, and soil test Metal boat salt, soil test metal vanadate, soil test metal ruthenate, alkaline earth metal niobate, perovskite containing tin-based perovskite, lanthanum aluminate, lanthanum hafnium oxide, and thorium oxide. 3 9. The circuit according to item 38 of the scope of application for a patent, wherein the first single crystalline oxide layer includes an earth metal salt. 40. If the circuit of item 38 of the scope of patent application is applied, wherein the first single crystal is oxidized -30- This paper size applies to China National Standard (CNS) A4 specification (210X297 mm) 503460 物層包括SrgBa^gTiO3,其中g値介於〇到1範圍内。 4 1..如申請專利範圍第38項之電路,其中該第二單結晶氧化 物層包括一(AxB^JCO3,其中Α係選自由鑭和钕所組成 的群組,B係選自由鳃、鋇、鈣和鉛所組成的群組,並 且X介於0至1範圍内,而C係選自Mn、(MnyC〇iy)㈠大 於〇且小於或等於1)和(MrizNih·ζ) (z大於〇且小於或等於 1)所組成的群組。 42 ·如申請專利範圍第4丨項之電路,其中該第四氧化物層包 括(ΑχΒι-χ) CO3 ’其中A係選自由鑭和钕所組成的群組 ,B係選自由锶、鋇、鈣和鉛所組成的群組,並且X介 於〇至1範圍内,而c係選自Mn、(MnyC〇i y)(y大於 小於或等於1)和(MnzNi!·ζ) (z大於〇且小於或等於丨)所組 成的群組。 43.如申請專利範圍第38項之電路,其中該第三單結晶氧化 物層包含一選自由下列項目所組成之群組的絕緣氧化物 材料,包括:鹼土金屬鈦酸鹽、鹼土金屬錘酸鹽、鹼土 金屬給酸鹽、鹼土金屬鈕酸鹽、鹼土金屬釩酸鹽、鹼土 金屬釕酸鹽、鹼土金屬鈮酸鹽、包含屬錫基鈣鈦礦的鈣 鈥礦、鑭鋁酸鹽、氧化鑭銳及氧化釓。 44·如申請專利範圍第43項之電路,其中該第三單結晶絕緣 層包含一厚度爲1至6 nm之間的氧化物。 45 ·如申請專利範圍第43項之-電路,其中該第三單結晶氧化 物層包含一對該第二單結晶氧化物層的晶格匹配約4百 分比範圍内的氧化物。The material layer includes SrgBa ^ gTiO3, where g 値 is in the range of 0 to 1. 4 1. The circuit of claim 38, wherein the second single crystalline oxide layer includes (AxB ^ JCO3, where A is selected from the group consisting of lanthanum and neodymium, and B is selected from the group consisting of gill, A group of barium, calcium, and lead, and X is in the range of 0 to 1, and C is selected from Mn, (MnyC〇iy) ㈠ greater than 0 and less than or equal to 1), and (MrizNih · ζ) (z A group of greater than 0 and less than or equal to 1). 42. The circuit of item 4 丨 in the scope of patent application, wherein the fourth oxide layer includes (ΑχΒι-χ) CO3 'where A is selected from the group consisting of lanthanum and neodymium, and B is selected from the group consisting of strontium, barium, A group of calcium and lead, and X is in the range of 0 to 1, and c is selected from Mn, (MnyCoi) (y is greater than or equal to 1), and (MnzNi! · Ζ) (z is greater than 0) And less than or equal to 丨). 43. The circuit of claim 38, wherein the third single crystalline oxide layer includes an insulating oxide material selected from the group consisting of alkaline earth metal titanate, alkaline earth metal hammer acid Salt, alkaline earth metal salt, alkaline earth metal button salt, alkaline earth metal vanadate, alkaline earth metal ruthenate, alkaline earth metal niobate, calcium 'ore containing tin-based perovskite, lanthanum aluminate, oxidation Lanthanum sharp and thorium oxide. 44. The circuit of claim 43 in the patent application scope, wherein the third single crystal insulating layer includes an oxide having a thickness between 1 and 6 nm. 45. The circuit of claim 43 in the patent application range, wherein the third single crystal oxide layer includes a pair of oxides in a lattice matching range of the second single crystal oxide layer in a range of about 4%. A B c D 503460 六、申請專利範圍 46. —種製造積體磁性隧穿接面電路之方法,該方法包括下 .列步驟: 提供一單結晶半導體基板; 形成一積體邏輯電路,其至少部份形成於該半導體基 板内; 形成一第一模板層,以覆蓋該半導體基板; 系晶生長一單結晶絕緣層,以覆蓋該第一模板層; 於系晶生長該单結晶絕緣層期間,在該单結晶絕緣層 下形成一非結晶氧化物層; 形成一第二模板層,以覆蓋該單結晶絕緣層; 磊晶生長一第一強磁性氧化物層,以覆蓋該第二模板 層; 蟲晶生長一第二單結晶絕緣氧化物層,以覆蓋該第一 強磁性氧化物層; 生長一第二強磁性氧化物層,以覆蓋該電氣傳導氧化 物層; 以照相平版印刷法圖案化該第一強磁性氧化物層、該 第二單結晶絕緣氧化物層及該第二強磁性氧化物層,以 曝露該積體邏輯電路的一部份; 形成電極,以接觸該第一強磁性氧化物層及該第二強 磁性氧化物層;以及 形成一電氣互相連接,其從該積體邏輯電路部份延伸 至電極。 47. 如申請專利範圍第46項之方法,其中該提供一單結晶半 •32- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)AB c D 503460 6. Application patent scope 46. A method for manufacturing an integrated magnetic tunnel junction interface circuit, the method includes the following steps: providing a single crystal semiconductor substrate; forming an integrated logic circuit, at least a part of which Parts are formed in the semiconductor substrate; a first template layer is formed to cover the semiconductor substrate; a single crystal insulating layer is grown on the system to cover the first template layer; during the growth of the single crystal insulation layer on the system, An amorphous oxide layer is formed under the single crystalline insulating layer; a second template layer is formed to cover the single crystalline insulating layer; a first ferromagnetic oxide layer is epitaxially grown to cover the second template layer; Growing a second single crystalline insulating oxide layer to cover the first ferromagnetic oxide layer; growing a second ferromagnetic oxide layer to cover the electrically conductive oxide layer; patterning the photolithographic method A first ferromagnetic oxide layer, the second single crystalline insulating oxide layer, and the second ferromagnetic oxide layer to expose a part of the integrated logic circuit; Electrode, to contact the first ferromagnetic oxide layer and the second ferromagnetic oxide layer; and forming an electrical connection to each other, extending from the integrated logic circuit portion to the electrode. 47. If the method of applying for the scope of the patent No. 46, which provides a single crystal half • 32- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 503460503460 導體基板的㈣包括在該單結晶半㈣基板的表面上提 .供-包含-具有-氧切層切的基板之步驟,並且, 該形成一第一模板層的步驟包括下列步驟·· 在該氧化梦層上沈積-選自由驗土金屬與驗土金屬氧 化物所組成之群組的材料;以及 加熱該基板,使該材料與氧化矽產生化學反應。 48. 如申請專利範圍第47項之方法,其中沈積—選“自由驗土 金屬與驗土金屬氧化物所组成之群組之材料的步驟包括 :沈積-選自由鋇、鳃和鋇鳃混合物、氧化鋇、氧化鳃 和氧化鋇鳃所組成之群組的材料。 49. 如申請專利範圍第48項之方法,丨中羞晶生長一單結晶 絕緣層步驟包括下列步驟: 加熱該單結晶半導體基板至大約2〇(rc與大約8〇(Π:2 間的溫度;以及 導入包含鳃、氧及選自由鋇、鳃和鋇趔之元素的反應 物0 50. 如中凊專利|&圍第49項之方法’其中該導人步驟包括控 制總或鋇與鈦的比率,以及控制氧氣分壓。 5 1.如申請專利範圍第50項之方法,其中形成一第一非結晶 氧化物層的步驟包括將氧氣分壓増加至磊晶生長該單結 晶絕緣層所需的分壓量以上。 52.如申請專利範圍第49項之方法,其中該形成一第二模板 層的步驟包括以一包含一材料之單分子層來覆蓋 (capping)該單結晶氧化物層的步聲,其中該材料係選自 -33 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A8 B8 C8The conductor substrate includes a step of providing on the surface of the single-crystal half-substrate substrate. The step of supplying-containing-having-oxygen-cutting of the substrate is performed, and the step of forming a first template layer includes the following steps. Deposition on the oxide dream layer-a material selected from the group consisting of a soil test metal and a soil test metal oxide; and heating the substrate to cause the material to react chemically with silicon oxide. 48. The method of claim 47, wherein the step of depositing-selecting the material of the group consisting of "free soil test metal and soil test metal oxide" includes: depositing-selected from the group consisting of barium, gills and barium gill mixtures, Material of the group consisting of barium oxide, gill oxide, and barium oxide gill. 49. According to the method of claim 48 in the scope of patent application, the step of growing a single crystal insulating layer in the crystal includes the following steps: heating the single crystal semiconductor substrate To a temperature between about 20 (rc and about 80 (Π: 2); and introducing a reactant containing gills, oxygen, and an element selected from the group consisting of barium, gills, and barium gadolinium. The method of item 49, wherein the inductive step includes controlling the total or barium to titanium ratio and controlling the partial pressure of oxygen. 5 1. The method of item 50 in the scope of the patent application, wherein a first amorphous oxide layer is formed The step includes adding oxygen partial pressure to more than the partial pressure required for epitaxial growth of the single crystal insulating layer. 52. The method according to item 49 of the patent application, wherein the step of forming a second template layer includes A material To cover the monolayer (capping) the single crystal oxide layer tramp, wherein the material is selected from -33-- This applies China National Standard Paper Scale (CNS) A4 size (210 X 297 mm) A8 B8 C8 由飲、鈥暨氧、鋇、鎖暨氧、總及鐵暨氧所組成的群组。 53·.如申請專利範圍第46項之方法,其中磊晶生長一單結晶 絶緣層的步驟包括藉由選自由MBE、M〇cVD、、 CVD PVD、PLD、CSD和ALE所組成之群組的方法進行 磊晶生長的步驟。 54.如申請專利範圍第46項之方法,其中磊晶生長一第—強 磁性氧化物層、磊晶生長一第二單結晶絕緣氧化物層及 生長一第二強磁性氧化物層的步驟均包括藉由選自由 MBE、MOCVD、MEE、CVD、PVD、PLD、CSD和 ALE所 組成之群組的方法進行磊晶生長的步驟。 5 5.如申請專利範園第46項之方法,其中磊晶生長一第一強 磁性氧化物層的步驟包括生長一(ΑχΒ i x)c〇3合成物氧 化物層的步驟,其中A係選自由鑭和钕所組成的群組, B係選自由鳃、鋇、鈣和鉛所組成的群組,並且X介於〇 至1範圍内,而C係選自Mn、(MnyC〇1-y)(y大於〇且小於 或等於1)和(MnzNii·ζ) (z大於〇且小於或等於丨)所組成的 群組。 5 6 ·如申請專利範園第46項之方法,其中生長一第二強磁性 氧化物層的步驟包括生長一(ΑχΒ i·χ) c〇3合成物氧化物層 的步骤,其中A係選自由鑭和敍所組成的群組,B係選 自由鳃、鋇、鈣和鉛所組成的群組,並且χ介於〇至丨範圍 内’而C係選自Mn、(Mi^CobKy大於〇且小於或等於 1)和(MnzNU (z大於〇且小於或等於1)所組成的群組。 5 7 ·如申請專利範圍第4 6項之方法,其中磊晶生長一第二單 -34- 503460 A8 B8 C8 _________D8六、申請專利範圍 結晶絕緣氧化物層的步驟包含生長一層的步騍,該層包 .含一選自由下列項目所組成之群組的絕緣材料,包括·· 鹼土金屬鈦酸鹽、鹼土金屬錘酸鹽、鹼土金屬铪酸鹽、 鹼土金屬Μ酸鹽、鹼土金屬釩酸鹽、鹼土金屬釕酸鹽、 驗土金屬鏡酸鹽、包含屬錫基#5欽礦的約鈥礦、鑭銘酸 鹽、氧化鑭銳及氧化釓。 5 8 ·如申請專利範圍第4 6項之方法,其中磊晶生長一單結晶 乡巴緣層的步驟包含生長一層的步驟,該層包含一選自由 下列項目所組成之群組的絕緣材料,包括:鹼土金屬欽 酸鹽、鹼土金屬錘酸鹽、鹼土金屬铪酸鹽、鹼土金屬鈕 酸鹽、鹼土金屬釩酸鹽、鹼土金屬釕酸鹽、鹼土金屬鈮 fe鹽、包含屬錫基#5鈥礦的約鈥礦、鑭銘酸鹽、氧化鐦 銳及氧化亂。 59·如申請專利範圍第58項之方法,其中磊晶生長一第一強 磁性氧化物層的步驟包括生長一(AxBi x)c〇3合成物氧化 物層的步驟,其中A係選自由鑭和钕所組成的群組,B 係選自由鳃、鋇、鈣和鉛所組成的群組,並且χ介於〇至 1範圍内,而C係選自Μη、(MnyC〇i y)(y大於〇且小於或 等於1)和(MxizNUh大於〇且小於或等於υ所組成的群 組。 6〇·如申請專利範圍第59項之方法,其中形成一第一模板層 的步驟包括終止生長該單結晶絕緣層的步驟,該單結晶 絕緣層具有丄到^層單分子層氧,以及—選自由鈦、鋇 、鈣和鉛所組成之群組的材料。 •35- 巧張尺度適財S S家標準(CNS) Α4€(摩297公复)-----A group consisting of drinking, oxygen, barium, lock oxygen, total iron and oxygen. 53. The method according to item 46 of the patent application, wherein the step of epitaxially growing a single crystalline insulating layer includes using a method selected from the group consisting of MBE, MocVD, CVD PVD, PLD, CSD, and ALE. The method performs the steps of epitaxial growth. 54. The method of claim 46, wherein the steps of epitaxial growth of a first-ferromagnetic oxide layer, epitaxial growth of a second single-crystal insulating oxide layer, and growth of a second ferromagnetic oxide layer are all The method includes the step of epitaxial growth by a method selected from the group consisting of MBE, MOCVD, MEE, CVD, PVD, PLD, CSD, and ALE. 5 5. The method according to item 46 of the patent application park, wherein the step of epitaxially growing a first ferromagnetic oxide layer includes the step of growing an (ΑχΒ ix) c03 composite oxide layer, wherein A is a selective The group consisting of free lanthanum and neodymium, B is selected from the group consisting of gill, barium, calcium, and lead, and X is in the range of 0 to 1, and C is selected from Mn, (MnyC〇1-y ) (y is greater than 0 and less than or equal to 1) and (MnzNii · ζ) (z is greater than 0 and less than or equal to 丨). 5 6 · The method according to item 46 of the patent application park, wherein the step of growing a second ferromagnetic oxide layer includes the step of growing an (ΑχΒ i · χ) c03 composite oxide layer, wherein A is selected The group consisting of free lanthanum and Syria, B is selected from the group consisting of gill, barium, calcium, and lead, and χ is in the range of 0 to 丨 ', and C is selected from Mn, (Mi ^ CobKy greater than 0) And less than or equal to 1) and (MnzNU (z greater than 0 and less than or equal to 1). 5 7 · The method according to item 46 of the patent application scope, wherein epitaxial growth of a second single -34- 503460 A8 B8 C8 _________D8 VI. The scope of patent application includes the step of growing a layer of crystalline insulating oxide layer, which includes a layer of insulating material selected from the group consisting of alkaline earth metal titanic acid Salt, alkaline earth metal hammer salt, alkaline earth metal phosphonate, alkaline earth metal mate, alkaline earth metal vanadate, alkaline earth metal ruthenate, soil test metal mirror salt, containing tin-based Ore, lanthanum acid salt, lanthanum oxide and thorium oxide. 5 8 · If the scope of patent application The method of item 46, wherein the step of epitaxially growing a single crystalline rural rim layer includes the step of growing a layer including an insulating material selected from the group consisting of alkaline earth metal citrate , Alkaline-earth metal hammer salt, alkaline-earth metal phosphonate, alkaline-earth metal button salt, alkaline-earth metal vanadate, alkaline-earth metal ruthenate, alkaline-earth metal niobium fe salt, containing about ore which belongs to tin group # 5 ', Lanthanum salt, osmium oxide and oxidized disorder. 59. The method according to item 58 of the patent application, wherein the step of epitaxially growing a first ferromagnetic oxide layer includes growing an (AxBi x) c03 composite. An oxide layer step, where A is selected from the group consisting of lanthanum and neodymium, B is selected from the group consisting of gill, barium, calcium, and lead, and χ is in the range of 0 to 1, and C is It is selected from the group consisting of Mη, (MnyCoiy) (y is greater than 0 and less than or equal to 1), and (MxizNUh is greater than 0 and less than or equal to υ.) 60. The method of claim 59, wherein A step of a first template layer includes terminating growth of the single crystal insulating layer Step, the single crystalline insulating layer has 丄 to 单 monomolecular layers of oxygen, and—a material selected from the group consisting of titanium, barium, calcium, and lead. • 35- Smart Scale Standards SS Home Standard (CNS ) Α4 € (297 replies) ----- 裝 訂 線Gutter 6 1 ·如申請專利範園第46項之方法,其中生長一第二強磁性 •材料的步驟包括濺渡沈積_(AxBix)c〇3合成物氧化物層 的步骤,其中A係選自由鑭和敛所組成的群組,B係選 自由魏、鎖、舞和錯所組成的群組,並五X介於〇至丨範圍 内,而C係選自Mn、(MnyC〇1-y)(y大於〇且小於或等於 1)和(MnzNii.zKz大於〇且小於或等於i )所組成的群組。 •種製造磁性隧穿接面之方法,該方法包括下列步驟: 提供一具有一表面的單結晶半導體基板; 在該表面上磊晶生長一單結晶絕緣材料層; 磊晶生長一第一強磁性材料層,以覆蓋該單結晶絕緣 材料層; 磊晶生長一第二單結晶絕緣氧化物層,以覆蓋該第一 層;以及 形成一第二強磁性材料層,以覆蓋該第二單結晶絕緣 氧化物層。 6 3 .如申請專利範圍第6 2項之方法,其中蟲晶生長一第一強 磁性材料層的步驟包括藉由選自由Mbe、MOC VD、MEE 、CVD、PVD、PLD、CSD和ALE所組成之群組的方法進 行蟲晶生長一第一強磁性材料層的步驟。 64.如申請專利範圍第63項之方法,其中磊晶生長一第一強 磁性材料層的步驟包括磊晶生長一單結晶強磁性材料層 的步驟。 — 6 5 ·如申請專利範圍第6 2項之方法,其中形成一第二強磁性 材料層的步驟包括藉由PVD形成一第二層的步驟。 -36· 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 503460 A8 B8 C8 申請專利範圍 66’如申請專利範圍第65項之方法,其中形成一第二層的步 綠包括形成一具有一有序單結晶結構之層的步驟。 6 7 ·如申請專利範圍第6 2項之方法,其中該磊晶生長一第二 單結晶絕緣氧化物層的步驟包括生長一厚度爲1至6 nm 之鹼土金屬氧化物層的步驟。 6 8 ·如申請專利範圍第62項之方法,其中磊晶生長一第二單 結晶絕緣氧化物層妁步驟包括生長一氧化物層,該氧化 物層夠薄以允許從該處進行隧穿。 69·如申請專利範圍第62項之方法,其中磊晶生長一第一第 二單結晶絕緣氧化物層的步驟包括生長一對該第一強磁 性材料層的晶格匹配約4百分比範圍内之氧化物層的步 驟。 7 0 ·如申請專利範圍第6 9項之方法,其中該磊晶生長一第二 單結晶絕緣氧化物層的步驟包括生長一厚度小於2.5 n m之層的步驟。 71· —種製造磁性隧穿接面電路之方法,該方法包括下列步 驟: * 提供一單結晶矽基板,·以及 藉由選自由 MBE、MOCVD、MEE、CVD、PVD、PLD 、CSD和ALE所組成之群組的方法進行連續沈積下列單 結晶暴晶層: 一SrgBa^gTiCh層,其中会値介於〇到1範圍内; 一(ΑχΒ^χ) CO3合成物強磁性材料層,其中a係選自由 鑭和钕所組成的群組,B係選自由鳃、鋇、舞和錯所組 -37- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 503460 ABCD 六、申請專利範圍 成的群組,並且X介於0至1範圍内,而C係選自Μη、 (MnyCow) (y大於〇且小於或等於i)和(MnzNii z) ( ζ大於 〇且小於或等於1)所組成的群組; 一絕緣隧穿氧化物層;以及 一第二(AxBi-x)C〇3合成物強磁性材料層,其中A係選 自由鑭和钕所組成的群組,B係選自由锶、鋇、鈣和鉛 所組成的群組,並且x介於〇至1範圍内,而C係選自Mn 、(Mnyc〇i-y)(y大於〇且小於或等於1)和(MnzNii.zKz大 於0且小於或等於1)所組成的群組。 7 2 ·如申請專利範圍第7 i項之方法,該方法進一步包括一至 少邵份於該矽基板中形成一 CMOS電路的步驟。 7 3 ·如申請專利範圍第7 1項之方法,該方法進一步包括於 SrgBa^gTiO3層(其中g値介於〇到1範圍内)下方形成一張 力緩和層的步驟。 7 4 .如申請專利範圍第7 1項之方法,該方法進一步包括圖案 化該強磁性材料層、該絕緣隧穿氧化物層及該第二強磁 性材料層,以形成一磁性隧穿接面裝置。 75·如申請專利範圍第74項之方法,該方法進一步包括下列 步驟: 沈積一傳導材料層,以覆蓋該磁性隧穿接面裝置及該 CMOS電路;以及 圖案化該傳導材料層,-以形成一電氣互相連接,其被 建構以電氣耦合該CMOS電路與該磁性隧穿接面裝置。 76·如申請專利範圍第71項之方法,其中沈積一絕緣隧穿氧 -38 - 本紙張尺度適财目时料(CNS) A4規格(2夢297公爱 1 ----s A86 1 · The method according to item 46 of the patent application, wherein the step of growing a second ferromagnetic material includes the step of sputtering and depositing an oxide layer of (AxBix) c03 composite, wherein A is selected from the group consisting of lanthanum The group consisting of and convergence, B is selected from the group consisting of Wei, Suo, Wu and Cuo, and X is in the range of 0 to 丨, and C is selected from Mn, (MnyC〇1-y) (y is greater than 0 and less than or equal to 1) and (MnzNii.zKz is greater than 0 and less than or equal to i). A method for manufacturing a magnetic tunneling junction, the method comprising the following steps: providing a single crystal semiconductor substrate having a surface; epitaxially growing a single crystal insulating material layer on the surface; epitaxially growing a first ferromagnetic material Material layer to cover the single crystal insulating material layer; epitaxial growth of a second single crystal insulating oxide layer to cover the first layer; and forming a second ferromagnetic material layer to cover the second single crystal insulation Oxide layer. 63. The method according to item 62 of the scope of patent application, wherein the step of growing the first ferromagnetic material layer by vermicular crystals comprises a method selected from the group consisting of Mbe, MOC VD, MEE, CVD, PVD, PLD, CSD and ALE. The group method performs the step of growing a first ferromagnetic material layer of the worm crystal. 64. The method of claim 63, wherein the step of epitaxially growing a first ferromagnetic material layer includes the step of epitaxially growing a single-crystal ferromagnetic material layer. — 6 5 · The method according to item 62 of the patent application scope, wherein the step of forming a second ferromagnetic material layer includes the step of forming a second layer by PVD. -36 · This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 503460 A8 B8 C8 Patent application scope 66 'As in the method of patent application item 65, the method of forming a second layer includes A step of forming a layer having an ordered single crystal structure. 67. The method of claim 62, wherein the step of epitaxially growing a second single crystalline insulating oxide layer includes the step of growing an alkaline earth metal oxide layer having a thickness of 1 to 6 nm. 68. The method of claim 62, wherein epitaxial growth of a second single crystalline insulating oxide layer includes the step of growing an oxide layer that is thin enough to allow tunneling therefrom. 69. The method of claim 62, wherein the step of epitaxially growing a first and second single crystalline insulating oxide layer includes growing a pair of lattices of the first ferromagnetic material layer within a range of about 4%. Step of oxide layer. 70. The method of claim 69, wherein the step of epitaxially growing a second single crystalline insulating oxide layer includes the step of growing a layer having a thickness of less than 2.5 nm. 71 · —A method of manufacturing a magnetic tunnel junction interface circuit, the method includes the following steps: * providing a single crystalline silicon substrate, and by selecting from the group consisting of MBE, MOCVD, MEE, CVD, PVD, PLD, CSD and ALE The method of forming a group is to successively deposit the following single crystal crystalline layers: a SrgBa ^ gTiCh layer, which will be in the range of 0 to 1; a (ΑχΒ ^ χ) layer of ferromagnetic material of CO3 composition, where a It is selected from the group consisting of lanthanum and neodymium, and B is selected from the group consisting of gill, barium, dance, and wrong. -37- This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 503460 ABCD Six, The group of patent application ranges, and X is in the range of 0 to 1, and C is selected from Mη, (MnyCow) (y is greater than 0 and less than or equal to i), and (MnzNii z) (ζ is greater than 0 and less than or A group consisting of 1); an insulating tunneling oxide layer; and a second (AxBi-x) C03 composite ferromagnetic material layer, where A is selected from the group consisting of lanthanum and neodymium, B is selected from the group consisting of strontium, barium, calcium, and lead, and x is in the range of 0 to 1, and C is selected from the group consisting of Mn, (Mnycoi-y) (y is greater than 0 and less than or equal to 1), and (MnzNii.zKz is greater than 0 and less than or equal to 1). 7 2 · The method according to item 7 i of the patent application scope, further comprising a step of forming at least one CMOS circuit in the silicon substrate. 7 3 · The method according to item 71 of the patent application scope, further comprising the step of forming a force relaxation layer under the SrgBa ^ gTiO3 layer (where g 値 is in the range of 0 to 1). 74. The method of claim 71 in the scope of patent application, the method further comprising patterning the ferromagnetic material layer, the insulating tunneling oxide layer, and the second ferromagnetic material layer to form a magnetic tunneling junction Device. 75. The method of claim 74, which further comprises the steps of: depositing a conductive material layer to cover the magnetic tunnel junction device and the CMOS circuit; and patterning the conductive material layer to form An electrical interconnection is constructed to electrically couple the CMOS circuit and the magnetic tunneling junction device. 76. Method according to item 71 of the scope of patent application, in which an insulating tunneling oxygen is deposited -38-The paper size is suitable for financial materials (CNS) A4 specification (2 dream 297 public love 1 ---- s A8 nm之鹼土金屬氧 化物層的步驟包括生長一厚度爲丨至6 •化物層的步驟。 77. 如申請專利範圍第71項之方法,其中沈積一絕緣暖穿氧 化物層的步驟包括生長一氧化物層,該氧化物層夠薄以 允許從該處進行隧穿。 78. 如申請專利範圍第71項之方法,其中沈積一絕緣随穿氧 化物層的步驟包括生長一對該第一強磁性材料層的晶格 匹配約4百分比範圍内之氧化物層的步驟。 79. 如申請專利範圍第71項之方法,該方法進一 #包括暴晶 沈積一單結晶傳導氧化物層的步驟,以覆蓋該SrgBah Ti〇3層(其中g値介於〇到1範圍内),以引導電氣接觸該 強磁性材料層。 80·如申請專利範圍第79項之方法,其中沈積一單結晶傳導 氧化物層的步驟包括沈積一材料的步驟,該材料係選自 由(LaieSrbOCoOs、SrRu〇3、SrCr〇3和SrV03所組成之群組 的材料,其中k大於〇且小於i。 8 1 · —種磁性隧穿接面結構包括: 一单結晶碎基板; 一單結晶氧化物層,其磊晶生長以覆蓋該基板;以及 一磁性隧穿接面裝置,其被磊晶生長以覆蓋該單結晶 氧化物層。 -39 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)The step of the alkaline-earth metal oxide layer in nm includes the step of growing a layer having a thickness of 6 to 6 Å. 77. The method of claim 71, wherein the step of depositing an insulating warm-penetrating oxide layer includes growing an oxide layer that is thin enough to allow tunneling therefrom. 78. The method of claim 71, wherein the step of depositing an insulating through oxide layer includes the step of growing a pair of lattices of the first ferromagnetic material layer to match an oxide layer in a range of about 4 percent. 79. If the method of claim 71 is applied, the method further includes the step of depositing a single crystalline conductive oxide layer to cover the SrgBah Ti03 layer (where g 値 is in the range of 0 to 1). To guide electrical contact with the ferromagnetic material layer. 80. The method of claim 79, wherein the step of depositing a single crystalline conductive oxide layer includes the step of depositing a material selected from the group consisting of (LaieSrbOCoOs, SrRu03, SrCr03, and SrV03). A group of materials, where k is greater than 0 and less than i. 8 1 · A magnetic tunnel junction interface structure includes: a single crystalline broken substrate; a single crystalline oxide layer whose epitaxial growth grows to cover the substrate; and A magnetic tunnel junction device, which is epitaxially grown to cover the single crystalline oxide layer. -39-This paper size applies to China National Standard (CNS) A4 (210X 297 mm)
TW090117916A 2000-07-24 2001-07-23 Semiconductor structure including a magnetic tunnel junction and a process for fabricating same TW503460B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US62452600A 2000-07-24 2000-07-24

Publications (1)

Publication Number Publication Date
TW503460B true TW503460B (en) 2002-09-21

Family

ID=24502329

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090117916A TW503460B (en) 2000-07-24 2001-07-23 Semiconductor structure including a magnetic tunnel junction and a process for fabricating same

Country Status (3)

Country Link
AU (1) AU2001276980A1 (en)
TW (1) TW503460B (en)
WO (1) WO2002009158A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816760A (en) * 2019-04-11 2020-10-23 上海磁宇信息科技有限公司 Magnetic random access memory magnetic storage unit and forming method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494927B2 (en) 2000-05-15 2009-02-24 Asm International N.V. Method of growing electrical conductors
EP1340269B1 (en) * 2000-11-30 2009-02-25 Asm International N.V. Thin films for magnetic devices
US6759081B2 (en) 2001-05-11 2004-07-06 Asm International, N.V. Method of depositing thin films for magnetic heads
US7037574B2 (en) 2001-05-23 2006-05-02 Veeco Instruments, Inc. Atomic layer deposition for fabricating thin films
US8025922B2 (en) 2005-03-15 2011-09-27 Asm International N.V. Enhanced deposition of noble metals
US7666773B2 (en) 2005-03-15 2010-02-23 Asm International N.V. Selective deposition of noble metal thin films
US9379011B2 (en) 2008-12-19 2016-06-28 Asm International N.V. Methods for depositing nickel films and for making nickel silicide and nickel germanide
US8871617B2 (en) 2011-04-22 2014-10-28 Asm Ip Holding B.V. Deposition and reduction of mixed metal oxide thin films
US9607842B1 (en) 2015-10-02 2017-03-28 Asm Ip Holding B.V. Methods of forming metal silicides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792569A (en) * 1996-03-19 1998-08-11 International Business Machines Corporation Magnetic devices and sensors based on perovskite manganese oxide materials
WO2001033585A1 (en) * 1999-11-05 2001-05-10 Oxxel Oxide Electronics Technology, Inc. Synthesis and magnetoresistance test system using double-perovskite samples for preparation of a magnetoresistance device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816760A (en) * 2019-04-11 2020-10-23 上海磁宇信息科技有限公司 Magnetic random access memory magnetic storage unit and forming method thereof
CN111816760B (en) * 2019-04-11 2023-07-14 上海磁宇信息科技有限公司 Magnetic memory cell of magnetic random access memory and forming method thereof

Also Published As

Publication number Publication date
WO2002009158A2 (en) 2002-01-31
WO2002009158A3 (en) 2002-07-18
AU2001276980A1 (en) 2002-02-05

Similar Documents

Publication Publication Date Title
JP5490271B2 (en) Semiconductor wafer
US7364989B2 (en) Strain control of epitaxial oxide films using virtual substrates
TW507301B (en) Semiconductor structure including a partially annealed layer and method of forming the same
US6563118B2 (en) Pyroelectric device on a monocrystalline semiconductor substrate and process for fabricating same
TW516231B (en) Apparatus for fabricating semiconductor structures
TW515098B (en) Heterojunction tunneling diodes and process for fabricating the same
TW508849B (en) Microelectronic piezoelectric structure and method of forming the same
WO2002041378A2 (en) Semiconductor structure and process for fabricating same
TW503460B (en) Semiconductor structure including a magnetic tunnel junction and a process for fabricating same
EP1850373B1 (en) Method of forming highly orientated silicon film, method of manufacturing three-dimensional semiconductor device, and three-dimensional semiconductor device
TW550640B (en) Structure and method for fabricating semiconductor structures and devices for detecting chemical reactant
JP2004505444A (en) Thin film metal oxide structure and method of manufacturing the same
TW544728B (en) Semiconductor structure, semiconductor device and process for fabricating the semiconductor structure
TW503580B (en) Non-volatile memory element on a monocrystalline semiconductor substrate and process for fabricating same
TW531786B (en) Semiconductor structures having a compliant substrate
US6482538B2 (en) Microelectronic piezoelectric structure and method of forming the same
US20020003239A1 (en) Semiconductor structure and device including a carbon film and method of forming the same
TW540101B (en) Semiconductor structure and device including a monocrystalline conducting layer and method for fabricating the same
US20080128813A1 (en) Semiconductor Device and Manufacturing Method Thereof
TW540124B (en) Structure and method for fabricating semiconductor structures and devices utilizing perovskite stacks
US7169619B2 (en) Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process
JP2004281742A (en) Semiconductor device, semiconductor sensor and semiconductor memory element
TW543143B (en) Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate with an intermetallic layer
TW494476B (en) Hybrid semiconductor structure and device
JP2004514288A (en) Semiconductor structure containing high dielectric constant material

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees