TW503460B - Semiconductor structure including a magnetic tunnel junction and a process for fabricating same - Google Patents
Semiconductor structure including a magnetic tunnel junction and a process for fabricating same Download PDFInfo
- Publication number
- TW503460B TW503460B TW090117916A TW90117916A TW503460B TW 503460 B TW503460 B TW 503460B TW 090117916 A TW090117916 A TW 090117916A TW 90117916 A TW90117916 A TW 90117916A TW 503460 B TW503460 B TW 503460B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- group
- oxide
- patent application
- item
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 88
- 239000004065 semiconductor Substances 0.000 title claims abstract description 57
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 43
- 230000008569 process Effects 0.000 title description 9
- 239000000758 substrate Substances 0.000 claims abstract description 114
- 239000003302 ferromagnetic material Substances 0.000 claims abstract description 52
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 32
- 239000010703 silicon Substances 0.000 claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 495
- 239000013078 crystal Substances 0.000 claims description 140
- 239000000463 material Substances 0.000 claims description 67
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 54
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 44
- 210000002816 gill Anatomy 0.000 claims description 42
- 150000003839 salts Chemical class 0.000 claims description 37
- 238000012360 testing method Methods 0.000 claims description 37
- -1 lanthanum aluminate Chemical class 0.000 claims description 36
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 31
- 230000005294 ferromagnetic effect Effects 0.000 claims description 27
- 229910052788 barium Inorganic materials 0.000 claims description 25
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 25
- 229910052746 lanthanum Inorganic materials 0.000 claims description 25
- 239000002689 soil Substances 0.000 claims description 25
- 230000005641 tunneling Effects 0.000 claims description 22
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 19
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 17
- 229910052791 calcium Inorganic materials 0.000 claims description 17
- 239000011575 calcium Substances 0.000 claims description 17
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 16
- 238000000151 deposition Methods 0.000 claims description 15
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 13
- 229910052779 Neodymium Inorganic materials 0.000 claims description 12
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 12
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 11
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 10
- 239000011810 insulating material Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 9
- 150000004706 metal oxides Chemical class 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 238000005240 physical vapour deposition Methods 0.000 claims description 8
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims description 5
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 claims description 5
- 229910003452 thorium oxide Inorganic materials 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910002601 GaN Inorganic materials 0.000 claims description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 2
- 238000000407 epitaxy Methods 0.000 claims description 2
- 150000002603 lanthanum Chemical class 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 9
- 238000009413 insulation Methods 0.000 claims 3
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- DBOSVWZVMLOAEU-UHFFFAOYSA-N [O-2].[Hf+4].[La+3] Chemical compound [O-2].[Hf+4].[La+3] DBOSVWZVMLOAEU-UHFFFAOYSA-N 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims 2
- 229910052712 strontium Inorganic materials 0.000 claims 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims 2
- 241001501536 Alethe Species 0.000 claims 1
- 241000238631 Hexapoda Species 0.000 claims 1
- IPLDJHUUZQYKJK-UHFFFAOYSA-N [Ba].[Gd] Chemical compound [Ba].[Gd] IPLDJHUUZQYKJK-UHFFFAOYSA-N 0.000 claims 1
- SFRXAZQRJPKOIO-UHFFFAOYSA-N [Os]=O.[La] Chemical compound [Os]=O.[La] SFRXAZQRJPKOIO-UHFFFAOYSA-N 0.000 claims 1
- 229910021419 crystalline silicon Inorganic materials 0.000 claims 1
- 238000005520 cutting process Methods 0.000 claims 1
- 230000035622 drinking Effects 0.000 claims 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 239000011133 lead Substances 0.000 claims 1
- 229910000487 osmium oxide Inorganic materials 0.000 claims 1
- JIWAALDUIFCBLV-UHFFFAOYSA-N oxoosmium Chemical compound [Os]=O JIWAALDUIFCBLV-UHFFFAOYSA-N 0.000 claims 1
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 claims 1
- 229910003447 praseodymium oxide Inorganic materials 0.000 claims 1
- 239000000376 reactant Substances 0.000 claims 1
- 229910052702 rhenium Inorganic materials 0.000 claims 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 claims 1
- 239000000872 buffer Substances 0.000 abstract description 46
- 235000012431 wafers Nutrition 0.000 abstract description 15
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 12
- 230000008901 benefit Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000004377 microelectronic Methods 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000002178 crystalline material Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 238000004549 pulsed laser deposition Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000000224 chemical solution deposition Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 239000012536 storage buffer Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910000473 manganese(VI) oxide Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 1
- IPCGGVKCDVFDQU-UHFFFAOYSA-N [Zn].[Se]=S Chemical compound [Zn].[Se]=S IPCGGVKCDVFDQU-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- AQLMHYSWFMLWBS-UHFFFAOYSA-N arsenite(1-) Chemical compound O[As](O)[O-] AQLMHYSWFMLWBS-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- MCMSPRNYOJJPIZ-UHFFFAOYSA-N cadmium;mercury;tellurium Chemical compound [Cd]=[Te]=[Hg] MCMSPRNYOJJPIZ-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004211 migration-enhanced epitaxy Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- UFQXGXDIJMBKTC-UHFFFAOYSA-N oxostrontium Chemical compound [Sr]=O UFQXGXDIJMBKTC-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- SDKPSXWGRWWLKR-UHFFFAOYSA-M sodium;9,10-dioxoanthracene-1-sulfonate Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)[O-] SDKPSXWGRWWLKR-UHFFFAOYSA-M 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/3213—Exchange coupling of magnetic semiconductor multilayers, e.g. MnSe/ZnSe superlattices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/516—Insulating materials associated therewith with at least one ferroelectric layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N59/00—Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Hall/Mr Elements (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
503460 A7 B7 本專利申請於200()年7月24日提出美國專利申請,專利申 請案號爲09/624526。 發明範疇 本發明廣泛與半導體結構和裝置及其製造方法有關,尤503460 A7 B7 This patent application filed a U.S. patent application on July 24, 200 (). The patent application number is 09/624526. FIELD OF THE INVENTION The present invention is widely related to semiconductor structures and devices and methods of making the same.
其,本發明與磁性隧穿接面(MTJ)結構和裝置及在單結晶 半導體基板上製造MTJ裝置有關。 ° W 發明背景 磁性隧穿接面(MTJ)裝置在微電子產業界有數種應用。 例如,MTJ裝置可用來形成磁性非揮發性記憶體元件、磁 場感測器等等。 MTJ裝置通常包括兩層被一薄絕緣層分隔的強磁場層。 MTJ裝置製造方式通常是在鳃鈦酸鹽基板上形成強磁性及 、,€緣層。此類的基板相當昂貴,並且通常只能取得相當小 的形狀(例如,直徑小於約兩英吋的基板)。 MTJ裝置的性能通常會隨著強磁性膜結晶度遞增而遞增 。例如,就單結晶強磁性材料而言,每施加至強磁性層之 磁場總量的阻抗變化量通常大於相同材料之多晶體或非結 晶形式的阻抗變化量。此外,介於絕緣與強磁性層之間的 截然介面易於因降低裝置雜訊而改良MTJ裝置的性能。因 此’希望有在基板形成具有截然介面之單結晶強磁性及絕 緣材料的方法。 與在鳃鈦酸鹽基板上製造兑類裝置的高成本相比,如果 以低成本取得大面積高品質單結晶強磁性材料薄膜,則有 助於以低成本在該薄膜上製造各種半導體裝置。此外,如 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇X297公釐) A7 B7 五、發明説明(2 ) 果能夠在諸如矽晶圓的大容積晶圓上實現高品質單結晶強 磁性材料的薄膜,則可利用梦及強磁性材料的特性來=現 積體裝置結構。 、 时因此,需要有一種強磁性結構,其能夠提供優於另一種 單結晶材料(如半導體晶圓)的高品質單結晶合成強磁性膜 ,以及需要有一種製造此類結構的方法。具體而言,需要 有一種可在矽基板上磊晶生長的MTJ裝置,以此方式降低 MTJ裝置及製造單片集成梦裝S及電路的成本。 圖式簡單説明 本發明將藉由實例及附圖來進行解説,但本發明未限定 在這些實例及附圖心其中相似的參照代表相似的元件, 並且其中: 圖1至3顯示根據本發明各種具體實施例之裝置結構的 面原理圖; 以圖表顯示可獲得的最大膜厚度與主晶和生長結晶覆 蓋層間晶格不匹配間的關係; 圖5顯示在單結晶半$體基板上製造磁性随穿接面的斷面 原理圖; 圖6顯示在單結晶半導體基板上製造磁性隧穿接面疊層的 斷面原理圖; 圖7顯不圖6所不之模板層之裝置的斷面原理圖; 圖8顯示圖6所示之介於形成於單結晶半導體基板中之磁 性陵穿接面與積體邏輯元件之間之單片集成之裝置的斷面 原理圖;以及 -5- 本紙張尺度適财S國家標平(CNS) A4規格(2^· X 297公釐)The invention relates to a magnetic tunnel junction interface (MTJ) structure and device, and a method of manufacturing an MTJ device on a single crystal semiconductor substrate. ° W BACKGROUND OF THE INVENTION Magnetic tunnel junction (MTJ) devices have several applications in the microelectronics industry. For example, MTJ devices can be used to form magnetic non-volatile memory elements, magnetic field sensors, and the like. MTJ devices usually include two layers of strong magnetic fields separated by a thin insulating layer. The manufacturing method of the MTJ device is usually to form a ferromagnetic and a marginal layer on the gill titanate substrate. Such substrates are quite expensive and usually only obtain relatively small shapes (for example, substrates with a diameter of less than about two inches). The performance of MTJ devices usually increases with increasing crystallinity of the ferromagnetic film. For example, in the case of a single crystalline ferromagnetic material, the amount of change in impedance per total amount of magnetic field applied to the ferromagnetic layer is usually greater than the amount of change in impedance of polycrystalline or non-crystalline forms of the same material. In addition, the sharp interface between the insulating and ferromagnetic layers makes it easy to improve MTJ device performance by reducing device noise. Therefore, a method of forming a single crystal ferromagnetic and insulating material having a distinct interface on a substrate is desired. Compared with the high cost of manufacturing a hybrid device on a gill titanate substrate, if a large-area, high-quality single-crystal ferromagnetic material thin film is obtained at a low cost, it will help to manufacture various semiconductor devices on the thin film at a low cost. In addition, such as -4- this paper size applies Chinese National Standard (CNS) A4 specification (21 × 297 mm) A7 B7 V. Description of the invention (2) The result can achieve high quality on large-volume wafers such as silicon wafers The thin film of a single crystal ferromagnetic material can use the characteristics of dreams and ferromagnetic materials to = the current integrated device structure. Therefore, there is a need for a ferromagnetic structure that can provide a high-quality single crystal synthetic ferromagnetic film that is superior to another single crystal material (such as a semiconductor wafer), and a method for manufacturing such a structure. Specifically, there is a need for an MTJ device that can be epitaxially grown on a silicon substrate, in this way reducing the cost of the MTJ device and manufacturing the monolithic integrated dream-equipped S and circuits. The drawings briefly illustrate the present invention by way of examples and drawings, but the present invention is not limited to these examples and drawings, wherein similar references represent similar elements, and among which: FIGS. 1 to 3 show various examples according to the present invention. Schematic diagram of the device structure of the specific embodiment; a graph showing the relationship between the maximum film thickness available and the lattice mismatch between the main crystal and the growing crystal overlay; Figure 5 shows the fabrication of magnetic Schematic diagram of the cross-section of the junction surface; Figure 6 shows the schematic diagram of the cross-section of a magnetic tunnel junction junction stack on a single crystal semiconductor substrate; Figure 7 shows the schematic diagram of the device of the template layer shown in Figure 6 Figure 8 shows a schematic sectional view of the single-chip integrated device shown in Figure 6 between the magnetic ridge junction surface formed in the single crystal semiconductor substrate and the integrated logic element; and -5- the paper size Shicai S National Standard Flat (CNS) A4 Specifications (2 ^ · X 297 mm)
贫谷種具體實施例之其他裝置結 圖9至I8顯示根據本發明各稀i 構的斷面原理圖。 熟知技藝人士應明白,圖中的元件是簡化的圖解,並且 不需要按比例㈣。例如,相料其他元件,目中部份元 件的尺寸可能過度放大,以利於更容易瞭解本發 實施例。 圖式詳細説明 圖1顯示根據本發明一項具體實施例之微電子結構2〇之 -部份的斷面原理圖。微電子結構2G包括單結晶基板Μ、 ^含單結晶材料的容納緩衝層24以及強磁性材料層26,其 最好是單結晶。在此上下文中,術語「單結晶」應具有半 導體產業内常用的意義。術語「單結晶」應代表屬於單晶 或大體上屬於單晶的材料,並且應包含具有相當少量缺陷( 諸如矽或矽化鍺或混合物之基板中常發現的位錯等等)的材 料,以及半導體產業中常發現之此類材料的磊晶層。 根據本發明一項具體實施例,結構2〇還包括位於基板22 與容納緩衝層24之間的非結晶中間層28。結構2〇還可包括 位於容納緩衝層24與強磁性材料層26之間的模板層30。如 下文中詳細的説明,模板層有助於在容納緩衝層上開始生 長強磁性材料層。非結晶中間層有助於減緩容納緩衝層應 i ’並藉此協助生長向結晶品質容納緩衝層。 根據本發明一項具體實施蚵,基板22是單結晶矽晶圓, 最好是大尺寸單結晶矽晶圓。晶圓可能屬於周期表第IV族 材料’並且最好是第IVA族材料。第IV族半導體材料的實 -6- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Other Device Structures of the Lean Grain Specific Embodiments Figs. 9 to I8 show schematic sectional views of various lean structures according to the present invention. Those skilled in the art should appreciate that the elements in the figures are simplified diagrams and do not need to be scaled. For example, if other components are expected, the size of some of the components may be excessively enlarged to facilitate understanding of the embodiment of the present invention. Detailed description of the drawings Fig. 1 shows a schematic sectional view of a part of a microelectronic structure 20 according to a specific embodiment of the present invention. The microelectronic structure 2G includes a single crystal substrate M, a storage buffer layer 24 containing a single crystal material, and a ferromagnetic material layer 26, which is preferably a single crystal. In this context, the term "single crystal" should have its usual meaning in the semiconductor industry. The term "single crystal" shall represent materials that are single crystals or generally single crystals, and shall include materials with a relatively small number of defects (such as dislocations commonly found in substrates of silicon or germanium silicide or mixtures, etc.), as well as the semiconductor industry The epitaxial layer of such materials often found in China. According to a specific embodiment of the present invention, the structure 20 further includes an amorphous intermediate layer 28 between the substrate 22 and the containing buffer layer 24. The structure 20 may further include a template layer 30 between the containing buffer layer 24 and the ferromagnetic material layer 26. As explained in detail below, the template layer helps to start growing a layer of ferromagnetic material on the containment buffer layer. The amorphous intermediate layer helps to slow down the containment buffer layer i 'and thereby assists the growth towards a crystalline quality containment buffer layer. According to a specific implementation of the present invention, the substrate 22 is a single crystal silicon wafer, preferably a large-size single crystal silicon wafer. The wafer may be a Group IV material of the periodic table 'and is preferably a Group IVA material. Properties of Group IV semiconductor materials -6- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
裝 訂Binding
503460 A7 _B7^_._ 五、發明説明(4 ) 例包括矽、鍺、混合矽與鍺、混合矽與碳、混合矽、鍺與 碳等等。基板22也可能屬於合成半導體材料。可按照特定 半導體結構的需求,從第IIIA與VA族元素(III-V半導體合 成物)、混合III-V合成物、第II(A與B)與VIA族元素(II-VI半導體合成物),以及混合II-VI合成物中選用基板2 2的 合成半導體材料。實例包括砷化鎵(GaAs)、砷化鎵銦 (GalnAs)、坤化鎵鋁(GaAlAs)、磷化銦(InP)、硫化鎘 (CdS)、碲化鎘汞(CdHgTe)、硒化鋅(ZnSe)、硒化鋅硫 (ZnSSe)等等。 基板22最好是包含矽或鍺的晶圓,並且最好是如半導體 業產中使用的高品質單結晶矽晶圓。容納緩衝層24最好是 基礎基板上羞晶生長的单結晶氧化物或氣化物材料。根據 本發明一項具體實施例,非結晶中間層28係在基板22上生 長,並位於基板22與生長的容納緩衝層24之間,其方式是 在生長容納緩衝層2 4期間氧化基板2 2。非結晶中間層係用 來減緩由於基板與緩衝層間晶格常數差異而導致容纳緩衝 層可能會發生的應變。在本文中,晶格常數代表在表面平 面上所測量之細胞原子間的距離。如果非結晶中間層未減 緩此類的應變,則應變會導致容納緩衝層中結晶結構中的 缺陷。接著,容納緩衝層中結晶結構中的缺陷將導致難以 實現強磁性材料層2 6中的高品質結晶結構。 容納緩衝層24最好是選用奏基礎基板結晶相容及與覆蓋 金屬氧化物材料結晶相容的單結晶氧化物或氮化物材料。 例如,此類的材料可能是具有大體上匹配基板及後續供應 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 503460 A7 B7 五、發明説明(5 ) 之強磁性材料之晶格結構的氧化物或氮化物。容納緩衝層 所適用的材料包括氧化金屬,諸如驗土金屬鈥酸鹽、驗土 金屬結酸鹽、驗土金屬給酸鹽、驗土金屬赵酸鹽、驗土金 屬釕酸鹽、鹼土金屬鈮酸鹽、鹼土金屬釩酸鹽、如鹼土金 屬錫基鈣鈦礦(alkaline earth metal tin_based perovskite)之類 的氧化鈣鈦礦、鹼土金屬鋁酸鹽、鑭鋁酸鹽、氧化鑭銳及 氧化亂。另外,容納緩衝層也可使用諸如氮化鎵、氮化鋁 及氮化硼之類的氮化物。這些材料大部份是隔離體,雖然( 例如)鳃、釕是導體。一般而言,這些材料是氧化金屬或氮 化金屬’尤其’這些氧化金屬或氮化金屬包括至少兩個不 同的金屬元素’並且具有|弓鈥礦晶格結構。在某些特定應 用中,氧化金屬或氮化金屬包括至少三個或三個以上不同 的金屬元素。 非結晶中間層2 8較佳是藉由將基板2 2表面氧化所形成的 氧化物’尤其是由氧化;?夕所組成。非結晶中間層2 8的厚度 足以減緩因基板22與容納緩衝層24的晶格常數間不匹配所 導致的應變。通常,非結晶中間層2 8的厚度大約是〇 · 5到5 毫微米(nm)。 可按照特定結構或應用的需求,選用層26的強磁性材料 。例如,適合強磁性材料層2 6的材料包括一般化學公式 (AxB^jJCCb’其中X介於〇至1範圍内,並且其中a是鋼或 钕,B是鳃、鋇、鈣或鉛、而c是Mn、(MnyC〇1-y)或 (ΜηζΝυ,其中y和z大於零且小於壹。 適合的模板材料以化學方式鍵合在容納緩衝層24表面上 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) B7 五、發明説明(6 ) 的選取部位,並提供後續強磁性材料層2 6磊晶生長集結 (nucleation)的部位。當使用時,模板層30的厚度介於1至 1〇層單分子層(monolayer)。 圖2顯示根據本發明另一項具體實施例之微電子結構40 之一部份的斷面圖。結構4〇類似於前文説明的結構20,除 了額外的絕緣層3 2係位於強磁性材料2 6上,以及第二額外 強磁性材料層33係形成於絕緣層32上以外。適合絕緣層32 的絕緣材料可包括配合容納緩衝層2 4所列出的任何絕緣材 料,而強磁性材料層3 3可包括配合層2 6所列出的任何強磁 性材料。層33通常大約1至6 nm,並且最好小於約2.5 nm。 圖3顯示根據本發明另一項示範性具體實施例之微電子結 構3 4之一部份的斷面原理圖。結構34類似於結構4〇,除了 結構34包括非結晶層36,而不是容納緩衝層24及非結晶介 面層2 8以夕卜。 如下文中的詳細説明,可用如上文所述的類似方法來形 成非結晶層3 6,其方式是先形成一容納緩衝層及一非結晶 介面層。然後,將容納緩衝層經過退火處理,以將單結晶 容納緩衝層轉換爲非結晶層。以此方式形成的非結晶層36 包括來自於容納緩衝層及介面層的材料,非結晶層可能是 或不是混合物(amalgamate)。因此,層36可包括一層或兩 層非結晶層。介於基板2 2與額外緩衝層3 2間形成的非結晶 層3 6(接著層32形成)減緩介於層22與32間的應力,並且 供眞正合乎標準的基板’以利後續處理-例如,強磁性材 料層26形成。 -9- i紙張尺度適财g S家標準(CNS) A4規格(21GX 297公复)"" -------- 503460 A7 ___ _B7 五、發明説明(7 ) 前文中配合圖1及2所説明的製程適用於在一單結晶基板 上生長單結晶強磁性材料層。然而,配合圖3所説明之包括 將單結晶容納緩衝層轉換成非結晶氧化物層的製造更適合 生長單結晶強磁性材料層,因爲其允許在形成層26之前先 減緩層3 2中的任何應力。 根據本發明一項具體實施例,於層3 6形成期間層3〇係作 爲退火罩(anneal cap),並且於後續強磁性材料層26形成期 間作爲模板。因此,層30的厚度最好是足以提供適合生長 層26之模板的厚度(至少一單分子層),並且是允許形成作 爲無缺陷單結晶層之層3 〇的薄度(通常小於約十層單分子層 )0 下列非限制性、作例證的實例説明根據本發明各種替代 具體實施例之結構20、40與結構34中可用的各種材料組合 這些疋全疋用來説明,並且本發明不限定於這些作例證 的實例。 實例1 根據本發明一項具體實施例,如圖!所示,單結晶基板 22係以(1〇〇)方向爲目的之矽基板。矽基板可能是(例如)用 來製造直徑大約爲200到300 mm之互補金屬氧化物半導體 (CMOS)積體電路中常用的碎基板。根據本發明的此項具體 實施例,容納緩衝層24是SrgBaNgTi〇3單結晶層,而非結日= 中間層是在介於矽基板與容納緩衝層間之界面上形成的氧 化石夕(SiOx)層。所選用的層24合成物是爲了獲得緊密匹配 對應之後續形成層26之晶格常數的_個或_個以格f -10-503460 A7 _B7 ^ _._ 5. Description of the invention (4) Examples include silicon, germanium, mixed silicon and germanium, mixed silicon and carbon, mixed silicon, germanium and carbon, and so on. The substrate 22 may also belong to a synthetic semiconductor material. According to the requirements of specific semiconductor structures, from IIIA and VA elements (III-V semiconductor composite), mixed III-V compounds, II (A and B) and VIA elements (II-VI semiconductor composite) And mixed semiconductor materials selected from the substrate II 2 in the mixed II-VI composition. Examples include gallium arsenide (GaAs), indium gallium arsenide (GalnAs), gallium aluminum (GaAlAs), indium phosphide (InP), cadmium sulfide (CdS), mercury cadmium telluride (CdHgTe), zinc selenide ( ZnSe), zinc sulfur selenide (ZnSSe), and the like. The substrate 22 is preferably a wafer containing silicon or germanium, and is preferably a high-quality single crystal silicon wafer as used in the semiconductor industry. The accommodating buffer layer 24 is preferably a single crystal oxide or gaseous material grown on the base substrate. According to a specific embodiment of the present invention, the amorphous intermediate layer 28 is grown on the substrate 22 and is located between the substrate 22 and the growing accommodation buffer layer 24 by oxidizing the substrate 2 2 during the growth of the accommodation buffer layer 24. . The amorphous intermediate layer is used to reduce the strain that may occur in the buffer layer due to the difference in the lattice constant between the substrate and the buffer layer. In this context, the lattice constant represents the distance between cell atoms as measured on the surface plane. If the amorphous intermediate layer does not relieve such strain, the strain can cause defects in the crystalline structure in the containment buffer layer. Next, defects in the crystal structure in the containing buffer layer will make it difficult to achieve a high-quality crystal structure in the ferromagnetic material layer 26. The accommodating buffer layer 24 is preferably a single crystal oxide or nitride material compatible with the crystals of the base substrate and the crystals of the covering metal oxide material. For example, this type of material may be a ferromagnetic material that has a substrate that roughly matches the substrate and subsequent supplies of this paper are applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) 503460 A7 B7 V. Description of the Invention (5) Lattice structure of oxides or nitrides. Materials suitable for containing the buffer layer include oxidized metals, such as soil test metal's acid salt, soil test metal sulphate, soil test metal salt, soil test Zhao salt, soil test ruthenate, alkaline earth metal niobium Acid salts, alkaline earth metal vanadates, perovskites such as alkaline earth metal tin-based perovskite, alkaline earth metal aluminates, lanthanum aluminates, lanthanum oxides, and oxide chaos. Alternatively, nitrides such as gallium nitride, aluminum nitride, and boron nitride can be used as the storage buffer layer. Most of these materials are insulators, although (for example) gills and ruthenium are conductors. In general, these materials are oxidized metals or nitrided metals', especially 'these oxidized metals or nitrided metals include at least two different metal elements' and have a bow-like lattice structure. In some specific applications, the metal oxide or metal nitride includes at least three or more different metal elements. The amorphous intermediate layer 28 is preferably composed of an oxide 'formed by oxidizing the surface of the substrate 2 2, especially by oxidation; The thickness of the amorphous intermediate layer 28 is sufficient to reduce the strain caused by the mismatch between the lattice constants of the substrate 22 and the storage buffer layer 24. Generally, the thickness of the amorphous intermediate layer 28 is about 0.5 to 5 nanometers (nm). The ferromagnetic material of layer 26 may be selected according to the requirements of a specific structure or application. For example, materials suitable for the ferromagnetic material layer 26 include the general chemical formula (AxB ^ jJCCb 'where X is in the range of 0 to 1 and where a is steel or neodymium, B is gill, barium, calcium or lead, and c Is Mn, (MnyC〇1-y) or (ΜηζΝυ, where y and z are greater than zero and less than one. A suitable template material is chemically bonded to the surface of the containing buffer layer 24-8-This paper size applies to Chinese national standards (CNS) A4 specification (210X297 public love) B7 V. The selected part of the invention description (6), and provided the subsequent ferromagnetic material layer 2 6 epitaxial growth nucleation site. When used, the thickness of the template layer 30 Between 1 to 10 monolayers. Figure 2 shows a cross-sectional view of a portion of a microelectronic structure 40 according to another embodiment of the present invention. Structure 40 is similar to structure 20 described previously. In addition to the additional insulating layer 32, which is located on the ferromagnetic material 26, and the second additional ferromagnetic material layer 33, which is formed on the insulating layer 32. The insulating material suitable for the insulating layer 32 may include a mating receiving buffer layer 2 4 Any of the listed insulation materials, while ferromagnetic materials 3 3 may include any of the ferromagnetic materials listed in the mating layer 26. The layer 33 is typically about 1 to 6 nm, and preferably less than about 2.5 nm. Figure 3 shows a microscale according to another exemplary embodiment of the present invention. A schematic sectional view of a part of the electronic structure 34. The structure 34 is similar to the structure 40, except that the structure 34 includes an amorphous layer 36 instead of the buffer layer 24 and the amorphous interface layer 28. As shown below Detailed description, similar methods as described above can be used to form the amorphous layer 36 by first forming a containing buffer layer and an amorphous interface layer. Then, the containing buffer layer is annealed to crystallize a single crystal. The containing buffer layer is converted into an amorphous layer. The amorphous layer 36 formed in this manner includes materials from the containing buffer layer and the interface layer, and the amorphous layer may or may not be an amalgamate. Therefore, the layer 36 may include one layer or Two non-crystalline layers. The non-crystalline layer 36 (formed from layer 32) formed between the substrate 22 and the additional buffer layer 32 reduces the stress between the layers 22 and 32, and is used to meet the standard substrate 'Eli Subsequent processing-for example, the formation of the ferromagnetic material layer 26. -9- i Paper size suitable for financial standards (CNS) A4 specifications (21GX 297 public) " " -------- 503460 A7 ___ _B7 V. Description of the Invention (7) The process described above with reference to Figs. 1 and 2 is suitable for growing a single-crystal ferromagnetic material layer on a single-crystal substrate. However, the description with Fig. 3 includes accommodating a single-crystal buffer layer The manufacture of the layer converted to an amorphous oxide is more suitable for growing a layer of a single crystalline ferromagnetic material because it allows any stress in the layer 32 to be relaxed before the layer 26 is formed. According to a specific embodiment of the present invention, the layer 30 is used as an annealing cap during the formation of the layer 36, and is used as a template during the subsequent formation of the ferromagnetic material layer 26. Therefore, the thickness of the layer 30 is preferably sufficient to provide a template (at least one monomolecular layer) suitable for the growth layer 26, and is thin enough to allow the formation of the layer 30 as a defect-free single crystal layer (typically less than about ten layers). Monolayer) The following non-limiting, exemplified examples illustrate various combinations of materials available in structures 20, 40 and 34 according to various alternative embodiments of the present invention. These are all used for illustration, and the present invention is not limited Take these examples for illustration. Example 1 According to a specific embodiment of the present invention, as shown in the figure! As shown, the single crystal substrate 22 is a silicon substrate having a (100) direction as a purpose. Silicon substrates can be, for example, shredded substrates commonly used in complementary metal-oxide-semiconductor (CMOS) integrated circuits with a diameter of approximately 200 to 300 mm. According to this specific embodiment of the present invention, the containing buffer layer 24 is a single crystal layer of SrgBaNgTi03, instead of the end of the day = the intermediate layer is SiOx formed on the interface between the silicon substrate and the containing buffer layer. Floor. The composition of layer 24 is selected to obtain a close match of the lattice constants of the subsequent subsequent formation of layer 26.
⑽460⑽460
數。例如,容納緩衝層的厚度大約在2 ηπ^〗10〇 nm的範圍 内,並且最好是大約1 〇 nm的厚度。一般而言,希望容納緩 衝層的厚度足以隔離強磁性層與基板,以獲得所希望的特 性。厚度低於100 nm的層通常提供較少的額外優點,並增 加不必要的成本;然而,若需要,可製造較厚的層。氧化 =非結晶中間層厚度大約在〇·5 nm到5 nm的範圍内,並且 最好是大約1.5 nm到2.5 nm的厚度。 根據本發明的此項具體實施例,強磁性材料層26是 USi*Mn〇3層,其厚度大約是5 nm到大約5〇〇,並且最好是 大約20 70 nm的厚度。厚度通常視所準備之層的應用 而定。 實例2 根據本發明另一項具體實施例,如圖3所示,提供適合 MTJ應用的結構。如上文所述,基板最好是♦晶圓。適合 的容納緩衝層材料是SrgBai-gTl〇3,其中g介於〇到i範圍内 ,厚度大約在2 nm到1〇〇 範圍内,並且最好是大約5 nm到15 nm的厚度。強磁性材料層26可能是(例如 )LaSl^Mn〇y並且層26和33的厚度大約是5nm到大約5〇Q, 並且最好是大約20咖到7〇 nm的厚度。介於強磁性層⑽ 3 3之間的層3 2包括SrgBabgTiCh,其中g介於〇到i範圍内, 厚度大約2.5 ηιπ。 請重新參考圖1至3 ’基板2*2是諸如單結晶梦或碎化嫁基 板之類的單結晶基板。單結晶基板結晶結構的特徵在於晶 格常數及晶格方向。在類似的方法中,容納緩衝層Μ也是 -11 - 本纸張尺度適用中國國豕標準(CNS) Α4規格(210 X 297公爱) ---- 503460 A7 B7 五、發明説明(9 ) 單結晶材料,並且單結晶材料晶格的特徵在於晶格常數及 晶體方向。容納緩衝層與單結晶基板的必須緊密匹配,或 者,必須某一晶體方向係對著另一晶體方向旋轉,才能達 成大體上晶格常數匹配。在此上下文中’ 「大體上寺於」 及「大體上匹配」表示晶格常數間有充足的相似點,而能 夠在基礎層上生長高品質結晶層。 圖4顯示可達成之高結晶品質生長晶體層厚度的關係,作 爲主晶與生長晶的晶格常數之間不匹配的函數。曲線4 2高 結晶品質材料的界限。曲線4 2右邊的區域代表具有大量缺 陷的層。由於晶格匹配,因此能夠在主晶上生長無限厚度 、高品質磊晶層。由於晶格常數不匹配遞增,所以可達成 、高品質結晶層的厚度迅速遞減。例如,作爲參考點,如 果主晶與生長層間的晶格常數不匹配超過大約2%,則無法 達成超過大約20 nm的單結晶系晶層。 根據本發明一項具體實施例,基板22是以(1〇〇)或(111) 爲方向的單結晶矽晶圓,而容納緩衝層2 4是鳃鋇鈦酸鹽層 。達成這兩種材料之晶格常數大體上匹配的方式爲,將鈦 酸鹽材料晶體方向往相對於碎基板晶圓晶體方向45°旋轉 。在此範例中,如果厚度夠厚,則非結晶中間層2 8結構中 所包含的氧化矽層係用來降低鈦酸鹽單結晶層應變,因爲 鈦酸鹽單結晶層應變會導致主矽晶圓與生長鈦酸鹽層的晶 格常數不匹配。結果,根據本發明一項具體實施例,可達 成高品質、更厚的單結晶層鈦酸鹽層。 請重新參考圖1至3,層26和33是磊晶生長強磁性材料層 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)number. For example, the thickness of the accommodating buffer layer is in a range of about 2 ηπ ^ 100 nm, and preferably a thickness of about 10 nm. In general, it is desirable that the thickness of the buffer layer is sufficient to isolate the ferromagnetic layer from the substrate to obtain the desired characteristics. Layers below 100 nm typically provide fewer additional advantages and add unnecessary costs; however, thicker layers can be made if needed. Oxidation = The thickness of the amorphous intermediate layer is in the range of about 0.5 nm to 5 nm, and preferably about 1.5 nm to 2.5 nm. According to this specific embodiment of the present invention, the ferromagnetic material layer 26 is a USi * MnO3 layer having a thickness of about 5 nm to about 500, and preferably a thickness of about 20 to 70 nm. The thickness usually depends on the application of the prepared layer. Example 2 According to another specific embodiment of the present invention, as shown in FIG. 3, a structure suitable for MTJ applications is provided. As mentioned above, the substrate is preferably a wafer. A suitable material for containing the buffer layer is SrgBai-gT103, where g is in the range of 0 to i, the thickness is in the range of about 2 nm to 100, and preferably the thickness is about 5 nm to 15 nm. The ferromagnetic material layer 26 may be, for example, LaSlMnOy and the thicknesses of the layers 26 and 33 are about 5 nm to about 50 nm, and preferably about 20 nm to 70 nm. The layer 3 2 between the ferromagnetic layers ⑽ 3 3 includes SrgBabgTiCh, where g is in the range of 0 to i, and the thickness is about 2.5 ηπ. Please refer to FIGS. 1 to 3 again. The substrate 2 * 2 is a single crystal substrate such as a single crystal dream or a broken substrate. The crystal structure of a single crystal substrate is characterized by a lattice constant and a lattice direction. In a similar method, the holding buffer layer M is also -11-this paper size is applicable to China National Standard (CNS) A4 specification (210 X 297 public love) ---- 503460 A7 B7 V. Description of the invention (9) Single A crystalline material and a single crystalline material are characterized by a lattice constant and a crystal orientation. The accommodating buffer layer and the single crystal substrate must be closely matched, or one crystal direction must be rotated toward the other crystal direction to achieve a substantially lattice constant match. In this context, “substantially similar” and “substantially matched” indicate that there are sufficient similarities between the lattice constants, and a high-quality crystalline layer can be grown on the base layer. Figure 4 shows the achievable relationship between the thickness of the growing crystal layer of high crystal quality as a function of the mismatch between the lattice constants of the main crystal and the growing crystal. Curve 4 2 Limits of high crystalline quality materials. The area to the right of curve 4 2 represents a layer with a large number of defects. Due to the lattice matching, infinite thickness and high-quality epitaxial layers can be grown on the main crystal. As the lattice constant mismatch increases, the thickness of the high-quality crystal layer can be rapidly decreased. For example, as a reference point, if the lattice constant mismatch between the main crystal and the growth layer exceeds approximately 2%, a single crystal system crystal layer exceeding approximately 20 nm cannot be achieved. According to a specific embodiment of the present invention, the substrate 22 is a single crystal silicon wafer with a direction of (100) or (111), and the containing buffer layer 24 is a gill barium titanate layer. The way to achieve a substantial matching of the lattice constants of the two materials is to rotate the crystal orientation of the titanate material by 45 ° with respect to the crystal direction of the broken substrate wafer. In this example, if the thickness is thick enough, the silicon oxide layer included in the amorphous intermediate layer 28 structure is used to reduce the strain of the titanate single crystal layer, because the strain of the titanate single crystal layer will cause the main silicon crystal The lattice does not match the lattice constant of the growing titanate layer. As a result, according to a specific embodiment of the present invention, a high-quality, thicker single crystal layer titanate layer can be achieved. Please refer to Figures 1 to 3 again. Layers 26 and 33 are epitaxially grown ferromagnetic material layers. -12- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
裝 % 503460 A7 B7 五、發明説明(1〇 ) ,並且該結晶材料的特徵在於晶格常數及晶體方向。根據 本發明一項具體實施例,層26的晶格常數不同基板22的晶 格常數。爲了達成南結晶品質的系晶生長早結晶層’容納 緩衝層必須具有南結晶品質。此外^爲了達成τ%結晶品質 的層2 6 ^希望主晶(在此情況下’主晶是早結晶容納緩衝層 )與生長晶體的晶格常數之間大體上匹配。配合正確選用的 材料’由於生長晶體的晶體方向會相對於主晶方向旋轉’ 所以可達成晶格常數大體上匹配。在某些情況中,主晶氧 化物與生長金屬氧化物層之間的結晶緩衝層可用來降低生 長單結晶強磁性材料層的應變,因爲應變會導致晶格常數 的微幅差異。藉此可達成最佳的生長單結晶強磁性材料層 結晶品質 0 絕緣層3 2的特徵也在於晶格常數及晶格方向。根據本發 明一項具體實施例,選用的絕緣層3 2可經過定位,使層3 2 的晶格常數大體上匹配層2 6和3 3的晶格常數。 下文説明根據本發明一項具體實施例之製造諸如圖1至3 所示之結構之微電子結構的方法。方法的開始步驟是提供 一種包括矽的單結晶半導體基板。根據本發明較佳具體實 施例,半導體基板是具有(100)方向的矽晶圓。基板最好是 以軸線爲方向,最多偏離軸線大約0.5。。半導體基板的至 少一部份具有裸面,然而基板的其他部份可能圍繞著其他 結構,如下文所述。在此上下文中,術語「裸」表示已清 除基板的邵份表面,以去除氧化物、致污物或其他異質材 料。眾所皆知,裸矽具有高度反應性,並且很容易形成天 -13- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Device% 503460 A7 B7 V. Description of the invention (10), and the crystalline material is characterized by a lattice constant and a crystal orientation. According to a specific embodiment of the present invention, the lattice constant of the layer 26 is different from the lattice constant of the substrate 22. In order to achieve the south crystal quality, the crystalline growth early crystal layer 'accommodating buffer layer must have south crystal quality. In addition, in order to achieve a layer 2 6 of τ% crystal quality, it is desirable that the main crystal (in this case, the 'main crystal is an early-crystal-accommodating buffer layer) substantially match the lattice constant of the growing crystal. With the correct selection of the material, 'the crystal direction of the growing crystal will rotate relative to the main crystal', so the lattice constants can be roughly matched. In some cases, a crystalline buffer layer between the main crystalline oxide and the growing metal oxide layer can be used to reduce the strain of the growing single crystal ferromagnetic material layer because the strain causes a small difference in the lattice constant. This can achieve the best growth of the single crystal ferromagnetic material layer. Crystal quality 0 The insulating layer 3 2 is also characterized by the lattice constant and lattice direction. According to a specific embodiment of the present invention, the selected insulating layer 32 can be positioned so that the lattice constant of the layer 32 substantially matches the lattice constants of the layers 26 and 33. The following describes a method of manufacturing a microelectronic structure such as the structure shown in FIGS. 1 to 3 according to a specific embodiment of the present invention. The method begins by providing a single crystal semiconductor substrate including silicon. According to a preferred embodiment of the present invention, the semiconductor substrate is a silicon wafer having a (100) direction. The substrate is preferably oriented along the axis, and is offset from the axis by at most about 0.5. . At least a portion of a semiconductor substrate has a bare surface, but other portions of the substrate may surround other structures, as described below. In this context, the term "bare" means that the surface of the substrate has been removed to remove oxides, contaminants, or other foreign materials. As everyone knows, bare silicon is highly reactive and easily formed. -13- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
裝 % 503460 A7 B7 五、發明説明(11 ) 然氧化物。術語「裸」包含此類的天然氧化物。還可能故 意在半導體基板上生長薄型氧化矽,然而此類的生長氧化 物不是根據本發明之方法的必要項。爲了磊晶生長單結晶 氧化層以覆蓋單結晶基板,必須先去除天然氧化層,以暴 露基礎基板的結晶結構。下列的方法最好是藉由分子束磊 晶生長(molecular beam epitaxy ; MBE)方法來實現,雖然根 據本發明也可使用其他的磊晶生長方法。藉由先在MBE裝 置中熱沈積薄層的鳃、鋇、鳃與鋇的組合或其他鹼土金屬 或鹼土金屬組合,以去除天然氧化物。在使用鳃的情況下 ,接著將基板加熱到大約750°C,使鳃與天然矽氧化層產生 化學反應。鳃係用來分解氧化矽,而留下無氧化矽表面。 1 * 爹 所產生的表面包括鳃、氧及矽,並呈現整齊的2 X 1結構。 整齊的2x 1結構形成模板,用以有序生長單結晶氧化物的 覆蓋層。模板提供必要的化學及物理特性,以集結結晶生 長的覆蓋層。 根據本發明替代具體實施例,可轉換天然氧化矽並準備 基板表面,以生長單結晶氧化層,其方式是在低溫下藉由 MBE在基板表面上沈積如氧化鳃、氧化鳃鋇或氧化鋇之類 的鹼土金屬氧化物,接著將結構加熱到大約750°C。在此溫 度下,氧化鳃與天然氧化矽間發生的固態反應導致天然氧 化矽還原,並在基板表面上留下具有鳃、氧及矽的整齊 2x1結構。再次,以此方式形成模板,用以接著生長有序 單結晶氧化物層。 根據本發明一項具體實施例,在去除基板表面上的氧化 -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Equipment% 503460 A7 B7 V. Description of the invention (11) Natural oxide. The term "naked" encompasses such natural oxides. It is also possible to intentionally grow thin silicon oxide on a semiconductor substrate, however such growth oxides are not necessary for the method according to the invention. In order to epitaxially grow a single crystal oxide layer to cover the single crystal substrate, the natural oxide layer must be removed first to expose the crystal structure of the base substrate. The following methods are best achieved by molecular beam epitaxy (MBE) method, although other epitaxial growth methods can be used according to the present invention. Natural oxides are removed by first thermally depositing a thin layer of gills, barium, a combination of gills and barium, or other alkaline earth metals or alkaline earth metals in an MBE device. In the case of gills, the substrate is then heated to approximately 750 ° C to chemically react the gills with the natural silicon oxide layer. The gill system is used to break down silica, leaving a silica-free surface. 1 * The surface produced by Daddy includes gills, oxygen, and silicon, and presents a neat 2 X 1 structure. The neat 2x1 structure forms a template for the orderly growth of a monocrystalline oxide overlay. The template provides the necessary chemical and physical properties to build up a crystal-grown overlay. According to an alternative embodiment of the present invention, a natural silicon oxide can be converted and a substrate surface can be prepared to grow a single crystal oxide layer by depositing, for example, gill oxide, gill oxide barium, or barium oxide on the surface of the substrate by MBE at a low temperature. Like alkaline earth metal oxides, the structure is then heated to about 750 ° C. At this temperature, the solid state reaction between the oxidized gills and natural silicon oxide results in the reduction of natural silicon oxide, leaving a neat 2x1 structure with gills, oxygen, and silicon on the substrate surface. Again, a template is formed in this manner to subsequently grow an ordered single crystal oxide layer. According to a specific embodiment of the present invention, the oxidation on the surface of the substrate is removed. -14- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm).
裝 蜷Pretend
矽後,將基板冷卻到大約200到80(rc範圍内的溫度,並且 藉由分子束磊晶生長在模板層上生長鳃鈦酸鹽層。MBE方 法從MBE裝置中的開孔活閘(〇pening shutte〇開始,以暴露 鳃、鈦及氧來源。鳃與鈦的比率大約是丨:丨。氧氣分壓最初 設定在最小値,以利於以每分鐘大約〇 3到〇 5 生長速 度來生長推測的鳃鈦酸鹽。在初步生長鳃鈦酸鹽後,將氧 氣分壓遞增到大約最初的最小値。氧氣過壓會導致在基礎 基板與生長中之鳃鈦酸鹽層之間的界面上生長非結晶氧化 矽。生長氧化矽層起因於氧氣會通過生長中之鳃鈦酸鹽層 擴散到位於基礎基板表面上氧氣與矽產生化學反應的表面 。鐵鈥酸鹽生長成爲有序單結晶,並且具有相對於整齊 2 X 1結晶結構之基礎基板旋轉4 5。的結晶方向。否則,總歛 酸鹽層可能存在應變,這是因爲矽基板與生長晶體之間晶 格常數微幅不匹配所致,而在非結晶氧化矽中間層可減緩 此類的應變。 在鳃鈦酸鹽生長到所希望的厚度後,接著藉由模板層來 覆蓋單結晶鳃鈦酸鹽,以促進後續生長所希望的材料蟲晶 層。例如,覆蓋ΜΒΕ生長的魏鈥酸鹽單結晶層的方式爲, 以1到2層單分子層鈥、1到2層單分子層欽-氧或1到2層單 分子層锶-氧來終止生長。在形成模板後(如果形成一層)之 後,使用ΜΒΕ或其他適合的技術生長強磁性材料。 藉由如上文所述的方法並加上絕緣層沈積步驟,即可形 成如圖2所示的結構。可使用前文中配合層24形成所説明 的方法,在層26上磊晶形成絕緣材料層32,除了層26與層 -15- 本纸張尺度適用中國國家標準(CNS) Α4規格(210Χ 297公釐) 503460After silicon, the substrate is cooled to a temperature in the range of about 200 to 80 (rc), and a gill titanate layer is grown on the template layer by molecular beam epitaxy. Pening shutte〇 began to expose gills, titanium, and oxygen sources. The ratio of gill to titanium is about 丨: 丨. The partial pressure of oxygen was initially set to a minimum of 値 to facilitate growth at a growth rate of about 〇. Gill titanate. After initial growth of gill titanate, increase the oxygen partial pressure to approximately the initial minimum 値. Oxygen overpressure will cause growth at the interface between the base substrate and the growing gill titanate layer Amorphous silicon oxide. The growth of the silicon oxide layer is due to the diffusion of oxygen through the growing gill titanate layer to the surface of the base substrate where oxygen reacts with silicon. The iron's salt grows into ordered single crystals, The crystalline orientation of the base substrate with respect to the neat 2 X 1 crystal structure is rotated by 4. 5. Otherwise, there may be strain in the total acid salt layer, because the lattice constant between the silicon substrate and the growing crystal is slightly different. This kind of strain can be mitigated in the intermediate layer of amorphous silica. After the gill titanate has grown to the desired thickness, the monocrystalline gill titanate is then covered by the template layer to promote subsequent growth. The desired material worm crystal layer. For example, the way to cover the single crystal layer of wei's salt of MBE is to cover 1 to 2 monomolecular layers, 1 to 2 monomolecular layers of oxo-oxygen, or 1 to 2 layers. A monolayer of strontium-oxygen is used to terminate the growth. After the template is formed (if a layer is formed), ferromagnetic materials are grown using MBE or other suitable techniques. By the method described above and adding an insulating layer deposition step, ie The structure shown in Fig. 2 can be formed. The method described above for the formation of the mating layer 24 can be used to epitaxially form an insulating material layer 32 on the layer 26, except for the layers 26 and -15. Standard (CNS) Α4 specification (210 × 297 mm) 503460
3 2之間最好不要形成非結晶介面層以外。因此,最好使用 有助於推測生長層26的條件來形成絕緣層。 圖3所示之結構3 4的形成方式可能是,生長容納緩衝層 、在基板2 2上形成非結晶氧化物層,如上文所述。然後, 將谷納緩衝層及非結晶氧化物層經過退火製程,使容納緩 衝層的結晶結構足以從單結晶變更成非結晶,藉由形成非 結晶層’使非結晶氧化物層與現在的非結晶容納緩衝層的 組合形成單一非結晶氧化物層36。接著在層32上生長層26 。或者’可接著實行退火製程以生長層26。 根據此具體實施例的一項觀點,形成層3 6的方式爲將基 板2 2、容納緩衝層、非結晶氧化物層及層3 〇或適合的覆蓋 層經過迅速熱退火製程,使用的最高溫度大約7〇(^c至大約 1000 C ’製程時間大約丨〇秒至大約丨〇分鐘。然而,根據本 發明’可採用其他適當的退火製程以將容納緩衝層轉換爲 非結晶層。例如,可使用雷射退火或「傳統」熱退火製程( 在適當的環境中)來形成層36。 強磁性層5 2(例如,(LakSn-OMnO3,其中k大於零且小於 豆)係使用賤渡沈積法蟲晶生長而成。具體而言,係以 (LakSri-k)Mn〇3爲目標,藉由RF磁電管濺渡法(面對面組態) 生長(LakSn-jJMnO3層。沈積的執行係使用氧氣作爲濺渡氣 體,並且基板溫度約爲4〇(TC。 如上文所述的方法説明一種藉由分子束磊晶生長和RF濺 渡法來形成半導體結構的方法,其中該半導體結構包含一 石夕基板、一覆蓋氧化物層及一強磁性材料層。還可能藉由It is preferable not to form an amorphous interface layer between 3 and 2. Therefore, it is preferable to form the insulating layer using conditions that are conducive to the speculative growth layer 26. The structure 34 shown in FIG. 3 may be formed by growing a buffer layer and forming an amorphous oxide layer on the substrate 22, as described above. Then, the Gona buffer layer and the amorphous oxide layer are subjected to an annealing process, so that the crystal structure of the buffer layer is sufficient to change from a single crystal to an amorphous phase. By forming the amorphous layer, the amorphous oxide layer and the current amorphous phase are formed. The combination of the crystalline containing buffer layers forms a single amorphous oxide layer 36. A layer 26 is then grown on the layer 32. Alternatively, an annealing process may be performed to grow the layer 26. According to an aspect of this specific embodiment, the method of forming the layer 36 is to subject the substrate 2 2, the containing buffer layer, the amorphous oxide layer and the layer 30 or a suitable cover layer to a rapid thermal annealing process, and the highest temperature used About 70 ° C to about 1000 ° C. The process time is about 10 seconds to about 10 minutes. However, according to the present invention, other suitable annealing processes may be used to convert the containing buffer layer into an amorphous layer. For example, the Layer 36 is formed using laser annealing or "traditional" thermal annealing processes (in the appropriate environment). The ferromagnetic layer 5 2 (eg, (LakSn-OMnO3, where k is greater than zero and less than beans) is deposited using a low-temperature deposition method Worm crystals grow. Specifically, the target is (LakSri-k) Mn〇3, and the (LakSn-jJMnO3 layer) is grown by RF magnetron sputtering method (face-to-face configuration). The deposition is performed using oxygen as the execution Gas is sputtered and the substrate temperature is about 40 ° C. The method described above illustrates a method for forming a semiconductor structure by molecular beam epitaxial growth and RF sputtering. The semiconductor structure includes a stone substrate, Covering the oxide layer and a ferromagnetic material layer may also by
裝 訂 % -16 -Binding% -16-
503460 A7 B7___ 五、發明説明(Η ) 化學蒸汽化澱積(chemical vapor deposition ; CVD)、金屬有 機化學蒸汽殿積(metal organic chemical vapor deposition ; MOCVD)、遷移率增強型系晶生長(migration enhanced epitaxy ; MEE)、原子層羞晶生長(atomic lay er epitaxy ;ALE)、物理蒸汽化澱積(physical vapor deposition ; PVD)、化學溶劑澱積(chemical solution deposition ; CSD)、 脈衝雷射澱積(pulsed laser deposition ; PLD)等等來實現此 項方法。另外,藉由類似的方法,還可生長其他的單結晶 容納緩衝層,諸如,驗土金屬鈥酸鹽、驗土金屬锆酸鹽、 驗土金屬給酸鹽、驗土金屬起酸鹽、驗土金屬釩酸鹽、驗 土金屬釕酸鹽、鹼土金屬鈮酸鹽、如鹼土金屬錫基鈣鈦礦 (alkaline earth metal tin-based perovskite)之類的氧化 #5 鈥礦 、鑭鋁酸鹽、氧化鑭钪及氧化釓。另外,藉由諸如MBE的 類似方法,還可沈積其他的金屬氧化物層,以覆蓋單結晶 氧化物容納緩衝層及/或強磁性層。 強磁性材料與單結晶氧化物層的每種變化都是使用適當 的模板層,以利於開始生長各別層。在此情況下,可依據 前文中配合生長層26所説明的方法來生長適當的模板材料。 圖5顯示根據本發明之半導體結構90的斷面原理圖。半 導體結構90包括單結晶半導體基板92、覆蓋基板92的單結 晶絕緣層94以及覆蓋絕緣層的磁性隧穿接面裝置96。根據 本發明一項具體實施例,絕緣層94是在基板上磊晶生長的 單結晶氧化物層。 圖6顯示廣泛類似於圖5所示之結構之半導體結構9 8的斷 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 503460 A7 B7 五、發明説明(15 ) 面原理圖。於圖6中,磁性隧穿接面9 6被描繪成覆蓋絕緣 層94的第一層100、覆蓋第一層100的第二層102以及覆蓋第 二層102的第三層104。根據本發明一項觀點,第一層100和 第三層104能夠呈現強磁性特性。在圖示的具體實施例中, 可在各自的基礎層上系晶生長第一層100和第二層102。此 外,第二層102是單結晶絕緣層。另外,第一層100和第三 層104的其中一層或兩層也可能是單結晶層。在特定較佳具 體實施例中,基板92是矽。絕緣層94最好包括選自由金屬 氧化物和金屬氮化物所組成之群組的單結晶材料。具體而 言,絕緣層94最好選自下列材料:鹼土金屬鈦酸鹽、鹼土 金屬錘酸鹽、驗土金屬給酸鹽、驗土金屬Ie酸鹽、驗土金 屬釩酸鹽、鹼土金屬釕酸鹽、鹼土金屬鈮酸鹽、包括屬錫 基鈣鈦礦的鈣鈦礦、鑭鋁酸鹽、氧化鑭銳、氧化釓、氧化 鎵及氮化鋁。 在特定較佳具體實施例中,第一層100最好是單結晶氧化 物,例如,藉摄礦#5鈥礦(manganite perovskite),但是可用 具有(A,B)C03合成物的任何適當材料所製成,其中A係選 自由鑭和钕所組成的群組,B係選自由鳃、鋇、鈣和鉛所 組成的群組,而C係選自Mn、(Mn,Co)和(Mn,Ni)所組成 的群組。 在特定較佳具體實施例中,第三層104最好是單結晶氧化 物,例如,#呈短礦#5鈥礦(ma'nganite perovskite),但是可用 前文中配合第一層100所説明的任何材料所製成。第二絕緣 層102最好是單結晶氧化物,其厚度介於1至6 nm之間的範 -18- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 五、發明説明(16 ) 圍内’並且最好晶格匹配於第一層刚。在特定較佳具體實 施例中,第二絕緣層102厚度小於25細,並且對第一層⑽ ,晶格匹配在約四百分比的範圍内。此外,第二絕緣層102 取好被建構以提供與第一層100的原子截然介面。第二絕緣 層102可用選自由下列項目所組成之群組的材料,包括:鹼 土金屬鈥酸鹽、驗土金屬锆酸鹽、驗土金屬給酸鹽、驗土 金屬姮酸鹽、鹼土金屬釩酸鹽、鹼土金屬釕酸鹽、鹼土金 屬說酸鹽、包含屬錫基㈣礦的賴礦、鑭銘酸鹽、氧化 鑭钪及氧化乳。 根據本發明進一步觀點,可根據廣泛已知的製造技術來 圖案化第一層100、第二層1。2和第三層104,以形成(至少 某種程度上)磁性隧穿接面裝置。藉由根據本發明在單結晶 (例如,矽)基板92上製造磁性隧穿接面裝置,由於單結$ 基板92有足夠的可擴充性,所以大體上可實現降低成本 圖7顯示廣泛類似於圖6所示之結構98之半導體結構ι〇6 的斷面原理圖,但是其還包括覆蓋絕緣層以的模板層US 。模板層118有利於終止絕緣層94,並可用氧氣及選自鳃 、鋇、鈣或鉛之元素爲材料所製成。模板層118的厚度最^ 介於是1到10層單分子層範圍内。 又 圖8顯示廣泛相似於圖5至7所示之結構之半導體結構 的斷面原理圖,並且進一步顯示積體邏輯元件13〇,如至少 部份形成於基板92中的金屬-氧化物半導體(例如,CM〇s) 電路。在較佳具體實施例中,邏輯元件13〇可藉由互相連接 108電氣連接至磁性隧穿接面。在圖示的具體實施例中,互 503460 A7 — —_____B7__ 五、發明説明(17 ) 相連接108將邏輯元件130連接至第二層102。 圖9顯示廣泛類似於圖5至8所示之結構之半導體結構112 的斷面原理圖。半導體112包括張力緩和層114,例如,位 於絕緣層94下的非結晶氧化物層。就這一點而言,非結晶 氧化物層114通常類似於前文配合圖1和2所説明的中間層 28 〇 圖10顯示廣泛類似於圖6所示之結構98之半導體結構116 的斷面原理圖。半導體結構116包括磁性隧穿接面96,其 位於第一電子接觸層120(其被形成於下方並電氣接觸第一 層100)與第二電子接觸層122(其覆蓋並電氣接觸第三層 104)之間。層120及122的其中一層或兩層最好包括單結晶 電子傳導氧化物層,並可用選自由(LakSivOCoOs、SrRu03 、SrCi*03和SrV03所組成之群組的材料所製成,其中k大於 零且小於壹。 圖1 1顯示半導體結構1 2 4的斷面原理圖,其包括但單結 晶(例如,矽)基板92、單結晶氧化物層94(最好是磊晶生 長以覆蓋基板92)以及磁性隧穿检面裝置96。磁性隧穿接 面裝置9 6最好包括以單結晶強磁性材料所製成的第一層 100、以單結晶絕緣材料所製成的第二層1〇2(其覆蓋並形成 與第一層100的原子截然介面)以及以強磁性材料所製成的 第三層104。第二層1〇2最好夠薄,以允許從該處進行隧穿 。第三層104有利於呈現有序-單結晶結構。在較佳具體實施 例中,第一層100、第二層102和第三層104都是在各自的基 礎層上磊晶生長單結晶材料。第二絕緣層102最好是選自由 -20 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 503460 A7503460 A7 B7___ V. Description of the invention (Η) Chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), migration enhanced epitaxy MEE), atomic lay epitaxy (ALE), physical vapor deposition (PVD), chemical solution deposition (CSD), pulsed laser deposition (pulsed laser deposition; PLD) and so on. In addition, by a similar method, other single crystal containing buffer layers can be grown, such as soil test metal's acid salt, soil test metal zirconate, soil test metal salt, soil test salt, Earth metal vanadates, earth metal ruthenates, alkaline earth metal niobates, oxidation # 5 such as alkaline earth metal tin-based perovskite, lanthanum aluminates, Lanthanum thorium oxide and thorium oxide. In addition, by a similar method such as MBE, other metal oxide layers can be deposited to cover the single crystal oxide containing buffer layer and / or the ferromagnetic layer. Each variation of the ferromagnetic material and the single crystalline oxide layer uses an appropriate template layer to facilitate the growth of the individual layers. In this case, an appropriate template material can be grown according to the method described above in conjunction with the growth layer 26. FIG. 5 shows a schematic sectional view of a semiconductor structure 90 according to the present invention. The semiconductor structure 90 includes a single crystalline semiconductor substrate 92, a single crystalline insulating layer 94 covering the substrate 92, and a magnetic tunnel junction device 96 covering the insulating layer. According to a specific embodiment of the present invention, the insulating layer 94 is a single crystal oxide layer epitaxially grown on a substrate. Fig. 6 shows the semiconductor structure 9 8 which is broadly similar to the structure shown in Fig. 5-17-This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 503460 A7 B7 V. Description of the invention (15 ) Surface schematic. In FIG. 6, the magnetic tunneling interface 96 is depicted as a first layer 100 covering the insulating layer 94, a second layer 102 covering the first layer 100, and a third layer 104 covering the second layer 102. According to an aspect of the present invention, the first layer 100 and the third layer 104 can exhibit strong magnetic properties. In the illustrated specific embodiment, the first layer 100 and the second layer 102 can be grown in a tethered manner on the respective base layers. In addition, the second layer 102 is a single crystalline insulating layer. In addition, one or both of the first layer 100 and the third layer 104 may be a single crystal layer. In a particularly preferred embodiment, the substrate 92 is silicon. The insulating layer 94 preferably includes a single crystalline material selected from the group consisting of a metal oxide and a metal nitride. Specifically, the insulating layer 94 is preferably selected from the following materials: alkaline earth metal titanate, alkaline earth metal hammer salt, earth test metal salt, earth test metal Ie salt, earth test metal vanadate, alkaline earth metal ruthenium Acid salts, alkaline earth metal niobates, including perovskites which are tin-based perovskites, lanthanum aluminates, lanthanum oxide, hafnium oxide, gallium oxide, and aluminum nitride. In a particularly preferred embodiment, the first layer 100 is preferably a single crystalline oxide, for example, Borgan # 5 'ore (manganite perovskite), but any suitable material having a (A, B) C03 composition may be used Made of, where A is selected from the group consisting of lanthanum and neodymium, B is selected from the group consisting of gills, barium, calcium, and lead, and C is selected from Mn, (Mn, Co), and (Mn , Ni). In a specific preferred embodiment, the third layer 104 is preferably a single crystalline oxide, for example, # 成 短 矿 # 5 'ore (ma'nganite perovskite), but it can be described in conjunction with the first layer 100 Made of any material. The second insulating layer 102 is preferably a single crystalline oxide with a thickness ranging from 1 to 6 nm. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm). 5. Invention Note (16) within the 'and preferably the lattice matches the first layer. In a particularly preferred embodiment, the thickness of the second insulating layer 102 is less than 25 micrometers, and for the first layer ⑽, the lattice matching is in the range of about four percent. In addition, the second insulating layer 102 is constructed to provide an atomic interface with the first layer 100. The second insulating layer 102 can be made of a material selected from the group consisting of: alkaline earth metal's acid salt, soil test metal zirconate, soil test metal salt, soil test metal salt, alkaline earth metal vanadium Acid salts, alkaline-earth metal ruthenates, alkaline-earth metal salts, lye mines containing tin-based arsenite, lanthanum salts, lanthanum oxide, and oxidized milk. According to a further aspect of the invention, the first layer 100, the second layer 1.2, and the third layer 104 may be patterned according to widely known manufacturing techniques to form (at least to some extent) a magnetic tunnel junction device. By manufacturing a magnetic tunnel junction device on a single crystalline (eg, silicon) substrate 92 according to the present invention, cost reduction can be achieved in general because the single junction $ substrate 92 is sufficiently expandable. FIG. 7 shows a broad similarity The cross-sectional schematic diagram of the semiconductor structure 106 of the structure 98 shown in FIG. 6, but it also includes a template layer US covering the insulating layer. The template layer 118 facilitates the termination of the insulating layer 94 and can be made of oxygen and an element selected from gill, barium, calcium, or lead. The thickness of the template layer 118 ranges from 1 to 10 monomolecular layers. FIG. 8 also shows a schematic sectional view of a semiconductor structure that is broadly similar to the structure shown in FIGS. 5 to 7, and further shows an integrated logic element 13, such as a metal-oxide semiconductor (at least partially formed in the substrate 92) For example, CMOs) circuit. In a preferred embodiment, the logic element 130 may be electrically connected to the magnetic tunneling interface through an interconnect 108. In the illustrated specific embodiment, each other 503460 A7 — — _____B7__ 5. Description of the invention (17) The connection 108 connects the logic element 130 to the second layer 102. FIG. 9 shows a schematic cross-sectional view of a semiconductor structure 112 broadly similar to the structure shown in FIGS. 5 to 8. The semiconductor 112 includes a tension relaxation layer 114, for example, an amorphous oxide layer under the insulating layer 94. In this regard, the amorphous oxide layer 114 is generally similar to the intermediate layer 28 previously described in conjunction with FIGS. 1 and 2. FIG. 10 shows a schematic cross-sectional view of a semiconductor structure 116 that is broadly similar to the structure 98 shown in FIG. 6. . The semiconductor structure 116 includes a magnetic tunneling interface 96 located on a first electronic contact layer 120 (which is formed below and electrically contacts the first layer 100) and a second electronic contact layer 122 (which covers and electrically contacts the third layer 104) )between. One or both of the layers 120 and 122 preferably include a single crystalline electron-conducting oxide layer, and may be made of a material selected from the group consisting of (LakSivOCoOs, SrRu03, SrCi * 03, and SrV03, where k is greater than zero And less than one. Figure 11 shows a schematic cross-sectional view of a semiconductor structure 1 2 4 including a single crystal (eg, silicon) substrate 92 and a single crystal oxide layer 94 (preferably epitaxial growth to cover the substrate 92). And a magnetic tunneling inspection device 96. The magnetic tunneling junction device 96 preferably includes a first layer 100 made of a single crystal ferromagnetic material, and a second layer 102 made of a single crystal insulating material (Which covers and forms an atomic interface with the first layer 100) and a third layer 104 made of a ferromagnetic material. The second layer 102 is preferably thin enough to allow tunneling from there. The three layers 104 are advantageous for presenting an ordered-single crystal structure. In a preferred embodiment, the first layer 100, the second layer 102, and the third layer 104 are all epitaxially grown single crystal materials on their respective base layers. The second insulating layer 102 is preferably selected from -20-this paper size applies to China Standard (CNS) A4 size (210X297 mm) 503460 A7
下列項目所組成之群组的電氣絕緣氧化物,包括:鹼土金 屬鈦酸鹽、鹼土金屬錘酸鹽、鹼土金屬铪酸鹽、鹼土金屬 ㈣m金鹽、驗土金屬㈣鹽、驗土金屬叙 酸鹽、包含屬-基鈣鈦礦的鈣鈦礦、鑭鋁酸鹽、氧化鑭銑 及氧化釓。4¾ 圖12顯示半導體結構126的斷面原理圖,其包括具有至少 部份形成於其中之邏輯元件13〇的基板92、絕緣層94及磁 性隧穿接面96。半導體結構126進一步包括非結晶氧化物 層114,以及電氣互相連接132,其被建構以將邏輯元件13〇 電氣耦合至層104。絕緣層94最好是以SrgBa^gTiOs爲材料 所製成的單結晶氧化物層,其中g値介於〇到i範圍内。單 結晶層102最好是厚度介於1至6 nmi間範圍内的氧化物, 並且對層1〇〇的晶格匹配在約四百分比的範圍内。本文中所 圖解及説明的各種半導體結構均可使用前文配合圖丨至3所 説明的處理技術製造。藉由在單結晶半導體基板92上製造 本文中所説明的磁性隧穿接面裝置,就能實現介於與基板 92關聯之磁性隧穿接面結構和微電子結構之間的單片集成。 圖13顯示積體磁性隧穿接面電路ι4〇的斷面原理圖。半導 體結構140包括覆蓋基板92的模板層142,以及絕緣層94。 如前文中配合圖1至3的説明,非結晶氧化物層n4有利於 在基板9 2上磊晶生長絕緣層9 4期間製造之。之後,有利於 在絕緣層94層製造第二模板層144。第二模板層144可促進 系晶生長第一強磁氧化物層100。根據較佳具體實施例,最 好在第一強磁氧化物層1〇〇上磊晶生長第二絕緣氧化物層 -21 - 本纸張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)The group of electrical insulating oxides consisting of: alkaline earth metal titanate, alkaline earth metal hammer salt, alkaline earth metal phosphonate, alkaline earth metal ㈣m gold salt, soil test metal ㈣ salt, soil test metal Salts, perovskites containing genus-based perovskites, lanthanum aluminates, lanthanum oxide mills, and hafnium oxide. Fig. 12 shows a schematic sectional view of a semiconductor structure 126, which includes a substrate 92 having a logic element 130 formed at least partially therein, an insulating layer 94, and a magnetic tunneling surface 96. The semiconductor structure 126 further includes an amorphous oxide layer 114 and an electrical interconnect 132 that is configured to electrically couple the logic element 130 to the layer 104. The insulating layer 94 is preferably a single crystalline oxide layer made of SrgBaggTiOs, where g 其中 is in the range of 0 to i. The single crystal layer 102 is preferably an oxide having a thickness in the range of 1 to 6 nmi, and the lattice matching of the layer 100 is in the range of about four percent. The various semiconductor structures illustrated and described herein can be fabricated using the processing techniques described above in conjunction with Figures 丨 3. By fabricating the magnetic tunneling junction device described herein on a single crystalline semiconductor substrate 92, monolithic integration between the magnetic tunneling junction structure and the microelectronic structure associated with the substrate 92 can be achieved. FIG. 13 shows a schematic sectional view of the integrated magnetic tunneling junction circuit ι40. The semiconductor structure 140 includes a template layer 142 covering the substrate 92 and an insulating layer 94. As explained in the foregoing with reference to Figs. 1 to 3, the amorphous oxide layer n4 is advantageous for manufacturing during the epitaxial growth of the insulating layer 94 on the substrate 92. After that, it is advantageous to manufacture the second template layer 144 on the insulating layer 94 layer. The second template layer 144 may promote the crystalline growth of the first ferromagnetic oxide layer 100. According to a preferred embodiment, it is best to epitaxially grow a second insulating oxide layer on the first ferromagnetic oxide layer 100. This paper size is applicable to China National Standard (CNS) A4 (210X 297 cm) (Centimeter)
裝 訂 % 503460Binding% 503460
102。 圖1 3的半導體結構140顯示第一層1〇〇、第二層1〇2及第三 層104的照相平版印刷圖案化過程,以允許磁性隨穿接面能 夠與基板92關聯的邏輯元件130單片集成。具體而言,電 氣互相連接134提供介於邏輯元件13〇與第一層1〇〇和第三層 104之每層之間的電氣接觸。具體而言,互相連接ι34被建 構以接觸第三層相關的電極136與第一層1〇〇相關的電極 13 8。在圖示具體實施例的背景下,可使用任何適合的方法 來生長單結晶層,包括MBE、MOCVD、MEE、CVD、PVD 、PLD、CSD和ALE。當然,若適用,則可採用這些技術來 生長本文中所解説的任何層。 根據本發明進一步觀點,形成模板層的方式可能是終止 生長基礎單結晶層,其具有1到丨〇層單分子層氧,以及選 自由鈇、鋇、#5和鉛所組成之群組的材料。 現在將配合圖14來説明製造磁性隧穿接面結構ι46的較佳 方法。首先提供單結晶矽基板92。之後,使用本文中所説 明的沈積方法的任何組合來連續沈積一些層,以形成半導 體疊層。在較佳具體實施例中,最好在基板92上沈積包括 SrgBa^gTiO3層的絕緣層94,其中g値介於零到壹範圍内。 然後在絕緣層94上沈積強磁性層1〇〇,強磁性層ι〇〇最好是 (A,B)C〇3合成物材料,其中A係選自由鑭和钕所組成的群 組,B係選自由鳃、鋇、鈣和鉛所組成的群組,而c係選自 Mn、(Mn,Co)和(Mn,Ni)所組成的群組。然後在層1〇〇上 沈積絕緣隧穿氧化物層102。然後,在層1〇2上沈積強磁性 -22- 本纸張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)102. The semiconductor structure 140 of FIG. 13 shows the photolithographic patterning process of the first layer 100, the second layer 102, and the third layer 104 to allow the logic element 130 whose magnetically-connected surface can be associated with the substrate 92. Monolithic integration. Specifically, the electrical interconnect 134 provides electrical contact between the logic element 13 and each of the first and third layers 100 and 104. Specifically, the interconnection 34 is constructed to contact the electrode 136 associated with the third layer and the electrode 13 8 associated with the first layer 100. In the context of the illustrated embodiment, any suitable method may be used to grow the single crystalline layer, including MBE, MOCVD, MEE, CVD, PVD, PLD, CSD, and ALE. Of course, if applicable, these techniques can be used to grow any of the layers illustrated herein. According to a further aspect of the present invention, the way to form the template layer may be to terminate the growth of a basic single crystal layer having 1 to 10 monomolecular layers of oxygen, and a material selected from the group consisting of thallium, barium, # 5 and lead . A preferred method of manufacturing the magnetic tunnel junction interface structure 46 will now be described with reference to FIG. First, a single crystal silicon substrate 92 is provided. Thereafter, any combination of the deposition methods described herein is used to successively deposit layers to form a semiconductor stack. In a preferred embodiment, an insulating layer 94 including a SrgBa ^ gTiO3 layer is preferably deposited on the substrate 92, where g 値 is in the range of zero to one. A ferromagnetic layer 100 is then deposited on the insulating layer 94. The ferromagnetic layer ιOO is preferably (A, B) C03 composite material, where A is selected from the group consisting of lanthanum and neodymium, and B Is selected from the group consisting of gill, barium, calcium and lead, and c is selected from the group consisting of Mn, (Mn, Co) and (Mn, Ni). An insulating tunneling oxide layer 102 is then deposited on layer 100. Then, deposit strong magnetism on layer 102. -22- This paper size is in accordance with China National Standard (CNS) A4 (210X 297 mm)
裝 % 503460 A7 B7 層104,適用的材料類似於層1 〇〇的材料。 圖15顯示廣泛相似於圖14所示結構146之半導體結構156 的斷面原理圖,用以進—步解説至少部份形成於基板92中 的非結晶層114及邏輯元件13〇。 圖16顯示廣泛相似於圖14所示之結構146之半導體結構 158的斷面原理圖,用以進一步解説圖案化層1〇〇、1〇=和 1044-層或-層以上的步驟,藉此產生各自節點15〇、 和154,其可相當於電壓或電流節點的任何期望組合。熟知 技藝人士應明白,圖案化層100、1〇2和1〇4之一層或一層以 上可產生任何期望組態的磁性隧穿接面裝置。 圖1 7顯示廣泛相似於圖1 6所示結構158之半導體結構丨6〇 的斷面原理圖,其進一步包括下列的額外步驟··沈積傳導 材料層180並圖案化層180,以產生各別的節點i64、166和 168。在特定較佳具體實施例中,適合於半導體基板16〇中 製造互相連接17〇,以將節點164至168的一個或一個以上節 點(例如,電極)連接至邏輯元件13〇。尤其,圖12至17所 示的方法及結構解説在單結晶半導體基板上製造磁性隨穿 接面裝置的優點,藉此允許磁性隧穿接面裝置能夠與基板 相關的邏輯元件單片集成。 圖18顯示半導體結構162的斷面原理圖,其包括下列額外 的步驟:在絕緣層9 4上沈積傳導氧化物層172,並且電氣 接觸強磁性層1〇〇。傳導氧化-物層172最好的製造步驟最好 是沈積選自由(LakSrlk)Co03、Si*Ru〇3、Si*Cr03 和 SrV〇3 所 組成之群組的材料,其中k大於零且小於壹。 -23- 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 503460 A7 B7Load% 503460 A7 B7 layer 104, suitable material is similar to the material of layer 100. FIG. 15 shows a schematic sectional view of a semiconductor structure 156, which is broadly similar to the structure 146 shown in FIG. 14, and is used to further explain the amorphous layer 114 and the logic element 13 which are at least partially formed in the substrate 92. FIG. 16 shows a schematic cross-sectional view of a semiconductor structure 158 that is broadly similar to the structure 146 shown in FIG. 14 to further explain the steps above the patterned layer 100, 10 =, and 1044-layer or -layer, thereby Respective nodes 150 and 154 are generated, which may correspond to any desired combination of voltage or current nodes. Those skilled in the art will appreciate that one or more of the patterned layers 100, 102, and 104 can produce a magnetic tunnel junction device of any desired configuration. FIG. 17 shows a cross-sectional schematic diagram of a semiconductor structure, which is broadly similar to the structure 158 shown in FIG. 16, which further includes the following additional steps: depositing a conductive material layer 180 and patterning the layer 180 to produce individual Nodes i64, 166, and 168. In a particularly preferred embodiment, it is suitable to fabricate interconnects 170 in the semiconductor substrate 160 to connect one or more nodes (e.g., electrodes) of the nodes 164 to 168 to the logic element 13o. In particular, the methods and structures shown in Figs. 12 to 17 illustrate the advantages of manufacturing a magnetic splice device on a single crystalline semiconductor substrate, thereby allowing the magnetic tunnel junction device to be monolithically integrated with the logic elements associated with the substrate. Fig. 18 shows a schematic sectional view of a semiconductor structure 162, which includes the following additional steps: a conductive oxide layer 172 is deposited on the insulating layer 94, and the ferromagnetic layer 100 is electrically contacted. The best manufacturing step of the conductive oxide layer 172 is to deposit a material selected from the group consisting of (LakSrlk) Co03, Si * Ru〇3, Si * Cr03, and SrV〇3, where k is greater than zero and less than one. . -23- This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) 503460 A7 B7
五、發明説明(21 於前面的説明書中,已參考特定具體實施例來説明本發 明。然而,熟知技藝人士應明白本發明的各種修改並且容 易修改,而不會脱離如下文中申請專利範例所提供之本發 明的範疇與精神。因此,説明書暨附圖應視爲解説,而不 應視爲限制,並且所有此類的修改皆屬本發明範疇内。 已説明關於特定具體實施例的優勢、其他優點及問題解 決方案。但是,可導致任何優勢、優點及解決方案發生或 更顯著的優勢、優點、問題解決方案及任何元件不應被理 解爲任何或所有申請專利範例的關鍵、必要項或基本功能 或元件。本文中所使用的術語Γ包括」、「包含」或其任 何其他的變化都是用來涵蓋非專有内含項,使得包括元件 清單的方法、方法、物品或裝置不僅包括這些元件,而且 還包括未明確列出或此類方法、方法、物品或裝置原有的 其他元件。 -24- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)V. Description of the invention (21 In the previous description, the invention has been described with reference to specific embodiments. However, those skilled in the art should understand the various modifications of the invention and easily modify them without departing from the patent application examples below. The scope and spirit of the present invention is provided. Therefore, the description and drawings should be regarded as illustrations, not as limitations, and all such modifications are within the scope of the present invention. Advantages, other advantages, and problem solutions. However, any advantage, advantage, and solution that can cause or become more significant, advantages, advantages, problem solutions, and any components should not be understood as the key and necessary of any or all patent application examples Item or basic function or element. As used herein, the term Γ includes "," includes "or any other variation thereof is used to encompass non-proprietary inclusions such that the method, method, article, or device includes a list of components Includes not only these elements, but also methods or methods, articles, or devices that are not explicitly listed or such Other elements. -24- This paper scales applicable Chinese National Standard (CNS) A4 size (210X 297 mm)
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US62452600A | 2000-07-24 | 2000-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW503460B true TW503460B (en) | 2002-09-21 |
Family
ID=24502329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW090117916A TW503460B (en) | 2000-07-24 | 2001-07-23 | Semiconductor structure including a magnetic tunnel junction and a process for fabricating same |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2001276980A1 (en) |
TW (1) | TW503460B (en) |
WO (1) | WO2002009158A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111816760A (en) * | 2019-04-11 | 2020-10-23 | 上海磁宇信息科技有限公司 | Magnetic random access memory magnetic storage unit and forming method thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7494927B2 (en) | 2000-05-15 | 2009-02-24 | Asm International N.V. | Method of growing electrical conductors |
EP1340269B1 (en) * | 2000-11-30 | 2009-02-25 | Asm International N.V. | Thin films for magnetic devices |
US6759081B2 (en) | 2001-05-11 | 2004-07-06 | Asm International, N.V. | Method of depositing thin films for magnetic heads |
US7037574B2 (en) | 2001-05-23 | 2006-05-02 | Veeco Instruments, Inc. | Atomic layer deposition for fabricating thin films |
US8025922B2 (en) | 2005-03-15 | 2011-09-27 | Asm International N.V. | Enhanced deposition of noble metals |
US7666773B2 (en) | 2005-03-15 | 2010-02-23 | Asm International N.V. | Selective deposition of noble metal thin films |
US9379011B2 (en) | 2008-12-19 | 2016-06-28 | Asm International N.V. | Methods for depositing nickel films and for making nickel silicide and nickel germanide |
US8871617B2 (en) | 2011-04-22 | 2014-10-28 | Asm Ip Holding B.V. | Deposition and reduction of mixed metal oxide thin films |
US9607842B1 (en) | 2015-10-02 | 2017-03-28 | Asm Ip Holding B.V. | Methods of forming metal silicides |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5792569A (en) * | 1996-03-19 | 1998-08-11 | International Business Machines Corporation | Magnetic devices and sensors based on perovskite manganese oxide materials |
WO2001033585A1 (en) * | 1999-11-05 | 2001-05-10 | Oxxel Oxide Electronics Technology, Inc. | Synthesis and magnetoresistance test system using double-perovskite samples for preparation of a magnetoresistance device |
-
2001
- 2001-07-18 WO PCT/US2001/022659 patent/WO2002009158A2/en active Application Filing
- 2001-07-18 AU AU2001276980A patent/AU2001276980A1/en not_active Abandoned
- 2001-07-23 TW TW090117916A patent/TW503460B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111816760A (en) * | 2019-04-11 | 2020-10-23 | 上海磁宇信息科技有限公司 | Magnetic random access memory magnetic storage unit and forming method thereof |
CN111816760B (en) * | 2019-04-11 | 2023-07-14 | 上海磁宇信息科技有限公司 | Magnetic memory cell of magnetic random access memory and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2002009158A2 (en) | 2002-01-31 |
WO2002009158A3 (en) | 2002-07-18 |
AU2001276980A1 (en) | 2002-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5490271B2 (en) | Semiconductor wafer | |
US7364989B2 (en) | Strain control of epitaxial oxide films using virtual substrates | |
TW507301B (en) | Semiconductor structure including a partially annealed layer and method of forming the same | |
US6563118B2 (en) | Pyroelectric device on a monocrystalline semiconductor substrate and process for fabricating same | |
TW516231B (en) | Apparatus for fabricating semiconductor structures | |
TW515098B (en) | Heterojunction tunneling diodes and process for fabricating the same | |
TW508849B (en) | Microelectronic piezoelectric structure and method of forming the same | |
WO2002041378A2 (en) | Semiconductor structure and process for fabricating same | |
TW503460B (en) | Semiconductor structure including a magnetic tunnel junction and a process for fabricating same | |
EP1850373B1 (en) | Method of forming highly orientated silicon film, method of manufacturing three-dimensional semiconductor device, and three-dimensional semiconductor device | |
TW550640B (en) | Structure and method for fabricating semiconductor structures and devices for detecting chemical reactant | |
JP2004505444A (en) | Thin film metal oxide structure and method of manufacturing the same | |
TW544728B (en) | Semiconductor structure, semiconductor device and process for fabricating the semiconductor structure | |
TW503580B (en) | Non-volatile memory element on a monocrystalline semiconductor substrate and process for fabricating same | |
TW531786B (en) | Semiconductor structures having a compliant substrate | |
US6482538B2 (en) | Microelectronic piezoelectric structure and method of forming the same | |
US20020003239A1 (en) | Semiconductor structure and device including a carbon film and method of forming the same | |
TW540101B (en) | Semiconductor structure and device including a monocrystalline conducting layer and method for fabricating the same | |
US20080128813A1 (en) | Semiconductor Device and Manufacturing Method Thereof | |
TW540124B (en) | Structure and method for fabricating semiconductor structures and devices utilizing perovskite stacks | |
US7169619B2 (en) | Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process | |
JP2004281742A (en) | Semiconductor device, semiconductor sensor and semiconductor memory element | |
TW543143B (en) | Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate with an intermetallic layer | |
TW494476B (en) | Hybrid semiconductor structure and device | |
JP2004514288A (en) | Semiconductor structure containing high dielectric constant material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |