TW514913B - Manufacturing method of flash memory cell with improving programming and erase speed - Google Patents

Manufacturing method of flash memory cell with improving programming and erase speed Download PDF

Info

Publication number
TW514913B
TW514913B TW89123887A TW89123887A TW514913B TW 514913 B TW514913 B TW 514913B TW 89123887 A TW89123887 A TW 89123887A TW 89123887 A TW89123887 A TW 89123887A TW 514913 B TW514913 B TW 514913B
Authority
TW
Taiwan
Prior art keywords
gate
layer
patent application
conductive impurities
polycrystalline silicon
Prior art date
Application number
TW89123887A
Other languages
Chinese (zh)
Inventor
Jia-Da Shie
Di-Sheng Guo
Juang-Ge Ye
Chuan-Li Jang
Wen-Ding Ju
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW89123887A priority Critical patent/TW514913B/en
Application granted granted Critical
Publication of TW514913B publication Critical patent/TW514913B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

A split-gate flash memory formation method consists of implanting dual carriers into a first poly-silicon layer, sequentially defining a floating gate, high temperature thermal oxidation process for forming gate oxide on the floating gate, and forming inter-polysilicon oxide layer and control gate. Because the arsenic ion diffuses slowly, it almost stops at the floating gate adjacent to the channel. The higher impurity concentration reduces the depletion region, so the programming speed increases. On the other hand, only phosphorus ion diffuses to the poly-silicon tips near the control gate, so the floating gate impurity increasing and depletion region reducing don't let the inter-polysilicon oxide layer near the tips become thicker and then increase the erase speed.

Description

514913 五、發明說明(1) 發明領域: 本發明係有關於非揮發性記憶元件,特別是指一種利 用區域重離子佈植以改善分閘快閃記憶胞程式化與抹除速 度之快閃記憶胞之形成方法。 發明背景: 當數位相機最初進入市場時,它們被製作成有内建記 憶體的系統,讓您可以每次拍攝大約三十張照片。當相機 的記憶體滿載時,使用者便必須先將照片影像下載至電腦 中,才能拍攝更多影像。 一種低耗電、高 料存取 已使上 資訊可 今天 高穩定性等安全資 快閃記憶卡的使用 需非常少的電源。 )方式來記錄(或 緩慢。此外,資料 源用來保留資料。 關掉後仍可保留儲 得其他可攜式儲存 相比較,快閃記憶 架勢。不只是數位 消除) 一旦存 一般而 存的資 系統黯 體具有 相機, 存取速 條件方 述問題 以較有 ,而不 到磁片 言,以 料至少 然失色 十足的 筆記型 度,及 面的全 迎刃而 效率的 像按位 之後, 目前之 十年以 ,因此 競爭力 電腦, 防震、 新的儲 解。快 記憶區 元組依 就不再 技術即 上。這 和其它 。十足 掌上型 耐移動性、 存糸統’即 閃記憶體僅 段(blocks 序紀錄那麼 需要任何電 使電源是在 種優勢已使 的儲存媒體 明日之星的 電子記事514913 V. Description of the invention (1) Field of the invention: The present invention relates to non-volatile memory elements, in particular to a kind of flash memory that uses regional heavy ion implantation to improve the programming and erasing speed of open flash memory cells. Cell formation method. Background of the Invention: When digital cameras first entered the market, they were made into a system with a built-in memory, allowing you to take about thirty photos at a time. When the camera's memory is full, the user must download the photo image to the computer before taking more images. A kind of low power consumption, high data access has made the information available today. High stability and other safety data. The use of flash memory cards requires very little power. ) Way to record (or slow. In addition, the data source is used to retain data. It can still be stored after being turned off. Compared with other portable storage, flash memory posture. Not just digital erasure) Once you save the general resources The system has a camera, and the problem of access speed conditions is more serious than the magnetic disk language. It is expected that the at least eclipsed note-taking degree and the full-blown and efficient image are in place. Over ten years, so competitive computer, shockproof, new storage. Fast memory area tuples are no longer technical. This and others. Full palm-type, mobile-resistant, memory-based, flash memory is only a block (sequence records, so any electricity is needed, the power is in a kind of advantage, the storage medium has been used, the star of tomorrow, the electronic memo

第5頁 514913 五、發明說明(2) 薄,行動電話等電子產品,對快閃記憶體的需求,更是密 不可分。 快因浮 間. 閘,懸體的 疊睞用憶存 與青利記保 體所以閃料 憶界可快資 記業數閘有 閃為多疊诗 快最,較體 閘體比度憶 分憶合速記 為記耦除閃 分閃之抹快 區快極料閘 以閘閘資分 可分浮此之 般以懸因法 一又對,方 體中極低統 憶其閘降傳 記,制而, 閃體控端而 快憶有尖然 記具極,。 閃其閘快題 » 以下將先介紹傳統之分閘快閃記憶體之製造方法,再 分析其問題,以及提出本發明之動機。請參表圖一,首先 在一半導體基板(例如矽晶圓)5之上表面以高溫的熱氧化 製程形成一閘極氧化層8 (厚約.7. 0 - 1 0 . 0 nm,典型值約8 . 5 nm)覆蓋半導體基板5之上,接著另一第一複晶矽區10 (厚約8 0 - 1 5 0 nm,典型值約100 nm)再以化學氣相沉積法 沉積在閘極氧化層8之上。接著再形成氮化矽層1 5,氮化 石夕層1 5厚約為8 O nm。接著再形成光阻圖案2 0在氮化矽層1 5 上以定義懸浮閘極區。 接著,再以乾式蝕刻法蝕刻曝露之氮化層1 5,以光阻 圖案2 0為罩幕。接著以磷離子做為η型導電性雜質,以離 子佈植方式植入於第一複晶矽層1 0内(圖中以虛線表示磷 離子),以一典型實施例而言,離子佈植的能量和劑量分Page 5 514913 V. Description of the invention (2) Thin, mobile phones and other electronic products, the demand for flash memory is even more inseparable. Fast because of floating space. Gates and suspensions are favored to use memory and Qingliji to protect the body, so the flash material memory industry can quickly record the number of gates flashing is the fastest stack of poems. The sum of shorthand is to record the coupling of the fast pole material gate in addition to the flash point and the flash point. The gate capital can be divided and floated in this way. The suspension factor method is used again and again. The flash body control terminal and quick recall has a sharp memory. Flashover Flash »The following will first introduce the traditional method of manufacturing flashover flash memory, then analyze its problems and the motivation of presenting the present invention. Please refer to Table 1 in the table. First, a gate oxide layer 8 (thickness about .7. 0-1 0. 0 nm, typical value) is formed on the upper surface of a semiconductor substrate (such as a silicon wafer) 5 by a high-temperature thermal oxidation process. 8.5 nm) over the semiconductor substrate 5, and then another first polycrystalline silicon region 10 (thickness about 80-150 nm, typically about 100 nm) is deposited on the gate by chemical vapor deposition Above the polar oxide layer 8. Next, a silicon nitride layer 15 is formed, and the nitride nitride layer 15 is about 8 O nm thick. A photoresist pattern 20 is then formed on the silicon nitride layer 15 to define a floating gate region. Next, the exposed nitride layer 15 is etched by dry etching, and the photoresist pattern 20 is used as a mask. Phosphorus ions are used as n-type conductive impurities and implanted in the first polycrystalline silicon layer 10 by ion implantation (the phosphorous ions are shown by dashed lines in the figure). In a typical embodiment, ion implantation Energy and dose points

第6頁 514913 五、發明說明(3) 別約為2 0 k e V和2 E 1 4 / c m 2。接著,再施以第二次離子佈 植,植入P型導電性雜質例如B+於第一複晶矽層1 〇下方之 半導體基板5的通道(channe 1 )(圖中閘極氧化層8以下的 虛線表示棚離子),用以做為快閃記憶胞通道啟始電壓調 整,離子佈植的能量和劑量約為65keV和7E12/cm2。 接著,如圖二所示,在去除光阻圖案2 0後,利用已定 義之氮化碎層1 5為罩幕’施以南溫的熱氧化製程使第一複 晶矽層1 0的上表面長一第一氧化矽層2 5,第一氧化石夕層2 5 向氮化石夕圖案層間隙1 5 A的上方鼓起,同時複晶石夕層1 〇因 消耗而下陷而使得中央厚約1 2 0 nm,此外第一氧化石夕層2 5 的兩邊,因碟離子受熱而橫向擴散(如箭頭所示)具有促進 氧化速率之特性,因此向氮化矽層1 5下方延伸消耗第一複 晶矽層10而形成如圖示之下半圓寬大,上半圓較窄的有趣 形狀,同時也形成複晶矽層尖角1 8。 接著,請參考圖三,先以熱磷酸鹽溶液去除其餘之氮 化矽層罩幕,然後以電漿蝕刻劑去除未被氧化區25覆蓋之 第一複晶矽層1 〇後,此夾於閘極氧化層8及氧化區2 5之第 一複晶矽層1 〇係做為懸浮閘極。最後以稀釋的氫氟酸或 BOE溶液潤濕以去除閘極氧化層8。 ^ 仍請參考圖三,在懸浮閘極結構形成後,再形成第二 氧化層30在懸浮閘極結構側壁及半導體基板5上。第二氧 514913 五、發明說明(4) 化層3 0的形成方法係利用高溫的熱氧化製程以形成厚度約 1 8 0埃的氧化層,再全面以低壓化學氣相沉積法沉積第二 複晶矽層。此第二複晶矽層厚度約為2 0 0 0埃。再以光阻圖 案(未圖示)及#刻技術定義字線(w 〇 r d 1 i n e ) 5 0。 接著,請參考圖四,在光阻圖案剝除後,即以另一曝 露源極區的光阻圖案形成於所有區域,用以進行源極區7 0 離子佈植。以一較佳的實施例而言,佈植的導電性雜質係 磷離子,離子佈植的能量和劑量分別為40 keV,及5E 15/ cm 2)。光阻圖案剝除後,再進行含氧氣氛下的退火,以擴 大源極區7 0,以增加源極區7 0對懸浮閘極1 0的耦合比。 接著,再把光阻圖案剝除,再形成另一曝露汲極區的光阻 圖案覆蓋在所有區域,用以進行汲極區7 5離子佈植。以一 較佳的實施例而言,佈植的導電性雜質係砷離子,離子佈 植的能量和劑量分別約為4 0 k e V,及5 E 1 5 /cm 2。 發明目的及概述: 本發明之目的係提供一種改善懸浮閘極空乏區的問 題,以改善分閘快閃記憶體程式化速度,同時懸浮閘極側 壁雜質濃度要小以達到程式化速度提高的同時,抹除速度 也得以兼顧之快閃記憶體製造方法。Page 6 514913 V. Description of the invention (3) It is about 20 k e V and 2 E 1 4 / c m 2 respectively. Next, a second ion implantation is performed, and a P-type conductive impurity such as B + is implanted in the channel (channe 1) of the semiconductor substrate 5 below the first polycrystalline silicon layer 10 (gate oxide layer 8 or less in the figure). The dashed line indicates the shed ion), which is used to adjust the initial voltage of the flash memory cell channel. The energy and dose of ion implantation are about 65keV and 7E12 / cm2. Next, as shown in FIG. 2, after the photoresist pattern 20 is removed, the nitrided chip layer 15 having been defined is used as a mask to perform a thermal oxidation process at South temperature to make the top of the first polycrystalline silicon layer 10 0 A first silicon oxide layer 25 is grown on the surface, and the first oxidized stone layer 25 bulges above the gap of the nitrided stone pattern layer 15 A. At the same time, the polycrystalline stone layer 1 sinks due to consumption, making the center thick. Approx. 120 nm. In addition, both sides of the first oxidized stone layer 25 have lateral diffusion (as shown by the arrow) due to the heating of the plate ions, which has the property of promoting the oxidation rate. A polycrystalline silicon layer 10 forms an interesting shape with a wide semicircle and a narrow upper semicircle as shown in the figure, and also forms a sharp corner 18 of the polycrystalline silicon layer. Next, please refer to FIG. 3, first remove the remaining silicon nitride layer mask with a hot phosphate solution, and then remove the first polycrystalline silicon layer 10 which is not covered by the oxidized area 25 with a plasma etchant. The gate oxide layer 8 and the first polycrystalline silicon layer 10 in the oxidized region 25 are used as suspended gates. Finally, it is wetted with diluted hydrofluoric acid or BOE solution to remove the gate oxide layer 8. ^ Still referring to FIG. 3, after the suspension gate structure is formed, a second oxide layer 30 is formed on the side wall of the suspension gate structure and the semiconductor substrate 5. Second oxygen 514913 V. Description of the invention (4) The method for forming the chemical layer 30 is to use a high-temperature thermal oxidation process to form an oxide layer with a thickness of about 180 angstroms, and then deposit a second compound by a low-pressure chemical vapor deposition method. Crystal silicon layer. The thickness of the second polycrystalline silicon layer is about 2000 angstroms. Then, a photoresist pattern (not shown) and #etch technique are used to define the word line (w 〇 r d 1 i n e) 50. Next, please refer to FIG. 4. After the photoresist pattern is stripped, another photoresist pattern exposing the source region is formed in all regions for the implantation of 70 ions in the source region. In a preferred embodiment, the implanted conductive impurities are phosphorus ions, and the energy and dose of the ion implantation are 40 keV and 5E 15 / cm 2 respectively. After the photoresist pattern is stripped, annealing in an oxygen-containing atmosphere is performed to expand the source region 70 and increase the coupling ratio of the source region 70 to the floating gate 10. Then, the photoresist pattern is peeled off, and then another photoresist pattern exposing the drain region is formed to cover all the regions, and is used for implanting the drain region 75 ion. In a preferred embodiment, the implanted conductive impurities are arsenic ions, and the energy and dose of the ion implantation are about 40 k e V and 5 E 1 5 / cm 2, respectively. OBJECTS AND SUMMARY OF THE INVENTION The object of the present invention is to improve the problem of the empty area of the floating gate so as to improve the programming speed of the opening flash memory. At the same time, the concentration of impurities in the side wall of the floating gate should be small to increase the programming speed. , The erasing speed can also take into account the flash memory manufacturing method.

第8頁 514913 五、發明說明(5) 本發明揭露一種分閘快閃記憶胞形成方法在此方法 中係利用磷和砷做為雙載子植入於一已定義懸浮閘極位置 之氮化矽層下的第一複晶矽層内,再依序、進行高溫的熱 氧化製程以形成懸浮閘極上氧化層、進行形成複晶矽間氧 化層及控制閘極的分閘快閃記憶體形成方法,其中由於雙 載子中的砷離子擴散慢,因此,幾乎停在和通道鄰接處的 懸浮閘極,雜質濃度高而使得空乏區減少,因此程式化速 度增加,但和控制閘極相鄰近的複晶矽尖角,則因只有磷 離子擴散過去,因此,不會因懸浮閘極的雜質濃度增加, 空乏區減少導致複晶矽間氧化層鄰近尖角處變厚,也因此 提高了資料抹除速度。 發明詳細說明: 以上發明背景所述傳統方法之快閃記憶胞製程中有下 列幾個問題需要加以克服: 化内合 氧極耦 熱閘的 的浮極 溫懸閘 高的浮 在道懸 子通對 離接極 填鄰源 因此得 區因使 乏,將 空壁大 的側變 極極區 閘閘乏 浮浮空 懸懸, 於至低 由散變 1)擴度 (1中濃 程質 製雜 低 降 比(^低 此 因 子 電 入 注 以 降 加度 增速 場化 電式 道程 通得 間使 之而 極, 閘示 制g 控8 與頭 極箭 閘十 浮圖 懸如Page 8 514913 V. Description of the invention (5) The present invention discloses a method for forming flash memory cells that is opened and closed. In this method, phosphorus and arsenic are used as the two carriers implanted in a defined suspension gate. In the first polycrystalline silicon layer under the silicon layer, a high-temperature thermal oxidation process is sequentially performed to form an oxide layer on the suspended gate, a multi-crystalline silicon inter-layer oxide layer is formed, and a gate flash memory is formed to control the gate. Method, in which the arsenic ions in the double carrier diffuse slowly, so they almost stop at the floating gate adjacent to the channel, the impurity concentration is high and the empty region is reduced, so the programming speed is increased, but it is close to the control gate The sharp corners of the polycrystalline silicon are only diffused by phosphorus ions. Therefore, the impurity concentration of the suspended gate will not increase, and the decrease in the empty region will lead to the thickening of the oxide layer near the sharp corners of the polycrystalline silicon, which also improves the data. Erase speed. Detailed description of the invention: In the flash memory cell manufacturing process of the traditional method described in the background of the invention above, the following problems need to be overcome: the floating pole temperature of the internal oxygen-coupled thermal gate is high, and the floating suspension is connected to the channel. The isolated pole fills the adjacent source, so the area is lacking, so the side wall of the pole with a large wall is changed, and the gate is floating and suspended, and it is changed from scattered to the lowest. The reduction ratio (lower this factor) is used to reduce the acceleration and increase the speed of the electric circuit. The gate system g control 8 and the head pole arrow gate are floating as shown in the figure.

第9頁 514913 五、發明說明(6) (2 )由於懸浮閘極的空乏區增加,-由懸浮閘極至控 制閘極的F N穿隧能量障礙障增加,如此將使得抹除速度降 低。除此之外,抹除之後,進行資料讀取時,也將因懸浮 閘極較大的空乏區而使得懸浮閘極的啟始電壓V t變異性增 加,進而將使得讀取電流時變異性也同步增加。 (3)此外,假如以增加懸浮閘極的磷離子濃度解決懸 浮閘極空乏區的問題,則懸浮閘極側壁的氧化層氧化速率 將因磷離子濃度增加而增加,而使得側壁的抹除速度變 慢。 為了解決上述的幾個問題,本發明將提供一種解決懸 浮閘極空乏區的問題,同時也不會如發明背景抹除速度變 慢的分閘快閃記憶胞的製造方法 以下發明的細節可參考圖示來加以詳細說明並描繪本 發明之分閘快閃記憶體元件的製作方法。 請參考圖五,首先,以傳統方法在半導體基板1 0 5定 義淺〉冓渠隔離區1 〇 2及主動區1 0 4,再以熱氧化法’溫度約 8 0 0 _ 9 5 0 °C形成一閘極氧化層1 0 8於一 < 1 0 0 >晶體方向之單 晶半導體基板1 0 5閘極氧化層1 0 8的厚度約為7 . 0 - 1 0 . 0 nm,典型值為80 nm。接著以低壓化學氣相沉積法(LPCVD)Page 9 514913 V. Description of the invention (6) (2) As the empty area of the floating gate increases, the F N tunneling energy barrier from the floating gate to the control gate increases, which will reduce the erasing speed. In addition, after erasing, when reading the data, the variability of the starting voltage V t of the floating gate will increase due to the large empty area of the floating gate, which will further increase the variability when reading the current. Also increase in sync. (3) In addition, if the problem of the empty area of the suspended gate is solved by increasing the phosphorus ion concentration of the suspended gate, the oxidation rate of the oxide layer on the side wall of the suspended gate will increase due to the increase of the concentration of phosphorus ions, which will cause the erasing speed of the side wall. Slow down. In order to solve the above-mentioned problems, the present invention will provide a method for manufacturing a flash memory cell that can be opened and erased at a slower speed than the background of the invention. The drawings are used to explain in detail and depict the method for manufacturing the open flash memory device of the present invention. Please refer to FIG. 5. First, the conventional method is used to define shallow semiconductor substrate 105 in the conventional method> the trench isolation region 1 02 and the active region 104, and then the temperature of the thermal oxidation method is about 8 0 0 _ 9 5 0 ° C. A gate oxide layer 108 is formed on a < 1 0 0 > single crystal semiconductor substrate in a crystal direction. The thickness of the gate oxide layer 108 is approximately 7.0 to 1.0 nm, typically The value is 80 nm. Low pressure chemical vapor deposition (LPCVD)

第10頁 514913 五、發明說明(7) —----——-____ 全面沉積一第一複晶矽層 此第一複晶矽110厚度約為ϋ積溫度約550450。(:, 隨後,再以低壓化學氣相汾 nm,典型值為1 0 0 nm。 8 0 nm之氮化矽層11 5接著,涂、法再王面/儿積一厚度約為 115上以定義懸浮閘極的位=佈一光阻圖案120於氮化矽層 請參考圖六,接著,以— 石夕層1 1 5以轉移光阻圖案至,^向丨生钱刻方法钱刻氮化 第一次離子佈植,植入磷及氣化石夕層u 5上三緊,著,施以 層11 0。以一較佳的實施例 於該曝路之第一複晶矽 量,對磷離子而言約為心:^子㈣的能量和劑 lE14-8E14/cm2(典型值約為2 e (八=值約為2〇keV)和 言約為^5〇 keV(典型對坤離子(As+)而 型值約為3E14/J)、勺為驗)和1E14-8E14蝴 接者,再施以第:次離子佈植,植型 :如,B+於第,石夕们1〇下…導體基板 用以做為該快閃,己憶胞通道啟始電壓調整,離子佈植的能 量和劑量,對硼離子而言約為3〇_8〇 keV(典型值約 65keV)和 3E12-9E12/Cm2(典型值約為 7E12/cm2)。如 BF 2 +進行佈植則,離子佈植的能量和劑量,約為 90- 180keV(典型值約為 約為 7E12/cm2)。 llOkeV)和 3E12-9E12/cm2(典型值 514913 五、發明說明(8) 在去除光阻圖素接,士主么& M ^ 製程,以第-氮化考圖七,施以高溫的熱氧化 ,^ , ^ 第虱化矽層125,第一氧化矽層125 如圖不向鼠化矽圖案層間隙115A鼓起,同時複晶矽;n5 層!25的兩邊’因鱗離子具有促進氧化速率之特弟丨生二石夕 向氮化石夕層115下方擴散延伸(如虛線箭頭所示)消耗^ J晶石夕層U。而形成如圖示之下半圓寬* = 有趣形狀,同時也形成複晶矽層尖角118。牛®歧乍的 重彳曰ί ϋ,/於砷離子(圖中以圓圈表示者)遠較磷離子 重(原子序65對31),因此在此步驟中,只=子 制,、、、氧化時間,溫度即可促使石中離 k田的控 =散至氮切層115下方的第一氧子化不心 设晶矽層110内。以一較佳的實施例而言,^下方的_弟— 熱氧化製程溫度約為8 0 0 - 1 0 0 0°c。 Υ β的鬲溫 接著,請參考圖八,再以熱磷酸鹽溶液去昤Α | > =層115罩幕。然後再以電^刻去除未餘=鼠 極結i二去除問極氧化層1G8,而形成如圖示之懸浮閘 仍請參考圖八,接著,在懸浮閘極結構形成後再形成Page 10 514913 V. Description of the invention (7) —----——-____ Full deposition of a first polycrystalline silicon layer The thickness of the first polycrystalline silicon 110 is about 550450. (: Then, the low-pressure chemical vapor phase is used to fen nm, with a typical value of 100 nm. A silicon nitride layer of 80 nm is then coated with a thickness of about 115 and above. Defining the position of the floating gate = arranging a photoresist pattern 120 on the silicon nitride layer, please refer to FIG. 6, and then,-the stone layer 1 1 5 to transfer the photoresist pattern to The first ion implantation was performed, and the phosphorus and the gasified fossil layer u 5 were implanted three times tightly, and a layer 11 0 was applied. A preferred embodiment was applied to the first amount of polycrystalline silicon in the exposed path. Phosphorus ions are about the heart: the energy of the zirconium and the agent lE14-8E14 / cm2 (typical value is about 2 e (eight = value is about 20 keV) and about ^ 50 keV (typically for the ion (As +) and the type value is about 3E14 / J), the spoon is the test) and 1E14-8E14 butterfly, and then apply the first: secondary ion implantation, planting type: such as, B + in the first, Shi Ximen 10 times … The conductor substrate is used for this flash, the initial voltage adjustment of the memory cell channel, the energy and dose of ion implantation, for boron ions are about 30_80 keV (typically about 65 keV) and 3E12- 9E12 / Cm2 (typical value is about 7E12 / cm2). For planting, the energy and dose of ion implantation are about 90-180keV (typical value is about 7E12 / cm2). LlOkeV) and 3E12-9E12 / cm2 (typical value 514913). 5. Description of the invention (8) The resistive element is connected. The master & M ^ process uses the first -nitride to examine Figure VII and applies high temperature thermal oxidation. ^, ^ The silicon oxide layer 125 and the first silicon oxide layer 125 are not shown in the figure. The gap between the ratified silicon pattern layer 115A bulges, and at the same time, the polycrystalline silicon; n5 layers! The two sides of the 25 'are special because of the scale ions that promote the oxidation rate. (Shown) Consumption ^ J 石 石 夕 层 U. And the formation of a semicircle width as shown below * = interesting shape, while also forming a polycrystalline silicon layer sharp corner 118. 牛 ® 奇 Cha 的 重 彳 ί 于, / Arsenic ions (represented by circles in the figure) are much heavier than phosphorus ions (atomic order 65 to 31), so in this step, only the sub-system, ,,, and oxidation time, and temperature can cause the stone to leave the k field. Control = the first oxygenated layer scattered below the nitrogen-cut layer 115 is disposed in the crystalline silicon layer 110. In a preferred embodiment, the following _ brother-thermal oxidation system The temperature is about 8 0 0-1 0 0 0 ° C. The temperature of Υ β is next, please refer to Figure 8, and then use hot phosphate solution to remove 昤 Α | > = layer 115 mask. Then engraved with electricity Removal is not left = the mouse pole junction i removes the interrogation oxide layer 1G8, and the suspension gate is formed as shown in the figure. Please refer to FIG. 8. Then, the suspension gate structure is formed again.

第12頁 M4913 五、發明說明(9) 第二氧化層1 3 0在懸浮閘極結構側壁及半導體基板丨〇 $。 一氧化層1 3 0的形成方法可以利用高溫的熱氧化製程以 成厚度約12-25 nm的氧化層(典型值約18〇埃)。或者另一 方式是,先利用高溫的熱氧化製程長薄的氧化層,厚度 3- 10 nm。接著再以LPCVD法全面沉積一高溫氧化層(以下 稱HTO氧化層)。以一較佳的實施例而言,HT〇氧化層係在 8 0 0 - 1 〇〇(TC沉積至約12〇nm。請注意,在懸浮閘極結構側 壁長第二氧化層13 0的過程中,第二氧化矽層的成長速度 不會文到珅的影響’這是重離子在高溫的熱氧化製程中具 有極慢擴散速度的特性。 接著請參考圖九的橫截面示意圖,再全面以低壓化學 氣相沉積法沉積第二複晶石夕層。此第二複晶石夕層厚度約為 1 5 0 - 2 5 0 nm典型值約2 0 0 0埃。再以光阻圖案(未圖示)及蝕 刻技術定義字線(word line)150。 接著’請參考圖十,在光阻圖案剝除後,即以另一源 極區1 5 5的光阻圖案1 6 〇形成於所有區域,用以進行源極區 1 7 0離子佈植。以一較佳的實施例而言,佈植的導電性雜 質係磷離子,離子佈植的能量和劑量分別為2 0 - 6 0 keV和 2E15-9E15/cm2(典型值約 40 keV,及 5E15/cm2)。光阻圖案 1 6 0剝除後,再進行含氧氣氛下的退火,以擴大源極區 1 7 0 ’以增加源極區1 7 〇對懸浮閘極π 〇的耦合比。Page 12 M4913 V. Description of the invention (9) The second oxide layer 130 is on the side wall of the floating gate structure and the semiconductor substrate. The oxide layer 130 can be formed by a high-temperature thermal oxidation process to form an oxide layer with a thickness of about 12-25 nm (typically about 18 angstroms). Or another method is to first use a high-temperature thermal oxidation process to form a long thin oxide layer with a thickness of 3 to 10 nm. Then, a high-temperature oxide layer (hereinafter referred to as HTO oxide layer) is deposited by LPCVD. In a preferred embodiment, the HTO oxide layer is deposited at 800-1000 (TC to about 120 nm. Please note that the process of growing the second oxide layer 130 on the side wall of the suspended gate structure However, the growth rate of the second silicon oxide layer will not be affected by this effect. This is a characteristic of the extremely slow diffusion rate of heavy ions in a high-temperature thermal oxidation process. Next, please refer to the cross-sectional schematic diagram in FIG. A low-pressure chemical vapor deposition method is used to deposit a second polycrystalline stone layer. The thickness of the second polycrystalline stone layer is about 15 0-2 50 nm, and the typical value is about 2 0 0 angstrom. (Pictured) and etching technology to define a word line 150. Next, please refer to FIG. 10, after the photoresist pattern is stripped, a photoresist pattern 1 6 of another source region 1 5 is formed in all Area for ion source implantation in the source region. In a preferred embodiment, the conductive impurities are phosphorus ions, and the energy and dose of the ion implantation are 20-60 keV, respectively. And 2E15-9E15 / cm2 (typical values are about 40 keV, and 5E15 / cm2). After the photoresist pattern is stripped off, the stripping is performed in an oxygen-containing atmosphere. Fire to expand the source region 170 'to increase the coupling ratio of the source region 170 to the floating gate π.

第13頁 514913 五、發明說明(ίο) 接著光阻圖案1 6 0剝除,再形成另一曝露汲極區的光 阻圖案1 8 0覆蓋在所有區域,用以進行汲極區1 7 5離子佈 植。以一較佳的實施例而言,佈植的導電性雜質係坤離 子,離子佈植的能量和劑量分別為2 0 - 6 0 k e V和 2E15-9E15/cm1 2(典型值約 40 keV,及 5E15/cm2)。 本發明具有以下的優點:Page 13 514913 V. Description of the invention (ίο) Then the photoresist pattern 1 60 is peeled off to form another photoresist pattern 1 8 0 which exposes the drain region, covering all regions for the drain region 1 7 5 Ion implantation. In a preferred embodiment, the implanted conductive impurities are kun ions, and the energy and dose of the ion implantation are 20-60 ke V and 2E15-9E15 / cm1 2 (typically about 40 keV, And 5E15 / cm2). The invention has the following advantages:

I。源極對懸浮閘極的耦合比增加(由於懸浮閘極的空 乏區減少),因此,懸浮閘極與控制閘極之間電場增加(用 以注入電子)如圖十箭頭1 8 0所示。這將可使程式化速度增 加0I. The coupling ratio of the source to the floating gate is increased (because the empty area of the floating gate is reduced). Therefore, the electric field between the floating gate and the control gate is increased (for injecting electrons), as shown in arrow 10 of Figure 10. This will increase the programming speed by 0

1 I.由於懸浮閘極的空乏區減少的另一個好處是由懸 浮閘極至控制閘極的F N穿隧能量障礙障低,如此便可以增 加抹除速度。除此之外,抹除之後進行讀取測試,懸浮閘 極較小的空乏區將使懸浮閘極的啟始電壓V t變異性小,進 而將使得讀取電流時變異性減少。請比較以本發明方法所 製造之快閃記憶胞和標準傳統製程的快閃記憶胞其Vt的差 異性請參考第十一圖。圖中,標號2 0 0為以本發明方法製 造之快閃記憶胞之晶圓的三個具有區域植入重離子砷佈植 於懸浮閘極的記憶胞之V t平均值包括0 . 5 2 2、0 . 5 2 1及 2 0 . 5 0 0及標準差0 . 0 1 6、0 · 0 1卜0 · 0 1 9 (每一長條之長度)。 而標準製程的結果是五個記憶胞標準差分別為0. 0 4 6、 514913 五、發明說明(11) 0. 063、 0. 0400. 052及 0. 041而 Vt平均值為 0.528至 0 . 5 9 1,明顯地傳統製程顯示V t平均值相當的不穩定。 I II.介複晶矽氧化層(即第二氧化層1 3 0 )厚度不會增 加,因為懸浮閘極導電性雜質濃度增加,因此,抹除速度 變慢的問題不會發生。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。 514913 9L 5. 01 年月π 孑 iii JXj 圖式簡單說明 圖式簡單說明 窆示 0 本發明的較佳實施例將於往後之說明文字中輔以下列 彳彳過形做更詳細的闡述 再施以P T及 准i 予日 一顯示以傳統方法定義懸浮閘極的位置後 rt B離子佈植後的橫截面圖。- 秦所圖二顯示以傳統方法施以南溫的熱氧化製程使第一複晶 (til· $夕層的上表面長一上方鼓起之第一氧化石夕層之橫截面示意 圖。 :圖三顯示以傳統方法,定義控制閘極的橫截面示意圖。 圖四顯示以傳統方法製造分閘快閃記憶胞至完成源極區離 子佈植以及退火後以擴大源極區,再對;及極佈植的橫截面 示意圖。 圖五顯示以光阻圖案定義懸浮閘極位置的橫截面示意圖。 圖六顯示以本發明之方法定義懸浮閘極的位置後,再施以 P +、A s及B +三種載子離子佈植後的橫截面圖。 圖七顯示以本發明之方法施以高溫的熱氧化製程使第一複 ’厂2 3¾ ^夕層的上表面長一上方鼓起之第一氧化發層,並使較輕 的雜植擴散之橫截面示意圖。 圖八顯示以本發明之方法去除氮化石夕層的橫截面示意圖。 )圖九顯示以本發明之方法製造分閘快閃記憶胞至控制閘極 :形成之橫載面示意圖。 圖十顯示以以本發明之方法依次進行源極佈植、退火、及 汲極離子佈植之橫截面示意圖。1 I. Another advantage of the reduction of the empty area of the floating gate is that the F N tunneling energy barrier from the floating gate to the control gate is low, so that the erasing speed can be increased. In addition, the read test is performed after erasing. The small empty area of the floating gate will make the variability of the starting voltage V t of the floating gate small, which will reduce the variability when reading the current. Please compare the difference in Vt between the flash memory cell manufactured by the method of the present invention and the flash memory cell of the standard traditional process. Please refer to the eleventh figure. In the figure, reference numeral 2 0 is the average value of V t of three memory cells of the wafer of the flash memory cell manufactured by the method of the present invention implanted with heavy ion arsenic and implanted in the suspended gate, including 0.5 2 2, 0.5 2 1 and 2 0.5 0 0 and standard deviation 0. 0 1 6, 0 · 0 1 1 0 0 0 1 9 (length of each bar). The result of the standard process is that the standard deviations of the five memory cells are 0. 0 4 6, 514913. 5. Description of the invention (11) 0. 063, 0. 400. 052 and 0. 041 and the average Vt is 0.528 to 0. 5 9 1. Obviously, the traditional process shows that the average value of V t is quite unstable. I II. The thickness of the meso-crystalline silicon oxide layer (ie, the second oxide layer 130) will not increase, because the conductive impurity concentration of the floating gate increases, so the problem of slower erasing speed will not occur. The above are merely preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention shall be included in the following Within the scope of patent application. 514913 9L 5. January 01 π iii JXj Schematic description Schematic description Schematic description 0 The preferred embodiment of the present invention will be supplemented by the following description in the following explanatory text. Applying PT and quasi i to Riyi shows the cross-section view after rt B ion implantation after the position of the floating gate is defined by the traditional method. -Figure 2 of the Qin Institute shows a schematic cross-sectional view of the first oxidized stone layer formed by the first method using the traditional method of thermal oxidation process of Nanwen to swell the upper surface of the first compound layer. Figure 3 shows the cross-section schematic diagram of the control gate defined by the traditional method. Figure 4 shows the traditional method of manufacturing the flash memory cell to open the gate to complete the ion implantation of the source region and annealing to expand the source region, and then pair; and A schematic cross-sectional view of the planting. Figure 5 shows a schematic cross-sectional view of the position of the floating gate with a photoresist pattern. Figure 6 shows a position of the floating gate defined by the method of the present invention, and then P +, As and B are applied. + Cross-sectional view of three carrier ion implants. Fig. 7 shows that the first surface of the first compound 'factory 2 3¾ ¾ layer is raised above the first surface by applying a high-temperature thermal oxidation process using the method of the present invention. A schematic cross-sectional view that oxidizes the hair layer and diffuses lighter vegetative growth. Figure 8 shows a schematic cross-section view of the method for removing the nitrided layer by the method of the present invention.) Figure 9 shows the flash memory that is opened by the method of the present invention. Cell to control gate: formed A schematic view of the carrier surface. FIG. 10 is a schematic cross-sectional view of source implantation, annealing, and drain ion implantation in this order by the method of the present invention.

第16頁 514913 m 圖式簡單說明 圖十一顯示本發明之快閃記憶胞和傳統標準製程啟始電壓 及變異性之比較。 8閘極氧化層 1 5氮化矽層,1 5 A氮化矽圖案層間隙 2 0光阻圖案 5 0字線 1 0 5半導體基板 1 10第一複晶矽層 1 15A氮化矽圖案層間隙 圖號對照表: 5半導體基板 1 0第一複晶矽層 1 8複晶矽層尖角 2 5第一氧化矽層 7 0源極區 7 5汲極區 1 0 8閘極氧化層 1 1 5氮化矽層 1 2 0光阻圖案 1 1 8複晶矽層尖角 13 0第二氧化層 1 6 0光阻圖案 1 7 0源極區 2 0 0啟始電壓分佈(本發明 1 2 5第一氧化矽層 1 5 0字線 1 7 5>及極區 18 0光阻圖案 2 1 0啟始電壓分佈(標準製程Page 16 514913 m Brief Description of Drawings Figure 11 shows the comparison of the start voltage and variability between the flash memory cell of the present invention and the traditional standard process. 8 gate oxide layer 1 5 silicon nitride layer, 15 A silicon nitride pattern layer gap 2 0 photoresist pattern 5 0 word line 1 0 5 semiconductor substrate 1 10 first polycrystalline silicon layer 1 15A silicon nitride pattern layer Gap chart number comparison table: 5 semiconductor substrate 1 0 first polycrystalline silicon layer 1 8 polycrystalline silicon layer sharp corner 2 5 first silicon oxide layer 7 0 source region 7 5 drain region 1 0 8 gate oxide layer 1 1 5 silicon nitride layer 1 2 0 photoresist pattern 1 1 8 polycrystalline silicon layer sharp corner 13 0 second oxide layer 1 6 0 photoresist pattern 1 7 0 source region 2 0 0 initial voltage distribution (invention 1 2 5 First silicon oxide layer 150 Word line 1 7 5 > and polar region 18 0 photoresist pattern 2 1 0 start voltage distribution (standard process

第17頁Page 17

Claims (1)

514913 六、申請專利範圍 1. 一種改善程式化及抹除速度之分閘快閃記憶胞形成方 法,該方法至少包含以下步驟: 提供一半導體基板,該基板並已形成閘極氧化層/第一複 晶矽晶層/第一氮化矽層; 塗佈光阻圖案於該第一氮化矽層上以定義懸浮閘極; 蝕刻該第一氮化矽層,以該光阻圖案為罩幕,用以曝 露該第一複晶矽層; 施以第一次離子佈植,植入質量輕與質量重的η型導 電性雜質於該曝露之第一複晶矽層; 施以第二次離子佈植,植入ρ型導電性雜質於該半導 體基板,用以做為該快閃記憶胞之啟始電壓調整; 去除該光阻圖案; 施以高溫的熱氧化製程,以氧化該第一複晶矽層,以 該第一氮化石夕層為罩幕,用以成長一第一氧化石夕層於該第 一複晶矽層上; 去除該第一氮化矽層; 去除該第一複晶矽層,以該第一氧化矽層為罩幕,用 以形成懸浮閘極結構; 以熱氧化法形成第二氧化矽層於該半導體基板及該第 一複晶$夕層的側壁; 沉積第二複晶矽層於該第二氧化矽層上; 以微影及蝕刻技術定義該第二複晶矽層,以形成字 線; 以導電性雜質對源極區進行離子佈植;514913 VI. Application Patent Scope 1. A method for forming a flash memory cell to improve stylization and erasing speed, the method includes at least the following steps: Provide a semiconductor substrate, and the substrate has formed a gate oxide layer / first Polycrystalline silicon layer / first silicon nitride layer; coating a photoresist pattern on the first silicon nitride layer to define a floating gate; etching the first silicon nitride layer, using the photoresist pattern as a mask For exposing the first polycrystalline silicon layer; applying the first ion implantation, implanting n-type conductive impurities of light weight and weight to the exposed first polycrystalline silicon layer; applying the second time Ion implantation, implanting p-type conductive impurities into the semiconductor substrate for adjusting the initial voltage of the flash memory cell; removing the photoresist pattern; applying a high-temperature thermal oxidation process to oxidize the first A polycrystalline silicon layer using the first nitride layer as a mask for growing a first silicon oxide layer on the first compound silicon layer; removing the first silicon nitride layer; removing the first A polycrystalline silicon layer using the first silicon oxide layer as a mask for forming Floating gate structure; forming a second silicon oxide layer on a sidewall of the semiconductor substrate and the first polycrystalline silicon layer by a thermal oxidation method; depositing a second polycrystalline silicon layer on the second silicon oxide layer; lithography And etching technology to define the second polycrystalline silicon layer to form a word line; ion implantation of the source region with conductive impurities; 第18頁 514913 六、申請專利範圍 施以高溫含氧環境的退火製程,以促使源極區之導電 性雜質進一步橫向擴散至該懸浮閘極結構下之半導體基板 内:及 以導電性雜質對汲極區進行離子佈植。 2. 如申請專利範圍第1項之方法,其中上述之植入質量輕 與質量重的η型導電性雜質分別為磷離子及砷離子。 3. 如申請專利範圍第2項之方法,其中上述之第一次離子 佈植中植入填離子時的能量和劑量分別約為1 0 - 5 0 k e V和. 1E14 - 8E14/cm2〇 4. 如申請專利範圍第2項之方法,其中上述之第一次離子 佈植中植入砷離子時的能量和劑量分別約為10-50keV和 lE14-8E14/cm2〇 5. 如申請專利範圍第1項之方法,其中上述之第二次離子 佈植中對P型導電型離子的能量和劑量分別約為3 0 -8 0 keV 和 3E12 - 9E12/cm2。 6. 如申請專利範圍第1項之方法,其中上述之對該源極區 進行離子佈植以導電性雜質步驟至少包含: 形成一曝露源極區的光阻圖案於該第二複晶矽層上; 施以離子佈植技術以佈植η型導電性雜質;及Page 18 514913 6. The scope of the patent application is to apply an annealing process at a high temperature and oxygen-containing environment to promote the further lateral diffusion of conductive impurities in the source region into the semiconductor substrate under the suspended gate structure: The polar regions are ion implanted. 2. The method according to item 1 of the scope of patent application, wherein the implanted n-type conductive impurities of light weight and heavy weight are phosphorus ions and arsenic ions, respectively. 3. The method as described in the second item of the patent application, wherein the energy and dose when implanting ions in the first ion implantation mentioned above are about 10-5 0 ke V and .1E14-8E14 / cm2 04 For example, the method of the second item of the patent application, wherein the energy and dose of the arsenic ion implanted in the first ion implantation are about 10-50keV and lE14-8E14 / cm2, respectively. The method according to item 1, wherein the energy and dose to the P-type conductive ions in the second ion implantation described above are about 30 to 80 keV and 3E12 to 9E12 / cm2, respectively. 6. The method according to item 1 of the patent application, wherein the step of performing ion implantation on the source region with conductive impurities at least includes: forming a photoresist pattern exposing the source region on the second polycrystalline silicon layer The application of ion implantation technology to implant n-type conductive impurities; and 第19頁 514913 六、申請專利範圍 去除該光阻圖案。 7. 如申請專利範圍第1項之方法’其中上述之對該沒極區 進行離子佈植以導電性雜質步驟至少包含: 形成一曝露汲極區的光阻圖案於該第二複晶矽層上; 施以離子佈植技術以佈植η型導電性雜質;及 去除該光阻圖案。 8. 如申請專利範圍弟1項之方法’其中上述之施以南溫的 熱氧化製程,以成長一第一氧化矽層時溫度係控制在 8 0 0 - 1 0 0 0〇C。 9. 如申請專利範圍第1項之方法,其中上述之植入質量輕 與質量重的η型導電性雜質分別為磷離子及砷離子。 1 0.如申請專利範圍第8項之方法,其中上述之高溫的熱 氧化製程係使得該植入複晶矽的磷離子橫向擴散至上述之 第一氮化矽層圖案層下,而砷離子則相對於磷離子而言幾 乎不會產生橫向擴向。 11.如申請專利範圍第9項之方法,其中上述之砷離子不 橫向擴散係為增加懸浮閘極的濃度以使得靠近源極區之間 的空乏區減少,且可防止熱氧化法形成第二氧化矽層步驟 之該第一複晶矽層被氧化成第二氧化矽層的氧化速率太Page 19 514913 6. Scope of patent application Remove the photoresist pattern. 7. The method according to item 1 of the scope of patent application, wherein the above-mentioned step of ion implanting the electrodeless region with conductive impurities at least includes: forming a photoresist pattern exposing the drain region on the second polycrystalline silicon layer Above; applying ion implantation technology to implant n-type conductive impurities; and removing the photoresist pattern. 8. For example, the method of item 1 of the scope of the patent application, wherein the above-mentioned thermal oxidation process is performed at South temperature to control the temperature when the first silicon oxide layer is grown at 800-100 000C. 9. The method according to item 1 of the scope of patent application, wherein the light-weight and heavy-type η-type conductive impurities implanted above are phosphorus ions and arsenic ions, respectively. 10. The method according to item 8 of the scope of patent application, wherein the above-mentioned high-temperature thermal oxidation process causes the phosphorus ions implanted into the polycrystalline silicon to laterally diffuse below the first silicon nitride layer pattern layer, and the arsenic ions There is almost no lateral expansion relative to phosphorus ions. 11. The method according to item 9 of the scope of patent application, wherein the above-mentioned arsenic ion non-lateral diffusion is to increase the concentration of the suspended gate so that the empty regions near the source region are reduced, and the thermal oxidation method can be prevented from forming a second region. The oxidation rate of the first polycrystalline silicon layer is oxidized into the second silicon oxide layer. 第20頁 514913 六、申請專利範圍 快0 1 2 . —種改善程式 閘快閃記憶胞具有 體基板上,其特徵 的導電性雜質。 化及抹除速度之分閘 —懸浮閘極,一控制 為該懸浮閘極内同時 快閃記憶胞,該分 閘極形成於一半導 具有兩種質量不同 第 質 1 3 ·如申凊專利範圍 量不同的導電性雜質 種。 14.如申請專利範圍第n項之記憶胞,其中上述之 重的導電性雜質密集於該懸浮閘極中心的程度明顯高於質 量較輕的導電性雜f,而該質量較輕的導電性雜 均分佈於该懸洋閘極,而因此使得該懸浮閘極之中心之n 型導電性雜質濃度比該懸浮閘極之邊緣高彳艮多。 1 5 · —種改善程式化及抹除速度之分閘快閃記憶胞,該分 閘快閃記憶胞具有一懸浮閘極,一控制閘極形成於一半導 體基板上’其特徵為該懸浮閘極内同時具有兩種質量不同 的導電性雜質’其中質量較重的導電性雜質密集於該懸浮 =極中心的程度明顯高於質量較輕的導電性雜質,而該質 里^輕的導電性雜質約略平均分佈於該懸浮閘極,而因此 使彳于该懸浮閘極之中心之η型導電性雜質濃度比該懸浮閘 jHa ~~~~~~~ ~~~~-~~~-~~~______ ___— _ 第21頁 514913 六、申請專利範圍 極之邊緣高很多。 1 6.如申請專利範圍第1 4項之記憶胞,其中上述之兩種質 量不同的導電性雜質,至少包含磷及砷或砷與銻其中之一 種。Page 20 514913 6. Scope of patent application Fast 0 1 2. — Improved program The gate flash memory cell has conductive impurities that are characteristic of the body substrate. Opening gate of floating and erasing speed—suspended gate. One control is flash memory cells in the suspended gate at the same time. The divided gate is formed in half of the conductor and has two different qualities. Different amounts of conductive impurity species. 14. The memory cell of item n in the scope of the patent application, in which the above-mentioned heavy conductive impurities are denser in the center of the suspended gate than the lighter-weight conductive impurity f, which has a lighter-weight conductive property. The impurities are distributed on the suspended gate, so that the n-type conductive impurity concentration in the center of the suspended gate is higher than the edge of the suspended gate. 1 5 · A kind of flash memory cell with improved stylization and erasing speed. The flash memory cell has a floating gate and a control gate is formed on a semiconductor substrate. It is characterized by the floating gate There are two kinds of conductive impurities with different masses in the pole. Among them, the heavier conductive impurities are denser in the suspension = the center of the pole is significantly higher than the lighter conductive impurities, and the lighter conductive Impurities are distributed approximately evenly on the suspension gate, so that the concentration of the η-type conductive impurities trapped in the center of the suspension gate is higher than the suspension gate jHa ~~~~~~~~~~~~~~~~ ~~ ______ ___— _ Page 21 514913 6. The extreme edge of the scope of patent application is much higher. 16. The memory cell according to item 14 of the scope of patent application, wherein the above two kinds of conductive impurities having different qualities include at least one of phosphorus and arsenic or arsenic and antimony. 第22頁Page 22
TW89123887A 2000-11-10 2000-11-10 Manufacturing method of flash memory cell with improving programming and erase speed TW514913B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89123887A TW514913B (en) 2000-11-10 2000-11-10 Manufacturing method of flash memory cell with improving programming and erase speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89123887A TW514913B (en) 2000-11-10 2000-11-10 Manufacturing method of flash memory cell with improving programming and erase speed

Publications (1)

Publication Number Publication Date
TW514913B true TW514913B (en) 2002-12-21

Family

ID=27786768

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89123887A TW514913B (en) 2000-11-10 2000-11-10 Manufacturing method of flash memory cell with improving programming and erase speed

Country Status (1)

Country Link
TW (1) TW514913B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331559A (en) * 2020-10-23 2021-02-05 长江存储科技有限责任公司 Semiconductor device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331559A (en) * 2020-10-23 2021-02-05 长江存储科技有限责任公司 Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
TWI280669B (en) Self aligned non-volatile memory cells and processes for fabrication
TWI361489B (en) Transistor with independent gate structures
EP1247299A1 (en) Encapsulated tungsten gate mos transistor and memory cell and method of making same
CN103180952B (en) Getter in memorizer charge storage structure
WO2015148055A1 (en) Methods of tunnel oxide layer formation in 3d nand memory structures and associated devices
US6362045B1 (en) Method to form non-volatile memory cells
CN110459611B (en) Ferroelectric field effect transistor and preparation method thereof
TW564552B (en) A trench type stacked gate flash memory and the method to fabricate the same
CN101383379A (en) Nanocrystalline floating gate memory with multi-medium composite tunneling layer and manufacturing method thereof
US20140209995A1 (en) Non-Volatile Memory Cells Having Carbon Impurities and Related Manufacturing Methods
CN101494225B (en) Memory and manufacturing method thereof
CN101312212A (en) Nonvolatile memory using high-k dielectric and nanocrystalline floating gate and manufacturing method thereof
TW514913B (en) Manufacturing method of flash memory cell with improving programming and erase speed
CN101399289A (en) Nanocrystalline floating gate nonvolatile memory with double-layer tunneling medium structure and manufacturing method
TW399332B (en) The structure of flash memory cell and the manufacturing method thereof
EP0934602A1 (en) Short channel flash eeprom device having a double diffused source and method of manufacturing the same
CN107887390A (en) A kind of technology integrating method for improving flash cell
TW457712B (en) Flash memory cell structure for improving the data preservation problem and the programming speed and the formation method thereof
TW392360B (en) Method for manufacturing split floating gate flash memory device with sharp tips
TW448570B (en) Split gate flash memory cell with protuberant source and its formation method
TW434909B (en) High-density nonvolatile memory having high capacitive coupling ratio and rugged surface tunneling oxide layer
TW439298B (en) Device structure to increase the coupling ratio of the source of split gate flash memory device to the floating gate and the manufacturing method of the same
TW437074B (en) Method for fabricating a flash memory
TWI323024B (en) Uniform channel programmable erasable flash eeprom
JP2004534401A (en) Method of manufacturing semiconductor device having a plurality of MOS transistors having gate oxides of different thickness

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent