513796 A7 B7 五、發明説明() 發明背景: (1) 發明範疇 本發明與一般快閃記憶元件(flash memory device)有 關,特別是與特高密度、高速、低電壓和低功率疊堆閘式 (stacked-gate)快閃記憶元件和其記憶元件陣列有關。 (2) 習知技藝描述 快閃記憶元件悉知是利用富勒-諾得漢穿透(Fowler-Nordheim tunneling)或熱載子注入方法將電荷由半導體基板 穿或跨越一薄介電層至一隔離閘(俗稱漂浮閘)並儲存於其 中,和利用富勒-諾得漢穿透方法將儲存於隔離閘的電荷移 或擦洗至半導體基板或控制閘。基本上,記憶細胞元必需 縮小,以利高密度大量儲存之應用,且元件結構需朝向低 電壓、低電流和高速操作,並兼具高的耐用度(endurance) 及續存度(retention)。 在一個傳統快閃記憶陣列中之一個疊堆閘式快閃記憶元 件,如圖一所示,其中圖一 A揭示通道長度方向的結構剖 面圖;圖一 B揭示通道寬度方向的結構剖面圖;圖一 C揭 示一個NOR型組態的上視平面圖。圖一 A所示之疊堆閘式 快閃記憶元件包括一個P型半導體基板100和在P型半導 體基板內形成的P井101。一薄穿透氧化層102置放於一個 P井101表面上,厚度約100埃左右。一個複晶矽層103作 爲漂浮閘置放於一薄穿透氧化層102之上,利用二氧化矽- 3 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) - f (請先閲讀背面之注意事項再填寫本頁) 訂· 經濟部智慧財產局員工消費合作社印製 513796 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明() 氮化矽-二氧化矽(ΟΝΟ)結構作爲漂浮閘1 〇3和控制閘1 〇5 間之閘間介電層。控制閘可以是一個高摻雜的複晶矽層或 覆蓋一層矽化物的高摻雜複晶矽。源擴散區106可以是高 摻雜的η —區,而洩擴散區107可以是低摻雜η-區置於高摻 雜η —區內之雙擴散結構,以降低擦洗時所產生的帶對帶穿 透效應(band-to-band tunneling effects)。 由圖一 A可以淸楚看到,一個疊堆閘式結構的閘長度主 要由所使用技術之最小限寬(λ )的限制,而最小限寬(λ )主 要是受光蝕刻技術的限制。然而,元件之間距(λ 1 )通常因 製作接點之關係比最小限寬(λ )大,亦即又,=又+ 2 △ λ ’ 。 因此,每一細胞元之等效長度約2λ( 1 + Δ λ,/λ)>2λ。 再者,僅當閘長度λ縮小,則寫入時所產生熱電子之所需 外加源極對洩極(通常接地)電壓方可降低,並且僅能以增加 漂浮閘之耦合比(coupling ratio)方可降低寫入時所外加之控 制閘電壓。相似地,漂浮閘之耦合比對擦洗儲存於漂浮閘 的電荷至P井或控制閘之外加電壓的降低亦扮演重要角色。 一個疊堆閘式快閃記憶元件之耦合比可以由通道寬度方 向的隔離結構來加以改善。圖一 B揭示高密度疊堆式快閃 記憶陣列在通道寬度方向的一個典型淺凹槽隔離(shallow-trench-isolation)技術,其中在未塡充二氧化矽層1〇9之前 先氧化在P井101之蝕刻單晶矽凹槽的表面形成薄熱二氧 化矽層1 08。漂浮閘1 03是利用光蝕刻來定義,使其延伸△ λ在IS離區之上’以增加漂浮鬧之親合比(coupling ratio)。 很顯然地,隔離區寬度λ"必需等於或大於Α+2Δ λ",亦 4 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 、·............#.........訂.........線· (請先閱讀背面之注意事項再填寫本頁) 513796 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 即;1··$ ;1+2Δ又’’,則每一細胞元的等效寬度是2(λ+Δ λ ’’)。對於一個NOR型組態而言,如圖一 C所示,每一細胞 元的等效面積是4λ2 (1 + Δ ;1"/;1)(1 + Δ λ7λ)。再者,漂 浮閘之光蝕刻不準確對準的容忍度將產生不同晶圓間之不 同耦合比及元件不對稱隔離的現象。這裡可以淸楚地看出, 圖一 Β之漂浮閘的耦合比是增加,但等效細胞元之面積則 被犧牲。由Κ· Imamiza等所發表的論文’’A 130-μηι2,256-Mbit N AND Flash with Shallow Trench Isolation513796 A7 B7 V. Description of the invention () Background of the invention: (1) The scope of the invention The invention relates to general flash memory devices, especially to ultra-high density, high speed, low voltage and low power stacked gate type (stacked-gate) Flash memory elements are related to their memory element arrays. (2) Description of the conventional technology Flash memory devices are known to use Fowler-Nordheim tunneling or hot carrier injection to pass charges from a semiconductor substrate or across a thin dielectric layer to a Isolation gate (commonly known as floating gate) and stored therein, and the charge stored in the isolation gate is transferred or scrubbed to the semiconductor substrate or control gate by the Fuller-Nordheim penetration method. Basically, the memory cell must be reduced to facilitate high-density and large-scale storage applications, and the device structure needs to be oriented toward low voltage, low current, and high-speed operation, and has both high endurance and retention. A stacked flash memory device in a conventional flash memory array is shown in FIG. 1, where FIG. 1A shows a structural cross-sectional view in the length direction of the channel; FIG. 1B shows a structural cross-sectional view in the width direction of the channel; Figure 1C shows a top plan view of a NOR-type configuration. The stacked gate flash memory device shown in FIG. 1A includes a P-type semiconductor substrate 100 and a P-well 101 formed in the P-type semiconductor substrate. A thin penetrating oxide layer 102 is placed on the surface of a P-well 101 with a thickness of about 100 angstroms. A polycrystalline silicon layer 103 is placed on top of a thin penetrating oxide layer 102 as a floating gate, using silicon dioxide-3 This paper is sized for China National Standard (CNS) A4 (210X297 mm)-f (please first (Please read the notes on the back and fill in this page.) Order · Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 513796 Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 The structure is used as the inter-gate dielectric layer between the floating gate 103 and the control gate 105. The control gate can be a highly doped polycrystalline silicon layer or a highly doped polycrystalline silicon layer covered with silicide. The source diffusion region 106 may be a highly doped η- region, and the drain diffusion region 107 may be a double-diffusion structure in which the low-doped η- region is placed in the highly doped η- region to reduce the band pair generated during scrubbing. Band-to-band tunneling effects. It can be clearly seen from Figure 1A that the gate length of a stacked gate structure is mainly limited by the minimum width (λ) of the technology used, and the minimum width (λ) is mainly limited by the photo-etching technology. However, the distance between components (λ 1) is usually larger than the minimum width (λ) because of the relationship between the contacts, that is, == + 2 △ λ ′. Therefore, the equivalent length of each cell is about 2λ (1 + Δ λ, / λ) > 2λ. Furthermore, only when the gate length λ is reduced, the external source-to-drain (usually grounded) voltage required for the hot electrons generated during writing can be reduced, and the coupling ratio of the floating gate can only be increased It can reduce the control gate voltage applied during writing. Similarly, the coupling ratio of the floating gate also plays an important role in reducing the voltage applied to the scrubbing of the charge stored in the floating gate to the P well or the control gate. The coupling ratio of a stacked gate flash memory element can be improved by the isolation structure in the channel width direction. FIG. 1B shows a typical shallow-trench-isolation technology of the high-density stacked flash memory array in the channel width direction, in which the silicon dioxide is oxidized at P before the silicon dioxide layer is not filled. A thin thermal silicon dioxide layer 108 is formed on the surface of the well 101 by etching the single crystal silicon groove. Floating gate 103 is defined by photoetching so that it extends Δ λ above the IS departure zone 'to increase the coupling ratio of floating. Obviously, the width of the isolation zone λ " must be equal to or greater than A + 2Δ λ ", and 4 paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm), ... .. # ......... Order ......... Line · (Please read the notes on the back before filling this page) 513796 A7 B7 V. Description of the invention () (Please read first Note on the back page, please fill in this page again) That is; 1 ·· $; 1 + 2Δ and '', then the equivalent width of each cell is 2 (λ + Δ λ ''). For a NOR type configuration, as shown in Figure 1C, the equivalent area of each cell is 4λ2 (1 + Δ; 1 "/; 1) (1 + Δ λ7λ). Furthermore, the tolerance of the photolithography of the floating gate to incorrect alignment will produce different coupling ratios between different wafers and asymmetric isolation of components. It can be clearly seen here that the coupling ratio of the floating gate in Figure 1B is increasing, but the area of the equivalent cell is sacrificed. Paper ‘’ A 130-μη2, 256-Mbit N AND Flash with Shallow Trench Isolation by K. Imamiza et al.
Technology”,IEEE Jour, of Solid-State Circuits,Vol.34, No.ll,ρρ·1536-1541,Nov. 1 999,其中談到非自動對準漂 浮閘是由二層複晶矽所組成,λ =0.25微米,△人"=0.1 λ = 0.025微米,△又’ =0.03 3 75微米。很明顯地,由於光蝕刻 不準確對準的誤差所產生的非對稱△ λ "可以經由所發表之 論文內的圖片中看出。對自動對準漂浮閘而言,△ λ " = 0, 則每一細胞元之等效面積可以縮小百分之十,且漂浮閘之 不準確對準可以自動消除。 經濟部智慧財產局員工消費合作社印製 關於自動對準漂浮閘且具高耦合比的製造可參考下列之 美國專利案件。美國專利號碼6,140,1 82提出局部氧化隔離 法(LOCOS)和淺凹槽隔離法,其中係利用一氮化矽罩幕層去 除覆蓋於隔離區上之複晶矽漂浮閘的方法。此方法具有兩 個重要缺點:其一是在淺凹槽之平面化隔離氧化層形成之 後’去除主動區上之墊氧化層(pad-oxide);其二是去除覆蓋 在複晶矽上之罩幕氮化矽層和覆蓋在隔離氧化層上之複晶 矽。去除墊氧化層會造成隔離氧化層高度的變動,進而造 5 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 513796 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明() 成耦合比變化(降低)的誤差。另外,若用非等向乾式蝕刻去 除,則主動區之矽表面及隔離區的邊角會被蝕刻,造成成 長薄穿透二氧化矽層之不良矽表面與隔離區形狀的變化; 若用濕式蝕刻,則隔離區之上下邊角將會被蝕刻,過度的 飩刻會造成隔離氧化層之下角形成空洞,不足的蝕刻會造 成薄穿透二氧化矽層不均勻的厚度。相似地,去除覆蓋之 氮化矽罩幕及覆蓋在隔離氧化層之上的複晶矽均會造成邊 牆之延伸漂浮閘的高度變動。再者,蝕刻後之複晶矽漂浮 閘尖端的不規則形狀將因場發射造成儲存電荷之續存度及 干擾問題。再者,此專利的淺凹槽隔離沒有通道禁通區的 形成,以消除不必要的表面漏電。 另一美國專利號碼5,770,50 1則依照美國專利號碼 5,516,721相同之方法,利用液相沉積(liquid-phase deposition)法在成形的光阻中間成長隔離氧化物。很明顯地 可以看出,淺凹槽之蝕刻的表面是無法成長熱二氧化矽層, 以消除淺凹槽飩刻所造成的表面瑕疵。再者,液相沉積之 氧化物的高度是用來決定自動對準漂浮閘之耦合比,但利 用液相沉積法很難加予控制。呈現於美國專利號碼5,770,50 1 之主要缺失被美國專利號碼6,153,472加予修正,其中在平 面化塡充氧化物的邊牆形成複晶矽墊層和在淺凹槽的蝕刻 表面與鈾刻的主要漂浮閘複晶矽之邊牆均加予氧化。由此 結構可以淸楚看出,氧化之製程因鳥嘴效應(bird's beak)將 穿透氧化層兩側的厚度大幅增加,而使所謂之快閃記憶元 件的有效主動區寬度變小。再者,淺凹槽隔離亦無通道禁 6 β張尺度適用中國國家標準(CNS)A4規格(210x297公爱) ............夔.........、可.........線· (請先閲讀背面之注意事項再填寫本頁) 513796 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明() 通區的形成。 根據上述的描述,自動對準漂浮閘是縮小隔離面積的必 要方法,而高耦合比之自動對準漂浮閘對提升外加控制鬧 電壓之寫與擦洗效率更是相當重要。另外,若疊堆閘式快 閃記憶元件之閘長度的定義不受最小線寬的限制,則細胞 元尺寸和外加源/洩電壓可以進一步縮小。 因此,本發明的主要目的是提出一種製造具有大幅調變 耦合比之可微縮化疊堆閘式快閃記憶元件的方法,以克服 過去方法的缺點,並作爲高密度、高速、低電壓和低功率 大量儲存之用。 發明槪述: 本發明揭示利用四種不同墊層技術來製造可微縮化疊堆 閘式快閃記憶元件及其高密度記憶陣列的一種方法。本發 明的第一種墊層技術是用來形成緩衝氧化物墊層,以作爲 佈植淺凹槽隔離的通道禁通區和氧化淺凹槽之蝕刻表面時 不犧牲非揮發性半導體記憶元件之主動區寬度;第二種墊 層技術是採用淺凹槽隔離法來大幅調變自動對準漂浮閘的 耦合比,其中將平面化之塡充隔離氧化物層鈾刻厚度等於 第一罩幕氮化矽層厚度t加上第一複晶矽層厚度後,在蝕刻 後之第一罩幕氮化矽層和第一複晶矽層的邊牆形成第一複 晶砂墊層。然後,將第一罩幕氮化砂層自動對準地去除’ 接著在成形的第一複晶矽層、形成的第一複晶矽墊層和蝕 7 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) .......................、可.........線· (請先閲讀背面之注意事項再填寫本頁) 513796 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明() 刻後之塡充隔離氧化物層上堆積第一介電層。第一介電層 可以是由二氧化矽-氮化矽-二氧化矽(ΟΝΟ)組成的複合層。 然後,堆積第二複晶矽層並接著堆積矽化物層,以形成控 制閘。本發明之自動對準漂浮閘的耦合比較過去的方法大 幅增加,且有效主動區寬度λ不受淺凹槽隔離之通道禁通 區的形成與鈾刻凹槽表面氧化的影響。因此,每一細胞元 的有效寬度僅2 λ,其中λ是使用技術的最小線寬。本發明 的第三墊層技術是利用成形的第一罩幕複晶矽之邊牆所形 成的第一二氧化矽墊層來定義疊堆閘式快閃記憶元件的閘 長度△ L,然後蝕刻第二罩幕氮化矽層,以作爲蝕刻矽化物 層、第一複晶砂層、第一介電層、第一複晶砂墊層和第一 複晶矽層的硬質罩幕。然後,在蝕刻後的第一複晶矽層、 蝕刻後的第一複晶矽墊層和蝕刻後的第二複晶矽層的邊牆 成長一層薄的第一複晶砍氧化層。接著跨過第一熱二氧化 矽層自動對準地佈植砷雜質,以形成疊堆閘式快閃記憶元 件的中度摻雜(mid-doped)源/洩擴散區。本發明的第四墊層 技術是在疊堆閘式之閘結構的邊牆形成薄的氮化矽墊層, 以作自動對準高摻雜源/洩離子佈植、自動對準源/洩或共同 埋層源擴散區的矽化(silicidation)和自動對準接觸(self-aligned contact)。每一細胞元的等效長度僅λ ( 1 + △ L/ λ ), 比過去利用所使用技術之最小線寬的方法來定義叠堆閘式 快閃記憶元件之鬧長度小的很多。以共同埋層源的Ν 0 R型 組態而言,每一細胞元之等效面積僅2 λ 2 ( 1 + △ L/ λ )。很 明顯地可以知道,△ L < λ可以輕易由墊層形成技術得到, 8 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) -·-............#.........、玎.........線· (請先閲讀背面之注意事項再填寫本頁) 513796 經濟部智慧財產局員工消費合作社印製 A7 B7 發明説明() 而等效細胞元尺寸可以比4 λ 2 ( λ =△ L時)小得很多且可經 由墊層的寬度加予調變。再者,因閘長度比所使用的最 小線寬還小,寫入的外加源-洩極電壓可以降低,而由於本 發明之自動漂浮閘的特高耦合比’外加控制閘電壓亦可自 然地降低。相似地,跨接於控制閘和基板兩端之外加擦洗 電壓亦可降低。總結言之,本發明之可微縮化疊堆閘式快 閃記憶元件的製造方法可以用來製造大量儲存運用之高密 度、高速、低電壓和低功率快閃記憶陣列和系統。 圖示的簡要說明: 圖一 Α至圖一 C分別揭示傳統疊堆閘式快閃記憶元件陣 列之通道長度方向和通道寬度方向的部份剖面圖及部份上 視平面圖; 圖二A至圖二C分別揭示本發明之疊堆閘式快閃記憶元 件陣列之通道長度方向和通道寬度方向的部份剖面圖及部 份上視平面圖; 圖三A至圖三D分別揭示本發明之疊堆閘式快閃記憶元 件陣列在寬度方向之淺凹槽隔離的製程與結構之剖面圖; 圖四A至圖四Η揭示本發明同時製造可微縮化疊堆閘式 快閃記憶元件陣列和周邊互補式元件之製程和結構的剖面 9 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) •‘·............0.........訂.........線· (請先閲讀背面之注意事項再填寫本頁) 513796 A7 B7 五、發明説明() ΓΞΓ · 圖, 圖五A至圖五C揭示本發明同時製造NOR型架構之可 微縮化疊堆閘式快閃記憶元件陣列和周邊互補式元件之接 續圖四的製程和結構的剖面圖;以及 圖六A至圖六B揭示本發明同時製造N AND型架構之可 微縮化疊堆閘式快閃記憶元件陣列和周邊互補式元件接續 圖四的製程和結構的剖面圖。 圖號對照說明: 20單晶矽基板 21a P井(記憶元件陣列) 21b η 井(P-MOS) 21c Ρ 井(n-MOS) 22第一熱二氧化矽層 23第一複晶矽層 24第一罩幕氮化矽層 25成形的罩幕光阻(a,...q) 26第一良好覆蓋性二氧化矽層26a第一二氧化矽墊層 27第二熱二氧化矽層 28厚二氧化矽膜 29第一良好覆蓋性複晶矽層29a第一複晶矽墊層 3〇第一介電層 31第三熱二氧化矽層 32第二複晶矽層 33矽化物層 34第二罩幕氮化矽層 35第一罩幕複晶矽層 36第二良好覆蓋性二氧化矽層37第二二氧化矽墊層 38淡摻雜P-源和洩擴散區 39淡摻雜η-源和洩擴散區 10 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公爱) .............I (清先閱清背&ii意事cIfi-嗔寫本頁) -訂· % 經濟部智慧財產局員工消費合作社印製 513796 A7 B7 五、發明説明() 40中度摻雜n +源和洩擴散區4〇a高摻雜共同埋層源擴散區 41第一良好覆蓋性氮化砂層41a第〜氮化砂墊層 42高摻雜P +源和洩擴散區 43高摻雜n +源和洩擴散區 43a高摻雜n +洩擴散區 43b高摻雜n +源擴散區 43c高摻雜共同埋層源擴散區44第四熱二氧化矽層 45鈦化矽層 47厚介電層 49鎢層 5 1金屬層間的介電層 53保護介電層 46氮化鈦層 48薄氮化鈦層 5G Ml金屬連線層 52 M2金屬連線層 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 發明之詳細說明: 參考圖二A至圖二C,這三個圖揭示相對於圖一 A至圖 一 C來顯現本發明的優點。圖二A揭示本發明利用墊層技 術定義疊堆閘式快閃記憶元件之閘長度△ L,而△ L比所使 用技術的最小線寬λ小且可以經由墊層寬度加予調變。另 外,利用氮化矽墊層4 1 a作爲疊堆閘式快閃記憶元件之自 動對準源/洩擴散區之離子佈植來形成源/洩高摻雜擴散區 43 a和43b或共同埋層源擴散區43c(未標示)、自動對準源/ 洩擴散區或共同埋層源擴散區矽化來形成自動對準矽化物 45及自動對準接觸。圖二B揭示本發明之通道寬度方向之 自動對準漂浮閘的結構,其中自動漂浮閘由第一複晶矽層23 及二個置於隔離區λ上之第一複晶砂墊層29a所組成。本 11 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 513796 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 發明之自動對準漂浮閘的面積比先前技術大得很多,且淺 凹槽的表面均有離子佈植以形成通道禁通區,且不犧牲主 動區的面積。圖二C揭示本發明之N 0 R組態之叠堆聞式快 閃記憶陣列的部分上視圖,與圖一 C比較顯示出本發明具 有甚小之細胞元的面積,進而組成面積很小的記憶陣列。 這些特殊技術的製造步驟及剖面結構將分別於後面描述。 經濟部智慧財產局員工消費合作社印製 參考圖三A至圖三D ,這些圖揭示本發明的第一部份 內涵。本發明的第一部份內涵包括製造疊堆閘式快閃記憶 元件陣列之通道寬度淺凹槽隔離結構的方法。在P型(100) 單晶基板20內之已隔離P井21a和21c和已隔離η井21b 成長第一熱二氧化矽層22,厚度約70埃至110埃之間,成 長的條件是約850°C的乾氧環境。P井21a、21c及η井21b 可以利用傳統局部氧化矽(LOCOS)或修正型局部氧化矽 (modified LOCOS)或本發明第一部份內涵所述的技術來隔 離。利用低壓化學氣相沉積(low-pressure chemical-vapor-deposition; LPCVD)法,於580°C至65(TC之間的溫度將矽 烷(silane)熱分解,成長約300埃至1 500埃之間且自然摻雜 (in-situ doped)磷(或硼)雜質濃度約1〇18至5x 1019/cm3之 間的第一複晶矽層23於第一熱二氧化矽層22之上。利用 低壓化學氣相沉積法,於720 °C左右的溫度將雙氯矽烷 (dichoiorsilane)和氮氣反應,堆積第一罩幕氮化矽層24, 其厚度⑴是用來控制或調變快閃記憶元件之漂浮閘的耦合 利用成形的第一罩幕光阻25a來定義快閃記憶元件陣列 12 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 513796 A7 B7 五、發明説明() 的通道寬度,如圖三A所示。非等向蝕刻(anisotropically etching)第一罩幕氮化砂層24、第一複晶砂層23和第一熱 二氧化矽層22,然後將成形的第一罩幕光阻25去除。利用 LPCVD法,於溫度約750°C至850°C之間將四乙烯氧矽烷 (teuaethoxysilane; TEOS)熱分解,堆積厚度約200埃至500 埃之間的第一良好覆蓋性二氧化矽層26,接著非等向蝕刻 第一良好覆蓋性二氧化矽層26,在飩刻的邊牆形成第一二 氧化矽墊層26a,如圖三B所示。然後,蝕刻部份P井21 a 中的單晶矽,深度約2000至4000埃之間,並在約8 50°C之 乾氧的環境下,氧化P井21a之蝕刻後的單晶矽表面,在 鈾刻後的單晶矽表面成長一厚度約50至150埃左右的第二 熱二氧化矽層27。接著利用旋轉大斜角(large-tilt-angle)佈 植硼雜質,以形成淺凹槽隔離的通道禁通區。由圖可以看 出,第一二氧化矽墊層26a是作爲淺凹槽隔離之通道禁通 區形成和避免淺凹槽氧化對第一熱二氧化矽層兩側氧化的 緩衝氧化物墊層。利用高密度電漿化學沉積(high-density plasma CVD)法,以矽烷(silane)或四乙烯氧矽烷作爲矽源, 將蝕刻的淺凹槽塡充一厚的良好覆蓋性(conformable)二氧 化砂膜28,並利用化學-機械-磨平(chemical-mechanical-polishing ; CMP)法將結構的表面平坦化,並去除超過第一 罩幕氮化矽層24的塡充二氧化矽,如圖三B所示。 然後,利用稀釋的氫氟酸或緩衝氫氟酸或非等向蝕刻平 坦化之塡充二氧化矽層28,蝕刻厚度約等於第一罩幕氮化 矽層24的厚度t加上第一複晶矽層23的厚度。然後,利用 13 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) ..............I (請先閲讀背面之注意事項再填寫本頁) 訂· 經濟部智慧財產局員工消費合作社印製 513796 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 低壓化學氣相沉積法,於58(TC至650°C之間的溫度將矽烷 熱分解,堆積厚度約200至5 00埃之間的自然摻雜磷(或硼) 之第一良好覆蓋性複晶矽層29。接著非等向蝕刻自然摻雜 磷(或硼)之第一良好覆蓋性複晶矽層29,在暴露的第一罩 幕氮化矽層24和第一複晶矽層23之蝕刻的邊牆形成第一 複晶矽墊層29a。利用濕式熱磷酸,將第一罩幕氮化矽層24 去除,接著堆積第一介電層30,如圖三C所示。這裡値得 注意的是,第一介電層30可以是二氧化矽-氮化矽-二氧化 矽(ΟΝΟ)複合層或其他複合介電層。由圖示可知,本發明之 形成的第一複晶矽墊層29a的雙邊面積將大幅增加自動對 準漂浮閘的耦合比。 經濟部智慧財產局員工消費合作社印製 利用成形的第二罩幕光阻25b,將所有預備製造快閃記 憶陣列的地區蓋住,並利用非等向乾式蝕刻將其他區域的 第一介電層30和第一複晶矽23或第一複晶矽墊層29a去 除,如圖四A所示,接著去除成形的第二罩幕光阻25b。然 後,利用成形的第三罩幕光阻25c(未圖示),將硼雜質跨過 第一熱二氧化矽層22佈植入P井區21c之單晶矽區,以調 整周邊互補式金氧半元件中之所有η通道金氧半元件的臨 界電壓(threshold-voltage)和抵穿電壓(punch-through voltage),然後將成形的第三罩幕光阻25c去除。相同的道 理,利用成形的第四罩幕光阻25d(未圖示),將硼或磷雜質 跨過第一熱二氧化矽層22佈植入η井區21b之單晶矽區, 以調整周邊互補式金氧半元件中之所有P通道金氧半元件 的臨界電壓和抵穿電壓,並將成形的第四罩幕光阻25d去 14 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 513796 A7 B7 五、發明説明() 除。 (請先閲讀背面之注意事項再填寫本頁) 在850°C至1 050°C之間的乾氧的環境下,將製造周邊互 補式金氧半元件之P井21c和η井21b單晶矽區的第一熱 二氧化矽層22氧化,形成第三熱二氧化矽層3 1,其厚度約 2〇〇至400埃之間,如圖四B所示。這裡値得一提的是,第 三熱二氧化矽層31主要是作爲周邊互補式金氧半元件的閘 介電層。利用低壓化學氣相沉積法,於5 80°C至65(TC之間 的溫度將矽烷熱分解,堆積厚度約1 000至2000埃之間的 第二複晶矽層32,接著利用低壓化學氣相沉積一厚度約1000 至2 000埃之間的矽化物(silicide)層33,如通道寬度方向的 圖三D和通道長度方向的圖四C所示。 經濟部智慧財產局員工消費合作社印製 然後,利用低壓化學氣相沉積法,堆積厚度約500至1〇〇〇 埃之間的第二罩幕氮化矽層34。再利用低壓化學氣相沉積 法,於5 80°C至65(TC溫度之間將矽烷熱分解,堆積第一罩 幕複晶矽層35,厚度約1 000埃至2000埃之間。利用成形 的第五罩幕光阻25e蝕刻第一罩幕複晶矽層35,以定義疊 堆閘式快閃記憶元件的虛擬閘長度Lv(virtiial gate length), 如圖四D所示,其中λ是所使用技術的最小線寬,而△ L 是疊堆閘式快閃記憶元件的閘長度。將成形的第五罩幕光 阻2 5 e去除後,利用低壓化學氣相沉積法,於7 0 0 °C至8 5 0 t之間的溫度將四乙烯氧矽烷熱分解,堆積厚度爲△ L的第 二良好覆蓋性二氧化矽層36,接著非等向蝕刻第二良好覆 蓋性二氧化矽層3 6,在蝕刻後之第一罩幕複晶矽層3 5的邊 牆形成第二二氧化砂墊層37(如圖四E所示),然後第一罩 15 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 513796 A7 B7 五、發明説明() 幕複晶矽層3 5可藉非等向蝕刻去除,如圖四F所示。 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 利用成形的第六罩幕光阻25f定義η通道和p通道金氧 半元件的閘長度,如圖四F所示,接著非等向蝕刻第二罩 幕氮化矽層34和去除已成形的第二二氧化矽墊層37,然後 再非等向蝕刻矽化物層3 3和第二複晶矽層3 2,接著去除成 形的第六罩幕光阻25f。以自動對準方式非等向蝕刻快閃記 憶體元件陣列之第一介電層3 0和第一複晶矽層23。然後, 在約85(TC的乾氧環境下,將蝕刻後之第一複晶矽層23和 第二複晶矽層3.2和第一複晶矽墊層29a的邊牆氧化,成長 薄的第一複晶矽氧化層。利用成形的第七罩幕光阻25g(未 圖示),將硼雜質自動對準地跨過第三熱二氧化矽層31佈植 入η井2 1 b之單晶矽區,以形成所有P通道金氧半元件的 淡摻雜(Hghtly-doped)源和浅擴散區38,接著去除成形的第 七罩幕光阻25g。相似地,利用成形的第八罩幕光阻2 5h(未 圖示),將磷雜質自動對準地跨過第三熱二氧化矽層3 1佈植 入P井2 1 c之單晶矽,以形成所有η通道金氧半元件之淡 摻雜源和洩擴散區39,接著去除成形的第八罩幕光阻25h。 上述淡摻雜之佈植劑量約1〇13至l〇14/cm2之間。利用成形 的第九罩幕光阻25i(未圖示),疊堆閘式快閃記憶元件之中 度摻雜(mid-doped)源和洩擴散區40是經由砷雜質跨過第一 熱二氧化矽層22佈植入P井2 1 a內之單晶矽來完成,而佈 植的劑量約1〇14至l〇15/cm2,然後去除成形的第九罩幕光 阻25i,如圖四G所示。 利用低壓化學氣相沉積法,於6 5 0 °C至8 0 0 °C之間的溫 16 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 513796 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 度將矽烷和氨氣反應,堆積厚度約500埃至1000埃之間的 第一良好覆蓋性氮化矽層41,接著非等向蝕刻第一良好覆 蓋性氮化矽層41,在互補式金氧半元件的複晶矽化物閘和 疊堆閘式快閃記憶元件之疊堆閘的邊牆形成第一氮化矽墊 層41a,如圖四Η所示。 對於NOR形態的架構而言,共同埋層源(common buded-source)擴散可以利用非嚴謹對準(non-critiCal alignment)的成形之第十罩幕光阻25j,將場氧化層28和第 一熱二氧化矽層22自動對準地蝕刻,接著佈植磷以形成高 摻雜源和共同埋層源擴散區40a,如圖五A所示,然後去除 成形的第十罩幕光阻25j。然後在約850°C之乾氧環境下, 將暴露的單晶矽表面氧化,成長約50至100埃之間的第四 熱二氧化矽層44。 經濟部智慧財產局員工消費合作社印製 利用成形的第十一罩幕光阻25k(未圖示),將硼雜質自 動對準地跨過第三熱二氧化矽層31佈植入η井21b之單晶 矽表面,以形成所有P通道金氧半元件之高摻雜(heavily-doped)源和洩擴散區42,接著去除成形的第十一罩幕光阻 25k。相似地,利用成形的第十二罩幕光阻251 (未圖示), 將砷雜質自動對準地跨過第三熱二氧化矽層31佈植入P井 21c內之單晶砂表面,以形成所有η通道金氧半元件之高摻 雜源和洩擴散區43,並跨過第一熱二氧化矽層22和第四熱 二氧化矽層44將雜質佈植入Ρ井21a內之單晶矽表面,以 形成疊堆閘式快閃記憶元件之高摻雜源43b、洩43a和共同 埋層源43c的高濃度擴散區,接著去除成形的第十二罩幕 17 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) 513796 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 光阻251。然後,在850°C至950°C之氮氣環境下,藉爐管 或快速退火系統執行熱退火,以活化佈植的摻雜質和消除 佈植所引起的瑕疵。完成的結構如第五B圖所示。 利用稀釋氫氟酸或緩衝氫氟酸或非等向蝕刻覆蓋在高摻 雜洩、源和共同埋層源擴散區上之第三熱二氧化矽層31、 第一熱二氧化矽層22和第四熱二氧化矽層44。然後,將厚 度約500至1 000埃之間的金屬鈦層濺鍍在所有結構的表面 上。利用600°C氮氣環境下執行快速熱退火,在暴露的單晶 矽表面形成矽化鈦(TiSi2)層45,而在所有的表面上形成氮 化鈦(TiN)層46。利用氨水:雙氧水:純水(1 : 1 : 5)溶液去 除氮化鈦層46,然後將完成的結構在氬氣的環境下退火, 以降低矽化鈦的電阻。 經濟部智慧財產局員工消費合作社印製 利用電漿增強式化學氣相沉積(PECVD)法,堆積一厚介 電層47如硼磷摻雜玻璃(BPSG),接著利用CMP將整個結 構的表面平坦化。利用成形的第十三罩幕光阻25m(未圖示) 餽刻厚介電層47,以形成接觸洞(contact holes),接著去除 成形的第十三罩幕光阻25m。然後,在850°C的溫度下使厚 介電層47流動,使接觸洞口圓形化。利用濺鍍或CVD法, 堆積一約100至200埃之間的薄氮化鈦層48,以作爲上金 屬與下金屬間的障礙金屬層(barrier metal)。利用濺鍍法或 LPCVD法將氟化鎢與氫氣在250t至50(TC之間的溫度還 原’堆積一層鎢,以作爲金屬栓(metal plugs)49。再次利用 CMP方法,將多餘的鎢和氮化鈦去除,並將結構平坦化。 利用濺鍍法,堆積厚度約5000至1 0000埃之間的Ml金屬 18 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 513796 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 層,接著利用成形的第十四罩幕光阻25n(未圖示)蝕刻Ml 金屬層,以形成元件間的Ml金屬連線50,然後將成形的 第十四罩幕光阻25η去除,如圖五C所示。 値得注意的是,上述之共同埋層源的形成製程包括第十 罩幕光阻、場氧化層蝕刻、離子佈植和再氧化取消掉,則 NAND形態的架構可以將疊堆閘式快閃記憶元件內部源/洩 擴散區串接成字元(byte),如圖六Α和Β所示,再將兩端分 別接至分立的兩個選擇金氧半元件(select MOS devices)(未 圖示)。 經濟部智慧財產局員工消費合作社印製 藉堆積第一金屬間介電層(intermediate dielectric)51(未 圖示),接著CMP平坦化,利用成形的第十五罩幕光阻25〇(未 圖示)蝕刻第一連線洞(Was),去除成形的第十五罩幕光阻 25〇,障礙金屬層和栓金翳堆積,CMP平坦化,M2金屬濺 鍍,利用成形的第十六罩幕光阻25p(未圖示)鈾刻M2金屬 層,以形成M2金屬連線52,然後去除成形的第十六罩幕 光阻25p。複層金屬連線可以經由重複上述製程步驟完成。 最後’堆積保護介電層(passivation layer)53(未圖示),並利 用成形的第十七罩幕光阻25q(未圖示)蝕刻銲線洞,以露出 銲線墊(bonding pads),然後去除成形的第十七罩幕光阻 25q。這裡値得注意的是,鈦金屬層可以利用其他習知的折 光金屬(refractory metal)取代,如钽、鉬、鈷等;金屬間介 電層可以是CVD二氧化矽層或其他低介電常數的介電層; 連線金屬可以是鋁或鋁合金或銅。 很淸楚地’本發明之可微縮化疊堆閘式快閃記億元件可 19 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 513796 A7 ___B7 _ 五、發明説明() 以輕易擁有遠比所使用技術之最小線寬小的閘長度,再搭 配本發明可大幅調變耦合比之漂浮閘的淺凹槽隔離結構, 可以製造大量儲存運用所需的高密度、高速、低電壓及低 功率快閃記憶元件陣列及系統。 圖三至圖六所揭示的內涵是利用一個含有隔離的η井及 隔離的Ρ井之Ρ型基板。對於熟知本領域的人來說,應該 可瞭解不同形態的基板亦可採用。再者,利用本發明的優 點,可微縮化疊堆閫式快閃記憶元件亦可以製造在η井中, 以形成Ρ通道快閃記憶元件。另外,可微縮化疊堆閘式快 閃記憶元件已充分地應用於NOR型和NAND型架構之陣列 的製造上,其他不同的架構諸如DINOR和AND型亦可輕 易經由少許製程修改和元件連線技術來完成。 本發明雖特別以參考所附內涵來圖示及描述,但對於習 知此種技術的人亦可瞭解,各種不同形狀或細節的更動在 不脫離本發明的真實精神和範疇下均可製造。 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 20 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公楚)Technology ", IEEE Jour, of Solid-State Circuits, Vol.34, No.ll, ρρ · 1536-1541, Nov. 1 999, which mentioned that the non-aligned floating gate is composed of two layers of polycrystalline silicon. λ = 0.25 microns, △ person " = 0.1 λ = 0.025 microns, △ '= 0.03 3 75 microns. Obviously, the asymmetry caused by the inaccurate alignment error of photolithography △ λ " It can be seen from the picture in the published paper. For automatic alignment of the floating gate, △ λ " = 0, the equivalent area of each cell can be reduced by 10%, and the floating gate is not accurately aligned. It can be eliminated automatically. For the manufacturing of the self-aligning floating gate and high coupling ratio printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, please refer to the following U.S. patent cases. And shallow groove isolation method, which uses a silicon nitride mask to remove the polycrystalline silicon floating gate covering the isolation region. This method has two important disadvantages: one is the planarization of the shallow groove After the formation of the isolation oxide layer ' In addition to the pad-oxide on the active area, the second is to remove the mask silicon nitride layer covering the polycrystalline silicon and the polycrystalline silicon covering the isolating oxide layer. Removing the pad oxide layer will cause isolation The change in the height of the oxide layer further created 5 paper sizes that are applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 513796 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention () Change in coupling ratio ( In addition, if it is removed by non-isotropic dry etching, the silicon surface of the active area and the corners of the isolation area will be etched, resulting in the growth of a poor silicon surface that penetrates the silicon dioxide layer and the shape of the isolation area. If wet etching is used, the upper and lower corners of the isolation area will be etched. Excessive engraving will cause voids to form in the lower corners of the isolation oxide layer. Insufficient etching will cause thin penetration of the silicon dioxide layer with uneven thickness. Similarly, removing the covered silicon nitride mask and the polycrystalline silicon covering the isolation oxide layer will cause the height of the extended floating gate of the side wall to change. Moreover, the polycrystalline silicon floating gate tip after etching will be changed. Irregular shapes will cause the problems of survivability and interference of stored charges due to field emission. Furthermore, the patented shallow groove isolation has no channel forbidden zone formation to eliminate unnecessary surface leakage. Another US patent number 5,770,50 1 According to the same method of US Patent No. 5,516,721, a liquid-phase deposition method is used to grow the isolation oxide in the middle of the formed photoresist. It is obvious that the etched surface of the shallow groove It is impossible to grow a thermal silicon dioxide layer to eliminate surface defects caused by shallow groove engraving. Furthermore, the height of the oxide deposited in the liquid phase is used to determine the coupling ratio of the auto-alignment to the floating gate, but it is difficult to control it using the liquid deposition method. The main deficiency presented in U.S. Patent No. 5,770,50 1 was corrected by U.S. Patent No. 6,153,472, in which a polycrystalline silicon underlayer was formed on the side wall of the planarized plutonium oxide, and the etched surface of the shallow groove with uranium The carved polysilicon side walls of the main floating gate are all oxidized. From this structure, it can be clearly seen that the thickness of the active area of the so-called flash memory element is reduced due to the bird's beak effect, which greatly increases the thickness of the two sides of the oxide layer. In addition, shallow groove isolation has no channel ban. 6 β-sheet scale is applicable to China National Standard (CNS) A4 specification (210x297 public love) ............ 夔 ........ .............. Line · (Please read the notes on the back before filling out this page) 513796 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention () Formation of the communication zone . According to the above description, the automatic alignment of the floating gate is a necessary method to reduce the isolation area, and the high coupling ratio of the automatic alignment of the floating gate is more important to improve the writing and scrubbing efficiency of the external control voltage. In addition, if the definition of the gate length of stacked gate flash memory elements is not limited by the minimum line width, the cell size and the applied source / drain voltage can be further reduced. Therefore, the main object of the present invention is to propose a method for manufacturing a shrinkable stacked gate flash memory device with a large modulation coupling ratio, so as to overcome the shortcomings of the past methods, and as a high density, high speed, low voltage and low For power storage. Summary of the Invention: The present invention discloses a method for manufacturing a shrinkable stacked gate flash memory element and a high-density memory array using four different underlayer technologies. The first underlayer technology of the present invention is used to form a buffer oxide underlayer, which is used as a channel forbidden region isolated by implanting shallow grooves and etched surfaces of oxidized shallow grooves without sacrificing non-volatile semiconductor memory elements. Active area width; the second cushion technology uses a shallow groove isolation method to drastically adjust the coupling ratio of the self-aligned floating gate, in which the thickness of the planarized plutonium-filled isolation oxide layer is equal to the first mask nitrogen After the thickness t of the siliconized layer is added to the thickness of the first polycrystalline silicon layer, a first polycrystalline sand cushion layer is formed on the side wall of the first masked silicon nitride layer and the first polycrystalline silicon layer after etching. Then, the first masked nitrided sand layer is automatically aligned and removed ', and then the first polycrystalline silicon layer formed, the first polycrystalline silicon cushion layer formed, and the etching are performed. The paper size applies to Chinese National Standard (CNS) A4. Specifications (210X297 mm) .........., ......... Line · (Please read the precautions on the back first (Fill in this page again) 513796 Printed by A7 B7, Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention () The first dielectric layer was deposited on the oxide layer after filling. The first dielectric layer may be a composite layer composed of silicon dioxide-silicon nitride-silicon dioxide (ONO). Then, a second polycrystalline silicon layer is deposited and then a silicide layer is deposited to form a control gate. The coupling of the self-aligning floating gate of the present invention is greatly increased compared with the previous method, and the effective active area width λ is not affected by the formation of the forbidden zone of the channel isolated by the shallow groove and the oxidation of the surface of the etched groove. Therefore, the effective width of each cell is only 2λ, where λ is the smallest line width using the technology. The third underlayer technology of the present invention is to define the gate length ΔL of the stacked gate flash memory element by using the first silicon dioxide underlayer formed by the formed first mask polysilicon sidewall, and then etching The second mask silicon nitride layer is used as a hard mask for etching the silicide layer, the first polycrystalline sand layer, the first dielectric layer, the first polycrystalline sand pad layer, and the first polycrystalline silicon layer. Then, a thin first polycrystalline oxide layer is grown on the sidewall of the first polycrystalline silicon layer after the etching, the first polycrystalline silicon pad layer after the etching, and the second polycrystalline silicon layer after the etching. Then, arsenic impurities are automatically implanted and aligned across the first thermal silicon dioxide layer to form a mid-doped source / drain diffusion region of the stacked gate flash memory device. The fourth underlayer technology of the present invention is to form a thin silicon nitride underlayer on a side wall of a stacked gate structure for automatic alignment of highly doped source / drain ion implantation and automatic alignment of source / drain. Or the silicidation and self-aligned contact of the common buried source diffusion region. The equivalent length of each cell is only λ (1 + Δ L / λ), which is much smaller than the length of the stack-gate flash memory device defined by the smallest line width method used in the past. In terms of the common buried source N 0 R configuration, the equivalent area of each cell is only 2 λ 2 (1 + Δ L / λ). Obviously, △ L < λ can be easily obtained by the cushion formation technology. 8 paper sizes are applicable to China National Standard (CNS) A4 (210X297 mm) -... ... # ........., 玎 ......... line · (Please read the precautions on the back before filling out this page) 513796 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 Description of the invention () The equivalent cell size can be much smaller than 4 λ 2 (when λ = △ L) and can be adjusted by the width of the cushion. In addition, because the gate length is smaller than the minimum line width used, the externally applied source-drain voltage can be reduced, and because of the extra-high coupling ratio of the automatic floating gate of the present invention, the applied control gate voltage can also naturally reduce. Similarly, the scrubbing voltage can be reduced across the control gate and the substrate. In summary, the manufacturing method of the miniaturizable stacked gate flash memory device of the present invention can be used to manufacture high-density, high-speed, low-voltage, and low-power flash memory arrays and systems for mass storage applications. Brief description of the figures: FIGS. 1A to 1C respectively show a partial cross-sectional view and a partial top plan view of a channel length direction and a channel width direction of a conventional stacked gate flash memory element array; FIG. 2A to FIG. 2C respectively discloses a partial cross-sectional view and a partial top plan view of a channel length direction and a channel width direction of the stacked gate flash memory element array of the present invention; FIGS. 3A to 3D respectively disclose the stack of the present invention Sectional view of the manufacturing process and structure of the gate-type flash memory element array with shallow groove isolation in the width direction; FIG. 4A to FIG. 4 show that the present invention simultaneously manufactures a miniaturizable stackable gate-type flash memory element array and complementary peripherals Process and structure of structural components 9 This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) • '· ............ 0 ........ Order ......... line · (Please read the notes on the back before filling in this page) 513796 A7 B7 V. Description of the invention () ΓΞΓ Figures, Figures 5A to 5C reveal the invention at the same time Fabrication of a NOR-type miniaturized stacked gate flash memory element array and peripheral complementary elements FIG. 6A to FIG. 6B show the connection diagrams of the miniaturizable stacked gate flash memory element array and peripheral complementary elements of the present invention that simultaneously manufacture N AND type architectures. Four process and structure cross-sections. Description of drawing numbers: 20 monocrystalline silicon substrate 21a P well (memory element array) 21b η well (P-MOS) 21c P well (n-MOS) 22 First thermal silicon dioxide layer 23 First polycrystalline silicon layer 24 The first mask silicon nitride layer 25 forms a mask photoresist (a, ... q) 26 a first good coverage silicon dioxide layer 26a a first silicon dioxide underlayer 27 a second thermal silicon dioxide layer 28 Thick silicon dioxide film 29 First good coverage polycrystalline silicon layer 29a First polycrystalline silicon underlayer 30 First dielectric layer 31 Third thermal silicon dioxide layer 32 Second polycrystalline silicon layer 33 Silicide layer 34 Second mask silicon nitride layer 35 First mask polycrystalline silicon layer 36 Second good coverage silicon dioxide layer 37 Second silicon dioxide pad layer 38 Lightly doped P-source and drain diffusion region 39 Lightly doped η-Source and Diffuse Diffusion Zone 10 This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 public love) ......... I (Read first, read back & ii) (cIfi-describe this page)-Order ·% Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 513796 A7 B7 V. Description of the invention () 40 moderately doped n + source and drain diffusion region 40a highly doped and buried together Layer Source Diffusion Zone 41 Sand layer 41a ~ Nitrided sand pad layer 42 Highly doped P + source and drain diffusion region 43 Highly doped n + source and drain diffusion region 43a Highly doped n + drain diffusion region 43b Highly doped n + source diffusion region 43c Highly doped common buried layer source diffusion region 44 Fourth thermal silicon dioxide layer 45 Silicon titanium layer 47 Thick dielectric layer 49 Tungsten layer 5 1 Interlayer dielectric layer 53 Protective dielectric layer 46 Titanium nitride layer 48 Thin Titanium nitride layer 5G Ml metal connection layer 52 M2 metal connection layer (please read the precautions on the back before filling out this page) Detailed description of the invention printed by the employee consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs: Refer to Figure II A to Figure Two C, these three figures reveal the advantages of the present invention compared to FIGS. 1A to 1C. Figure 2A reveals that the present invention uses a cushion technology to define the gate length ΔL of a stacked gate flash memory element, and ΔL is smaller than the minimum line width λ of the technology used and can be adjusted through the cushion width. In addition, the silicon nitride pad 4 1 a is used as the ion implantation of the auto-aligned source / drain diffusion region of the stacked gate flash memory element to form the source / drain highly doped diffusion regions 43 a and 43 b or co-buried. The layer source diffusion region 43c (not labeled), the auto-aligned source / drain diffusion region, or the common buried source diffusion region is silicided to form an auto-aligned silicide 45 and an auto-aligned contact. FIG. 2B discloses the structure of the automatic alignment floating gate of the channel width direction of the present invention, wherein the automatic floating gate is composed of a first polycrystalline silicon layer 23 and two first polycrystalline sand cushion layers 29a placed on the isolation region λ. composition. 11 This paper size applies to Chinese National Standard (CNS) A4 (210X297 mm) 513796 A7 B7 V. Description of the invention () (Please read the precautions on the back before filling this page) The area of the invention's automatic alignment of the floating gate It is much larger than the previous technology, and the surface of the shallow groove is implanted with ions to form the forbidden area of the channel without sacrificing the area of the active area. FIG. 2C shows a partial top view of the stacked stack flash memory array of the N 0 R configuration according to the present invention. Compared with FIG. 1C, it shows that the present invention has a very small cell area, and thus a small composition area. Memory array. The manufacturing steps and sectional structures of these special technologies will be described later. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Referring to Figures 3A to 3D, these figures reveal the first part of the present invention. The first aspect of the present invention includes a method for manufacturing a channel-width shallow groove isolation structure of a stacked gate flash memory element array. In the P-type (100) single crystal substrate 20, the isolated P wells 21a and 21c and the isolated η well 21b are grown. The first thermal silicon dioxide layer 22 is grown to a thickness of about 70 angstroms to 110 angstroms. The growth condition is about Dry oxygen environment at 850 ° C. The P wells 21a, 21c and η well 21b can be isolated by using conventional local silicon oxide (LOCOS) or modified local silicon oxide (LOCOS) or the technology described in the first part of the present invention. Low-pressure chemical vapor deposition (LPCVD) method is used to thermally decompose silane at a temperature between 580 ° C and 65 (TC), and grow between about 300 angstroms and 1,500 angstroms. The first polycrystalline silicon layer 23 with a natural in-situ doped phosphorus (or boron) impurity concentration of about 1018 to 5x 1019 / cm3 is above the first thermal silicon dioxide layer 22. A low voltage is used. In the chemical vapor deposition method, dichoiorsilane and nitrogen are reacted at a temperature of about 720 ° C to deposit a first mask silicon nitride layer 24. The thickness ⑴ is used to control or adjust the flash memory device. The coupling of the floating gate uses the formed first screen photoresistor 25a to define the flash memory element array. 12 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 513796 A7 B7. 5. The channel of the invention description () The width is as shown in Fig. 3A. Anisotropically etching the first mask nitrided sand layer 24, the first polycrystalline sand layer 23 and the first thermal silicon dioxide layer 22, and then the formed first mask Photoresist 25 is removed. Using LPCVD method, the temperature of about 750 ° C to 850 ° C The teuaethoxysilane (TEOS) is thermally decomposed, and the first good covering silicon dioxide layer 26 with a thickness of about 200 angstroms to 500 angstroms is deposited, and then the first good covering silicon dioxide layer 26 is anisotropically etched. The carved side wall forms a first silicon dioxide pad layer 26a, as shown in Fig. 3B. Then, a portion of the single crystal silicon in the P well 21a is etched to a depth of about 2000 to 4000 Angstroms, and about 8 50 In the dry oxygen environment of ° C, the etched single crystal silicon surface of the P well 21a is oxidized, and a second thermal silicon dioxide layer 27 having a thickness of about 50 to 150 angstroms is grown on the single crystal silicon surface after the uranium etching. Then, a large-tilt-angle is used to implant boron impurities to form a shallow groove-isolated channel forbidden area. As can be seen from the figure, the first silicon dioxide pad layer 26a is used as a shallow groove isolation. The formation of the forbidden area of the channel and the buffer oxide pad layer that avoids the oxidation of the shallow grooves to the two sides of the first thermal silicon dioxide layer. The high-density plasma CVD method is used to silane ) Or tetraethoxysilane as the silicon source, fill the etched shallow grooves with a thick and good coverage Conformable sand dioxide film 28, and a chemical-mechanical-polishing (CMP) method is used to planarize the surface of the structure and remove the overfilling of the silicon nitride layer 24 beyond the first mask Silicon dioxide, as shown in Figure 3B. Then, the diluted silicon dioxide layer 28 is flattened with diluted hydrofluoric acid or buffered hydrofluoric acid or anisotropic etching, and the etching thickness is approximately equal to the thickness t of the first mask silicon nitride layer 24 plus the first complex. The thickness of the crystalline silicon layer 23. Then, use 13 paper sizes to apply Chinese National Standard (CNS) A4 specifications (210X297 mm) .............. I (Please read the precautions on the back before filling this page) Order · Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 513796 A7 B7 V. Description of the invention () (Please read the notes on the back before filling this page) Low pressure chemical vapor deposition method, between 58 (TC to 650 ° C) The silane is thermally decomposed to a temperature of about 200 to 500 Angstroms, and the first well-covered polycrystalline silicon layer 29 is naturally doped with phosphorous (or boron). Next, anisotropically etched naturally doped phosphorus (or boron) 29 ) Of the first good polycrystalline silicon layer 29, the first polycrystalline silicon pad layer 29a is formed on the exposed side walls of the exposed first mask silicon nitride layer 24 and the first polycrystalline silicon layer 23. The wet Thermal phosphoric acid, the first mask silicon nitride layer 24 is removed, and then the first dielectric layer 30 is stacked, as shown in FIG. 3C. It should be noted here that the first dielectric layer 30 may be silicon dioxide. -Silicon nitride-silicon dioxide (ONO) composite layer or other composite dielectric layers. As can be seen from the figure, the first polycrystalline silicon pad formed by the present invention The bilateral area of 29a will greatly increase the coupling ratio of the self-alignment to the floating gate. The Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs will use the formed second screen photoresistor 25b to cover all areas where flash memory arrays are to be manufactured. The non-isotropic dry etching is used to remove the first dielectric layer 30 and the first polycrystalline silicon 23 or the first polycrystalline silicon cushion layer 29a in other regions, as shown in FIG. 4A, and then the formed second mask is removed. Photoresist 25b. Then, using the formed third mask photoresist 25c (not shown), boron impurities are implanted across the first thermal silicon dioxide layer 22 into the single crystal silicon region of the P-well region 21c to adjust Threshold-voltage and punch-through voltage of all n-channel metal-oxide half-elements in the peripheral complementary metal-oxide half-elements, and then the formed third mask 25c is removed. The same The reason is to use the formed fourth mask photoresist 25d (not shown) to implant boron or phosphorus impurities across the first thermal silicon dioxide layer 22 into the single crystal silicon region of the n-well region 21b to adjust the peripheral complementarity. Criticality of all P-channel metal-oxide half-elements Voltage and withstand voltage, and remove the formed fourth mask photoresist 25d to 14 This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 513796 A7 B7 V. Description of the invention () except (please first (Please read the notes on the back and fill in this page.) In the dry oxygen environment between 850 ° C and 1 050 ° C, the peripheral complementary metal-oxygen half-elements in the P well 21c and η well 21b single crystal silicon regions will be manufactured. The first thermal silicon dioxide layer 22 is oxidized to form a third thermal silicon dioxide layer 31, which has a thickness between about 2000 and 400 angstroms, as shown in FIG. 4B. It is worth mentioning here that the third thermal silicon dioxide layer 31 is mainly used as a gate dielectric layer of a peripheral complementary metal-oxide half-element. The low-pressure chemical vapor deposition method was used to thermally decompose the silane at a temperature between 5 80 ° C and 65 ° C, and a second polycrystalline silicon layer 32 having a thickness of about 1,000 to 2000 angstroms was deposited, and then a low-pressure chemical gas was used. A silicide layer 33 having a thickness of about 1,000 to 2,000 angstroms is deposited on the phases, as shown in Figure 3D of the channel width direction and Figure 4C of the channel length direction. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Then, a low-pressure chemical vapor deposition method is used to deposit a second mask silicon nitride layer 34 having a thickness of about 500 to 1000 Angstroms. Then, a low-pressure chemical vapor deposition method is used at 5 80 ° C to 65 ( The silane is thermally decomposed between TC temperature, and the first mask polycrystalline silicon layer 35 is deposited with a thickness of about 1000 angstroms to 2000 angstroms. The first mask polycrystalline silicon layer is etched with the formed fifth mask photoresist 25e. 35, to define the virtual gate length Lv (virtual gate length) of the stacked gate flash memory element, as shown in Figure 4D, where λ is the minimum line width of the technology used, and △ L is the stacked gate fast The gate length of the flash memory element. After removing the formed fifth mask photoresist 2 5 e, use a low voltage Using the vapor deposition method, tetraethylene oxysilane is thermally decomposed at a temperature between 700 ° C and 850 t, and a second good covering silicon dioxide layer 36 having a thickness of ΔL is deposited, followed by anisotropic Etching the second good covering silicon dioxide layer 36, and forming a second sand dioxide pad layer 37 (as shown in FIG. 4E) on the side wall of the first mask polycrystalline silicon layer 35 after the etching, and then Cover 15 This paper is in the size of China National Standard (CNS) A4 (210X297 mm) 513796 A7 B7 5. Description of the invention () The polycrystalline silicon layer 3 5 can be removed by anisotropic etching, as shown in Figure 4F (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, using the formed sixth cover photoresistor 25f to define the gate lengths of the n-channel and p-channel metal-oxygen half elements, as shown in the figure As shown at 4F, the second mask silicon nitride layer 34 is anisotropically etched and the formed second silicon dioxide pad layer 37 is removed, and then the silicide layer 33 and the second polycrystalline silicon are anisotropically etched. Layer 3 2, and then remove the formed sixth mask photoresist 25f. Anisotropically etch the flash memory cells in an automatic alignment manner The first dielectric layer 30 and the first polycrystalline silicon layer 23 of the device array. Then, in a dry oxygen environment of about 85 ° C., the first polycrystalline silicon layer 23 and the second polycrystalline silicon layer are etched. The side wall of 3.2 and the first polycrystalline silicon cushion layer 29a is oxidized to grow a thin first polycrystalline silicon oxide layer. Using a formed seventh mask photoresist 25g (not shown), boron impurities are automatically aligned across The third thermal silicon dioxide layer 31 is implanted into the single crystal silicon region of the η well 2 1 b to form a lightly doped source and a shallow diffusion region 38 of all P-channel metal-oxide half-elements, and then removed. The formed seventh mask photoresist is 25g. Similarly, using the formed eighth mask photoresist 25h (not shown), the phosphorous impurities are automatically aligned across the third thermal silicon dioxide layer 3 1 to be implanted into the single crystal silicon of P well 2 1 c. To form the lightly doped source and drain diffusion region 39 of all n-channel metal-oxide half-elements, and then remove the formed eighth mask photoresist 25h. The lightly doped implantation dose is between about 1013 and 1014 / cm2. Using the formed ninth mask photoresist 25i (not shown), the mid-doped source and drain diffusion region 40 of the stacked gate flash memory element cross the first thermal diode via the arsenic impurity. The silicon oxide layer 22 is implanted with single crystal silicon in P well 2 1 a to complete the implantation at a dose of about 1014 to 1015 / cm2, and then the formed ninth mask photoresist 25i is removed, as shown in the figure. Four Gs. Using low pressure chemical vapor deposition method, at a temperature between 65 ° C and 800 ° C. 16 This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm) 513796 A7 B7 V. Description of the invention ( ) (Please read the notes on the back before filling out this page) The first reaction of silane and ammonia gas, the first good coverage silicon nitride layer 41 with a thickness of about 500 Angstroms to 1000 Angstroms, followed by anisotropic etching A good coverage silicon nitride layer 41 forms a first silicon nitride pad layer 41a on the side wall of the compound silicon silicide gate of the complementary metal-oxide-semiconductor element and the stacked gate of the stacked gate flash memory element, such as Figure 4 shows. For a NOR-type architecture, the common buried-source diffusion can use a non-critiCal alignment formed tenth mask photoresist 25j, and the field oxide layer 28 and the first The thermal silicon dioxide layer 22 is automatically etched in alignment, and then phosphorous is implanted to form a highly doped source and common buried layer source diffusion region 40a, as shown in FIG. 5A, and then the formed tenth mask photoresist 25j is removed. The exposed surface of the single crystal silicon is then oxidized in a dry oxygen environment at about 850 ° C to grow a fourth thermal silicon dioxide layer 44 between about 50 and 100 angstroms. The Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed and used the formed eleventh mask photoresist 25k (not shown) to automatically align the boron impurity across the third thermal silicon dioxide layer 31 and implant it into the η well 21b. The monocrystalline silicon surface is formed to form a heavily doped source and drain diffusion region 42 for all P-channel metal-oxide half-elements, and then the formed eleventh mask photoresist 25k is removed. Similarly, using the formed twelfth mask photoresist 251 (not shown), the arsenic impurities are automatically aligned across the third thermal silicon dioxide layer 31 and implanted on the surface of the single crystal sand in the P well 21c. In order to form highly doped source and drain diffusion regions 43 of all n-channel metal-oxide half-elements, an impurity cloth is implanted into the P well 21a across the first thermal silicon dioxide layer 22 and the fourth thermal silicon dioxide layer 44. Monocrystalline silicon surface to form a high-concentration diffusion region of the highly doped source 43b, 43a, and common buried layer source 43c of the stacked gate flash memory device, and then the formed twelfth mask 17 is removed China National Standard (CNS) A4 specification (210X 297 mm) 513796 A7 B7 V. Description of the invention () (Please read the precautions on the back before filling this page) Photoresistor 251. Then, in a nitrogen environment of 850 ° C to 950 ° C, thermal annealing is performed by a furnace tube or a rapid annealing system to activate the doping of the implant and eliminate defects caused by the implant. The completed structure is shown in Figure 5B. The third thermal silicon dioxide layer 31, the first thermal silicon dioxide layer 22, and the first thermal silicon dioxide layer 22 are overlaid on the highly doped drain, source, and common buried layer source diffusion regions using diluted hydrofluoric acid or buffered hydrofluoric acid or anisotropic etching. Fourth heat silicon dioxide layer 44. Then, a titanium metal layer having a thickness of about 500 to 1,000 angstroms is sputtered on the surface of all structures. A rapid thermal annealing was performed under a nitrogen atmosphere at 600 ° C to form a titanium silicide (TiSi2) layer 45 on the surface of the exposed single crystal silicon, and a titanium nitride (TiN) layer 46 was formed on all surfaces. The solution of ammonia: hydrogen peroxide: pure water (1: 1: 5) is used to remove the titanium nitride layer 46, and then the completed structure is annealed in an argon atmosphere to reduce the resistance of the titanium silicide. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, using plasma enhanced chemical vapor deposition (PECVD), a thick dielectric layer 47 such as boron-phosphorus doped glass (BPSG) is deposited, and then the entire structure surface is flattened by CMP Into. A thick dielectric layer 47 is formed by using the formed thirteenth mask photoresist 25m (not shown) to form contact holes, and then the formed thirteenth mask photoresist 25m is removed. Then, the thick dielectric layer 47 was caused to flow at a temperature of 850 ° C to round the contact hole. By sputtering or CVD, a thin titanium nitride layer 48 of about 100 to 200 angstroms is deposited as a barrier metal layer between the upper metal and the lower metal. Tungsten fluoride and hydrogen are reduced by sputtering or LPCVD at a temperature between 250t and 50 ° C. A layer of tungsten is deposited as metal plugs. 49 The CMP method is used again to remove excess tungsten and nitrogen. Titanium oxide is removed and the structure is flattened. Ml metal with a thickness of about 5,000 to 10,000 angstroms is deposited by sputtering method. 18 This paper size applies to Chinese National Standard (CNS) A4 (210X297 mm) 513796 A7 B7 5 2. Description of the invention () (Please read the precautions on the back before filling this page) layer, and then use the formed fourteenth mask photoresist 25n (not shown) to etch the Ml metal layer to form the Ml metal connection between the components Line 50, and then remove the formed fourteenth mask photoresist 25η, as shown in Figure 5C. It should be noted that the formation process of the above-mentioned common buried layer source includes the tenth mask photoresist and field oxide layer. Etching, ion implantation, and re-oxidation are eliminated, and the NAND-type architecture can serially connect the source / drain diffusion regions of the stacked gate flash memory elements into bytes, as shown in Figures 6A and B. Then connect the two ends to two separate metal-oxide half-elements ( select MOS devices) (not shown). The Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed and deposited the first intermediate dielectric layer 51 (not shown), followed by CMP planarization. The five-mask photoresist 25 (not shown) etches the first connection hole (Was), removes the formed fifteenth mask photo-resist 25, the barrier metal layer and the plug gold deposits are stacked, the CMP is planarized, and the M2 metal Sputtering, using the formed sixteenth mask photoresist 25p (not shown) uranium to etch the M2 metal layer to form the M2 metal connection 52, and then removing the formed sixteenth mask photoresist 25p. Multilayer metal connection The line can be completed by repeating the above process steps. Finally, a passivation layer 53 (not shown) is deposited, and a 17th mask photoresist 25q (not shown) is used to etch the bonding wire holes to The bonding pads are exposed, and then the formed seventeenth mask photoresist 25q is removed. It should be noted here that the titanium metal layer can be replaced with other conventional refractory metals, such as tantalum and molybdenum. , Cobalt, etc .; the intermetal dielectric layer can be CVD Silicon layer or other low dielectric constant dielectric layer; the connecting metal can be aluminum or aluminum alloy or copper. It is very clear that the miniaturizable stacked gate flash memory device of the present invention can be 19 paper sizes Applicable to China National Standard (CNS) A4 specification (210X297 mm) 513796 A7 ___B7 _ V. Description of the invention () In order to easily have a gate length much smaller than the minimum line width of the technology used, and coupled with the present invention can greatly adjust the coupling Compared with the shallow groove isolation structure of the floating gate, it can manufacture high-density, high-speed, low-voltage and low-power flash memory element arrays and systems required for large-scale storage applications. The connotation disclosed in Figures 3 to 6 is the use of a P-type substrate containing an isolated n-well and an isolated P-well. For those skilled in the art, it should be understood that different types of substrates can also be used. Furthermore, using the advantages of the present invention, a miniaturizable stack-type flash memory device can also be manufactured in a well, to form a P-channel flash memory device. In addition, the shrinkable stacked gate flash memory elements have been fully applied to the manufacture of arrays of NOR and NAND architectures. Other different architectures such as DINOR and AND can also be easily modified and connected through a few processes. Technology to complete. Although the present invention is particularly illustrated and described with reference to the attached connotation, those skilled in the art can also understand that changes of various shapes or details can be made without departing from the true spirit and scope of the present invention. (Please read the precautions on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 20 This paper size applies to China National Standard (CNS) A4 (210X297)