TW513602B - Cathode formed on the wide conduction layer of nanotube emitter layer and the field emission display panel thereof - Google Patents

Cathode formed on the wide conduction layer of nanotube emitter layer and the field emission display panel thereof Download PDF

Info

Publication number
TW513602B
TW513602B TW90128771A TW90128771A TW513602B TW 513602 B TW513602 B TW 513602B TW 90128771 A TW90128771 A TW 90128771A TW 90128771 A TW90128771 A TW 90128771A TW 513602 B TW513602 B TW 513602B
Authority
TW
Taiwan
Prior art keywords
layer
display panel
field emission
emission display
width
Prior art date
Application number
TW90128771A
Other languages
Chinese (zh)
Inventor
Hua-Chi Jeng
Jeng-Jung Li
Jen-Huei Liau
Wen-Jiun Wang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW90128771A priority Critical patent/TW513602B/en
Application granted granted Critical
Publication of TW513602B publication Critical patent/TW513602B/en

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

A field emission display panel device comprising several nanotube emitter layers to emit electrons is disclosed, wherein the carbon nanotube has a narrower width than the conduction layer below, the width of the carbon nanotube should be less than 3/4 of the width of the conduction layer, or in the range between 1/4 and 3/4 of the width of the conduction layer (such as silver adhesive layer). The novel structure of the present invention can prevent the overflow on the sidewall of the conduction layer after the solidification process of the carbon nanotube is proceeded, and thereby increases the electron density excited to emit toward the coating layer of phosphors powder significantly, and reduce the image of electron scattering. As a result, the image clarity, definition and contrast of the FED device is improved.

Description

513602513602

•V A7 B7 經濟部智慧財產局員工消費合作社印製 .......... — ---------------------------------------/五、發明說明() 發明領域: 本發明係關於一種場發射顯示面板與其製作方法,且 特別是關於一種場發射顯示面板,其包含複數個陰極’由 一寬導電層上之一窄奈米管發射層製作而成’以及此種裝 置的製作方法。 發明背景: 近年來,平面面板顯示幕裝置已經發展且廣泛地使用 於電子應用上,諸如個人電腦上的應用。一種很普遍的平 面面板顯示幕裝置即是增進解析度的主動陣列(a〇tlve m a t r i X )液晶顯示幕(L C D )。然而,液晶顯示幕裝置有許 多先天上的限制,致使其在許多應用上並不適合。例如’ 液晶顯示幕有許多的製作限制’包括一個緩慢的沈積製 程,其以非晶體矽、高製造複雜度與低產率的製作製程塗 佈玻璃面板。而且,該液晶顯示幕裝置需要一背光板,此 背光板不但花費大量電力且產生的光線大部分均被浪費。 要在強光的狀態或寬視角(w i d e v i e w i n g a n g 1 e s )下觀看液 晶顯示幕的影像也是困難的,其進一步限制了液晶顯示幕 在許多應用領域上的使用。 其他平面面板顯示幕裝置已經在最近這幾年來發展, 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -n βϋ MMmmmw n n J. i V an «n n an 言 線· 513602 Λ7 B7 五、發明說明( 以取代液晶顯示幕面板。這類裝置之一,即是場發射顯示 幕衣置其克服了些L C D的限制,且提供幾個更勝於L c D 裝置的重要優,點。例如,比較一傳統的薄膜電晶體(tft ) 液晶顯示幕面板,該場發射顯示幕裝置即擁有較高的對比 比例(contrast ratio ),較大的視角,較高的最大亮度,較 低的功率消耗以及更寬廣的溫度操作範圍。 介於FED與LCD之間一個最極端的差異是,不同於 LCD ’ FED應用彩色的螢光粉產生自己的光線來源。刚 不需要複雜的、耗費電力的背光、濾光器,且因此,幾乎 所有被FED產生的光線,都可以被使用者看到。更進一步 的是,FED不需要大量數目的薄膜電晶體,因此省去了一 些la成主動陣列L C D南成本與產率問題的主要來源。 在一 F E D中,電子從一陰極被發射且衝撞塗佈在透明 蓋板背後的螢光粉’以產生影像。這類陰極發光 (cathodolununescent )的製程已得知為最有效產生光線的 方法之一。相對於傳統陰極射線管(CRT )裝置,在FE D 中每一個像素或發射單位有其自己的電子來源,換句話 說’即疋典型的發射微尖端(e m i 11 i n g m i c r 〇 t i p )陣列。一 電壓差存在於一陰極與一閘電極(gate electrode)之間, 其自陰極獲取電子且加速電子朝向螢光粉層發射電流,以 及顯示幕的党度’強烈依賴於發射材料的功函數(w 〇 r k 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公t ) (請先閱讀背面之注意事項再填寫本頁) φ------- —訂---------線 經濟部智慧財產局員工消費合作社印製 513602 Λ7 五、發明說明( function)。為達成FED必要的功效,發射器來源材料的 清潔與均勻性是非常重要的。 為使彳于電子可以在F E D中行進,大部分的F E D被撤空 到低壓,諸如10-7托耳’不但為發射出的電子提供對數平 均自由路徑(log mean free path),也避免微尖端受到污 染與退化。使用一聚焦柵(focus gnd)準直(⑶⑴則⑷ 從微尖端拉取的電子,能夠使顯示幕的解析度增進。 場發射陰極的發展初期是利用紹金屬微尖端發射%。 在這類的裝置内’石夕晶圓首先被氧化以產生厚氧化石夕層, 隨後-金屬性的問層被沈積在該氧化物的上面。此金屬性 的閘層隨後被造型形成閘開σ,而後蝕刻該開口下方的氧 化矽,切除該閘的下部並且創建一個井(weU)。犧牲材 料層(saCrificial matenai Uyer)諸如鎳被沈積以避免鎳沈 積進入該發射器井中。钥隨後以常態落下( mudence)的方式沈積,以致於一尖頭圓錐體於凹槽中成 長,直到上面的開口關閉。當鎳的犧牲層被移⑨,一發射 器圓錐體會留下來。 (請先閱讀背面之注意事項再填寫本頁) •Φ____ 訂----- 線 經濟部智慧財產局員工消費合作社印製 一 成該 導形 了 引以尖 上刻削 吩姓且 在地矽 先性了 首擇護 器選保 射有, 發且刻 端物蝕 尖化或 微氧用 碎該作 , 型化 中造氧 計後的 設隨步 項,一 一 用進 另作。 在化端 氧小穴 熱碎 公 97 2 X W 2 /V 格 規 4 )A S) N (C 準 標 家 國 國 中 用 適 I度 尺 張 紙 本 513602 A7 _R7 _ 五、發明說明() 些點以提供一犧牲層。在其他可替代的設計中,微尖端被 建立在所要求材料的基板上,如玻璃,當作一理想大面積 平面面板顯示幕基板。此微尖端能夠以傳導材料形成,如 金屬或掺雜半傳導材料。在這種FED裝置的替代設計中, 高度需要在陰極與微尖端之間,沈積一層已控制導電性的 間層(i n t e r 1 a y e r )。此間層適當的電阻率,使得該裝置可 以在一穩定狀態中操作。在這類FED裝置的製作中,因此 需要沈積一非晶體矽薄膜,其導電性的範圍介於本微非晶 體矽與n +摻雜非晶體矽之間。ιΓ摻雜非晶體矽的導電性, 能藉由調整薄膜内含磷原子的數目而控制。 一般,在FED裝置的製作中,該裝置被包含在一非常 低壓的凹槽中,以致於電子發射不會受到阻礙。例如,一 ’般來說需要1〇_7托耳的低壓。為避免形成FED裝置的兩塊 相對較大型玻璃面板崩潰(c 〇 11 a p s e ),必須使用間隔器支 撐,且於兩面板之間提供適當的空間。例如,在傳統FED 裝置中,玻璃球或玻璃十字架已經被使用來維持這類F E D 裝置的空間。痩長的間隔器也已經被使用於這類的用途。 一開始請參考第1 A圖,其中展示出一放大的傳統場發 射顯示幕裝置1 0的剖面圖。該FED裝置10,係藉由沈積 一典型的非晶體矽底膜電阻層1 2於一玻璃基板1 4上所形 成。介質材料的絕緣層1 6與金屬性閘層1 8隨後被沈積且 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) (請先閱讀背面之注意事項再填寫本頁) -*·--------訂---------線 經濟部智慧財產局員工消費合作社印製 513602 A7 _B7_ 五、發明說明() 結合在一起以提供金屬性的微尖端2 0以及一被電阻層12 所覆蓋的陰極架構2 2,且因此,一電阻性卻帶有一點兒傳 導力的非晶體矽層12,在一介質材料,如二氧化矽,所形 成的高度絕緣層1 6之下。控制該非晶體矽層1 2的電阻率 是重要的,以避免過度的電阻性,但到目前為止,其將扮 演一限制電阻以避免微尖端2 0與該金屬層1 8短路,造成 超額的電流流動。 一完整的FED架構30,包括架設在架構30上的陽極 2 8,展示於第1B圖中。要注意的是,為求簡明,陰極層 22與電阻層12被展示為單層陰極22。微尖端20則被形 成,以從此微尖端2 0的尖端發射電子。閘電極1 8被提供 一正電荷(positive charge),而陽極28卻被提供較高的 正電荷。該陽極2 8藉塗佈含磷粒子3 2於一玻璃板3 6而形 成。一間歇性有傳導力的氧化銦錫(IT0 )層3 4也可以被 應用,進一步增進含磷層遭到電子2 6轟擊時的亮度。其中 一部份的放大剖面圖展示於第1 C圖中。該FED裝置的總 厚度僅大約2毫米,以真空同時拉住較低的玻璃板1 4與較 高的玻璃板3 6,並藉由側壁面板3 8密封(展示於第1 B圖 中)。 藉由微尖端所形成的傳統FED裝置,展示於第1A-1C 圖中,其產生一種比液晶顯示幕裝置品質更好的平面面板 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公^ ) (請先閱讀背面之注意事項再填寫本頁) ---- 訂---------線 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 513602 Λ7 _B7____ 五、發明說明() 顯示幕裝置。然而,微尖端F E D裝置一項較不利的地方, 在於其複雜的製程步驟,這些步驟卻是製作該裝置所必須 使用的步驟。例如,裝置内各式各樣不同層的形成,更明 確地說,微尖端的形成需應用黃光微影方法 (p h 〇 t ο Π t h 〇 g r a p h i c )方法的薄膜沈積技術。因此,許多光 罩步驟必須進行,以界定且製作FED内各種不同的架構。 製程t包含的 C V D沈積製程與黃光微影製程大幅地增加 FED裝置的製造成本。 一份在1 9 9 9年8月19曰申請,美國專利申請案號 09/3 77,3 1 5,與本發明相同受讓人(assignee )且同樣仍在 審查中(co-pending)的專利申請書,在其中,揭露了一場 發射顯示幕裝置,以及製作這類使用奈米管發射器當作電 '子發射來源的三極架構裝置方法。在這三極架構FED裝置 中,建構該裝置係藉由一第一電絕緣板,以一包含金屬的 材料在此第一電絕緣板上形成一陰極,在此陰極上形成一 高電阻材料薄膜,以碳、鑽石或類鑽石碳為材料在此電阻 層上形成一層奈米管發射器,其中該陰極、電阻層以及奈 米管發射器層形成一發射堆疊,藉由一絕緣肋材支撐區絕 緣於這些彼此緊鄰的發射堆疊,一介質材料層垂直覆蓋這 些發射堆疊,一閘電極在此介質材料層的上方,且在第二 電絕緣板上形成一陽極覆蓋該閘電極。該FED裝置提議能 夠藉由一厚膜印刷技術有益地製作,其比應用微尖端的 8 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公t ) ---------------------訂·-------- (請先閱讀背面之注意事項再填寫本頁) 513602 經濟部智慧財產局員工消費合作社印製 Λ7 B7_五、發明說明() FED實質上較低的製作成本且有較高的製作功效。然而, 三個分離的電極仍然被該裝置所需要,換句話說,一陰極, 一閘電極以及一陽極,其必須在分離的製程步驟中形成。 另一份在1 999年9月1 5日申請,美國專利申請案號 0 9/3 96,53 6,與本發明相同受讓人且同樣仍在審查中的專利 申請書中,揭露了 一場發射顯示幕裝置,以及製作使用奈 米管發射器當作電子發射來源的二極架構裝置方法。在二 極架構FED裝置中,建構該裝置係藉由在一第一玻璃板表 面上形成擁有複數個發射器堆疊,每一個發射器堆疊形成 平行於該玻璃板橫切面方向,且包括一層導電材料,諸如 銀膠,以及在上面的一層奈米管發射器。該第一玻璃板擁 有複數個絕緣材料層,由一絕緣材料形成,其介於複數個 發射器堆疊之間以提供電的隔絕。一第二玻璃板内部表面 被塗佈一層導電材料,諸如氧化銦錫,隔著一點距離被放 置在第一玻璃板上方。一多樣性的螢光粉塗佈條(strip ) 隨後在氧化銦錫層上形成,當其被複數個發射器堆疊所發 射的電子激發,每一個塗佈條會發射红,綠或藍的光線。 此場發射顯示面板藉由大量的側板組合在一起,側板將第 一與第二玻璃板的周圍結合在一起,以在内部形成一真空 壓緊的凹槽。該FED裝置在此應用中揭露,其能夠僅以兩 個電極製作,換句話說,第一電極被塗佈在玻璃板的底部 且第二電極被塗佈在玻璃板的頂部,而不需要於兩板之間 (請先閱讀背面之注意事項再填寫本頁) .· ----訂---- 線- 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公t ) 經濟部智慧財產局員工消費合作社印製 513602 Λ7 B7___ 五、發明說明() 使用一閘電極。在這樣的裝配上,電子由奈米管發射器發 射並不會像有閘電極被應用一般強烈地襲擊玻璃板上的螢 光粉塗佈層。 上述所說明的三極與二極架構FED已經遭遇到其他各 式各樣製作與效能上的問題。例如,在三極架構FED中, 其製作製程較為複雜且因此較難以達成高可信度的產品。 絕緣介質層的厚度以及介於電極間的空間必須在高精密度 下形成以達成可信度。在二極架構FED中,介於螢光粉塗 佈的陰極與奈米管發射器的陽極間的距離必須不大於 1 〇 〇 um。為了在奈米管發射器型態FED内產生5volts/um的操 作場,這個限制必須被遵守,因而驅動電壓必須在可理解 的範圍下,相當於小於 5 0 0伏特。此介於上板(陽極)與下 板(陰極)之間所允許的小距離造成其他製程上的困難,諸 如在兩板之間達成高真空,尤其是當大型尺寸的顯示幕面 板被製作時;以及當只有兩電極被使用時的電子散射,將 導致強度與影像品質的降低。 目前利用奈米碳管作為電子發射來源的場發射顯示幕 裝置設計中,係藉由一厚膜印刷方法塗佈該些奈米碳管在 傳導層上。二極架構或者三極架構的場發射顯示幕裝置, 都能夠藉由厚膜印刷方法形成該些奈米碳管發射層。顯示 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) n m n eai·· a—9 Hi flf «1C n i ϋ n I · n ϋ ϋ n m n m ^ a Hal ti —·ν I n «n n fl (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 513602 A: _B7_^_ 五、發明說明() 在第2A與3B圖中。 第2A圖說明一種傳統二極架構的FED 40,其係藉由 一頂部玻璃基板42和一底部玻璃基板44所構成。在該頂 部玻璃基板42上,利用一螢光粉塗層 48循序沈積在頂部 玻璃基板42上表面,形成一電傳導層或一電極46。在底 部玻璃基板44上,則首先沈積一種材料例如一種傳導層或 者一種銀糊電極層5 0。在這個電極層5 0,或該陰極5 0的 頂部,隨後進行厚膜印刷一奈米碳管層5 2,使該奈米碳管 54暴露且向上指向,如同第2A圖所展示的。然而,當這 個奈米管層 52於一高溫下導入一種必要的固化製程之 後,該奈米碳管層5 2流動並且覆蓋該傳導層5 0側邊,如 同.在第2B圖所展示的。最後架構就如第2B圖所形成和展 示的,這些奈米藏管5 4的分佈不能被控制且更進一步,該 奈米碳管層5 2邊緣的電場分佈非常不同於其頂部電場分 佈·。結果,該層5 2邊緣上的該些奈米碳管擁有較高的電子 發射密度,亦即,更容易從該層5 2的邊緣發射電子。導至 在場發射顯示幕裝置上的影像中產生不均勻以及粗劣的對 比。 在一種三極架構F E D 6 0中,已經發現了類似的缺陷, 如同在第3A與3B圖中所展示的。在此三極架構FED 60 中,一第一閘極62藉由一介質層64和一傳導層66而形 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公t ) -----— II---! 1· I I I----訂·--------IAW. (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 513602 A7 ___B7_ 五、發明說明() 成,類似於第2 A圖和2 B圖所展示的,在這個奈米碳管層 5 2固化製程期間,該層滿溢且覆蓋該傳導層5 0的邊緣。 由於該些較高密度奈米碳管形成於該奈米碳管層 5 2的邊 緣,造成了類似不均勻電場的影響。在三極架構FED 60的 事例中,更多電子由於在第一閘極62上轟擊而失去。實際 上到達螢光塗佈 48的電子百分比因此減少,而造成 FED 顯示幕在強度和對比上的減少。因此有需要為二極或者三 極FED裝置提供一種新架構,其無法在傳導糊狀層的側壁 上形成該些奈米碳管,使得該顯示幕面板的飽和度、清晰 度以及對比能夠增進。 因此本發明的一個目的,是提供一種二極或者三極架 構的場發射顯示幕面板,其沒有傳統場發射顯示面板的一 些弊端或者缺點。 本發明的另一個目的,是提供一種場發射顯示面板, 其中陰極的形成,係利用一窄奈米碳管層在一寬傳導層的 頂部達成。 本發明進一步的目的,是提供一種場發射顯示面板, 其中該些奈米管發射器係藉由在一較大寬度傳導層頂部的 一層較小寬度奈米管發射器層所形成,使得該傳導層的側 壁沒有在經一固化製程後,遭到任何奈米管覆蓋。 本紙張尺度適用中國國家標準(CNS)A4規恪(210 X 297公釐) n 1- n fli fs« m fn in n I team n 1 i tmMW 11 an an ϋ 一口,e i i an fl^i n n n I . (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 513602 A7 B7_ 五、發明說明() 本發明仍有另一個目的,是提供場發射顯示幕面板, 其中奈米管發射器的形成,係藉由一層擁有第二寬度的奈 米管層在一擁有第一寬度的傳導層頂部所達成,第二寬度 不到第一寬度的3/4。 本發明還有另一個目的,其中一奈米管發射器係藉ώ 一層沈積在一層擁有第一寬度的傳導材料上擁有第二寬度 的奈米管材料所形成,該第二寬度大約介於1 /4至3 /4的第 一寬度之間。 本發明再進一步仍有另一個目的,是提供一種方法, 利用一層在傳導層頂部的奈米管層形成一奈米管發射器, 以製作一場發射顯示面板,其中該奈米管層擁有寬度小於 3/4該傳導層的寬度。 發明概述: 依據本發明,提供一種場發射顯示幕面板,其包含擁 有第二寬度的奈米管發射器層在擁有第一寬度傳導層的頂 部所形成的奈米管發射器。這個奈米管發射器層的第二寬 度小於該傳導層第一寬度的3 /4。這個奈米管發射器層的第 二寬度也許介於大約1 /4到3 /4該傳導層第一寬度之間。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ---------------------訂---------線"41^ (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 513602 A7 ___B7_:_ 五、發明說明() 在一較佳的實施例中,提供了 一種場發射顯示幕面 板,其包括一第一電子絕緣板;複數個發射器堆疊,形成 於該第一電絕緣板上,每一個發射器堆疊被放置平行於該 第一絕緣板的一橫斷面1且包括一層第一電傳導材料,該 傳導材料擁有一第一寬度以及一層在上面擁有第二寬度的 奈米管發射器,該第二寬度小於3/4的該第一寬度;複數 個由發射器堆疊之間的絕緣物質所形成的肋材區,在此之 間提供彼此的電絕緣;一第二電絕緣板被放置且隔開在該 第一電絕緣板之上,使其一内部表面朝向該第一板;一層 第二電傳導材料在該第二絕緣板的該内部表面上;而藉由 複數個發射器堆疊發射電子活化,多樣性的螢光粉條在該 第二電傳導材料上,分別發射出紅、綠、或藍光;且複數 個側板將第一與第二電絕緣板的四周一起組合起來,在内 部形成一種真空壓繁的内腔。 在場發射顯示幕面板中,奈米·管發射器層的第二寬度 介於大約第一電傳導材料層第一寬度的1 /4到3 /4之間。該 第二電絕緣板可能進一步包括一黑色陣列層介於該多樣性 螢光粉塗條之間。該第一與第二電絕緣板係由本質上透明 的一種陶瓷材料所形成。該第一電傳導材料層為FED面板 的陰極,而該第一電傳導材料層也許是一種銀膠。第二電 傳導材料層為F E D面板的第一陽極,其可能係由氧化銦錫 所形成。奈米管層可能係由奈米尺寸的空心管子與一種黏 本紙張&度適用中國國家標準(CNS)A4規格(210x 297公t ) —------------------—訂·--------l^w (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 513602 A7 B7_ 五、發明說明() 合劑材料的混合物所形成,該奈米管發射器層可能係由奈 米尺寸的碳、鑽石或者類鑽石碳的空心管子與一聚合物基 底黏合劑的混合物所形成。每一個多樣性的螢光粉塗條發 射一種紅、綠或者藍光,不同於藉由來自複數個發射器堆 疊的電子,活化其緊連相鄰的螢光條時所發射的光。該場 發射顯示幕面板可能進一步包括第二層該第一電傳導材料 層,其形成於該些絕緣材料層的頂部,作為第一閘極的功 能。 本發明進一步導引出一種方法,以製作一場發射顯示 面板,其操作步驟首先提供一第一電絕緣板;藉由一厚膜 印刷方法,形成複數個發射器堆疊平行於該第一板的橫斷 面方向,每一個發射器堆疊包括一層擁有第一寬度的第一 ’電傳導材料,以及一層擁有第二寬度在頂部的奈米發射器 層,該第二寬度比3/4的第一寬度較小;提供一第二絕緣 板;當該第一與第二板被組合在一起時,形成一第二電傳 導材料於該第二電絕緣板的内部表面之上,朝向該第一電 絕緣板;形成一多樣性的螢光塗條在電傳導材料層上,被 電子活化後發射一紅、綠或藍光;且藉由側板接合該第一 與第二電絕緣板在一起,在其中形成一真空壓緊的内腔。 在此製作場發射顯示面板的方法中,該第二寬度可能 介於第一寬度大約1 /4到大約3 /4之間。本方法可能進一步 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) ·· --訂---------線- 513602 A7 _B7_五、發明說明() 包括在一銀膠中印刷該第一電傳導材料層的步驟,或從一 物 、 合 維混 纖的 碳維 自纖 選心 與空 劑寸 合尺 黏米 維 纖 石 鑽 以 層 該 刷 印 奈步 類的 這層 維器 纖射 石發 鑽米 員 0 奈 及 材導 導傳 傳 電 電 一一 一 第 第到 在接 接連 連荷 荷電 電 正 負、把 把且 括下 包之 步疊 一 堆 進器 匕匕 厶月 身 可發 法個 方數 本複 。 於 驟料 緣可 絕佈 電塗 二粉 第光 的螢 間性 條樣 塗多 粉該 光。 螢驟 性步 樣的 多層 在列 者陣 或色 , 黑 驟一 步佈 的塗 層 ’ 料上 材板 在第 括層 包一 步積 一 沈 進 ’ 能部 可頂 法 層 方料 該材 。 緣 成絕 形的 術能 技功 刷極 印閘 膜 一 厚第料 種作材 一 當導 由個傳 藉數電 能複 一 驟 步 的 層 (請先閱讀背面之泫意事項再填寫本頁) 明 說 單 簡 式 圖 瞭 易 .. 容中 得其 變, 將示 點 圖 優的 與附 質隨 特及 、 以 的明 目說 勺 勺 白 白 他述 其詳 和列 些下 這考 明參 發要 本僅 解 示 顯 射 發 場 統 傳 的 子 電 射 。 發圖 端視 尖面 微剖 用大 應放 一 置 是裝 圖幕 A IX 第 第• V A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ............-------------------------- -------------- / V. Description of the invention () Field of the invention: The present invention relates to a field emission display panel and a method for manufacturing the same, and more particularly, to a field emission display panel including a plurality of Each cathode is 'made from a narrow nanometer tube emission layer on a wide conductive layer' and a method for making such a device. BACKGROUND OF THE INVENTION: In recent years, flat panel display devices have been developed and widely used in electronic applications, such as those in personal computers. A very common flat panel display device is an active matrix (a 0tlve m a t r X) liquid crystal display (L C D) that enhances resolution. However, liquid crystal display devices have many inherent limitations that make them unsuitable for many applications. For example, 'Liquid crystal display has many manufacturing limitations' including a slow deposition process that coats glass panels with amorphous silicon, high manufacturing complexity, and low yield manufacturing processes. In addition, the liquid crystal display device requires a backlight panel. The backlight panel not only consumes a large amount of power, but most of the generated light is wasted. It is also difficult to view the image of a liquid crystal display screen in a state of strong light or a wide viewing angle (wid e v i e w n g a n g 1 e s), which further limits the use of the liquid crystal display screen in many application fields. Other flat panel display screen devices have been developed in recent years. This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page) -n βϋ MMmmmw nn J. i V an «nn an speech line · 513602 Λ7 B7 V. Description of the invention (to replace the liquid crystal display panel. One of such devices is the field emission display screen which overcomes some LCD limitations, and Provide several important advantages and advantages over L c D device. For example, compared with a traditional thin film transistor (tft) liquid crystal display panel, the field emission display device has a higher contrast ratio , Larger viewing angle, higher maximum brightness, lower power consumption, and wider temperature operating range. One of the most extreme differences between FED and LCD is that it is different from LCD 'FED in the use of colored phosphors Generate your own light source. Just do not need complicated, power-consuming backlight, filters, and therefore, almost all light generated by the FED can be seen by the user. Furthermore, FED does not require a large number of thin-film transistors, so it eliminates some of the major sources of cost and productivity issues in active-array LCDs. In an FED, electrons are emitted from a cathode and impacted behind a transparent cover To produce images. This type of cathodolununescent process has been known to be one of the most effective ways to generate light. Compared to traditional cathode ray tube (CRT) devices, each pixel in the FED or The emission unit has its own source of electrons, in other words' i.e. a typical array of emission microtips (emi 11 ingmicr 〇tip). A voltage difference exists between a cathode and a gate electrode, which is self-cathode Acquiring electrons and accelerating the emission of electrons towards the phosphor layer, and the party's degree of display screen depends strongly on the work function of the emitting material (w 〇rk This paper size applies to the Chinese National Standard (CNS) A4 specification (210 x 297 mm t ) (Please read the precautions on the back before filling out this page) φ ------- --Order --------- Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 513602 Λ 7 V. Description of the invention (function). In order to achieve the necessary efficacy of the FED, the cleanness and uniformity of the source material of the emitter is very important. In order to allow electrons to travel in the FED, most of the FED is evacuated to low pressure For example, 10-7 Torr not only provides a log mean free path for emitted electrons, but also avoids contamination and degradation of the microtip. The use of a focus grid (column gnd) collimation (⑶ ⑴ 的 的 electrons pulled from the microtip, can improve the resolution of the display screen. The initial development of the field emission cathode is the use of metal microtip emission%. In this type of The 'Shi Xi wafer' in the device is first oxidized to produce a thick oxide Shi Xi layer, and then a metallic interlayer is deposited on top of the oxide. This metallic gate layer is then shaped to form the gate opening σ and then etched The silicon oxide below the opening cuts off the lower part of the gate and creates a well (weU). A saCrificial matenai Uyer, such as nickel, is deposited to prevent nickel from entering the emitter well. The key is then dropped in the normal state (mudence) Deposited so that a pointed cone grows in the groove until the opening above is closed. When the sacrificial layer of nickel is removed, an emitter cone will remain. (Please read the precautions on the back before filling (This page) • Φ ____ Order ----- Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Online Economics, this guide has led to the cutting of the surname and the first choice in the silicon The device is selected to be fired, and the cutting end is etched and sharpened or the micro-oxygen is broken. The model is followed by a step-by-step item after the oxygen generator is used. One by one is used for another. 97 2 XW 2 / V Gage 4) AS) N (C quasi-standard home country and country with appropriate I-degree rule paper 513602 A7 _R7 _ 5. Description of the invention () These points to provide a sacrificial layer. In other alternatives In the design, the microtip is built on a substrate of the required material, such as glass, as an ideal large-area flat panel display screen substrate. This microtip can be formed of a conductive material, such as a metal or a doped semi-conductive material. In the alternative design of this FED device, it is highly necessary to deposit an inter 1 ayer with controlled conductivity between the cathode and the microtip. The proper resistivity of this interlayer makes the device in a stable state. Operation. In the fabrication of this type of FED device, it is necessary to deposit an amorphous silicon film with a conductivity range between the micro-amorphous silicon and n + doped amorphous silicon. Electrical conductivity The number of phosphorus atoms contained in the entire film is controlled. Generally, in the fabrication of a FED device, the device is contained in a very low-voltage groove so that electron emission is not hindered. For example, it is generally required Low pressure of 10-7 Torr. In order to avoid the collapse of two relatively large glass panels (c 〇11 apse) forming the FED device, a spacer must be used to provide proper space between the two panels. For example, in In traditional FED devices, glass balls or glass crosses have been used to maintain the space of such FED devices. Long spacers have also been used for this type of application. Please refer to FIG. 1A at the beginning, which shows an enlarged cross-sectional view of a conventional field emission display screen device 10. The FED device 10 is formed by depositing a typical amorphous silicon base film resistive layer 12 on a glass substrate 14. The dielectric layer 16 and the metallic gate layer 1 8 of the dielectric material are subsequently deposited and the paper size applies the Chinese National Standard (CNS) A4 specification (210 x 297 mm) (Please read the precautions on the back before filling this page) -* · -------- Order --------- Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 513602 A7 _B7_ V. Description of the invention () Combined to provide metallic micro The tip 20 and a cathode structure 22 covered by a resistive layer 12, and therefore, a resistive amorphous silicon layer 12 with a little conductive force is formed by a dielectric material, such as silicon dioxide. Highly insulating layer 16 below. It is important to control the resistivity of the amorphous silicon layer 12 to avoid excessive resistivity, but so far, it will act as a limiting resistor to prevent the microtip 20 from shorting with the metal layer 18, causing excess current flow. A complete FED architecture 30, including anodes 28 mounted on the architecture 30, is shown in Figure 1B. It should be noted that, for simplicity, the cathode layer 22 and the resistance layer 12 are shown as a single-layer cathode 22. The microtip 20 is formed to emit electrons from the tip of the microtip 20. The gate electrode 18 is provided with a positive charge, while the anode 28 is provided with a higher positive charge. The anode 28 is formed by coating phosphorus-containing particles 32 on a glass plate 36. An intermittently conductive indium tin oxide (IT0) layer 34 can also be used to further enhance the brightness of the phosphorus-containing layer when bombarded with electrons 26. An enlarged cross-sectional view of some of them is shown in Figure 1C. The total thickness of the FED device is only about 2 mm. The lower glass plate 14 and the higher glass plate 36 are simultaneously pulled by a vacuum and sealed by a side wall panel 38 (shown in Fig. 1B). The traditional FED device formed by the micro-tip is shown in Figures 1A-1C, which produces a flat panel with better quality than the liquid crystal display device. The paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297). ^) (Please read the notes on the back before filling out this page) ---- Order --------- Printed by the Consumers' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs # 513602 Λ7 _B7____ 5. Description of the invention () Display screen device. However, a disadvantage of the micro-tip F E D device is its complicated process steps, which are the necessary steps to make the device. For example, the formation of a variety of different layers in the device, more specifically, the formation of microtips requires the application of a thin film deposition technique using the yellow light lithography method (p h ο t Π t h 〇 g r a p h i c). Therefore, many mask steps must be performed to define and fabricate the various architectures within the FED. The C V D deposition process and the yellow light lithography process included in the process t greatly increase the manufacturing cost of the FED device. One application filed on August 19, 1999, US Patent Application No. 09/3 77, 3 1 5 is the same assignee as the present invention and is also under co-pending The patent application discloses a field display device and a method for making such a triode structure device using a nano tube emitter as an electric source. In this three-pole structure FED device, the device is constructed by forming a cathode on the first electrically insulating plate with a material containing metal by a first electrically insulating plate, and forming a thin film of a high-resistance material on the cathode. A carbon nanotube, diamond or diamond-like carbon material is used to form a nano tube emitter on the resistance layer, wherein the cathode, the resistance layer and the nano tube emitter layer form an emission stack, and an insulating rib is used to support the area. Insulating the emission stacks next to each other, a dielectric material layer covers the emission stacks vertically, a gate electrode is above the dielectric material layer, and an anode is formed on the second electrically insulating plate to cover the gate electrode. The FED device is proposed to be beneficially produced by a thick film printing technology, which is more suitable for the Chinese papers (CNS) A4 (210 X 297 g) than the micro paper cutting edge of 8 paper sizes. -------- ------------- Order · -------- (Please read the notes on the back before filling out this page) 513602 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Λ7 B7_ V. Description of the invention () FED has substantially lower production cost and higher production efficiency. However, three separate electrodes are still required by the device, in other words, a cathode, a gate electrode, and an anode, which must be formed in separate process steps. Another application was filed on September 15, 1999, US Patent Application No. 0 9/3 96,53 6, and a patent application disclosed by the same assignee as the present invention and also under examination was disclosed. Emission display screen device, and manufacturing method of diode structure device using nano tube emitter as electron emission source. In a two-pole FED device, the device is constructed by forming a plurality of emitter stacks on a surface of a first glass plate, each emitter stack forming a direction parallel to the cross-section of the glass plate and including a layer of conductive material , Such as silver glue, and a nano tube emitter on top. The first glass plate has a plurality of layers of insulating material formed of an insulating material that is interposed between a plurality of emitter stacks to provide electrical insulation. An inner surface of a second glass plate is coated with a layer of conductive material, such as indium tin oxide, and is placed over the first glass plate at a distance. A variety of strips of phosphor powder are subsequently formed on the indium tin oxide layer. When they are excited by the electrons emitted by a plurality of emitter stacks, each stripe will emit red, green or blue. Light. This field emission display panel is assembled by a large number of side plates, and the side plates combine the periphery of the first and second glass plates to form a vacuum-pressed groove inside. The FED device is disclosed in this application, which can be made with only two electrodes, in other words, the first electrode is coated on the bottom of the glass plate and the second electrode is coated on the top of the glass plate, without the need for Between the two boards (please read the notes on the back before filling in this page). · ---- Order ---- Line-This paper size applies to China National Standard (CNS) A4 (210 x 297 g t) Economy Printed by the Consumer Cooperatives of the Ministry of Intellectual Property Bureau 513602 Λ7 B7___ 5. Description of the invention () Use a gate electrode. In such an assembly, the electrons emitted by the nano tube emitter do not strike the phosphor coating on the glass plate as strongly as if a gate electrode were applied. The three-pole and two-pole FEDs described above have encountered other various production and performance problems. For example, in a three-pole FED, its manufacturing process is more complicated and therefore it is more difficult to achieve high reliability products. The thickness of the insulating dielectric layer and the space between the electrodes must be formed with high precision to achieve reliability. In a bipolar FED, the distance between the phosphor-coated cathode and the anode of the nanotube emitter must be no greater than 100 μm. In order to generate a 5 volts / um operating field in a nano-tube emitter type FED, this limit must be observed, so the drive voltage must be in an understandable range, equivalent to less than 500 volts. The small distance allowed between the upper plate (anode) and the lower plate (cathode) creates difficulties in other processes, such as achieving high vacuum between the two plates, especially when large-scale display screen panels are made ; And electron scattering when only two electrodes are used will result in a reduction in intensity and image quality. In the field emission display device design using nano carbon tubes as an electron emission source at present, the nano carbon tubes are coated on the conductive layer by a thick film printing method. The field emission display device with a two-pole structure or a three-pole structure can form these nano-carbon tube emission layers by a thick film printing method. Show that the paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) nmn eai ·· a—9 Hi flf «1C ni ϋ n I · n ϋ ϋ nmnm ^ a Hal ti — · ν I n« nn fl (Please read the precautions on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 513602 A: _B7 _ ^ _ V. Description of the invention () In Figures 2A and 3B. Fig. 2A illustrates a conventional FED 40 of a two-pole structure, which is composed of a top glass substrate 42 and a bottom glass substrate 44. On the top glass substrate 42, a phosphor coating 48 is sequentially deposited on the top surface of the top glass substrate 42 to form an electrically conductive layer or an electrode 46. On the bottom glass substrate 44, a material such as a conductive layer or a silver paste electrode layer 50 is first deposited. On this electrode layer 50, or on top of the cathode 50, a thick film carbon nanotube layer 52 is subsequently printed to expose the carbon nanotube 54 and point upward, as shown in Figure 2A. However, after the nano tube layer 52 is introduced into a necessary curing process at a high temperature, the nano carbon tube layer 52 flows and covers the conductive layer 50 side, as shown in FIG. 2B. The final structure is formed and shown in Figure 2B. The distribution of these nano-tubes 54 can not be controlled and further, the electric field distribution at the edges of the nano-carbon tube layer 52 is very different from the electric field distribution at the top. As a result, the carbon nanotubes on the edge of the layer 52 have a higher electron emission density, that is, it is easier to emit electrons from the edge of the layer 52. This leads to uneven and poor contrast in the image on the field emission display device. Similar defects have been found in a three-pole architecture F E D 60, as shown in Figures 3A and 3B. In this three-pole architecture FED 60, a first gate electrode 62 is shaped by a dielectric layer 64 and a conductive layer 66. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 g) --- --- II ---! 1 · II I ---- Order · -------- IAW. (Please read the notes on the back before filling this page) 513602 A7 ___B7_ 5. Description of the invention, similar to that shown in Figures 2 A and 2 B. During this nanometer carbon tube layer 5 2 curing process, the layer overflows and covers the conductive layer 5 0 the edge of. Since the higher-density carbon nanotubes are formed at the edges of the carbon nanotube layer 52, similar effects of an uneven electric field are caused. In the case of the three-pole FED 60, more electrons were lost due to the bombardment on the first gate 62. In fact, the percentage of electrons reaching the fluorescent coating 48 is thus reduced, resulting in a reduction in the intensity and contrast of the FED display. Therefore, there is a need to provide a new architecture for the bipolar or tripolar FED device, which cannot form the carbon nanotubes on the side walls of the conductive paste layer, so that the saturation, clarity and contrast of the display panel can be improved. It is therefore an object of the present invention to provide a field emission display panel with a two-pole or three-pole structure, which does not have some of the disadvantages or disadvantages of conventional field emission display panels. Another object of the present invention is to provide a field emission display panel, in which the formation of a cathode is achieved by using a narrow carbon nanotube layer on top of a wide conductive layer. A further object of the present invention is to provide a field emission display panel, wherein the nano tube emitters are formed by a smaller width nano tube emitter layer on top of a larger width conductive layer, so that the conductive The side walls of the layer were not covered by any nano tube after a curing process. This paper size applies the Chinese National Standard (CNS) A4 (210 X 297 mm) n 1- n fli fs «m fn in n I team n 1 i tmMW 11 an an ϋ sip, eii an fl ^ innn I. (Please read the notes on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 513602 A7 B7_ V. Description of the Invention () The present invention still has another object of providing a field emission display panel, in which The meter tube emitter is formed by a nano tube layer having a second width on top of a conductive layer having a first width, and the second width is less than 3/4 of the first width. The invention also has another object, in which a nano tube emitter is formed by depositing a layer of nano tube material having a second width on a layer of conductive material having a first width, the second width being approximately 1 / 4 to 3/4 of the first width. Still another object of the present invention is to provide a method for forming a nanometer emitter using a nanometer tube layer on top of a conductive layer to make a field emission display panel, wherein the nanometer tube layer has a width smaller than 3/4 the width of the conductive layer. SUMMARY OF THE INVENTION According to the present invention, there is provided a field emission display panel comprising a nano tube emitter formed by a nano tube emitter layer having a second width on top of a conductive layer having a first width. The second width of this nanotube emitter layer is less than 3/4 of the first width of the conductive layer. The second width of this nanotube emitter layer may be between about 1/4 to 3/4 of the first width of the conductive layer. This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) --------------------- Order ---------线 " 41 ^ (Please read the precautions on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 513602 A7 ___B7_: _ V. Description of the Invention () In a preferred embodiment, A field emission display screen panel includes a first electronic insulation plate; a plurality of emitter stacks are formed on the first electrical insulation plate, and each emitter stack is placed in a cross section parallel to the first insulation plate Surface 1 includes a layer of first electrically conductive material having a first width and a layer of nanometer emitter having a second width thereon, the second width being less than 3/4 of the first width; a plurality of A rib area formed by the insulating material between the transmitter stacks, providing electrical insulation between each other; a second electrically insulating plate is placed and spaced above the first electrically insulating plate, making it a The inner surface faces the first plate; a layer of second electrically conductive material is on the inner surface of the second insulating plate On the other hand, a plurality of emitters are activated by emitting electrons from a stack of emitters, and a plurality of fluorescent powder bars emit red, green, or blue light on the second electrically conductive material, respectively. The four sides of the insulation board are combined together to form a vacuum compacted cavity inside. In the field emission display panel, the second width of the nano tube emitter layer is between about 1/4 to 3/4 of the first width of the first electrically conductive material layer. The second electrically insulating plate may further include a black array layer interposed between the plurality of fluorescent powder coating strips. The first and second electrically insulating plates are formed of a ceramic material that is substantially transparent. The first electrically conductive material layer is a cathode of the FED panel, and the first electrically conductive material layer may be a silver glue. The second electrically conductive material layer is the first anode of the F E D panel, which may be formed of indium tin oxide. The nano tube layer may be composed of a nano-sized hollow tube and a sticky paper & degree applicable to the Chinese National Standard (CNS) A4 specification (210x 297 g t) --------------- ----— Order · -------- l ^ w (Please read the notes on the back before filling out this page) Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 513602 A7 B7_ V. Description of Invention () The nano-tube emitter layer may be formed by a mixture of nano-sized carbon, diamond, or diamond-like carbon hollow tubes and a polymer-based adhesive. Each of the various phosphor-coated strips emits a type of red, green, or blue light, which is different from the light emitted when the adjacent phosphor strips are activated by electrons stacked from multiple emitters. The field emission display panel may further include a second layer of the first electrically conductive material layer, which is formed on top of the insulating material layers and functions as a first gate. The invention further leads to a method for manufacturing a field emission display panel. The operation steps of the method firstly provide a first electrically insulating plate; and a thick film printing method is used to form a plurality of emitter stacks parallel to the first plate. In the cross-sectional direction, each emitter stack includes a layer of a first 'electrically conductive material having a first width, and a layer of nano emitters having a second width on top, which is wider than the first width of 3/4 Smaller; providing a second insulating plate; when the first and second plates are combined together, forming a second electrically conductive material on the inner surface of the second electrically insulating plate, facing the first electrical insulation Form a variety of fluorescent coated strips on the electrically conductive material layer and emit a red, green or blue light after being activated by the electrons; and the first and second electrically insulating plates are joined together by a side plate, in which A vacuum-compressed inner cavity is formed. In this method of manufacturing a field emission display panel, the second width may be between about 1/4 and about 3/4 of the first width. This method may further apply the Chinese National Standard (CNS) A4 specification (210 X 297 mm) to this paper size (please read the precautions on the back before filling this page) ·· -Order --------- Line-513602 A7 _B7_ V. Description of the invention () Includes the step of printing the first electrically conductive material layer in a silver glue, or selecting the center of a carbon fiber self-fiber from a composite fiber and a composite fiber and a hollow agent. The ruler sticky miwei fiber stone drill is used to print this layer of nano-dimensional fiber laser stone driller. 0 nanji guides the electricity transmission one by one to the first one after another. 2. The steps of stacking and enclosing the packs into a stack of daggers can send a number of copies. On the edge of the material, the electro-coated second powder and the light-emitting interstitial strip of the second light can be completely coated with the powder. The layers of the fluorescent step are in a matrix or color, and the coating layer of the black step cloth is placed on the board. The board is covered in one step and then sunk. Yuancheng's unique technique can brush the printed gate film, a thick material, and a layer that can be transferred by a number of borrowed electrical energy (please read the intention on the back before filling this page). The simple diagram is easy .. The content can be changed, and the point diagram is excellent and the appendages are specially and specifically explained. He will elaborate on it and list it in detail. Only the sub-radiation transmitted by the development field is shown. The drawing should be placed on the front side of the pointed surface for micro-section.

第 是 圖 B 經濟部智慧財產局員工消費合作社印製 包 步 一 板 進面 , 壁 置側 裝及 幕以 示極 顯陽 射一 發的 場室 統理 傳處 的閉 中封 圖成 A 形 1- -L 括 的 大 放 分 部 。 其構 ’ 架 置的 裝端 效尖 場微 的 一 。統翠 圖傳明 視中說 面圖 , 剖 B 圖 I < 大 視 J第 放 U面 7 是 J 的^__ Α,σ 圖 C II 第 16 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 513602 Λ7 _B7_ 五、發明說明() 第2 A圖是一有一奈米碳管層沈積在一傳導層上的傳 統二極F E D裝置的放大剖面視圖。 第2B圖是第2A圖中的傳統二極架構,其奈米管層經 導入一固化製程後的放大剖面視圖。 第3A圖是帶有一層奈米碳管層在一層傳導層上的傳 統三極架構FED裝置放大剖面視圖。 第3 B圖是第3 A圖中傳統三極架構裝置,其奈米管發 射器層經一固化製程之後的放大剖面視圖。 第4A圖是本發明一種其奈米管層寬度已經減少的二 極架構FED裝置放大剖面視圖。 第4B圖是第4A圖中本發明二極架構FED裝置,其奈 米尺寸管層經導入固化製程後的放大剖面視 圖。 第5 A圖是本發明一帶有已經減少寬度的奈米管發射 器層沈積在一傳導層上的三極架構FED裝置放 大剖面視圖。 第5B圖是第5A圖中本發明三極架構FED裝置,其奈 米管發射器層經導入一固化製程後的放大剖面 視圖。 圖號對照說明: 10 傳統場發射顯示幕裝置1 2 非晶體矽底膜電阻層 14 玻璃基板 16 介質材料的絕緣層 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公t ) n ϋ d I i i n n d n n n · ϋ n n n n n n 一 o, * n i n ί ·ϋ n n I (請先閱讀背面之注意事項再填寫本頁) 513602 A: _B7 五、發明說明() 18 金 屬 性 閘 層 20 微 端 22 陰 極 架 構 30 完 整 的 FED架構 28 陽 極 36 玻 璃 板 32 含 石舞 粒 子 34 氧 化 銦 錫 (ITO )層 26 電 子 38 側 壁 面 板 40 傳 統 二 極 架構的 FED 42 頂 部 玻 璃 基板 44 底 部 玻 璃 基板 48 螢 光 粉 塗 層 46 電 極 50 電 極 層 54 奈 米 碳 管 60 三 極 架 構 FED 62 第 一 閘 極 64 絕 緣 材 料 層 66 傳 導 層 70 FED 裝 置 74 電 極 層 76 螢 光 粉 塗 層 72 頂 部 玻 璃 面板 78 底 部 玻 璃 基板 80 銀 膠 傳 導 層 82 奈 米 碳 管 層 84 奈 米 碳 管 88 電 子 90 三 極 架 構 FED裝 置 92 陽 極 94 第 一 閘 極 96 絕 緣 材 料 層 (請先閱讀背面之注意事項再填寫本頁) Φ 訂---------線 發明詳細說明: 經濟部智慧財產局員工消費合作社印製 本發明揭露一種二極或者三極架構的場發射顯示面 板,在此架構中奈米管發射層被使用為電子發射源。在該 奈米管發射源中,一種已經減少寬度的發射層被沈積在一 傳導層的頂部,使得該奈米管發射層經導入一種固化製程 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 513602 A7 B7 五、發明說明() 之後,該些奈米管不會在該傳導層外圍側壁滿溢。因此完 全除去從任何側壁奈米管散射的電子。已經被發現的是, 該奈米發射器層的寬度,應該小於下面的傳導層寬度的 3 /4。而這已經進一步地被發現,該奈米管發射器層的寬度 應該介於該傳導層寬度大約1 /4到3 /4之間,以防止其經一 固化製程之後滿溢。 本發明進一步揭露提供一種方法,以製作一種場發射 顯示面板,其應用奈米碳管當作電子發射來源,其中一奈 米管發射層擁有寬度不大於下面的傳導層寬度的3 /4。該奈 米管發射器層寬度,當其比下面的傳導層寬度較窄時,可 以防止奈米管發射層在該傳導層側壁上任何可能的滿溢。 結果,任何來自傳導層外圍表面上奈米管所發射的電子散 射都可以被除去。 現在請參考第4A圖,其中展示了 一種本發明二極架構 FED架構。在FED裝置70中,一種擁有電極層74以及螢 光粉塗層 76沈積在上面的頂部玻璃面板72,放置在與一 種底部玻璃基板7 8相對的位置。在底部玻璃基板7 8頂部 沈積一種預定寬度的傳導層材料,例如一種銀膠傳導層 8 0。一種擁有比該層8 0寬度較小的奈米碳管層8 2,是藉 由一種厚膜印刷技術沈積在頂部。已被瞭解的是,這些奈 米碳管 8 4會突出在頂部表面與該層 8 2的外圍側壁表面 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) # ---訂---------線 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 513602 A7 ___B7_ 五、發明說明() 上。該奈米管發射器層 8 2的寬度應該小於該銀膠傳導層 8 0寬度的3 / 4。該奈米管發射層8 2的寬度能夠進一步被限 制在該銀膠傳導層8 0寬度大約1 /4到大約3 /4之間的範 圍。這裡所使用的”大約",其詞義表明數值的範圍,在所 給予平均值正負百分之十的範圍内。 在奈米碳管層導入一種固化製程之後,即處於攝氏溫 度大約400度到500度之間以及持溫大約30分鐘到60分 鐘的時間,如第4B圖所展示,該奈米管發射器層82受重 力流動到較低的高度,但仍維持在該銀膠傳導層8 0頂部表 面上。結果,當一負電荷施加於這個銀膠傳導層8 0時,電 子8 8將從該些奈米管8 4朝螢光粉塗層7 6衝射出來,改善 FED裝置70上的影像。在與如第2B圖所展示的傳統裝置 比較時,從傳導層5 0側壁散射出來的電子將完全被去除。 同樣地,在一種三極架構FED裝置90中,如第5A與 5 B圖所展示的,其包括一種陽極92的第三電極,其藉由 一第一閘極94沈積於一絕緣層區96所形成。在固化製程 以後,該些奈米管84不會滿溢而覆蓋該銀膠傳導層80的 側壁,如展示於第5 B圖。結果,主要由奈米管發射層8 2 所發射的大量電子群,抵達該些螢光粉塗層76,該FED裝 置9 0呈現出大幅改進過的影像。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) an «—a Is an n ϋ If n n n n n · n n n is n n n )OJ· n ϋ ϋ n ϋ · WMW MM I 讎 (請先閱讀背面之注意事項再填寫本頁) 513602 A7 B7 五、發明說明() 因此本發明新穎的架構提供一種大幅改進的厚膜印刷 電子發射來源,無論是在二極或者三極架構CNT-FED (奈 米碳管場發射裝置)中。在厚膜沈積製程以及固化製程導入 後,本發明與第2B及3 B圖中所展示的傳統製作方法比較 之下,此架構表現出一種大幅改進的裝置。本發明架構的 特性在於該厚度有意義地縮小,亦即當該奈米管發射器層 的寬度比奈米碳管發射器中的銀膠層小,且奈米管發射層 之厚度介於大約1微米與大約1 0微米之間。 本發明利用厚膜印刷形成電子發射來源因此表現出許 多的益處,包括:(1)去除了該些奈米碳管與傳導層間對齊 的難度;(2)增進電子群有效朝向該螢光塗層噴射的比例; (3)減少來自該些奈米碳管所發射電子的散射;(4)減少介電 絕緣層的電荷累積;(5)增加在這FED設備上所產生的影像 均勻度與對比。 本發明新穎的場發射顯示面板,及利用寬度較小的奈 米碳管發射層,製作此種面板的方法,已因此詳細地敘述 於上面的說明以及後附第4 A、4 B、5 A以及5 B圖的圖示中。 儘管本發明已經以一示範性的方式說明,應該被理解 的是,專用語的使用是為了文字說明上的自然表達,專利 範圍不應因此而受到限制。 本紙張尺度適用中國國家標準(CNS)A4規格(210x 297公f ) (請先閱讀背面之注意事項再填寫本頁) —訂---- !線 經濟部智慧財產局員工消費合作社印製 513602 A7 B7 五、發明說明( 可内 , 示 明教 說明 來發 例本 施據 實根 佳地 較易 一 輕 對可 針者 經術 已技的 明項能 發該可 本習他 管熟 其 儘,做 , 是明 外的發 此會本 體對 以容 更 變 專 來 下 接 於 張 主 將 享 獨 或 權 他 kr 的 。 中中 例義 施定 實的 明圍 發範 本請 中 利 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張义度適用中國國家標準(CNS)A4規格(210 X 297公釐)Picture B: The closed seal of the field office of the Intellectual Property Bureau's Consumer Cooperatives of the Ministry of Economic Affairs printed a step-by-step board. 1- -L large-scale branch. Its structure is a micro-field-effect one. Tong Cui Tu Chuan Ming said the surface view, Section B Figure I < Large view J first put U surface 7 is J ^ _ Α, σ Figure C II 16 This paper size applies Chinese National Standard (CNS) A4 specifications (210 X 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 513602 Λ7 _B7_ V. Description of the Invention () Figure 2A is a traditional two-pole FED device with a carbon nanotube layer deposited on a conductive layer Enlarged section view. FIG. 2B is an enlarged cross-sectional view of the conventional diode structure in FIG. 2A after the nanotube layer is introduced into a curing process. Fig. 3A is an enlarged cross-sectional view of a conventional three-pole FED device with a carbon nanotube layer on a conductive layer. FIG. 3B is an enlarged cross-sectional view of the conventional three-pole structure device in FIG. 3A after the nano-tube emitter layer has undergone a curing process. Fig. 4A is an enlarged cross-sectional view of a diode-structured FED device in which the width of the nanotube layer of the present invention has been reduced. Fig. 4B is an enlarged cross-sectional view of the two-dimensional FED device of the present invention in Fig. 4A after the nano-sized tube layer is introduced into the curing process. Figure 5A is an enlarged cross-sectional view of a three-pole FED device according to the present invention with a reduced thickness nanometer emitter layer deposited on a conductive layer. FIG. 5B is an enlarged cross-sectional view of the three-pole FED device of the present invention in FIG. 5A after the nano-tube emitter layer is introduced into a curing process. Comparative description of drawing numbers: 10 Traditional field emission display screen device 1 2 Amorphous silicon base film resistive layer 14 Glass substrate 16 Dielectric material insulation layer This paper size is applicable to China National Standard (CNS) A4 specification (210 X 297 g t) n ϋ d I iinndnnn · ϋ nnnnnn o, * nin ί · ϋ nn I (Please read the precautions on the back before filling this page) 513602 A: _B7 V. Description of the invention (18) Metallic gate layer 20 Micro end 22 Cathode Architecture 30 Complete FED Architecture 28 Anode 36 Glass Plate 32 Contains Stone Dance Particles 34 Indium Tin Oxide (ITO) Layer 26 Electronics 38 Side Wall Panel 40 Traditional Diode Architecture FED 42 Top Glass Substrate 44 Bottom Glass Substrate 48 Phosphor Coating 46 electrode 50 electrode layer 54 nanometer carbon tube 60 three-pole structure FED 62 first gate 64 insulating material layer 66 conductive layer 70 FED device 74 electrode layer 76 phosphor coating 72 top glass panel 78 bottom glass substrate 80 silver glue Conductive layer 82 nm Carbon tube layer 84 nm Carbon tube 88 Electronics 90 Three-pole structure FED device 92 Anode 94 First gate 96 Insulating material layer (Please read the precautions on the back before filling this page) Φ Order --------- Detailed description of the wire invention: Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economics The present invention discloses a field emission display panel with a two-pole or three-pole structure, in which a nano-tube emission layer is used as an electron emission source. In the nanometer tube emission source, an emission layer having a reduced width is deposited on top of a conductive layer, so that the nanometer tube emission layer is introduced into a curing process. The paper dimensions are applicable to China National Standard (CNS) A4 specifications ( (210 X 297 mm) 513602 A7 B7 5. After the description of the invention (), the nano tubes will not overflow on the peripheral side wall of the conductive layer. Electrons scattered from any side wall nanotube are therefore completely removed. It has been found that the width of the nanoemitter layer should be less than 3/4 of the width of the underlying conductive layer. It has been further found that the width of the nanometer emitter layer should be between about 1/4 and 3/4 of the width of the conductive layer to prevent it from overflowing after a curing process. The invention further discloses that a method is provided for fabricating a field emission display panel, which uses a nano carbon tube as an electron emission source, in which a nano tube emission layer has a width not greater than 3/4 of the width of the underlying conductive layer. When the width of the nanometer emitter layer is narrower than the width of the underlying conductive layer, any possible overflow of the nanometer emitter layer on the side wall of the conductive layer can be prevented. As a result, any electron scattering from the nano tube on the peripheral surface of the conductive layer can be removed. Reference is now made to Figure 4A, which illustrates a bipolar architecture FED architecture of the present invention. In the FED device 70, a top glass panel 72 having an electrode layer 74 and a phosphor coating 76 deposited thereon is placed at a position opposite to a bottom glass substrate 78. A conductive material of a predetermined width, such as a silver paste conductive layer 80, is deposited on top of the bottom glass substrate 78. A carbon nanotube layer 82 having a smaller width than the layer 80 is deposited on top by a thick film printing technique. It has been understood that these nano carbon tubes 8 4 will protrude on the top surface and the peripheral side wall surface of this layer 8 2 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read first Note on the back, please fill out this page again) # --- Order --------- Printed by the Consumers 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economy 513602 A7 ___B7_ V. Invention Explanation () on. The width of the nano-tube emitter layer 8 2 should be smaller than 3/4 of the width of the silver-glue conductive layer 80. The width of the nano-tube emission layer 82 can be further limited to a range between about 1/4 to about 3/4 of the width of the silver paste conductive layer 80. As used herein, "about", its meaning indicates that the value range is within the range of plus or minus ten percent of the average value given. After the nano carbon tube layer is introduced into a curing process, it is at a temperature of about 400 degrees Celsius to Between 500 degrees and holding temperature for about 30 minutes to 60 minutes, as shown in Figure 4B, the nano-tube emitter layer 82 flows to a lower height by gravity, but is still maintained in the silver gel conductive layer 8 0 on the top surface. As a result, when a negative charge is applied to the silver gel conductive layer 80, electrons 8 8 will be ejected from the nano tubes 8 4 toward the phosphor coating 76, improving the FED device 70. When compared with the conventional device shown in Figure 2B, the electrons scattered from the 50 side wall of the conductive layer will be completely removed. Similarly, in a three-pole FED device 90, as shown in Figure 5A and As shown in FIG. 5B, it includes a third electrode of an anode 92, which is formed by depositing a first gate electrode 94 on an insulating layer region 96. After the curing process, the nanotubes 84 are not full. Overflowing and covering the sidewall of the silver glue conductive layer 80, as shown in the first Fig. 5 B. As a result, a large number of electron groups mainly emitted by the nano-tube emission layer 8 2 reach the phosphor coating 76, and the FED device 90 presents a greatly improved image. This paper scale is applicable to China Standard (CNS) A4 (210 X 297 mm) an «—a Is an n ϋ If nnnnn · nnn is nnn) OJ · n ϋ ϋ n ϋ · WMW MM I 雠 (Please read the precautions on the back before filling in (This page) 513602 A7 B7 V. Description of the invention () Therefore, the novel architecture of the present invention provides a greatly improved source of thick-film printed electron emission, whether it is in a two- or three-pole structure CNT-FED (nano-carbon tube field emission device) ). After the thick film deposition process and curing process are introduced, the present invention shows a greatly improved device compared with the traditional manufacturing methods shown in Figures 2B and 3B. The characteristics of the present invention's architecture are The thickness is significantly reduced, that is, when the width of the nano-tube emitter layer is smaller than the silver glue layer in the nano-carbon tube emitter, and the thickness of the nano-tube emitter layer is between about 1 micrometer and about 10 micrometers. The present invention The use of thick film printing to form an electron emission source therefore exhibits many benefits, including: (1) removing the difficulty of aligning the carbon nanotubes with the conductive layer; and (2) improving the efficiency of the electron group to be effectively sprayed towards the fluorescent coating. Ratio; (3) reduce the scattering of electrons emitted from the nano carbon tubes; (4) reduce the charge accumulation of the dielectric insulating layer; (5) increase the uniformity and contrast of the image produced on this FED device. The invention of a novel field emission display panel, and a method for making such a panel using a nanometer carbon tube emission layer having a relatively small width, has therefore been described in detail in the above description and the attached 4A, 4B, 5A, and 5 Figure B in the illustration. Although the present invention has been described in an exemplary manner, it should be understood that the use of proper words is for natural expression in text description, and the scope of patents should not be limited as a result. This paper size applies to China National Standard (CNS) A4 specification (210x 297 male f) (Please read the precautions on the back before filling this page) — Order ----! Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 513602 A7 B7 V. Description of the invention (But inside, showing the teaching instructions to make an example of this practice is easier and easier. If you have a skill in the needle, you can send it by yourself. To do this, it was issued by the Ming Dynasty. The body of the meeting will be adapted to change the content of the content, and it will be next to the master Zhang to enjoy the independence or power. Kr. Please fill in this page for further information) Printed on the paper by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the Chinese National Standard (CNS) A4 specification (210 X 297 mm)

Claims (1)

513602513602 經濟部智慧財產局員工消費合作社印製 1. 一種場發射顯示面板,其至少包含: 一第一電絕緣板; 複數個發射器堆疊,形成於上述第一電絕緣板上,每 一個上述發射器堆疊會平行放置於上述第一絕緣板的一橫 向方向,且至少包含一層擁有一第一寬度的一第一電傳導 材料與一層擁有一第二寬度在頂部的奈米管發射器,上述 第二寬度會較小於上述第一寬度的3/4; 一第二電絕緣板,放置在上述第一電絕緣板上面且間 隔隔開於上述第一電絕緣板,上述第二絕緣板擁有一内部 表面面對上述第一電絕緣板; 一第二電傳導材料層,在上述第二電絕緣板的上述内 部表面上; 複數條多樣性的螢光粉條,塗佈在上述第二電傳導材 料層上,在來自上述複數個發射器堆疊發射電子群活化 下,各自發射一紅、綠或藍光;以及 複數個側面面板,接合上述第一與第二電絕緣板的周 圍在一起,以在其内部形成一真空壓緊的内腔。 2. 如申請專利範圍第1項所述之場發射顯示面板,其中上 述奈米管發射器層的上述第二寬度係介於上述第一電 傳導材料層的上述第一寬度大約1 /4與3 /4之間。 3 .如申請專利範圍第1項所述之場發射顯示面板,其中上 23 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂·--------線--- 513602 ABCD 經濟部智慧財產局員工消費合作杜印製 六、申請專利範圍 述第二電絕緣板更包含一黑色陣列層介於上述複數條 多樣性的螢光粉條彼此之間。 4. 如申請專利範圍第1項所述之場發射顯示面板,其中上 述第一與第二電絕緣板係由一種實質上透明的陶竟材 料形成。 5. 如申請專利範圍第1項所述之場發射顯示面板,其中上 述第一電傳導材料層是上述場發射顯示面板的陰極。 6. 如申請專利範圍第1項所述之場發射顯示面板,其中上 述第一電傳導材料層為一銀膠。 7. 如申請專利範圍第1項所述之場發射顯示面板,其中上 述第二電傳導材料層是上述場發射顧示面板的一第一 陽極。 8. 如申請專利範圍第1項所述之場發射顯示面板,其中上 述第二電傳導材料層係由氧化銦錫所形成。 9. 如申請專利範圍第1項所述之場發射顯示面板,其中上 述奈米管發射器層係以複數個奈米尺寸空心管子與一 黏合劑材料的混合物形成。 24 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐〉 (請先閱讀背面之注意事項再填寫本頁) ·! . 線丨# 513602 A8 B8 C8 D8 六、申請專利範圍 1 〇.如申請專利範圍第1項所述之場發射顯示面板,其中上 述奈米管發射器層係以複數個奈米尺寸的碳、鑽石或類 鑽石碳的空心管子與一黏合劑材料的混合物形成。 1 1 .如申請專利範圍第1項所述之場發射顯示面板,其中每 一個上述多樣性螢光粉塗條各自發射一種红、綠或藍 光,不同於藉由來自上述複數個發射器堆疊的電子活化 其緊連相鄰的螢光條時所發射的光。 1 2.如申請專利範圍第1項所述之場發射顯示面板,更包含 上述第一電傳導材料的一第二電傳導材料層形成於複 數個絕緣材料層的頂部,以作為第一閘極的功能。 1 3 . —種製作一場發射顯示面板的方法,其至少包含下列步 驟: 提供一第一電絕緣板; 藉由一厚膜印刷方法形成複數個發射器堆疊在上述第 一電絕緣板上,平行於上述第一電絕緣板的一橫向方向, .每一個上述發射器堆疊至少包含擁有一第一寬度的一第一 電傳導材料層,以及擁有一第二寬度在頂部的一奈米管發 射器層,上述第二寬度會小於3/4上述第一寬度; 提供一第二電絕緣板; 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐〉 (請先閱讀背面之注意事項再填寫本頁) 訂i -線丨·! 經濟部智慧財產局員工消費合作社印製 513602 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8、申請專利範圍 當上述第一與第二電絕緣板被組合在一起時,形成一 第二電傳導材料層在上述第二電絕緣板的一内部表面,面 對上述第一電絕緣板; 形成一多樣性螢光粉塗條在上述第二電傳導材料層, 當被電子群活化時,以發射一紅、綠或藍光; 藉由複數個側面板接合上述第一與第二電絕緣板在一 起且在内部形成一真空壓緊的内腔。 1 4.如申請專利範圍第1 3項所述之製作一場發射顯示面板 的方法,其中上述第二寬度係介於大約1 /4到大約3 /4 上述第一寬度之間。 1 5 .如申請專利範圍第1 3項所述之製作一場發射顯示面板 的方法,進一步包含印刷上述第一電傳導材料層在一銀 膠上的步驟。 1 6.如申請專利範圍第1 3項所述之製作一場發射顯示面板 的方法,進一步包含藉由一黏合劑與該群包含碳纖維、 鑽石纖維與類鑽石碳纖維的複數個奈米尺寸空心纖維 的混和物,印刷上述奈米發射器層的步驟。 1 7.如申請專利範圍第1 3項所述之製作一場發射顯示面板 (請先閱讀背面之注意事項再填寫本頁) — 訂. •線丨-- 26 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 513602 MB8C8D8 t、申請專利範圍 的方法,進一步包含連接一負電荷到上述第一電傳導材 料層下方於上述複數個發射器堆疊,以及一正電荷到上 述第二電傳導材料層的步驟。 1 8.如申請專利範圍第 Π項所述之製作一場發射顯示面板 的方法,進一步包含塗佈一黑色陣列層在上述第二電絕 緣板上介於上述多樣性螢光粉塗條彼此之間的步驟。 1 9.如申請.專利範圍第1 3項所述之製作一場發射顯示面板 的方法,其中上述複數個多樣性螢光粉塗條係藉由一厚 膜印刷技術所形成。 2 0.如申請專利範圍第1 3項所述之製作一場發射顯示面板 的方法,進一步包含沈積一上述第一電傳導材料於上述 複數個絕緣材料層的頂部的步驟,以作為一第一閘極的 功能。 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員Μ消費合作社印製 1 ------- 訂---------線— ----------------------- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 1. A field emission display panel comprising at least: a first electrically insulating plate; a plurality of emitters stacked on the first electrically insulating plate, each of the above-mentioned emitters The stack is placed parallel to a lateral direction of the first insulating plate, and includes at least one layer of a first electrically conductive material having a first width and one layer of a nano tube emitter having a second width at the top. The second The width will be smaller than 3/4 of the first width; a second electrically insulating plate placed on the first electrically insulating plate and spaced apart from the first electrically insulating plate, the second insulating plate having an interior The surface faces the first electrically insulating plate; a second electrically conductive material layer on the inner surface of the second electrically insulating plate; a plurality of various fluorescent powder stripes coated on the second electrically conductive material layer Above, each of the red, green, or blue light is emitted under the activation of the group of emitted electrons from the above-mentioned plurality of emitter stacks; and a plurality of side panels are connected to the above-mentioned first and second Around the circumference of the insulating plate together to form a vacuum in its interior a compacted lumen. 2. The field emission display panel according to item 1 of the scope of the patent application, wherein the second width of the nano-tube emitter layer is between about 1/4 of the first width of the first electrically conductive material layer and 3/4. 3. The field emission display panel described in item 1 of the scope of patent application, of which 23 paper sizes are applicable to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling in this Page) Order -------- Line --- 513602 ABCD Consumer Co-operation of Employees and Intellectual Property Bureau of the Ministry of Economic Affairs Du Printed 6. Scope of Patent Application The second electrical insulation board also includes a black array layer between the above plural Diverse strips of fluorescent powder between each other. 4. The field emission display panel as described in item 1 of the scope of the patent application, wherein the first and second electrically insulating plates are formed of a substantially transparent ceramic material. 5. The field emission display panel according to item 1 of the scope of the patent application, wherein the first electrically conductive material layer is a cathode of the field emission display panel. 6. The field emission display panel according to item 1 of the scope of patent application, wherein the first electrically conductive material layer is a silver glue. 7. The field emission display panel according to item 1 of the scope of patent application, wherein the second electrically conductive material layer is a first anode of the field emission display panel. 8. The field emission display panel according to item 1 of the patent application scope, wherein the second electrically conductive material layer is formed of indium tin oxide. 9. The field emission display panel according to item 1 of the scope of the patent application, wherein the nano-tube emitter layer is formed by a mixture of a plurality of nano-sized hollow tubes and a binder material. 24 This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) ·!. Line 丨 # 513602 A8 B8 C8 D8 〇. The field emission display panel according to item 1 of the scope of patent application, wherein the nano tube emitter layer is a mixture of a plurality of nano-sized carbon, diamond or diamond-like carbon hollow tubes and an adhesive material. 1 1. The field emission display panel as described in item 1 of the scope of the patent application, wherein each of the above-mentioned diverse fluorescent powder coating strips emits a kind of red, green, or blue light, respectively, unlike by using a plurality of emitters from the above. The stacked electrons activate the light emitted when they are directly adjacent to the adjacent fluorescent strip. 1 2. The field emission display panel described in item 1 of the scope of patent application, further comprising a second electricity of the first electrically conductive material. A conductive material layer is formed on top of a plurality of insulating material layers to function as a first gate. 1 3. A method for manufacturing a field emission display panel, which includes at least the following steps: An electrical insulation plate; a plurality of emitters are stacked on the first electrical insulation plate by a thick film printing method, parallel to a lateral direction of the first electrical insulation plate, and each of the above emitter stacks includes at least one A first electrically conductive material layer of a first width and a nanometer emitter layer having a second width on top, the second width will be less than 3/4 of the first width; a second electrically insulating plate is provided ; This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page) Order i-line 丨 ·! Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 513602 Printed by A8, B8, C8, D8, Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economics, patent application scope. When the first and second electrical insulation plates are combined together, a second electrically conductive material layer is formed on the second electrical insulation plate. An internal surface of the first electrically insulating plate is formed; a plurality of fluorescent powder coating strips are formed on the second electrically conductive material layer, and when activated by an electron group, a red light is emitted. Green or blue light; the first and second electrical insulation plates are joined together by a plurality of side panels and a vacuum-compressed inner cavity is formed in the interior. 1 4. Make a field as described in item 13 of the scope of patent application The method for transmitting a display panel, wherein the second width is between about 1/4 to about 3/4 of the first width. 1 5. The method for making a field display panel as described in item 13 of the scope of patent application The method further includes the step of printing the first electrically conductive material layer on a silver paste. 1 6. The method for manufacturing a field emission display panel as described in item 13 of the patent application scope, further comprising using an adhesive and The group includes a mixture of carbon fibers, diamond fibers, and diamond-like carbon fibers, and a plurality of nano-sized hollow fibers, and the step of printing the nano-emitter layer described above. 1 7. Make a field emission display panel as described in item 13 of the scope of patent application (please read the precautions on the back before filling out this page) — order. • line 丨-26 This paper size applies to Chinese national standards (CNS ) A4 specification (210 X 297 mm) 513602 MB8C8D8 t, patent application method, further comprising connecting a negative charge to the aforementioned plurality of emitter stacks under the first electrically conductive material layer, and a positive charge to the aforementioned first Step of two layers of electrically conductive material. 1 8. The method for manufacturing a field emission display panel as described in item Π of the scope of patent application, further comprising coating a black array layer on the second electrical insulating plate between the plurality of fluorescent powder coating strips. A step of. 19. The method for manufacturing a field emission display panel as described in item 13 of the scope of application. Patent, wherein the plurality of multi-color phosphor coating strips are formed by a thick film printing technology. 20. The method for manufacturing a field emission display panel as described in item 13 of the scope of patent application, further comprising the step of depositing the first electrically conductive material on top of the plurality of insulating material layers as a first gate. Extremely functional. (Please read the notes on the back before filling out this page) Printed by M Consumer Cooperative, Member of Intellectual Property Bureau, Ministry of Economic Affairs 1 ------- Order --------- Line-------- ---------------- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW90128771A 2001-11-21 2001-11-21 Cathode formed on the wide conduction layer of nanotube emitter layer and the field emission display panel thereof TW513602B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90128771A TW513602B (en) 2001-11-21 2001-11-21 Cathode formed on the wide conduction layer of nanotube emitter layer and the field emission display panel thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90128771A TW513602B (en) 2001-11-21 2001-11-21 Cathode formed on the wide conduction layer of nanotube emitter layer and the field emission display panel thereof

Publications (1)

Publication Number Publication Date
TW513602B true TW513602B (en) 2002-12-11

Family

ID=27752375

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90128771A TW513602B (en) 2001-11-21 2001-11-21 Cathode formed on the wide conduction layer of nanotube emitter layer and the field emission display panel thereof

Country Status (1)

Country Link
TW (1) TW513602B (en)

Similar Documents

Publication Publication Date Title
US6359383B1 (en) Field emission display device equipped with nanotube emitters and method for fabricating
US6448709B1 (en) Field emission display panel having diode structure and method for fabricating
TW498380B (en) An electron releasing device, a production method thereof and an image display apparatus using the device
TW594824B (en) Triode structure of field-emission display and manufacturing method thereof
US7365482B2 (en) Field emission display including electron emission source formed in multi-layer structure
US6541906B2 (en) Field emission display panel equipped with a dual-layer cathode and an anode on the same substrate and method for fabrication
KR20010011136A (en) Structure of a triode-type field emitter using nanostructures and method for fabricating the same
JP2005243641A (en) Electron emission element and its manufacturing method
US6750604B2 (en) Field emission display panels incorporating cathodes having narrow nanotube emitters formed on dielectric layers
US6486599B2 (en) Field emission display panel equipped with two cathodes and an anode
JP2001266737A (en) Electron source unit, its manufacturing method, and flat display unit equipped with the electron source unit
JP2005347266A (en) Long lifetime emitter for field emission element and manufacturing method for the same
TW513602B (en) Cathode formed on the wide conduction layer of nanotube emitter layer and the field emission display panel thereof
TW200415670A (en) Field emission device, and method of manufacturing such a device
JP2006244798A (en) Self-luminous flat display device
TW483016B (en) Manufacturing method of electron emitter stack and structure of field emission display
JP3717358B2 (en) Display device
TWI328246B (en) Method for manufacturing electron emitters and electron sources using the same
JP2003045366A (en) Field emission display panel having double layer cathode and anode on one substrate, and manufacturing method of the same
KR20070017747A (en) Method for manufacturing a Field Emission Array
KR100784997B1 (en) Method of manufacturing electron emission device, electron emission device prepared using the method, and backlight unit and electron emission display device adopting the electron emission device
TWI290246B (en) Field emission display panel equipped with two cathodes and one anode
TW494425B (en) Field emission display panel having dual layer cathode and the manufacturing method thereof
JP2005317534A (en) Electron emission display device
JP3663171B2 (en) FED panel and manufacturing method thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees