TW508723B - Method for reducing thermal budget in forming capacitor in semiconductor integrated circuit - Google Patents

Method for reducing thermal budget in forming capacitor in semiconductor integrated circuit Download PDF

Info

Publication number
TW508723B
TW508723B TW90113409A TW90113409A TW508723B TW 508723 B TW508723 B TW 508723B TW 90113409 A TW90113409 A TW 90113409A TW 90113409 A TW90113409 A TW 90113409A TW 508723 B TW508723 B TW 508723B
Authority
TW
Taiwan
Prior art keywords
layer
patent application
scope
item
oxide
Prior art date
Application number
TW90113409A
Other languages
Chinese (zh)
Inventor
Wang-Cheng Shr
Lan-Lin Jau
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW90113409A priority Critical patent/TW508723B/en
Application granted granted Critical
Publication of TW508723B publication Critical patent/TW508723B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

The present invention relates to a method for reducing a thermal budget in forming a capacitor in a semiconductor integrated circuit (IC), which comprises providing a semiconductor substrate having a crown hemi-spherical grain (HSG); performing a remote plasma nitridation on the crown HSG; depositing a Ta2O5 layer on the crown HSG to form a Ta2O5 capacitor layer; performing a N2O annealing treatment on the Ta2O5 layer; performing a remote plasma oxidation treatment on the Ta2O5 layer; and using an atomic layer deposition to deposit a titanium nitride layer on the Ta2O5 layer or a physical vapor deposition to deposit a titanium nitride layer on the Ta2O5 layer.

Description

發明領域: 本發明是關於 之熱預算的方 一種於半導體積體電路中,減少 法’特別是氧化钽電容形成的方 一電容形成 法。 發明背景: 的半導體積體電路來說,線寬尺寸也逐步向零 記憶俨m 發展。而對線寬尺寸愈來愈小的動態隨機存取 要 I 处 tyna,mlc Random Access Memory),對介電係數的 ,=同於氬化矽(SiaN4)材料的介電層,也變得愈來愈重 。在許多可能成為介電層的材料中,過去以氧化矽與氮 化矽為主要的使用材料。但隨著技術的創新與發展,氧化 鈕的發展逐漸成熟,也逐漸成為半導體業所採用的介電材 現今,尤其是在半導體線寬進步達到零點一五微米或線寬 更窄的世代,氧化鈕幾乎已是成為高介電層材料中,最成 熟的材料之一。目前亦應用氧化钽薄膜於半球狀矽晶表面 的三維立體底部電極上,藉以形成線寬零點一八微米世代 之動態隨機存取記憶體的電容部份。 氧化钽是一種高介電系數的材料,以往成長Ta2〇5都使用 丁&2(〇(:2115)5/〇2在6481^以上成長再經回火後得到有結晶性的FIELD OF THE INVENTION The present invention relates to a method for reducing the thermal budget of a semiconductor integrated circuit, in particular a method for forming a capacitor in a tantalum oxide capacitor. Background of the Invention: For semiconductor integrated circuits, the line width size is gradually developing towards zero memory 俨 m. The dynamic random access for line width is getting smaller and smaller. I need tyna (mlc Random Access Memory), and for the dielectric constant, the dielectric layer is the same as that of the silicon argon (SiaN4) material. Heavier and heavier. Among many materials that may become a dielectric layer, silicon oxide and silicon nitride were mainly used in the past. However, with the innovation and development of technology, the development of oxidized buttons has gradually matured, and it has gradually become a dielectric material used in the semiconductor industry. Nowadays, especially in the generation when the semiconductor line width advances to 1.5 micron or narrower, The oxide button has become one of the most mature materials among high-dielectric layer materials. At present, tantalum oxide thin film is also applied to the three-dimensional three-dimensional bottom electrode on the surface of the hemispherical silicon crystal to form the capacitor portion of the dynamic random access memory of the generation of line width of 0.8 micron. Tantalum oxide is a material with a high dielectric constant. In the past, Ta2O5 was grown using D & 2 (〇 (: 2115) 5 / 〇2 when it was grown above 6481 ^ and then tempered to obtain a crystalline material.

508723508723

Ta2〇5。而在傳統的半導體製程中 形成氧化鈕電容: ’一般會以以下幾個步驟 如第一圖所示,先提供一冠形半球狀矽晶(HSG),如標號 1。再以快速熱氮化處理(Rapid ThermalTa205. In the traditional semiconductor process, an oxide button capacitor is formed: Generally, the following steps are used to provide a crown-shaped hemispherical silicon crystal (HSG), as shown in Figure 1, as shown in the first figure. 1. rapid thermal nitridation

Nltridatlon) ’亦或以爐管進行氮化處理(Furnace NltridaJion),此時的溫度約要80 0 °C至l〇〇〇°C,如標號 12。跟著’沉積一氧化钽層,約以35〇艺到48〇它進行,如 標號13。隨後以氧進行熱氧退火處理Thermal Anneal),如標號14,約以800至1〇〇〇艽進行。最後,如 標號15,以化學氣相沉積法(Chemicai ν&ρ〇Γ Deposit ion),沉積一氮化鈦層,此時約以68 〇進行。 以上的傳統製程中,需要使用大量的熱。隨著製程精進與 元件的縮小化’前段的元件製程無法再承受中段與後段的 南溫製程(熱預算)。因此,〇18 um世代的中後段溫度一般 設限在850 °C,〇.15um世代的中後段溫度訂在700 °C,而〇.Nltridatlon) 'or nitriding treatment with Furnace tube (Furnace NltridaJion), the temperature at this time is about 80 ° C to 1000 ° C, such as reference number 12. Following the 'deposition of the tantalum oxide layer, it is performed at about 35 to 48 °, such as reference number 13. Subsequently, a thermal oxygen annealing treatment (Thermal Anneal) is performed with oxygen, such as reference number 14, and is performed at about 800 to 10,000 艽. Finally, as indicated by reference numeral 15, a titanium nitride layer is deposited by a chemical vapor deposition method (Chemicai ν & ρΓΓ Deposit ion), and at this time, it is performed at about 68 °. In the above traditional process, a large amount of heat is required. With the progress of the process and the shrinking of the components, the component manufacturing process in the front stage can no longer withstand the south temperature process (thermal budget) in the middle stage and the latter stage. Therefore, the temperature of the middle and posterior segment of the 〇18 um generation is generally set to be limited to 850 ° C, and the temperature of the middle and posterior segment of the 0.15m generation is set to 700 ° C, while the

13世代的中後段溫度訂在6〇〇 t。是故,儘管氧化鈕電容 能符合電容密度與晶胞尺寸的要求,但在線寬零點一五微 米及更低線寬的世代中,使用氧化组作為金屬絕緣體半導 體(Metal Insulator Semiconductor)電容會有更大的挑 戰’而這項挑戰則來自製程中熱預算支出的降低。於是, 此低溫新製程的研究發展是將Ta2〇5電容整合到〇. 15um,〇. 13um世代產品上的必要課題。The 13th generation's mid-late temperature was set at 600 t. Therefore, although the oxide button capacitor can meet the requirements of capacitance density and cell size, in the generation with a line width of 1.5 micrometers and lower, the use of an oxide group as a metal insulator semiconductor capacitor will have The greater challenge 'comes from the reduction of thermal budget expenditures in the process. Therefore, the research and development of this new low-temperature process is a necessary subject to integrate Ta205 capacitors into 0.15um, 0.15um generation products.

第5頁 508723 五、發明說明(3) 發明概述: 本發明之主要目的在於降低半導體製程中熱預算的支出, 同時使得元件不受後段熱溫的影響而功能變差。 本發明之另一主要目的在於將Ta2 05電容整合到0· 15tfm,〇. 1 3urn世代產品中,符合電容密度與晶胞尺寸的需求。“ 本發明為一種於半導體積體電路中,減少一電容形成所需 之熱預算的方法。首先提供一半導體底材,而半導體底材 具有一第一氧化層,其中夾有多晶矽栓塞(polySilic〇I1Page 5 508723 V. Description of the invention (3) Summary of the invention: The main purpose of the present invention is to reduce the thermal budget expenditure in the semiconductor manufacturing process, and at the same time make the device not be affected by the thermal temperature of the rear stage and the function is deteriorated. Another main object of the present invention is to integrate Ta205 capacitors into 0.15tfm, 0.13urn generation products, which meet the requirements of capacitor density and cell size. "The present invention is a method for reducing the thermal budget required for the formation of a capacitor in a semiconductor integrated circuit. First, a semiconductor substrate is provided, and the semiconductor substrate has a first oxide layer with a polysilicon plug (polySilic. I1

Plug),另有一柱狀氧化層。而在柱狀氧化層外緣有一多 晶石夕層’而一冠形半球狀矽晶(HSG)形成於多晶矽層的外 表面上。 接著對趙形半球狀石夕晶進行間接電漿氮化(Rem〇te piasma Ni tridation)處理 〇 再沉積一氧化组層於冠形半球狀矽晶上,以形成一氧化钽 電容層。 繼續’對氧化鈕層進行氧化氮(n2〇)退火處理 Anneal) ° 508723 五、發明說明(4) 接著’對氧化钽層進行間接電漿氧化(Rem〇te PUsma Oxidation)處理。 最後’以分子層狀沉積法(Atomic Layer Deposition)進 行况積一氮化鈦層於前述氧化钽層上。或是以物理氣相沉 積法(PVD)技術,沉積一氮化鈦(TiN)層於前述氧化钽層 上。 為使貴審查委員對於本發明能有更進一步的了解與認 同,兹配合圖式作一詳細說明如后。 發明詳細說明: 本發明,關於一種於半導體積體電路中,減少一電容形成 之熱預算的方法,一般包含了下列步驟: 如第二圖Α所示,首先提供一半導體底材22,而半 材22上具有一第一氧化層23,其中夾有多晶矽栓塞 一 (^Polysilicon Plug)24,另有一柱狀氧化層25。而在柱狀 氧化層2 5外緣有一多晶矽層2 6,而一冠形半球妝曰 (HSG)27形成於多晶矽層26的外表面上。Plug), and another columnar oxide layer. On the outer edge of the columnar oxide layer, there is a polycrystalline silicon layer 'and a crown-shaped hemispherical silicon crystal (HSG) is formed on the outer surface of the polycrystalline silicon layer. Next, indirect plasma nitridation (Remote piasma Ni tridation) treatment is performed on the Zhao-shaped hemispherical lithospheric crystal. 〇 An oxide layer is deposited on the crown-shaped hemispherical silicon crystal to form a tantalum oxide capacitor layer. Continue to 'anneal the oxide button layer with nitrogen oxide (n2O) Anneal) ° 508723 V. Description of the invention (4) Then' remote PUsma Oxidation treatment to the tantalum oxide layer. Finally, a titanium nitride layer is deposited on the tantalum oxide layer by Atomic Layer Deposition. Or, a physical vapor deposition (PVD) technique is used to deposit a titanium nitride (TiN) layer on the tantalum oxide layer. In order to allow your reviewers to further understand and recognize the present invention, a detailed description is given below in conjunction with the drawings. Detailed description of the invention: The present invention relates to a method for reducing the thermal budget of a capacitor in a semiconductor integrated circuit, which generally includes the following steps: As shown in FIG. 2A, a semiconductor substrate 22 is first provided, and The material 22 has a first oxide layer 23, and a polysilicon plug 24 (polysilicon plug) 24 is interposed thereon, and a pillar-shaped oxide layer 25 is interposed. A polycrystalline silicon layer 26 is formed on the outer edge of the columnar oxide layer 25, and a crown-shaped hemispherical layer (HSG) 27 is formed on the outer surface of the polycrystalline silicon layer 26.

508723 五、發明說明(5) 接著如第二B圖示,對冠形半球狀矽晶27進行間接電漿氮 化(Remote Plasma Nitridation)處理。此時的溫度是以 攝氏400 °C至700 °C進行,而產生的氮化矽厚度約1〇至2〇 埃’也有較好的晶片均勻度(Wafer Uniformity),約5%。 且本法之進行溫度小於傳統上熱氮化法(Thermal Ni tridation ’使用氨氣,NIj3)的使用溫度,約8〇〇 i至 1 00 0 °C。間接電漿氮化處理是將氮氣體以電漿的方式,間 接通入氣室(Chamber)内的待處理晶片上,以進行反應。 而不是直接將電漿氮氣體導入晶片上反應。 再如第二c圖示’沉積一氧化钽層28於冠形半球狀矽晶27 上’以形成一氧化鈕電容層28。此時以傳統化學沉積法 (Chemical Vapour DepOSition,CVD)沉積氧化钽,而沉 積的溫度約為3 8 0〜4 8 0 °C。508723 5. Description of the invention (5) Next, as shown in the second B diagram, the indirect plasma nitridation (Remote Plasma Nitridation) treatment is performed on the crown hemispherical silicon crystal 27. The temperature at this time is from 400 ° C to 700 ° C, and the thickness of the silicon nitride produced is about 10 to 20 angstroms, and the wafer uniformity is about 5%. And the process temperature of this method is lower than that of the traditional thermal nitridation method (using ammonia gas, NIj3), which is about 800i to 100 ° C. Indirect plasma nitridation is a process in which a nitrogen gas is plasma-connected to a wafer to be processed in a chamber to perform a reaction. Instead of directly introducing plasma nitrogen gas onto the wafer for reaction. Then as shown in the second c ', a tantalum oxide layer 28 is deposited on the crowned hemispherical silicon crystal 27' to form an oxide button capacitor layer 28. At this time, the traditional chemical deposition method (Chemical Vapour DepOSition, CVD) is used to deposit tantalum oxide, and the deposition temperature is about 380 ~ 480 ° C.

繼續,如第二圖D所示,對氧化钽層28進行氧化氮(%〇)退 。火處理(\0 Anneal)。此時的退火溫度約攝氏6〇〇〇Cs7〇〇 C :處,時間約2〜7分鐘。$化氮有較低的鍵結能,所以 可以使氧原子在較低溫時即能活化。以此氣體進行,則製 程溫度低於傳統上使用氧的溫度,約8 〇 〇它。 接著,如第二Ε圖示,對氧化鈕層28進行間接電漿氧化 CKenjote Plasma 〇xidati〇n)處理。此時的溫度是以攝氏 300 C至500 °C進行。間接電漿氧化處理是將活性氧原子氣Continuing, as shown in the second figure D, the tantalum oxide layer 28 is subjected to nitrogen oxide (% 0) regression. Fire Handling (\ 0 Anneal). The annealing temperature at this time is about 6,000 ° C to 7000 ° C, and the time is about 2 to 7 minutes. $ Nitrogen has a lower bonding energy, so that oxygen atoms can be activated at lower temperatures. With this gas, the process temperature is lower than the temperature traditionally used for oxygen, about 800 times it. Next, as shown in the second E diagram, the oxidation button layer 28 is subjected to indirect plasma oxidation (CKenjote Plasma oxidation) treatment. The temperature at this time is from 300 C to 500 ° C. Indirect plasma oxidation

508723 五、發明說明(6) 體以電漿,方式,通入氣室内的待處理晶片 上以進行反應。而不是直接將電漿氧氣體沖到晶片上反 應。而此時亦可以氮氣體或氧化氮(乂〇)氣體作為電漿氣 體。以上方法的使用溫度遠低於使用傳統熱氧化法 (Thermal Oxidation)的攝氏8〇〇。。至1〇〇〇艺。 最後,.如第二F所示,以分子層狀沉積法(At〇mic [町冗 Deposition)進行沉積一氮化鈦(Tif〇層29於前述氧化钽層 28上,溫度約為小於攝氏45〇。。。藉以減少該氧化鈕電容 之熱預算。或是以物理氣相沉積法技術,沉積一氮化鈦層 29於前述氧化鈕層28上,溫度約為小於攝氏2〇〇艺。以上 兩種方法的使用溫度皆小於使用傳統化學氣相沉 (CVD)的攝氏680 °C。 ‘ 綜合上述之方法,整理如第三圖所示之製程方法。首 標記31提供一半導體底材,而半導體底材具 狀矽晶(HSG)。 乂千球 ,著如第三圖標記32示,對冠形半球狀矽晶進行間接 氮化(Remote Plasma Nitridation)處理。 再如第三圖標記示33 ’沉積一氧化鉅層於冠形半球狀 上,以形成一氧化钽介電層。 曰曰508723 V. Description of the invention (6) The body is connected to the wafer to be processed in the gas chamber by means of plasma, and the reaction is performed. Instead of flushing the plasma oxygen gas directly onto the wafer, it reacts. At this time, nitrogen gas or nitrogen oxide (氧化 〇) gas can be used as the plasma gas. The operating temperature of the above method is much lower than 800 degrees Celsius using the traditional thermal oxidation method. . To 1000 arts. Finally, as shown in the second F, a titanium layer (Tif〇 layer 29 is deposited on the tantalum oxide layer 28 described above by molecular lamination deposition method), and the temperature is less than 45 ° C. 〇 ... to reduce the thermal budget of the oxide button capacitor or physical vapor deposition technology, a titanium nitride layer 29 is deposited on the aforementioned oxide button layer 28, the temperature is about less than 200 degrees Celsius. Above The use temperature of both methods is lower than 680 ° C using traditional chemical vapor deposition (CVD). '' Combine the above methods and organize the process method shown in the third figure. The first mark 31 provides a semiconductor substrate, and Semiconductor substrate with crystalline silicon (HSG). 乂 Qianqiu, as shown in the third figure labeled 32, indirect nitridation (Remote Plasma Nitridation) of the crown hemispherical silicon crystal. Again as shown in the third figure labeled 33 'Deposit a giant oxide layer on the crown hemisphere to form a tantalum oxide dielectric layer.

第9頁 508723 五、發明說明(7) 繼續,如第三圖標記34所示,對氧化鈕層進行氧化氮(N2 0)退火處理(N20 Anneal)。 接著,如第三圖標記3 5示,對氧化钽層進行間接電漿氧化 (Remote Plasma Oxidation)處理。Page 9 508723 V. Description of the invention (7) Continue, as shown in the third figure mark 34, the oxide button layer is subjected to nitrogen oxide (N2 0) annealing treatment (N20 Anneal). Next, as shown in the third figure at 35, the tantalum oxide layer is subjected to indirect plasma oxidation (Remote Plasma Oxidation) treatment.

最後’如第二圖標記36所示’以分子層狀沉積法(Atomic Layer Deposition)進行沉積一氮化鈦層於前述氧化钽層 上,此為動態隨機存取記憶體之製造法之一。或是以物理 氣相沉積法(PVD)技術,沉積一氮化鈦(TiN)層於前述氧化 鈕層上。 而本發明之第一實施結果如第四A圖所示,在以施加電壓 (Applied Voltage)為橫轴與漏電流(Leakage Current)為, 縱軸的第一測試結果。且本發明之第二實施結果如第四B 圖所示’在以施加電壓(Applied Voltage)為橫轴與漏電 流(Leakage Current)為縱轴的第二測試結果。由兩圖中 可見,相較於傳統製程,此低溫低熱預算製程仍可將電容 的漏電流控制在所需的規格之内。 g 以上的發明製程中,使得氧化鈕電容除了更能符合電容密 度與晶胞尺寸的要求,在線寬零點一五微来及更低線寬的,· 世代中,使用氧化钽作為金屬絕緣體半導體(Metal Insulator Semiconductor)電容會有更大的便利,而這項:Finally, as shown in reference numeral 36 of the second figure, molecular titanium deposition (Atomic Layer Deposition) is used to deposit a titanium nitride layer on the aforementioned tantalum oxide layer. This is one of the manufacturing methods of dynamic random access memory. Or, a physical vapor deposition (PVD) technique is used to deposit a titanium nitride (TiN) layer on the oxide button layer. The first implementation result of the present invention is shown in FIG. 4A. The first test result is the vertical axis with the applied voltage as the horizontal axis and the leakage current as the vertical axis. And the result of the second implementation of the present invention is shown in Figure 4B. The result of the second test is to use the Applied Voltage as the horizontal axis and the Leakage Current as the vertical axis. As can be seen from the two figures, compared with the traditional process, this low temperature and low thermal budget process can still control the leakage current of the capacitor within the required specifications. g In the above invention process, in addition to the oxide button capacitors, which can better meet the requirements of capacitance density and cell size, the line width is 0.5 micrometers and lower. In the next generation, tantalum oxide was used as the metal insulator semiconductor. (Metal Insulator Semiconductor) capacitors will be more convenient, and this:

第10頁Page 10

受後段 熱預算 ’使得MOSFET元件不 本ί:2 ί:用一較佳實施例詳細說明本發明,而非限制 而且熟知此類技藝人士皆能明•,適當而 變及調[仍將不失本發明之要義所在,亦不 =本=明之精神和範[故综上所述,本發明實施之具 ΐϊ志ί已符合專利法中所規定之發明專利要件,謹請 貝審查委員惠予審視,並賜准專利為禱。 508723 圖式簡單說明 圖式之簡單說明: 第一圖為一習知技藝之流程圖; 第二A圖至第二F圖為本發明實施例之連續剖面圖 第三圖為本發明實施例之流程圖;及 第四A圖與第四B圖為本發明之測試結果。 圖號說明: 22半導體底材 23第一氧化層 24 多晶石夕栓塞(Polysilicon Plug) Μ柱狀氧化層 2 6多晶矽層 27冠形半球狀矽晶(HSG) 28氧化钽層 29氮化鈦(TiN)層Due to the thermal budget of the latter stage, the MOSFET element is not original. 2: Explain the invention in detail with a preferred embodiment, without limitation, and those skilled in this art will understand that it will be changed and adjusted appropriately. The essence of the present invention is not the same as the spirit and scope of the present invention. Therefore, the implementation of the present invention has met the requirements of the invention patent stipulated in the Patent Law. And grant the patent for prayer. 508723 Simple illustration of the diagram Simple illustration of the diagram: The first diagram is a flowchart of a known technique; the second diagram A to the second F are continuous cross-sectional views of the embodiment of the present invention; the third diagram is the embodiment of the present invention The flowcharts; and Figures A and B are the test results of the present invention. Description of drawing number: 22 semiconductor substrate 23 first oxide layer 24 polysilicon plug M columnar oxide layer 2 6 polycrystalline silicon layer 27 crown hemispherical silicon crystal (HSG) 28 tantalum oxide layer 29 titanium nitride (TiN) layer

第12頁Page 12

Claims (1)

508723 正 號 90113409 年月曰 修正 六、甲請專利範圍 1. 一種於半導體積體電路中減少一電容形成之熱預算的方 法,至少包含: 提供一半導體底材,該半導體底材上具有一介電層,該介 電層外緣具一多晶矽層,其中該多晶矽層上具有一冠形半 球狀矽晶(H S G ); 電聚氮ι化該形半球狀石夕晶上, 沉積一氧化组層於該冠形半球狀石夕晶上以形成一氧化組電 容層; 氧化氮退火該氧化鈕層上; 電漿氧化該氧化钽層上; 沉積一氮化鈦於該氧化鉅層上,藉以減少該氧化鈕電容之 熱預算。 2 .如申請專利範圍第1項所述之方法,該電漿氮化至少包 含遠端間接電漿氮化。 3 .如申請專利範圍第1項所述之方法,該電漿氮化之溫度 約 4 0 0°C 至 7 0 0°C 。 4 .如申請專利範圍第1項所述之方法,該氧化氮退火之溫 度約 6 0 0°C 至 7 0 0°C。 5 .如申請專利範圍第1項所述之方法,該電漿氧化至少包508723 Positive number 90113409 Rev. VI. A. Patent scope 1. A method for reducing the thermal budget of a capacitor in a semiconductor integrated circuit, which at least includes: providing a semiconductor substrate, the semiconductor substrate has a dielectric A polycrystalline silicon layer on the outer edge of the dielectric layer, wherein the polycrystalline silicon layer has a crown-shaped hemispherical silicon crystal (HSG); the poly-silicon layer is deposited on the hemispherical stone crystal to deposit an oxide layer An oxide group capacitor layer is formed on the crown-shaped hemispherical stone crystal; nitrogen oxide anneals the oxide button layer; plasma oxidizes the tantalum oxide layer; deposits titanium nitride on the oxide giant layer to reduce The thermal budget of this oxidation button capacitor. 2. The method according to item 1 of the scope of patent application, wherein the plasma nitriding includes at least a remote indirect plasma nitriding. 3. The method as described in item 1 of the scope of patent application, the plasma nitriding temperature is about 400 ° C to 700 ° C. 4. The method according to item 1 of the scope of patent application, the temperature of the nitrogen oxide annealing is about 60 ° C to 700 ° C. 5. The method as described in item 1 of the scope of patent application, wherein the plasma oxidation includes at least 第13頁 508723 修正 案號 90113409 六、申請專利範圍 含遠端間接電漿氧化 6 ·如申請專利範圍第1項所述之方法,該電漿氮化之溫度 約 3 0 0°C 至 501TC。 7.如申請專利範圍第1項所述之方法,該氮化鈦之沉積至 少包含物理沉積法。 8 .如申請專利範圍第1項所述之方法,該氮化鈦之沉積至 少包含原子層狀沉積法(A L D )。 9 .如申請專利範圍第1項所述之方法,該氮化鈦之形成溫 度約低於4 5 0°C。 10.—種於半導體積體電路中減少一電容形成之熱預算的 方法,至少包含: 提供一半導體底材,該半導體底材具有一第一氧化層,該 第一氧化層夹有一多晶石夕栓塞(Polysilicon Plug),一柱 狀氧化層,該柱狀氧化層外緣有一多晶矽層,其中一冠形 半球狀矽晶(HSG )形成於該多晶矽層的外表面上; 電漿氮化該冠形半球狀矽晶上,係以一第一特定溫度; 沉積一氧化組層於該冠形半球狀石夕晶上以形成一氧化钽電 容層;Page 13 508723 Amendment No. 90113409 VI. Scope of patent application Including remote indirect plasma oxidation 6 · As described in item 1 of the scope of patent application, the plasma nitriding temperature is about 300 ° C to 501TC. 7. The method according to item 1 of the scope of patent application, wherein the deposition of titanium nitride includes at least a physical deposition method. 8. The method according to item 1 of the scope of patent application, wherein the deposition of titanium nitride includes at least an atomic layer deposition method (AlD). 9. The method as described in item 1 of the scope of patent application, wherein the formation temperature of the titanium nitride is lower than about 450 ° C. 10. A method for reducing a thermal budget formed by a capacitor in a semiconductor integrated circuit, at least comprising: providing a semiconductor substrate having a first oxide layer, the first oxide layer sandwiching a polycrystal Polysilicon Plug, a columnar oxide layer, a polycrystalline silicon layer on the outer edge of the columnar oxide layer, wherein a crown-shaped hemispherical silicon crystal (HSG) is formed on the outer surface of the polycrystalline silicon layer; plasma nitridation Depositing an oxide group layer on the crown-shaped hemispherical silicon crystal to form a tantalum oxide capacitor layer on the crown-shaped hemisphere-shaped silicon crystal; 第14頁 508723 案號 90113409 年月曰 修正 六、申請專利範圍 氧化氮退火該氧化鈕層上,係以一第二特定溫度; 電漿氧化該氧化钽層上,係以一第三特定溫度; 藉 沉積一氮化鈦於該氧化鈕層上,係以一第四特定溫度 以減少該氧化钽電容之熱預算。 1 1 ·如申請專利範圍第1 0項所述之方法,該電漿氮化至少 包含遠端間接電漿氮化。 1 2 ·如申請專利範圍第1 0項所述之方法,該第一特定溫度 約 401TC 至 7 0 0°C。 1 3 .如申請專利範圍第1 0項所述之方法,該第二特定溫度 約 60(TC 至 7 0 0°C 。 1 4 .如申請專利範圍第1 0項所述之方法,該電漿氧化至少 包含遠端間接電漿氧化。 1 5 .如申請專利範圍第1 0項所述之方法,該電漿氧化更包 含遠端間接電漿氮化。 1 6 .如申請專利範圍第1 0項所述之方法,該電漿氧化更包 含遠端間接電漿氧化氮化。 1 7 .如申請專利範圍第1 0項所述之方法,該第三特定溫度Page 14 508723 Case No. 90113409 Amendment VI. Patent application scope Nitrogen oxide anneals the oxide button layer at a second specific temperature; Plasma oxidizes the tantalum oxide layer at a third specific temperature; By depositing a titanium nitride on the oxide button layer, a fourth specific temperature is used to reduce the thermal budget of the tantalum oxide capacitor. 1 1 · The method as described in item 10 of the scope of patent application, wherein the plasma nitriding includes at least a remote indirect plasma nitriding. 1 2 · The method as described in item 10 of the scope of patent application, the first specific temperature is about 401TC to 700 ° C. 1 3. According to the method described in item 10 of the scope of patent application, the second specific temperature is about 60 (TC to 700 ° C. 1). According to the method described in item 10 of the scope of patent application, the electricity Plasma oxidation includes at least remote indirect plasma oxidation. 15. According to the method described in item 10 of the patent application scope, the plasma oxidation further includes remote indirect plasma nitridation. 1 6. As described in the patent application scope first In the method described in item 0, the plasma oxidation further includes remote indirect plasma oxidation and nitridation. 17. In the method described in item 10 of the scope of patent application, the third specific temperature 第15頁 508723 _案號90113409_年月曰 修正_ 六、申請專利範圍 約 3 0 0°C 至 5 0 0°C。 1 8 ·如申請專利範圍第1 0項所述之方法,該氮化鈦之沉積 至少包含物理沉積法。 1 9 ·如申請專利範圍第1 0項所述之方法,該氮化鈦之沉積 至少包含原子層狀沉積法(A L D )。 2 0 .如申請專利範圍第1 0項所述之方法,該第四特定溫度 約低於4 5 0°C。Page 15 508723 _Case No. 90113409_Year Month Amendment_ VI. Patent Application Range Approx. 3 0 ° C to 5 0 ° C. 18 · The method as described in item 10 of the scope of patent application, the deposition of titanium nitride includes at least a physical deposition method. 19 · The method as described in item 10 of the scope of patent application, wherein the deposition of titanium nitride includes at least an atomic layer deposition method (A L D). 20. The method as described in item 10 of the scope of patent application, the fourth specific temperature is lower than about 450 ° C. 第16頁Page 16
TW90113409A 2001-06-01 2001-06-01 Method for reducing thermal budget in forming capacitor in semiconductor integrated circuit TW508723B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90113409A TW508723B (en) 2001-06-01 2001-06-01 Method for reducing thermal budget in forming capacitor in semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90113409A TW508723B (en) 2001-06-01 2001-06-01 Method for reducing thermal budget in forming capacitor in semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
TW508723B true TW508723B (en) 2002-11-01

Family

ID=27656996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90113409A TW508723B (en) 2001-06-01 2001-06-01 Method for reducing thermal budget in forming capacitor in semiconductor integrated circuit

Country Status (1)

Country Link
TW (1) TW508723B (en)

Similar Documents

Publication Publication Date Title
JP5247059B2 (en) Method for manufacturing an integrated circuit capacitor using a tantalum pentoxide layer
Lin et al. Ta~ 2O~ 5 thin films with exceptionally high dielectric constant
US4959745A (en) Capacitor and method for producing the same
TW201201278A (en) Chemical vapor deposition of ruthenium films containing oxygen or carbon
JP2005150228A (en) Method of manufacturing semiconductor device
TW546695B (en) Method for manufacturing a capacitor of semiconductor device
JP2005311302A (en) Forming method of oxide film, semiconductor device, manufacturing method of semiconductor device, and manufacturing apparatus of semiconductor device
US20140185182A1 (en) Semiconductor device with rutile titanium oxide dielectric film
JPH05167008A (en) Manufacturing method of semiconductor element
KR100519777B1 (en) Capacitor of Semiconductor Device and Manucturing Method thereof
JPH08130294A (en) Manufacture of semiconductor device
TW508723B (en) Method for reducing thermal budget in forming capacitor in semiconductor integrated circuit
TWI222697B (en) A capacitor having a TaON dielectric film in a semiconductor device and a method for manufacturing the same
TWI264110B (en) Method of forming capacitor of semiconductor device
JPH11177048A (en) Semiconductor element and manufacture thereof
JPS63204743A (en) Manufacture of semiconductor device
TWI289893B (en) Method for producing a dielectric material on a semiconductor device and semiconductor device
JP2007067366A (en) Method for manufacturing semiconductor device
JP4106513B2 (en) Capacitor manufacturing method for semiconductor device
KR20060002137A (en) Method for fabricating capacitor in semiconductor device
US20140134821A1 (en) Method for fabricating capacitor having rutile titanium oxide dielectric film
JP2003258243A (en) Semiconductor device and its manufacturing method
JPH021124A (en) Manufacture of dielectric film
KR19980050122A (en) Method for manufacturing capacitor of semiconductor device
TW531851B (en) Method of forming a rugged polysilicon layer on a semiconductor substrate

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent