TW504793B - Method for producing barrier layer with plasma treatment - Google Patents

Method for producing barrier layer with plasma treatment Download PDF

Info

Publication number
TW504793B
TW504793B TW90123550A TW90123550A TW504793B TW 504793 B TW504793 B TW 504793B TW 90123550 A TW90123550 A TW 90123550A TW 90123550 A TW90123550 A TW 90123550A TW 504793 B TW504793 B TW 504793B
Authority
TW
Taiwan
Prior art keywords
layer
plasma
barrier layer
metal layer
nitrogen
Prior art date
Application number
TW90123550A
Other languages
Chinese (zh)
Inventor
Wen-Fa Wu
Chi-Chang Wu
Geng-Liang Ou
Bau-Tung Dai
Original Assignee
Shr Min
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shr Min filed Critical Shr Min
Priority to TW90123550A priority Critical patent/TW504793B/en
Application granted granted Critical
Publication of TW504793B publication Critical patent/TW504793B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

The present invention provides a method for producing a barrier layer with a plasma treatment to form a barrier layer in an integrated circuit production process to isolate the diffusion of copper metal in a copper metallization process. The method comprises, after depositing a refractory metal layer (Ta, Ti, Mo, Cr, Nb, V, Re) by a physical vapor deposition, using a nitriding (oxynitriding) (N2, NH3, N2O, NO, O2) plasma surface treatment to form a nanocrystalline nitride (oxynitride) metal layer (TaNxOy, TiNxOy, etc.) on the original refractory metal layer to form a layered structure of Ta/TaNxOy, Ti/TiNxOy, ... this layered structure has a resistance very close to that of the original single layer metal layer, and a resistance far less than a refractory nitride layer (TaN, TiN, ..., etc.) produced by an ordinary reactive sputter deposition. After the nitriding (oxynitriding) plasma surface treatment, a nanocrystalline nitride (oxynitride) metal layer is formed. Such a layer has a better diffusion barrier effect than the diffusion barrier layer of a polycrystalline structure.

Description

504793 五、發明說明(1) 本發明係有關於一種在基底上形成阻障層的方法,特 別有關於一種在積體電路製程中使用電漿處理形成阻障岸 之製造方法。 θ 由於具有高溫熱穩定性及良好的導電性,耐火金屬材 料i钽、鈦,鉬· ··等)是現今積體電路製程中常用之擴散 ,障層材料,但一般耐火金屬材料所沉積之薄膜,容易形 立柱狀晶之結構(如第1圖所示),此柱狀晶體結構為欲阻 P早金屬之快速擴散通道,容易造成阻障層阻障能力降低, | =件特性破壞。而將氮、氧等元素,摻雜於耐火金屬材料 ,有助於加強其擴散阻障特性,因此在製程上常見利用 ,應式濺鍍以形成氮化鈦、氮氧化钽(TiN,Ta0N,WN) 等,但隨著氮或氧含量之增加,所沉積出之金屬薄膜之 阻率將會顯著快速地增加,因此將使導線整體電阻上升, 另外此種耐火金屬材料之氮(氧)化物(如氮化鈦TiN),仍 相田谷易形成柱狀晶結構,因而導致阻障層阻障能力不 佳。 2鑑於此’本發明之目的在提供一種t衆處理之阻障 :之$造方法,形成積體電路製程中之阻障層,以 屬化製程時金屬之擴散。 4 :達成上述目的,本發明提出一種電漿處理 =j方法’形成積體電路製程中之阻障層,以阻絕銅金 Π匕金屬之擴散。本方法透過在物理氣相沉積耐 (组(Ta)、鈦(M〇)、絡(Cr)、錕 (Nb)、飢(V)、銖(Re))後,藉由氮(氧)化a , 0522-6850TWf ; ycchen.ptd 第5頁 504793 五、發明說明(2) --- N2〇,N0,〇2)電漿表面處理,於原先之耐火金屬層上形成 一微晶質化(nanocrystalline)之氮(氧)化金屬層 (TaNx0y,TiNx0y,· · ·等),而形成Ta/TaNx0y,Ti/fiN 〇 , 等層狀結構,此層狀結構具有與原先單層金屬層^ ^ $ 近之電阻值,而有遠較一般反應式濺鍍沉積之耐火金^氮 化物層(TaN,TiN,· · ·低之電阻率,復由於經氮(氧)化電 漿表面處理後,乃形成一微晶質化之氮(氧)化金屬表芦, 因此較多晶結構之擴散阻障層具備有更佳之擴散阻障^ 果。 為讓本發明之上述目的、特徵、和優點能更明顯易 懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明 如下: 【圖式簡單說明】 第1圖係顯示耐火金屬層所形成之柱狀晶體結構。 第2至4圖係代表本發明實施例之電漿處理之阻障層其 製造方法之製程剖面圖。 第5圖係顯示反應式澂鍍TaN及WN之電阻率隨濺鍍過程 中氮流量比例改變而改變之情形。 第6圖係顯示不同時間N2電漿處理後之T a / T a N X之電阻 · _ 率變化。 第7圖係顯示不同時間N2,N H3,N2 0電漿處理後之 f/WNx之電阻率變化。 第8圖係顯示經n2電漿處理後之Ta薄膜之Auger縱深成504793 V. Description of the invention (1) The present invention relates to a method for forming a barrier layer on a substrate, and in particular to a manufacturing method for forming a barrier bank using plasma treatment in the process of integrated circuits. θ Because of its high-temperature thermal stability and good electrical conductivity, refractory metal materials (tantalum, titanium, molybdenum, etc.) are commonly used as diffusion and barrier materials in integrated circuit manufacturing processes, but are generally deposited by refractory metal materials The thin film is easy to form the structure of columnar crystals (as shown in Figure 1). This columnar crystal structure is a fast diffusion channel of P early metal, which will easily reduce the barrier capacity of the barrier layer. . Doping elements such as nitrogen and oxygen into refractory metal materials can help to enhance its diffusion barrier properties. Therefore, it is commonly used in the process. In-process sputtering is used to form titanium nitride and tantalum oxynitride (TiN, Ta0N, WN) and so on, but with the increase of nitrogen or oxygen content, the resistivity of the deposited metal film will increase significantly and rapidly, so the overall resistance of the wire will increase, and the nitrogen (oxygen) compound of this refractory metal material (Such as titanium nitride TiN), Tiangu still easily form a columnar crystal structure, resulting in poor barrier ability of the barrier layer. 2 In view of this, the purpose of the present invention is to provide a barrier processing method to form a barrier layer in an integrated circuit manufacturing process to diffuse metal during the manufacturing process. 4: To achieve the above object, the present invention proposes a plasma treatment = j method 'to form a barrier layer in the integrated circuit manufacturing process to prevent the diffusion of copper-gold metal. In this method, after physical vapor deposition resistance (group (Ta), titanium (M0), complex (Cr), hafnium (Nb), hunger (V), baht (Re)), nitrogen (oxygenation) is used. a, 0522-6850TWf; ycchen.ptd page 5 504793 V. Description of the invention (2) --- N2O, N0, 〇2) Plasma surface treatment, forming a microcrystalline on the original refractory metal layer ( nanocrystalline) nitrogen (oxygenation) metal layers (TaNx0y, TiNx0y, ...) to form a layered structure such as Ta / TaNx0y, Ti / fiN 〇, etc. This layered structure has the same layer as the original single metal layer ^ ^ The resistance value is close to that of the refractory gold ^ nitride layer (TaN, TiN, ...), which is much lower than that of ordinary reactive sputter deposition. After the surface treatment of nitrogen (oxygen) plasma, It forms a microcrystalline nitrogen (oxidation) metal surface reed, so the diffusion barrier layer with more crystal structure has better diffusion barrier ^ In order to achieve the above-mentioned objects, features, and advantages of the present invention, It is more obvious and easy to understand. The following describes the preferred embodiment in detail, and in conjunction with the accompanying drawings, the detailed description is as follows: [Simplified description of the drawings] Figure 1 shows The columnar crystal structure formed by the refractory metal layer. Figures 2 to 4 are cross-sectional views of the manufacturing process of the plasma-treated barrier layer of the embodiment of the present invention. Figure 5 shows the reactive rhenium plating of TaN and WN. The resistivity changes with the proportion of the nitrogen flow rate during the sputtering process. Figure 6 shows the change in the resistance and rate of T a / T a NX after N2 plasma treatment at different times. Figure 7 shows the different times The resistivity change of f / WNx after N2, N H3, N2 0 plasma treatment. Figure 8 shows the Auger depth formation of Ta film after n2 plasma treatment.

0522-6850TWf ; ycchen.ptd 第6頁 504793 五、發明說明(3) 分分析圖。 第9圖係顯示以不同氮流量所沉積出之TaN為阻障層之 銅/阻障層/n + —P接面二極體之漏電流分析圖 第10圖係顯示以氮氣電漿處理之Ta (Ta/TaNx)為阻障 層之銅/阻障層/n + — P接面二極體之漏電流分析圖。 第11圖係顯示Ta經過\電漿處理後之穿透式電子顯微 鏡分析照片。 [符號說明] 100〜基底; 110〜介電層;0522-6850TWf; ycchen.ptd Page 6 504793 V. Description of the invention (3) Analysis chart. Figure 9 shows the leakage current analysis of copper / barrier layer / n + -P junction diode with TaN deposited as a barrier layer at different nitrogen flow rates. Figure 10 shows the plasma treated with nitrogen plasma. Ta (Ta / TaNx) is the leakage current analysis diagram of the barrier layer copper / barrier layer / n +-P junction diode. Figure 11 shows the transmission electron microscope analysis of Ta after plasma treatment. [Symbol description] 100 ~ substrate; 110 ~ dielectric layer;

120〜介層窗;130〜耐火金屬層 140〜氮(氧)化金屬層。 實施例 本發明提出一種電漿處理之阻障層之製造方法,形成 積體電路製程中之阻障層,以阻絕銅金屬化製程時銅金屬 之擴散。請參閱第2至4圖,其顯示本發明之實施例中,一 種電漿處理之阻障層之製造方法。 请參閱第2圖,本實施例適用於一基底,此基底包括 一下層裝置區或金屬内連線1〇〇,在此以下層金屬内連線 1 0 0為例,此外,於下層金屬内連線丨〇 〇表面則另形成有一 平坦化之内層金屬介電層(IMD)或内層絕緣層(10, 在此以内層金屬介電層(IMD)為例,而常用的内金屬介電 層材料則包括-層或數層之氧化石夕、硼石夕玻璃、硼磷石夕玻 璃或是低介電係數材料(如FLARE、PAE_2、FSG、HSQ等)。 其中由於目前在銅導線的製作上是以鑲嵌式(dalnascene)120 ~ interlayer window; 130 ~ refractory metal layer 140 ~ nitrogen (oxygen) metal layer. Embodiments The present invention provides a method for manufacturing a plasma-treated barrier layer to form a barrier layer in an integrated circuit process to prevent the diffusion of copper metal during a copper metallization process. Please refer to FIGS. 2 to 4, which show a method for manufacturing a plasma-treated barrier layer in an embodiment of the present invention. Please refer to FIG. 2. This embodiment is applicable to a substrate. This substrate includes a lower device region or a metal interconnect 100. Here, the lower metal interconnect 100 is taken as an example. In addition, the lower metal On the surface of the wiring, a flat inner metal dielectric layer (IMD) or an inner insulating layer (10) is formed on the surface. Here, the inner metal dielectric layer (IMD) is used as an example, and the commonly used inner metal dielectric layer (IMD) is used as an example. Materials include-one or more layers of oxidized stone, borosilicate glass, borophosate glass, or low-dielectric constant materials (such as FLARE, PAE_2, FSG, HSQ, etc.), which are currently used in the production of copper wires. Above is the mosaic type (dalnascene)

504793 五、發明說明(4) 製程來解決銅金屬的蝕刻不易的問題,因此方法之一是先 在平坦的内層金屬介電層110上餘刻出曝露下層金屬内連 線100表面之溝槽(或更包括餘刻介層窗)12〇。 接著請參閱第3圖,順應性形成一耐火金屬層1 3 〇,如 使用物理氣相沉積法以形成鈕(Ta )、鈦(T i )、鉬(Mo) 、鉻(Cr)、鈮(Nb)、釩(V)或銖(Re)等耐火金屬層。 然後,施行氮(氧)化電漿表面處理,於耐火金屬層 130上形成一微晶質化之氮(氧)化金屬層。氮(氧)化電漿 表面處理如N2,NHS,NJ,NO或A等電漿表面處理。所形成 之該微晶質化之氣(乳)化金屬層如TaNx〇y、TiN0 、M〇NO 、(:rNxOy、NbNxOy、VNxOy 或ReNxOy 等,而X‘成如圖所;y 之Ta/TaNxOy、Ti/TiNxOy、Mo/MoNx〇y、Cr/CrNx〇y、Nb/504793 V. Description of the invention (4) The process is used to solve the problem of difficult etching of copper metal. Therefore, one of the methods is to etch a groove on the flat inner metal dielectric layer 110 to expose the surface of the lower metal interconnect 100 ( Or including the intervening interlayer window) 12〇. Next, referring to FIG. 3, a refractory metal layer 13 is conformably formed. For example, physical vapor deposition is used to form a button (Ta), titanium (Ti), molybdenum (Mo), chromium (Cr), niobium ( Nb), vanadium (V) or baht (Re) and other refractory metal layers. Then, a nitrogen (oxygenation) plasma surface treatment is performed to form a microcrystalline nitrogen (oxygenation) metal layer on the refractory metal layer 130. Nitrogen (oxygen) plasma surface treatment such as plasma surface treatment of N2, NHS, NJ, NO or A. The formed microcrystalline gas (emulsion) metal layer such as TaNx〇y, TiN0, MoNO, (: rNxOy, NbNxOy, VNxOy or ReNxOy, etc., and X 'is as shown in the figure; Ta of y / TaNxOy, Ti / TiNxOy, Mo / MoNx〇y, Cr / CrNx〇y, Nb /

NbNxOy、V/VNxOy 或Re/ReNxOy 之層狀結構13〇/ϋ。 第5圖所示為反應式錢鑛TaN及WN之電阻率隨濺鍍過程 中氮流量比例改變而改變之情形’由第5圖之結果, 可清楚發現,隨濺鍍過程中氮流量增 電阻率將會呈現急速之增加情形,如w λτ咕 很® ι得勝 9Π ^ ^ ^ 〇 如薄膜電阻率由?之 20快速長:幵至210/ζ Ω - cm,而Ta〜N簿勝+伽* 提昇至3500 〆 Q-cm以上。 ^專祺t阻率由Ta之]90 第6及7圖所示分別為以氮(氧) 例,經過電漿處理後之Ta/TaNx只 电。浆慝理Ta及评為 化,而經過電漿處理後2W/WNx(/仍插^%左右之電阻率變 較WN薄膜電阻率低之電阻率。X y 有接近原W薄膜且遠 第8圖所示則是以Ta經過N?電% ♦The layered structure of NbNxOy, V / VNxOy or Re / ReNxOy is 13 / ϋ. Figure 5 shows the situation where the resistivity of reactive money ore TaN and WN changes with the proportion of nitrogen flow during the sputtering process. From the results of Figure 5, it can be clearly found that the resistance increases with the nitrogen flow during the sputtering process. The rate will show a rapid increase, such as w λτuku very ® ι wins 9Π ^ ^ ^ 〇 What is the film resistivity from? The fast length of 20: 幵 to 210 / ζ Ω-cm, while Ta ~ N wins + Gamma * to 3500 〆 Q-cm or more. ^ Specific t resistivity from Ta] 90 Figures 6 and 7 show the nitrogen (oxygen) as an example. After the plasma treatment, Ta / TaNx is only charged. The slurry resists Ta and is evaluated, and after the plasma treatment, the resistivity of 2W / WNx (/ still inserted ^% becomes lower than the resistivity of the WN film. X y is close to the original W film and far 8th. The figure shows the percentage of N through electricity with Ta ♦

2电縱處理為例,說明經過丨2Electric longitudinal processing as an example

)U4793 、發明說明(5) 電,,理之後,Ta表面之氮化情形,由第8圖之Auger縱深 ^分分析結果可知,藉由N2電漿處理之後,確實可於原Ta 薄膜,面形成一TaNx,因而形成一Ta/TaNx之結構。 一 第=圖所示為以不同氮流量所沉積出之TaN為阻障層之 f /阻P早層/ n卜P接面二極體之漏電流分析圖,由接面漏電 概的刀析顯示’大部分之接面二極體於5 〇 〇蚓之退火熱處 理2破壞考驗後,即產生相當大的漏電流(大於IE-6 Amp/ =)而對所有之接面二極體,於6 0 0蝴之退火熱處理破 壞考驗後’都產生大於IE-6 Amp/cm2漏電流,顯示大量的 =擴,至矽基材中,因而造成接面二極體元件之嚴重破 ,。第ίο圖所示則為以氮氣電漿處理之Ta (Ta/TaNx)為阻 P早層之銅/阻障層/n + — p接面二極體之漏電流分析圖,圖形 頋示’此接面二極體於6 〇 〇蚓之退火熱處理破壞考驗後, 仍維持著相當低之漏電流,顯示其阻障能力之明顯提昇。 第11圖為Ta經過乂電漿處理後之穿透式電子顯微鏡分析照 片丄由圖中可發現一氮化層於原Ta薄膜表面形成,進一”步 以高解析度穿透式電子顯微鏡分析可得其為一微晶質化之 顯微結構。 發明特徵及效果 藉由氮(氧)化電漿表面處理,於原耐火金屬薄膜上形 成一氮、氧元素摻雜之擴散阻障層(Ta/TaNx〇y,Ti/ iNx〇y ’···等層狀結構),此種氮(氧)化電漿處理之擴散 阻^障層,將較反應式濺鍍沉積之耐火金屬材料之氮化物 (氮化鈦、氮化钽等)或鈦/氮化鈦、鈕/氮化鈕等,擁有 504793 五、發明說明(6) 較低之電阻率。此外,電漿處理過程申,氮(氧)化電漿不 僅會造成氮、氧等元素摻雜效果,伴隨著摻雜過程,電漿 中離子或自由基對薄膜表面之轟擊或作用,將會促成表面 之微晶質化(nan〇CrystalIine)及晶界填塞(stuffing)效 果,因而將會較多晶結構之耐火金屬層或耐火金屬材料 氮化物層,具備有較佳之擴散阻障效果。 雖然本發明已以較佳實施例揭露如 限定本發明,任何熟習此項 二其並非用以 神和當可作更動與者因:::=二精 當視後附之申請專利範圍所界定者為準。月之保遵範圍) U4793, description of the invention (5) After electrical treatment, the nitridation of Ta surface can be seen from the Auger depth analysis of Figure 8. After N2 plasma treatment, it can indeed be applied to the original Ta film. A TaNx is formed, and thus a Ta / TaNx structure is formed. The first figure shows the leakage current analysis diagram of f / resistance P early layer / nb junction diodes with TaN deposited at different nitrogen flow rates as a barrier layer. It shows that most of the junction diodes are annealed and heat-treated with 500 worms. After the failure test, a considerable leakage current (greater than IE-6 Amp / =) is generated. For all junction diodes, After the annealing heat treatment test at 600, the leakage currents greater than IE-6 Amp / cm2 were generated, which showed that a large amount of = spread into the silicon substrate, which caused severe damage to the junction diode element. Figure ίο shows the analysis of the leakage current of the copper / barrier layer / n + —p junction diode with Ta (Ta / TaNx) treated with nitrogen plasma as the early barrier layer of P, and the figure shows it. This junction diode has maintained a relatively low leakage current after being tested by the annealing heat treatment of 600 earthworms, showing a significant improvement in its barrier capability. Figure 11 is a transmission electron microscope analysis photo of Ta after plasma treatment. From the figure, it can be found that a nitride layer is formed on the surface of the original Ta film. It is a microcrystalline microstructure. Features and effects of the invention By nitrogen (oxygen) plasma surface treatment, a nitrogen and oxygen doped diffusion barrier layer (Ta / TaNx〇y, Ti / iNx〇y '... etc. layered structure), this nitrogen (oxygenation) plasma treated diffusion barrier ^ barrier layer will be more reactive than the deposition of nitrogen deposited refractory metal materials Compounds (titanium nitride, tantalum nitride, etc.) or titanium / titanium nitride, buttons / nitride buttons, etc., has 504793 V. Description of the invention (6) Lower resistivity. In addition, the plasma treatment process applies, nitrogen ( Oxygenation of the plasma will not only cause doping effects of elements such as nitrogen and oxygen. With the doping process, the bombardment or effect of ions or free radicals on the surface of the film in the plasma will promote the microcrystallization of the surface (nan〇 CrystalIine) and grain boundary stuffing effect, so there will be more crystal structure The fire metal layer or the refractory metal material nitride layer has a better diffusion barrier effect. Although the present invention has been disclosed in a preferred embodiment to limit the present invention, any familiarity with this item is not intended to be used as a god and should be changed. Due to :: == Erjing Dang shall be determined by the scope of the attached patent application. The scope of guarantee

Claims (1)

504793 六、申請專利範圍 1· 一種電漿處理之阻障層之製造方法,適用於一基底 上,包括下列步驟: 於該基底上沉積一耐火金屬層,以及 施行氮(氧)化電漿表面處癦,於該耐火金屬層上形成 一微晶質化之氮(氧)化金屬層。 2 ·如申請專利範圍第1項所述之電漿處理之阻障層之 製造方法,其中,沉積該耐夂金屬層是使用物理氣相沉積 法。 3 ·申請專利範圍第1項所述之電漿處理之阻障層之製 造方法,其中,該耐火金屬層是由鈕(Ta)、鈦(Ti)、錮❿ (Mo)、鉻(Cr)、鈮(Nb)、釩(V)及銖(Re)中選用。 4·如申請專利範圍第1項所述之電漿處理之阻障層之 製造方法,其中,該施行氮(氧)化電漿表面處理是由%, 〇3,N20,NO及〇2中選用。 5 ·如申請專利範圍第1項所述之電漿處理之阻障層之 製造方法,其中,所形成之該微晶質化之氮(氧)化金屬層 是由 TaNx0y、TiNx0y、MoNx0y、CrNx0y、NbNx0y、VNx〇y 及 ReNx0y 中選用,而形成Ta/TaNx0y、Ti/TiNx0y、Μ〇Χ/ΐί〇Νχ0γ、 Cr/CrNx0y、Nb/NbNx0y、V/VNx0y*Re/ReNx0y 之層狀結504793 VI. Scope of patent application 1. A method for manufacturing a plasma-treated barrier layer is applicable to a substrate, including the following steps: depositing a refractory metal layer on the substrate, and applying a nitrogen (oxygen) plasma surface As a result, a microcrystalline nitrogen (oxygenated) metal layer is formed on the refractory metal layer. 2 · The method for manufacturing a plasma-treated barrier layer as described in item 1 of the scope of patent application, wherein the rubidium-resistant metal layer is deposited using a physical vapor deposition method. 3. The manufacturing method of the plasma-treated barrier layer described in item 1 of the scope of patent application, wherein the refractory metal layer is made of button (Ta), titanium (Ti), hafnium (Mo), chromium (Cr) , Niobium (Nb), Vanadium (V) and Baht (Re). 4. The method for manufacturing a plasma-treated barrier layer as described in item 1 of the scope of patent application, wherein the surface treatment of the nitrogen (oxygenation) plasma is performed by%, 〇3, N20, NO and 〇2 Optional. 5 · The method for manufacturing a plasma-treated barrier layer as described in item 1 of the scope of the patent application, wherein the microcrystalline nitrogen (oxygen) metal layer formed is made of TaNx0y, TiNx0y, MoNx0y, CrNx0y , NbNx0y, VNx〇y, and ReNx0y to form a layered junction of Ta / TaNx0y, Ti / TiNx0y, MOΧ / ΐί〇Νχ0γ, Cr / CrNx0y, Nb / NbNx0y, V / VNx0y * Re / ReNx0y
TW90123550A 2001-09-25 2001-09-25 Method for producing barrier layer with plasma treatment TW504793B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90123550A TW504793B (en) 2001-09-25 2001-09-25 Method for producing barrier layer with plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90123550A TW504793B (en) 2001-09-25 2001-09-25 Method for producing barrier layer with plasma treatment

Publications (1)

Publication Number Publication Date
TW504793B true TW504793B (en) 2002-10-01

Family

ID=27607922

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90123550A TW504793B (en) 2001-09-25 2001-09-25 Method for producing barrier layer with plasma treatment

Country Status (1)

Country Link
TW (1) TW504793B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553066A (en) * 2018-11-20 2019-04-02 上海交通大学 A kind of method of nano material plasma surface transformation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553066A (en) * 2018-11-20 2019-04-02 上海交通大学 A kind of method of nano material plasma surface transformation
CN109553066B (en) * 2018-11-20 2019-12-10 上海交通大学 Method for modifying surface of nano material plasma

Similar Documents

Publication Publication Date Title
TW569322B (en) Semiconductor device having a low-resistance gate electrode
JP2002050588A (en) Method for forming amorphous conductive diffusion barrier
TW201238057A (en) Plasma treatment of silicon nitride and silicon oxynitride
JP2008187072A (en) Semiconductor device manufacturing method and semiconductor device
JPS616822A (en) Method and structure for inhibiting external diffusion of dopant
JP6507860B2 (en) Semiconductor device manufacturing method
US6255204B1 (en) Method for forming a semiconductor device
JP4191000B2 (en) Semiconductor device and manufacturing method thereof
JPH07161659A (en) Semiconductor device and its manufacture
KR100755121B1 (en) Method for forming electrode structure and method for fabricating semiconductor device
JP5960491B2 (en) Semiconductor device and manufacturing method thereof
TW529065B (en) Semiconductor device and method for manufacturing the same
TW504793B (en) Method for producing barrier layer with plasma treatment
JP4347479B2 (en) Field effect transistor
JP2010267678A (en) Method of manufacturing semiconductor device
JPH03147328A (en) Manufacture of semiconductor device
JP4447438B2 (en) Manufacturing method of semiconductor device
JPS609160A (en) Semiconductor device and manufacture thereof
KR100846391B1 (en) Method for fabricating WSix gate in semiconductor device
KR100523658B1 (en) Method for manufacturing copper diffusion barrier
TWI431721B (en) Method of manufacturing semiconductor device to reduce resistance of contact
KR101448852B1 (en) Semiconductor device and methods for fabricating the same
KR100414229B1 (en) Method of simultaneously forming a diffusion barrier and a ohmic contact using titanium nitride
JP2007250624A (en) Method of manufacturing semiconductor device
JP2857170B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees