TW503459B - Magnetoresistive structure and process for fabricating same - Google Patents

Magnetoresistive structure and process for fabricating same Download PDF

Info

Publication number
TW503459B
TW503459B TW090117906A TW90117906A TW503459B TW 503459 B TW503459 B TW 503459B TW 090117906 A TW090117906 A TW 090117906A TW 90117906 A TW90117906 A TW 90117906A TW 503459 B TW503459 B TW 503459B
Authority
TW
Taiwan
Prior art keywords
layer
magnetoresistive
scope
item
patent application
Prior art date
Application number
TW090117906A
Other languages
Chinese (zh)
Inventor
Jamal Ramdani
Kurt Eisenbeiser
Ravindranath Droopad
Jeffrey M Finder
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of TW503459B publication Critical patent/TW503459B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hall/Mr Elements (AREA)

Abstract

Magnetoresistive materials can be grown overlying a semiconductor substrate (22) by first growing an accommodating buffer layer (24) on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.

Description

503459 A7 B7 五、發明説明(1503459 A7 B7 V. Description of the invention (1

本專利申請於2000年7月24日提出美國專利申請,專利申請案號為 09/624699。 ^ 發明範, 本發明通常與磁阻裝置及其製造方法有關,尤其,本發 明與超巨磁阻裝置及其製造方法有關,甚至於,本發明^一種含有半導體基板之單片集成超巨磁阻材料的結構及方 法有關。 發明背景 在稱為鈣鈦礦(perovskite)材料等級中的電阻抗會因磁場 出現近10,000次而降低。這個效應(稱為超巨磁阻 (colossal magnetoresistance ; CMR))會於近250 K的溫 度發生,其中材料的電阻抗會突然下降。廣泛已知的CMR 材料的每個立方鈣鈦礦型結構(例如,鑭.、鈣、錳和氧的合 成物)的中心含有錳原子。然而,近年來,已在其他合成物 中發現CMR,如燒綠石(pyrochlore)、硫族尖晶石類 (chalcogenides spinel)和硫族化銀(silver chalcogenide)。 由於CMR材料對磁場的響應非常強,所以通常會用來製 成絕佳的磁場感測器,除了別的應用以外,以供在電腦中 使用(例如’電腦磁碟機的讀取/寫入磁頭)。資訊係以精微 的磁化區被儲存在電腦磁碟機上。若要擷取資訊,讀取磁 頭偵測旋轉磁碟上的磁化區,並依此變更其電阻抗。使用 磁阻之磁頭的運作比傳統,,電感讀取磁頭”更快更佳,因此 允許增加磁碟上儲存的資訊量。例如,具有CMR材料磁頭 的磁碟機每磁碟機可儲存大約一百六十億位元資訊。 -4 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)This patent application filed a US patent application on July 24, 2000, and the patent application number was 09/624699. ^ Invention, The present invention is generally related to a magnetoresistive device and a manufacturing method thereof. In particular, the present invention is related to a giant giant magnetoresistive device and a manufacturing method thereof, and even, the invention is a single-chip integrated giant giant magnetism containing a semiconductor substrate. The structure and method of the resistance material are related. BACKGROUND OF THE INVENTION Electrical impedance in a class of materials called perovskite is reduced by the occurrence of a magnetic field nearly 10,000 times. This effect, known as colossal magnetoresistance (CMR), occurs at a temperature of approximately 250 K, where the electrical impedance of the material drops suddenly. The center of each cubic perovskite-type structure of widely known CMR materials (for example, a combination of lanthanum, calcium, manganese, and oxygen) contains a manganese atom. However, in recent years, CMR has been found in other composites, such as pyrochlore, chalcogenides spinel, and silver chalcogenide. Because CMR materials have a very strong response to magnetic fields, they are often used to make excellent magnetic field sensors, among other applications, for use in computers (such as 'read / write to a computer drive' magnetic head). Information is stored on computer drives in subtle magnetized areas. To retrieve the information, the read head detects the magnetized area on the rotating disk and changes its electrical impedance accordingly. Magnetic heads that use magnetoresistance operate faster and better than traditional, inductive read heads, thus allowing the amount of information stored on the disk to be increased. For example, a drive with a CMR material head can store approximately one per drive Sixteen billion bits of information. -4-This paper size applies to China National Standard (CNS) A4 (210X297 mm)

裝 訂Binding

503459 A7 B7 五、發明説明(3 ) 圖1顯示根據本發明一項具體實施例之磁阻結構20之一部 份的斷面原理圖。磁阻結構20包括單結晶基板22、包含單 結晶材料的容納緩衝層24以及磁阻材料層26。在此上下文 中,術語”單結晶”應具有半導體產業内常用的意義。術語” 單結晶”應代表屬於單晶或大體上屬於單晶的材料,並且應 包含具有相當少量缺陷(諸如矽或矽化鍺或混合物之基板中 常發現的位錯等等)的材料,以及半導體產業中常發現之此 類材料的蠢晶層。 根據本發明一項具體實施例,結構20還包括位於基板22 與容納缓衝層24之間的非結晶介面層28。結構2Q還可包括 位於容納緩衝層24與磁阻層26之間的模板層30。如下文中 詳細的說明,模板層有助於在容納緩衝層上開始生長磁阻 層。非結晶中間層有助於減緩容納缓衝層應變,並藉此協 助生長高結晶品質容納緩衝層。 根據本發明一項具體實施例,基板22是單結晶矽晶圓, 最好是大尺寸單結晶矽晶圓。晶圓可能屬於周期表第IV族 材料,並且最好是第IVA族材料。第IV族半導體材料的實 例包括矽、鍺、混合矽與鍺、混合矽與碳、混合矽、鍺與 礙等等。基板22最好是包含石夕或鍺的晶圓,並且最好是如 半導體業產中使用的高品質單結晶矽晶圓。 容納緩衝層24最好是基礎基板上磊晶生長的單結晶氧化 物或氮化物材料。根據本發明一項具體實施例,非結晶中 間層2 8係在基板2 2上生長’並位於基板2 2與生長的容納缓 衝層24之間,其方式是在生長容納緩衝層24期間氧化基板 -6- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297.公釐)503459 A7 B7 V. Description of the invention (3) Fig. 1 shows a schematic sectional view of a part of a magnetoresistive structure 20 according to a specific embodiment of the present invention. The magnetoresistive structure 20 includes a single crystal substrate 22, a containing buffer layer 24 containing a single crystal material, and a magnetoresistive material layer 26. In this context, the term "single crystal" should have a meaning commonly used in the semiconductor industry. The term "single crystal" shall represent materials that are single crystals or substantially single crystals, and shall include materials with a relatively small number of defects (such as dislocations commonly found in substrates of silicon or germanium silicide or mixtures, etc.), as well as the semiconductor industry A stupid layer of this type of material often found in. According to a specific embodiment of the present invention, the structure 20 further includes an amorphous interface layer 28 between the substrate 22 and the receiving buffer layer 24. The structure 2Q may further include a template layer 30 between the containing buffer layer 24 and the magnetoresistive layer 26. As explained in detail below, the template layer helps start the growth of the magnetoresistive layer on the containment buffer layer. The amorphous intermediate layer helps to reduce the strain on the containment buffer layer, and thereby assists the growth of a high crystalline quality containment buffer layer. According to a specific embodiment of the present invention, the substrate 22 is a single crystal silicon wafer, preferably a large-size single crystal silicon wafer. The wafer may be a Group IV material of the periodic table, and is preferably a Group IVA material. Examples of Group IV semiconductor materials include silicon, germanium, mixed silicon and germanium, mixed silicon and carbon, mixed silicon, germanium and silicon, and the like. The substrate 22 is preferably a wafer containing stone or germanium, and is preferably a high-quality single crystal silicon wafer as used in the semiconductor industry. The receiving buffer layer 24 is preferably a single crystal oxide or nitride material epitaxially grown on the base substrate. According to a specific embodiment of the present invention, the amorphous intermediate layer 28 is grown on the substrate 22 and is located between the substrate 22 and the growing receiving buffer layer 24 by oxidizing during the growth of the receiving buffer layer 24. Substrate-6- This paper size applies to China National Standard (CNS) A4 (210 X 297.mm)

裝 訂Binding

503459 A7 B7 五、發明説明(6 ) 較佳單結晶CMR層的模板。 圖2顯示根據本發明另一項具體實施例之磁阻結構40之一 部份的斷面原理圖。結構40類似於前文說明的磁阻結構 20,除了介於容納缓衝層24與較佳單結晶CMR之磁阻材料 層26間的額外緩衝層32以外。具體而言,額外緩衝層位於 模板層30與覆蓋CMR材料層之間。當容納緩衝層無法適當 匹配覆蓋單結晶磁阻材料層時,單結晶氧化物所形成的額 外緩衝層係用來提供晶格補償。 圖3顯示可達成之高結晶品質生長晶體層厚度的關係,作 為主晶與生長晶的晶格常數之間不匹配的函數。曲線42高 結晶品質材料的界限。曲線42至右邊的區域表示這些層具 有為數不算少的缺失。由於晶格匹配,因此能夠在主晶上 生長無限厚度、高品質磊晶層。由於晶格常數不匹配遞 增,所以可達成、高品質結晶層的厚度迅速遞減。例如, 作為參考點,如果主晶與生長層間的晶格常數不匹配超過 大約2%,則會由於高密度位錯缺陷而導致無法達成超過大 約20 nm的單結晶磊晶層。 圖4顯示根據本發明另一項具體實施例之磁阻結構50的原 理圖。結構50包括單結晶半導體基板52,諸如包含區域53 及區域54的單結晶矽晶圓。將使用半導體產業中常用的傳 統矽裝置處理技術,至少在區域53的一部份中形成虛線56 所指示的電子組件。電子組件56可能是電阻器、電容器、 諸如二極體或電晶體之類的主動式半導體組件,或者諸如 互補金屬氧化物半導體(CMOS)積體電路之類的積體電 -9 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 503459 A7 B7 五、發明説明(7 ) 路。諸如二氧化矽層之類的隔離材料層58可覆蓋電子組件 56 ° 區域54的表面上會移除組件56處理期間在區域53中形成 或沉澱的隔離材料58或任何其他層,以便在區域54中提供 裸矽表面。眾所皆知,裸矽表面具有高度反應性,並且裸 表面上可迅速形成天然氧化矽層。會在區域54表面上的天 然氧化物層上沉澱鋇或鋇暨氧層,並且與氧化表面產生,化 學反應,以形成第一模板層(圖中未顯示)。根據本發明一項 具體實施例,會藉由分子束磊晶生長方法來形成單結晶氧 化物層6 2,以覆蓋模板層。在模板層上沉殿包括錯、鋇、 鈦暨氧的反應物,以形成單結晶氧化物層6 2。首先,於沉 澱期間,最好將氧氣分壓維持在接近與鋰或鋇及鈦完全反 應所須的最小限度,以形成單結晶鋰鈦酸鹽層或單結晶鋇 鈦酸鹽層。然後,遞增氧氣分壓以提供氧氣過壓,並允許 氧氣通常生長中的單結晶氧化物層62擴散。通過鈦酸鹽層 擴散的氧氣會與位於區域54表面上的矽產生化學反應,用 以形成位於矽基板與單結晶氧化物之間界面的氧化矽非結 晶層61。 根據本發明一項具體實施例,終止沉澱單結晶氧化物層 60的方式是沉澱Ba-〇、Sr-0、Ca-〇或Pb-〇的第二模板層 60。然後,例如藉由分子束磊晶生長方法來沉澱單結晶 CMR材料磁阻層64,以覆蓋第二模板層。 根據本發明另一項具體實施例,將單結晶容納缓衝鈦酸 鹽層及氧化矽層曝露於退火處理,使得鈦酸鹽及氧化物層 -10- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)503459 A7 B7 V. Description of the invention (6) Preferred template for single crystal CMR layer. Fig. 2 shows a schematic sectional view of a part of a magnetoresistive structure 40 according to another embodiment of the present invention. The structure 40 is similar to the magnetoresistive structure 20 described above, except that an additional buffer layer 32 is interposed between the buffer layer 24 and the magnetoresistive material layer 26 of the preferred single crystal CMR. Specifically, an additional buffer layer is located between the template layer 30 and the cover CMR material layer. When the containing buffer layer cannot properly match and cover the single crystal magnetoresistive material layer, the additional buffer layer formed by the single crystal oxide is used to provide lattice compensation. Figure 3 shows the achievable relationship of the thickness of the growing crystal layer with high crystal quality as a function of the mismatch between the lattice constants of the main crystal and the growing crystal. Curve 42 is the limit of high crystalline quality materials. The area from curve 42 to the right indicates that these layers are not insignificant. Due to the lattice matching, infinite thickness and high-quality epitaxial layers can be grown on the main crystal. As the lattice constant mismatch increases, the thickness of the high-quality crystal layer can be reduced rapidly. For example, as a reference point, if the lattice constant mismatch between the main crystal and the growth layer exceeds about 2%, a single crystal epitaxial layer exceeding about 20 nm cannot be achieved due to high-density dislocation defects. Fig. 4 shows a principle diagram of a magnetoresistive structure 50 according to another embodiment of the present invention. The structure 50 includes a single crystalline semiconductor substrate 52 such as a single crystalline silicon wafer including a region 53 and a region 54. The electronic components indicated by dashed line 56 will be formed in at least a portion of area 53 using conventional silicon device processing techniques commonly used in the semiconductor industry. Electronic components 56 may be resistors, capacitors, active semiconductor components such as diodes or transistors, or integrated circuits such as complementary metal oxide semiconductor (CMOS) integrated circuits-9-paper size Applicable to China National Standard (CNS) A4 specification (210 X 297 mm) 503459 A7 B7 V. Description of invention (7) Road. An isolation material layer 58 such as a silicon dioxide layer may cover the surface of the electronic component 56 ° region 54. The isolation material 58 or any other layer that is formed or precipitated in the region 53 during processing of the component 56 is removed so that the region 54 Provides a bare silicon surface. It is well known that bare silicon surfaces are highly reactive, and natural silicon oxide layers can form quickly on bare surfaces. A barium or barium and oxygen layer will precipitate on the natural oxide layer on the surface of the area 54 and chemically react with the oxidized surface to form a first template layer (not shown in the figure). According to a specific embodiment of the present invention, a single crystal oxide layer 62 is formed by a molecular beam epitaxial growth method to cover the template layer. The sinker includes reactants of barium, barium, titanium, and oxygen on the template layer to form a single crystal oxide layer 62. First, during the deposition, it is best to maintain the partial pressure of oxygen close to the minimum required to fully react with lithium or barium and titanium to form a single crystal lithium titanate layer or a single crystal barium titanate layer. The oxygen partial pressure is then increased to provide an oxygen overpressure and allow the single crystal oxide layer 62 in which oxygen is normally grown to diffuse. The oxygen diffused through the titanate layer chemically reacts with silicon on the surface of the region 54 to form a silicon oxide non-crystalline layer 61 at the interface between the silicon substrate and the single crystal oxide. According to a specific embodiment of the present invention, the method for terminating the precipitation of the single crystal oxide layer 60 is to precipitate the second template layer 60 of Ba-O, Sr-0, Ca-O, or Pb-O. Then, for example, a single crystal CMR material magnetoresistive layer 64 is deposited by a molecular beam epitaxial growth method to cover the second template layer. According to another specific embodiment of the present invention, the single crystal containing buffer titanate layer and the silicon oxide layer are exposed to an annealing treatment, so that the titanate and the oxide layer are -10- This paper size applies to the Chinese National Standard (CNS) A4 size (210 X 297 mm)

裝 町Outfit

line

形成非結晶氧化物層(圖中未顯示)。 、通常會在層64的至少一部份上形成虛線68所指示的磁性 感測器。根據本發明一項具體實施例,感測器68可包括磁 性記憶體讀取裝置或阻抗磁頭,用以偵測資訊磁碟上的磁 化區域。感測器68可能自行互相連接(圖中未顯示),或 者可形成線條70所指示的導體,以利於電氣輕合組件5$ 及感測器68,以此方式建置集成裝置,該集成裝置包括形 成於矽基板中的至少一個組件及形成於磁阻材料層中的一 個感測器裝置。雖然已說明之作為例證的結構5〇是在矽基 板52上形成的結構,並且具有锶(或鋇)鈦酸鹽層62及較佳 單結晶CMR層64,但是可使用本發表中他處所說明或產業 界廣泛已知的其他單結晶基板、氧化物層及磁阻材料層來 製造類似的裝置。 請重新參考圖1及2,基板22是諸如單結晶矽基板之類的 單結晶基板。單結晶基板結晶結構的特徵在於晶格常數及 晶格方向。在類似的方法中,容納緩衝層24也是單結晶材 料’並且單結晶材料晶格的特徵在於晶格常數及晶體方 向。容納緩衝層與單結晶基板的必須緊密匹配,或者,必 須某一晶體方向係對著另一晶體方向旋轉,才能達成大體 上晶格常數匹配。在此上下文中,”大體上等於”及”大體上 匹配”表示晶格常數間有充足的相似點,而能夠在基礎層上 生長高品質結晶層(例如,2%範圍内)。 根據本發明一項具體實施例,基板22是以(100)或(111) 為方向的單結晶矽晶圓,而容納緩衝層24是鋰鋇鈦酸鹽層 -11 - 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 503459 A7 B7 五、發明説明(9 ) (例如,SrzBa^TiC^,其中z介於0至1的範圍内)。達成這 兩種材料之晶格常數大體上匹配的方式為,將鈦酸鹽材料 晶體方向往相對於矽基板晶圓晶體方向45°旋轉。在此範例 中,如果厚度夠厚,則非結晶中間層28結構中所包含的氧 化矽層係用來降低鈦酸鹽單結晶層應變,因為鈦酸鹽單結 晶層應變會導致主矽晶圓與生長鈦酸鹽層的晶格常數不匹 配。結果,根據本發明一項具體實施例,可達成高品質、 更厚的單結晶層鈦酸鹽層。 請重新參考圖1及2,層26是磊晶生長較佳單結晶CMR材 料層,並且該結晶材料的特徵在於晶格常數及晶體方向。 根據本發明一項具體實施例,層26的晶格常數不同基板22 的晶格常數。為了達成高結晶品質的磊晶生長較佳單結晶 層,容納緩衝層必須具有高結晶品質。此外,為了達成高 結晶品質的層26,希望主晶(在此情況下,主晶是單結晶容 納缓衝層)與生長晶體的晶格常數之間大體上匹配。配合正 確選用的材料,由於生長晶體的晶體方向會相對於主晶方 向旋轉,所以可達成晶格常數大體上匹配。在某些情況 中,主晶氧化物與生長磁阻層之間的結晶緩衝層可用來降 低生長磁阻層的應變,因為應變會導致晶格常數的微幅差 異。藉此可在生長CMR層方面實現最佳的結晶品質(例如, 高結晶品質CMR層可提供更大的百份比變化)。 圖5顯示根據本發明進一步具體實施例之磁阻結構72之一 部份的斷面原理圖。磁阻結構72類似於前文說明的磁阻結 構20,除了會磊晶生長合成半導體層74以覆蓋磁阻層26以 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 訂An amorphous oxide layer is formed (not shown). A magnetic sensor indicated by a dashed line 68 is usually formed on at least a portion of the layer 64. According to a specific embodiment of the present invention, the sensor 68 may include a magnetic memory reading device or an impedance head for detecting a magnetized area on the information disk. The sensors 68 may be connected to each other by themselves (not shown in the figure), or the conductor indicated by the line 70 may be formed to facilitate the electric light-weight assembly 5 $ and the sensor 68 to build an integrated device in this way. The integrated device It includes at least one component formed in a silicon substrate and a sensor device formed in a magnetoresistive material layer. Although the exemplified structure 50 is a structure formed on a silicon substrate 52 and has a strontium (or barium) titanate layer 62 and a preferred single crystal CMR layer 64, it may be described elsewhere in this publication Or other single crystal substrates, oxide layers and magnetoresistive material layers widely known in the industry to make similar devices. Please refer to FIGS. 1 and 2 again. The substrate 22 is a single crystal substrate such as a single crystal silicon substrate. The crystal structure of a single crystal substrate is characterized by a lattice constant and a lattice direction. In a similar method, the containing buffer layer 24 is also a single crystalline material 'and the crystal lattice of the single crystalline material is characterized by a lattice constant and a crystal orientation. The holding buffer layer and the single crystal substrate must be closely matched, or one crystal direction must be rotated toward the other crystal direction to achieve the general lattice constant matching. In this context, "substantially equal" and "substantially matched" indicate that there are sufficient similarities between the lattice constants and that a high-quality crystalline layer can be grown on the base layer (for example, in the range of 2%). According to a specific embodiment of the present invention, the substrate 22 is a single crystalline silicon wafer with a direction of (100) or (111), and the containing buffer layer 24 is a lithium barium titanate layer-11-This paper is applicable to China Standard (CNS) A4 specification (210 X 297 mm) 503459 A7 B7 5. Description of the invention (9) (for example, SrzBa ^ TiC ^, where z is in the range of 0 to 1). The way to achieve a substantially matching lattice constant of the two materials is to rotate the crystal direction of the titanate material by 45 ° with respect to the crystal direction of the silicon substrate wafer. In this example, if the thickness is thick enough, the silicon oxide layer included in the amorphous intermediate layer 28 structure is used to reduce the strain of the titanate single crystal layer because the strain of the titanate single crystal layer will cause the main silicon wafer Does not match the lattice constant of the growing titanate layer. As a result, according to a specific embodiment of the present invention, a high-quality, thicker single crystal layer titanate layer can be achieved. Please refer to Figs. 1 and 2 again. Layer 26 is a single crystal CMR material layer with better epitaxial growth. The crystalline material is characterized by its lattice constant and crystal orientation. According to a specific embodiment of the present invention, the lattice constant of the layer 26 is different from the lattice constant of the substrate 22. In order to achieve a better single crystal layer for epitaxial growth with high crystal quality, the containing buffer layer must have high crystal quality. In addition, in order to achieve the layer 26 having a high crystal quality, it is desirable that the main crystal (in this case, the main crystal is a single-crystal-receiving buffer layer) and the lattice constant of the growing crystal are substantially matched. With the correct selection of materials, the crystal constant of the growing crystal will be rotated relative to the main crystal direction, so the lattice constants can be roughly matched. In some cases, a crystalline buffer layer between the main crystalline oxide and the growing magnetoresistive layer can be used to reduce the strain of the growing magnetoresistive layer because the strain causes a small difference in the lattice constant. As a result, the best crystal quality can be achieved in growing the CMR layer (for example, a high crystal quality CMR layer can provide a greater percentage change). Fig. 5 shows a schematic sectional view of a part of a magnetoresistive structure 72 according to a further embodiment of the present invention. The magnetoresistive structure 72 is similar to the magnetoresistive structure 20 described above, except that a synthetic semiconductor layer 74 will be epitaxially grown to cover the magnetoresistive layer 26 to -12. This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) C) Staple

k 503459 A7 B7 五、發明説明(11 ) 體層中(圖中未顯示具體實施例)。 圖6顯示根據本發明另一項具體實施例之磁阻結構78之一 部份的斷面原理圖。結構78類似於前文說明的磁阻結構 72,除了合成半導體層74會與磁阻層26並列以外。磁阻層 26的形成方法大體上如上文所述的方法相同。適當選用模 板層30的模板材料,以準備磊晶生長磁阻層26。一旦生長 層26之後,钱刻層的一部份以曝露層24。在曝露區域上.選 擇性磊晶生長適合的合成半導體材料(包含如上文所述的任 何材料),以形成半導體層74。或者,因為合成半導體材料 和磁阻材料的熱預算大體上相同,所以沉澱層的順序可相 反(例如,可沉澱半導體層74,蝕刻,然後生長磁阻層 26) 〇 下文說明根據本發明一項具體賁施例之製造諸如圖1至6 所示之結構之磁阻結構的方法。方法的開始步驟是提供一 種包括矽或鍺的單結晶半導體基板。根據本發明較佳具體 實施例,半導體晶基板是具有(100)方向的矽晶圓。基板最 好是以軸線為方向,最多偏離軸線大約0.5°。半導體基板 的至少一部份具有裸面,然而基板的其他部份可能圍繞著 其他結構,如下文所述。在此上下文中,術語"裸”表示已 清除基板的部份表面,以去除氧化物、致污物或其他異質 材料。眾所皆知,裸矽具有高度反應性,並且很容易形成 天然氧化物。術語π裸”包含此類的天然氧化物。還可能故 意在半導體基板上生長薄型氧化矽,然而此類的生長氧化 物不是根據本發明之方法的必要項。為了磊晶生長單結晶 -14- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 503459 A7 B7 五、發明説明(12 ) 氧化層以覆蓋單結晶基板,必須先去除天然氧化層,以暴 露基礎基板的結晶結構。下列的方法最好是藉由分子束蠢 晶生長(molecular beam epitaxy ; MBE)方法來實現,雖 然根據本發明也可使用其他的磊晶生長方法。藉由先在 MBE裝置中熱沉澱薄層的锶、鋇、鋰與鋇的組合或其他鹼 土金屬或鹼土金屬組合,以去除天然氧化物。在使用勰的 情況下,接著將基板加熱到大約800°C,使鋰與天然矽氧 化層產生化學反應。鋰係用來分解氧化矽,而留下無氧化 矽表面。所產生的表面包括锶、氧及矽,並呈現整齊的2x1 結構。整齊的2x1結構形成模板,用以有序生長單結晶氧化 物的覆蓋層。模板提供必要的化學及物理特性,以集結結 晶生長的覆蓋層。 根據本發明替代具體實施例,可轉換天然氧化矽並準備 基板表面’以生長早結晶氧化層,其方式是在低溫下藉由 Μ B E在基板表面上沉殿如氧化链、氧化链鋇或氧化鋇之類 的鹼土金屬氧化物,接著將結構加熱到大約800QC。在此 溫度下,氧化鋰與天然氧化矽間發生的固態反應導致天然 氧化矽還原,並在基板表面上留下具有鋰、氧及矽的整齊 2x1結構。再次,以此方式形成模板,用以接著生長有序單 結晶氧化物層。 根據本發明一項具體實施例,在去除基板表面上的氧化 矽後,將基板冷卻到大約200到800°C範圍内的溫度,並且 藉由分子束磊晶生長在模板層上生長鋰鈦酸鹽層。MB E方 法從MBE裝置中的開孔活閘(opening shutter)開始,以暴 -15- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 503459 A7 B7 五、發明説明(13 ) 露鋰、鈦及氧來源。锶與鈦的比率大約是1:1。氧氣分壓最 初設定在最小值,以利於以每分鐘大約0.3到0.5 nm的生長 速度來生長推測的锶鈦酸鹽。在初步生長锶鈦酸鹽後,將 氧氣分壓遞增到大約最初的最小值。氧氣過壓會導致在基 礎基板與生長中之鋰鈦酸鹽層之間的界面上生長非結晶氧 化矽。生長氧化矽層起因於氧氣會通過生長中之鋰鈦酸鹽 層擴散到位於基礎基板表面上氧氣與矽產生化學反應的表 面。鋰鈦酸鹽生長成為有序單結晶,並且具有相對於整齊 2x1結晶結構之基礎基板旋轉45°的結晶方向。否則,鋰鈦 酸鹽層可能存在應變,這是因為矽基板與生長晶體之間晶 格常數微幅不匹配所致,而在非結晶氧化矽中間層可減緩 此類的應變。例如,容納缓衝層的厚度大約在2 nm到100 nm的範圍内,並且最好是大於約5 nm的厚度。氧化石夕非結 晶中間層厚度大約在0.5 n m到5 n m的範圍内,並且最好是 大約1.5 nm到2.5 nm的厚度。 在锶鈦酸鹽生長到所希望的厚度後,接著藉由模板層來 覆蓋單結晶锶鈦酸鹽,以促進後續生長所希望的磁阻材料 磊晶層。在形成模板之後,接著以如上文所述的類似方 法,藉由MBE來生長磁阻材料(例如,CMR)。 藉由如上文所述的方法並加上額外缓衝層沉澱步驟,即 可形成如圖2所示的結構。在沉澱單結晶磁阻層之前,會先 形成覆蓋模板層的緩衝層。如果緩衝層是超晶格(例如, (LaMn〇3)3/SrMn03)),,則可在如上文所述的模板上藉由 (例如)MBE來沉澱此類的超晶格。其他適合的緩衝層實例 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 訂k 503459 A7 B7 V. Description of the invention (11) In the body layer (the specific embodiment is not shown in the figure). Fig. 6 shows a schematic sectional view of a part of a magnetoresistive structure 78 according to another embodiment of the present invention. The structure 78 is similar to the magnetoresistive structure 72 described above, except that the synthetic semiconductor layer 74 is juxtaposed with the magnetoresistive layer 26. The method of forming the magnetoresistive layer 26 is substantially the same as that described above. The template material of the template layer 30 is appropriately selected to prepare the epitaxial growth magnetoresistive layer 26. Once the layer 26 has been grown, a portion of the engraved layer is exposed to the layer 24. On the exposed area, a selective epitaxial growth of a suitable synthetic semiconductor material (including any material as described above) is performed to form the semiconductor layer 74. Alternatively, because the thermal budgets of the synthetic semiconductor material and the magnetoresistive material are substantially the same, the order of the precipitation layers may be reversed (eg, the semiconductor layer 74 may be precipitated, then the magnetoresistive layer 26 may be etched, and then the magnetoresistive layer 26 is grown). The method of manufacturing a magnetoresistive structure such as the structure shown in Figs. The method begins by providing a single crystal semiconductor substrate including silicon or germanium. According to a preferred embodiment of the present invention, the semiconductor crystal substrate is a silicon wafer having a (100) direction. The substrate is preferably oriented with the axis at most about 0.5 ° from the axis. At least a part of the semiconductor substrate has a bare surface, but other parts of the substrate may surround other structures, as described below. In this context, the term " bare " means that part of the surface of the substrate has been removed to remove oxides, contaminants or other heterogeneous materials. It is well known that bare silicon is highly reactive and easily forms natural oxidation. The term "naked" encompasses such natural oxides. It is also possible to intentionally grow thin silicon oxide on a semiconductor substrate, however such growth oxides are not necessary for the method according to the invention. For epitaxial growth of single crystals -14- This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 503459 A7 B7 V. Description of the invention (12) The oxide layer to cover the single crystal substrate must be removed first An oxide layer to expose the crystal structure of the base substrate. The following method is best achieved by a molecular beam epitaxy (MBE) method, although other epitaxial growth methods may be used in accordance with the present invention. Natural oxides are removed by first thermally precipitating a thin layer of strontium, barium, a combination of lithium and barium or other alkaline earth metals or alkaline earth metals in an MBE device. In the case of rhenium, the substrate is then heated to approximately 800 ° C to allow lithium to react chemically with the natural silicon oxide layer. Lithium is used to decompose silicon oxide, leaving a non-oxidized silicon surface. The resulting surface includes strontium, oxygen, and silicon, and presents a neat 2x1 structure. The neat 2x1 structure forms a template for the orderly growth of a monocrystalline oxide overlay. The template provides the necessary chemical and physical properties to build up a crystal-grown overlay. According to an alternative embodiment of the present invention, the natural silicon oxide can be converted and the substrate surface can be prepared to grow an early crystalline oxide layer by immersing a substrate such as an oxide chain, a barium oxide chain, or an oxide on the substrate surface at a low temperature by M BE. An alkaline earth metal oxide such as barium then heats the structure to about 800 QC. At this temperature, the solid state reaction between lithium oxide and natural silicon oxide results in the reduction of natural silicon oxide, leaving a neat 2x1 structure with lithium, oxygen, and silicon on the substrate surface. Again, a template is formed in this manner to subsequently grow an ordered single crystal oxide layer. According to a specific embodiment of the present invention, after removing silicon oxide on the surface of the substrate, the substrate is cooled to a temperature in the range of about 200 to 800 ° C, and lithium titanic acid is grown on the template layer by molecular beam epitaxial growth. Salt layer. The MB E method starts with the opening shutter in the MBE device. The paper size is -15. This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm). 503459 A7 B7 V. Description of the invention ( 13) Expose lithium, titanium and oxygen sources. The ratio of strontium to titanium is approximately 1: 1. The oxygen partial pressure was initially set to a minimum value to facilitate the growth of the putative strontium titanate at a growth rate of about 0.3 to 0.5 nm per minute. After the initial growth of strontium titanate, the oxygen partial pressure is increased to approximately the initial minimum. Oxygen overpressure can cause amorphous silicon oxide to grow at the interface between the base substrate and the growing lithium titanate layer. The growth of the silicon oxide layer is due to the diffusion of oxygen through the growing lithium titanate layer to the surface of the base substrate where the oxygen reacts with the silicon. Lithium titanate grows into ordered single crystals and has a crystal orientation rotated 45 ° relative to the base substrate with a neat 2x1 crystal structure. Otherwise, the lithium titanate layer may have strain, which is caused by a slight mismatch in the lattice constant between the silicon substrate and the growing crystal, and the intermediate layer of amorphous silicon oxide can reduce such strain. For example, the thickness of the accommodating buffer layer is in the range of about 2 nm to 100 nm, and is preferably greater than about 5 nm. The thickness of the oxide stone non-crystalline intermediate layer is in the range of about 0.5 nm to 5 nm, and preferably it is about 1.5 nm to 2.5 nm. After the strontium titanate is grown to the desired thickness, the single crystal strontium titanate is then covered with a template layer to promote subsequent growth of the desired magnetoresistive material epitaxial layer. After forming the template, a magnetoresistive material (e.g., CMR) is then grown by MBE in a similar manner as described above. By the method described above and adding an additional buffer layer precipitation step, the structure shown in Fig. 2 can be formed. Before the single crystal magnetoresistive layer is precipitated, a buffer layer covering the template layer is formed. If the buffer layer is a superlattice (for example, (LaMn03) 3 / SrMn03)), such a superlattice can be precipitated on the template as described above by, for example, MBE. Examples of other suitable buffer layers -16- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) binding

503459 A7 B7 五、發明説明(14 ) 包括SrMn03和LaMn03。 如上文所述的方法說明一種藉由分子束磊晶生長方法來 形成磁阻結構的方法,其中該半導體結構包含一矽基板、 一覆蓋氧化物層及一單結晶磁阻層。還可能藉由化學蒸汽 化澱積(chemical vapor deposition ; CVD)、金屬有機 化學蒸汽;殿積(metal organic chemical vapor deposition ; MOCVD)、遷移率增強型磊晶生長 (migration enhanced epitaxy ; MEE)、原子層蠢晶生長 (atomic layer epitaxy ; ALE)、物理蒸汽化澱積 (physical vapor deposition ; PVD) 、4匕學溶齊J ;殿積 (chemical solution deposition ; CSD)、脈衝雷射;殿積 (pulsed laser deposition ; PLD)等等來實現此項方法。 另外,藉由類似的方法,還可生長其他的單結晶容納緩衝 層,諸如,驗土金屬鈦酸鹽、驗土金屬錯酸鹽、驗土金屬 铪酸鹽、鹼土金屬鈕酸鹽、鹼土金屬釩酸鹽、鹼土金屬釕 酸鹽、鹼土金屬銳酸鹽、如驗土金屬鍚基i弓鈇礙(alkaline earth metal tin-based perovskite)之類的氧化舞鈦礦、 鑭鋁酸鹽、氧化鑭銃及氧化釓。另外,藉由諸如MBE的類 似方法,還可沉澱其他的第III-V及II-VI族單結晶合成半 導體層,以覆蓋單結晶磁阻層。 磁阻材料與單結晶氧化物容納緩衝層的每種變化都是使 用適當的模板層,以利於開始生長磁阻層。 於前面的說明書中,已參考特定具體實施例來說明本發 明。然而,熟知技藝人士應明白本發明的各種修改並且容 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) ❿ 裝 訂503459 A7 B7 5. Description of the invention (14) Including SrMn03 and LaMn03. The method described above illustrates a method for forming a magnetoresistive structure by a molecular beam epitaxial growth method, wherein the semiconductor structure includes a silicon substrate, a cover oxide layer, and a single crystal magnetoresistive layer. It is also possible to use chemical vapor deposition (CVD), metal organic chemical vapor; metal organic chemical vapor deposition (MOCVD), migration enhanced epitaxy (MEE), atoms Atomic layer epitaxy (ALE), physical vapor deposition (PVD), 4D science, J; chemical solution deposition (CSD), pulsed laser; pulsed laser deposition; PLD) and so on. In addition, by a similar method, other single crystal containing buffer layers can be grown, such as soil test metal titanate, soil test metal salt, soil test metal salt, alkaline earth metal button salt, alkaline earth metal. Vanadates, alkaline earth metal ruthenates, alkaline earth metal sharps, oxidized titanites such as alkaline earth metal tin-based perovskite, lanthanum aluminates, lanthanum oxides Thorium and thorium oxide. In addition, by similar methods such as MBE, other Group III-V and II-VI single crystal synthetic semiconductor layers can also be deposited to cover the single crystal magnetoresistive layer. Each variation of the magnetoresistive material and the single crystal oxide containing buffer layer uses an appropriate template layer to facilitate the growth of the magnetoresistive layer. In the foregoing specification, the invention has been described with reference to specific embodiments. However, those skilled in the art should understand the various modifications and contents of the present invention. -17- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ❿ Binding

線 B7 五、發明説明(15 ) 易修改,而不會脫離如下文中申請專利範例所提供之本發 明的範脅與精神。因此,說明書暨附圖應視為解說,而不 應視為限制,並且所有此類的修改皆屬本發明範疇内。 已說明關於特定具體實施例的優勢、其他優點及問題解 決方案。但是,可導致任何優勢、優點及解決方案發生或 更顯著的優勢、優點、問題解決方案及任何元件不應被理 解為任何或所有申料難例的關鍵、必要項或基本功能 或元件。本文中所使用的術語”包括”、”包含"或其任何其 他的變化都是用來涵蓋非專有内含項,使得包括元件清單 的方法、方法、物品或裝置不僅包括這些元件,而且還包 括未明確列出或此類方法、方法‘物^裝置原有的其他 -18-Line B7 5. The description of the invention (15) is easy to modify without departing from the scope and spirit of the invention provided by the patent application examples below. Accordingly, the description and drawings are to be regarded as illustrative, and not as restrictive, and all such modifications are within the scope of the present invention. Advantages, other advantages, and problem solutions for specific embodiments have been described. However, any advantage, advantage, and solution that may cause or become more significant, advantage, advantage, problem solution, and any element should not be interpreted as a key, necessary item, or basic function or element of any or all difficult cases. As used herein, the terms "including", "including" or any other variation thereof are used to encompass non-proprietary inclusions such that a method, method, article, or device that includes a list of elements includes not only those elements, but also It also includes other methods not explicitly listed or such methods and methods

Claims (1)

A B c D 第’0 9 Ο 1 1 7 9 Ο 6號專利申請案 中:文中請專利範圍修正本(91年8月) 六、申請專利範圍 1. 一種磁阻裝置結構,包括: 一单結晶半導體基板, 一單結晶絕緣材料層,其被磊晶生長以覆蓋該基板; 以及 一磁阻材料層,其被磊晶生長以覆蓋該單結晶絕緣材 料層。 2. 如申請專利範圍第1項之結構,其中該基板包含矽。 3. 如申請專利範圍第1項之結構,其中該單結晶絕緣材料層 包含一選自由金屬氧化物和金屬氮化物所組成之群組的 材料。 4. 如申請專利範圍第3項之結構,其中該單結晶絕緣材料層 包含一選自由下列項目所組成之群組的材料,包括:鹼 土金屬欽酸鹽、驗土金屬結酸鹽、驗土金屬給酸鹽、驗 土金屬组酸鹽、驗土金屬鈒酸鹽、驗土金屬釕酸鹽、驗 土金屬鈮酸鹽、鍚基鈣鈦礦、鑭鋁酸鹽、氧化鑭銃、氧 化、氮化鎵及氮化I呂。 5. 如申請專利範圍第3項之結構,其中該磁阻材料層包括一 經锰礦妈鈦礦(manganite perovskite)。 6. 如申請專利範圍第3項之結構,其中該磁阻材料層包括一 具有一(AxBi.dCOs合成物的材料,其中A係選自由鑭和 鈥所組成的群組,B係選自由勰、鋇、鈣和鉛所組成的群 組,並且X介於0至1範圍内,而C係選自Mn、(MnyCo!· y)(y大於0且小於或等於1)和(MnzNh-zKz大於0且小於或 等於1)所組成的群組。 O:\72\72423-910802.DOa 5 ~ 1 ~ 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) A8 B8AB c D No. '0 9 Ο 1 1 7 9 Ο 6 Patent application: In the text, please amend the patent scope (August 91) 6. Scope of patent application 1. A magnetoresistive device structure, including: a single crystal A semiconductor substrate, a single crystal insulating material layer, which is epitaxially grown to cover the substrate; and a magnetoresistive material layer, which is epitaxially grown, to cover the single crystal insulating material layer. 2. The structure according to item 1 of the patent application scope, wherein the substrate comprises silicon. 3. The structure according to item 1 of the patent application scope, wherein the single crystalline insulating material layer comprises a material selected from the group consisting of a metal oxide and a metal nitride. 4. The structure of item 3 of the scope of patent application, wherein the single crystalline insulating material layer comprises a material selected from the group consisting of alkaline earth metal acetic acid salt, soil test metal silicate, soil test Metal salt, metal test salt, metal test salt, metal test ruthenium, metal test niobate, osmium perovskite, lanthanum aluminate, lanthanum osmium oxide, oxidation, GaN and Nitride. 5. The structure of claim 3, wherein the magnetoresistive material layer includes a manganite perovskite. 6. The structure of claim 3, wherein the magnetoresistive material layer includes a material having an (AxBi.dCOs composition, where A is selected from the group consisting of lanthanum and ', and B is selected from the group consisting of 勰, Barium, calcium, and lead, and X ranges from 0 to 1, and C is selected from Mn, (MnyCo! · Y) (y is greater than 0 and less than or equal to 1), and (MnzNh-zKz Group greater than 0 and less than or equal to 1) O: \ 72 \ 72423-910802.DOa 5 ~ 1 ~ This paper size applies to China National Standard (CNS) A4 (210X 297 mm) A8 B8 如申请專利範圍第6項之^r槿# 8. 9· 層,以覆蓋該單結㈣緣;;/結構進—步包括—模板 如申請專利範圍第7項之結構,其中該模板層包括一包含 0的層,以終止該單結晶絕緣材料層。 申π專利乾圍第8項之結構,其中該模板層的厚 到10層單分子層。 10.1申請專利範圍第9項之結構,該結構進—步包括-非結 日日乳化物,其被形成於該單結晶絕緣材料層之下。 U· ^請專利第丨項之結構,騎構進—步包括一非結 晶乳化物,其被形成於該單結晶絕緣材料層之下。 12.如申請專利範圍第W之結構,該結構進一步包括一至少 部份形成於該基板中的積體邏輯元件。 13·如申請專利範圍第12項之結構,該結構進—步包括一至 少部份形成於該磁阻材料層之中的磁性感測器。 14.如中請專利範圍第13項之結構,其中該磁性感測器包括 一記憶體元件。 15.如申請專利範圍第13項之結構,該結構進—步包括一互 相連接,其被形成於並電氣互相連接該積體邏輯元件與 該記憶體元件。 16·如申請專利範圍第丨項之結構,該結構進一步包括一合成 半導體層,其被形成以覆蓋該磁阻材料層。 17·如申請專利範圍第16項之結構,該結構進一步包括一至 夕、。卩伤形成於s亥合成半導體層中的半導體裝置。 -2 - O:\72\72423.910802.DOQ 5 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 9 45 03 5 A B c D 六、申請專利範圍 18. 如申請專利範圍第1項之結構,該結構進一步包括一合成 半導體層,其被形成以覆蓋該單結晶絕緣材料層。 19. 如申請專利範圍第18項之結構,該結構進一步包括一至 少部份形成於該合成半導體層中的半導體裝置。 20. 如申請專利範圍第1項之結構,其中該磁阻材料層包括一 單結晶層。 21. 如申請專利範圍第1項之結構,其中該磁阻材料層包含一 具有一有序單結晶結構之材料層。 22. —種積體磁阻裝置結構,包括: 一單結晶矽基板; 一 CMOS電路,其至少部份形成於該基板内; 一單結晶鹼土金屬氧化物層,其被磊晶生長以覆蓋該 基板的一部份; 一非結晶氧化矽層,其被形成於該單結晶鹼土金屬氧 化物層之下; 一磁阻材料層,其被蠢晶生長以覆蓋該單結晶驗土金 屬氧化物層; 一磁阻感測裝置,其至少部份形成於該磁阻材料層 内;以及 一互相連接,其電氣耦合該CMOS電路及該磁阻感測 裝置。 23. 如申請專利範圍第22項之結構,其中該單結晶鹼土金屬 氧化物層包括SrgBa^TiOs,其中g值介於0到1範圍内。 O:\72\72423-910802.D0Q 5 ~ 3 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 申請專利範圍 24. t申請專利範圍第23項之結構,其中該單結晶驗土金屬 氧化物層包括一厚度大於約5 nm的層。 25. Μ請專利範圍第23項之結構,其中該磁阻材料層包括 -有(AxBi.JCC^合成物的材料,其中a係選自由鋼 和敍所組成的群組,B係選自由銷、鋇、詞和賴組成的 群組’亚且X介於0至1範圍内,而C係選自Μη、 (MnyC〇1.y)(y大於〇且小於或等於〇和(MnzNi^z大於 〇且小於或等於1)所組成的群組。 模 26·如申請專利·第25項之結構,該結構進—步包括 板層,以覆蓋該單結晶絕緣材料層。 包 27.如申請專利範圍第26項之結構,其中該模板層包括 合B-0的層,以終止該單結晶絕緣材料層。 28·如申請專利範圍第27項之結構,其中該模板層的厚度為i 到1 0層單分子層。 29· ^請專利範圍第25項之結構,其中該模板包括一錄及 氧的單分子層。 3〇·如申請專利範圍第22項之結構,其中該磁阻材料層包括 一單結晶層。 々申明專利圍第22項之結構,其中該磁阻材料層包含 具有一有序單結晶結構之材料層。 包 32·如申請專利範圍第22項之結構,其中該磁阻感測裝置 括一磁性記憶體讀取或寫入裝置。 33.=請專利範圍第22項之結構,其中該磁阻材料層包含 一能夠呈現超巨磁阻特性的材料。 〇:\72\72423-9 i〇8〇2.D〇a -4- 50345( Os A B c D 六、申請專利範圍 34. 如申請專利範圍第22項之結構,該結構進一步包括一單 結晶合成半導體材料層,其被磊晶生長以覆蓋該單結晶 驗土金屬氧化物層。 35. —種製造磁阻裝置結構之方法,該方法包括下列步驟: 提供一具有一第一晶格常數及第一定向的半導體基 板; 磊晶生長一第一單結晶材料層,以覆蓋該基板,該第 一層具有應變力並且其特徵為第二晶格常數; 於第一層下方形成一應變力緩和層,以缓和該第一層 的應變力;以及 磊晶生長一第二層,以覆蓋該第一層,該第二層能夠 呈現磁阻特性,並且晶格匹配於該第一層。 3 6.如申請專利範圍第35項之方法,其中磊晶生長一第一層 的步驟包括磊晶生長一單結晶材料,其具有相對於該第 一定向旋轉的結晶方向。 37.如申請專利範圍第36項之方法,其中磊晶生長一第一層 的步驟包括生長一單結晶材料,其包含一第一晶格常 數、旋轉、對該第一晶格常數的晶格匹配約2百分比範圍 内。 38·如申請專利範圍第35項之方法,該方法進一步包括形成 一模板層,以覆蓋該第一層。 3 9.如申請專利範圍第38項之方法,其中磊晶生長一第一層 的步驟包括藉由選自由MBE、MOCVD、MEE、CVD、 O:\72\72423-910802.DOC\ 5 - 5 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐)For example, the ^ r hibiscus # 8. 9 · layer of the scope of the patent application, to cover the single knot margin; / structure further includes-template such as the structure of the scope of the patent application, the template layer includes A layer containing 0 to terminate the single crystalline insulating material layer. The structure of item 8 of the patent application, wherein the template layer is as thick as 10 monomolecular layers. 10.1 The structure of item 9 of the scope of patent application, the structure further includes-non-day-to-day emulsions, which are formed under the single crystalline insulating material layer. U. The structure of item No. 丨, the step of riding structure includes a non-crystalline emulsion, which is formed under the single crystalline insulating material layer. 12. The structure as claimed in claim W, the structure further comprising an integrated logic element at least partially formed in the substrate. 13. The structure according to item 12 of the scope of patent application, the structure further comprising a magnetic sensor formed at least partially in the magnetoresistive material layer. 14. The structure of claim 13 in the patent application, wherein the magnetic sensor includes a memory element. 15. The structure according to item 13 of the scope of patent application, the structure further comprising an interconnection, which is formed and electrically interconnects the integrated logic element and the memory element. 16. The structure according to item 丨 of the scope of patent application, the structure further comprising a synthetic semiconductor layer formed to cover the magnetoresistive material layer. 17. If the structure of item 16 of the scope of patent application is applied, the structure further includes one to one. A semiconductor device formed in a semiconductor composite layer was scratched. -2-O: \ 72 \ 72423.910802.DOQ 5 This paper size is applicable to China National Standard (CNS) Α4 size (210 X 297 mm) 9 45 03 5 AB c D 6. Application for patent scope 18. If the scope of patent application The structure according to item 1, further comprising a synthetic semiconductor layer formed to cover the single-crystal insulating material layer. 19. The structure of claim 18, the structure further includes a semiconductor device formed at least partially in the synthetic semiconductor layer. 20. The structure of claim 1, wherein the magnetoresistive material layer includes a single crystalline layer. 21. The structure as claimed in claim 1, wherein the magnetoresistive material layer includes a material layer having an ordered single crystal structure. 22. A kind of integrated magnetoresistive device structure, including: a single crystalline silicon substrate; a CMOS circuit formed at least partially in the substrate; a single crystalline alkaline earth metal oxide layer which is epitaxially grown to cover the A part of the substrate; an amorphous silicon oxide layer formed under the single crystal alkaline earth metal oxide layer; a magnetoresistive material layer grown by stupid crystals to cover the single crystal earth metal oxide layer A magnetoresistive sensing device, which is at least partially formed in the magnetoresistive material layer; and an interconnect, which is electrically coupled to the CMOS circuit and the magnetoresistive sensing device. 23. The structure of claim 22, wherein the single crystal alkaline earth metal oxide layer includes SrgBa ^ TiOs, where the g value is in the range of 0 to 1. O: \ 72 \ 72423-910802.D0Q 5 ~ 3 This paper size is applicable to Chinese National Standard (CNS) A4 (210 X 297 mm). The scope of patent application is 24. The structure of item 23 of the patent scope, where the list The crystalline soil metal oxide layer includes a layer having a thickness greater than about 5 nm. 25. The structure of item 23 of the patent scope, wherein the magnetoresistive material layer includes-there is (AxBi.JCC ^ composite material, where a is selected from the group consisting of steel and Syria, B is selected from the group consisting of pins , Barium, word and Lai group 'Asia and X is in the range of 0 to 1, and C is selected from Mη, (MnyC〇1.y) (y is greater than 0 and less than or equal to 0 and (MnzNi ^ z A group consisting of greater than 0 and less than or equal to 1). Mold 26. The structure of item 25, such as a patent application, which further includes a plate layer to cover the single crystalline insulating material layer. Package 27. If applied The structure of the scope of the patent No. 26, wherein the template layer includes a B-0 layer to terminate the single crystalline insulating material layer. 28. The structure of the scope of the patent application No. 27, wherein the thickness of the template layer is i to 10 layers of monomolecular layers. 29. The structure of item 25 in the patent scope, wherein the template includes a single molecular layer with oxygen. 30. The structure of item 22 in the scope of patent applications, wherein the magnetoresistive material The layer includes a single crystalline layer. (2) The structure of claim 22 in patent claim, wherein the magnetoresistive material layer includes Material layer with ordered single crystal structure. Package 32. The structure of item 22 in the scope of patent application, wherein the magnetoresistive sensing device includes a magnetic memory reading or writing device. 33. = Please refer to item 22 in the scope of patent Structure, wherein the magnetoresistive material layer includes a material capable of exhibiting super giant magnetoresistive characteristics. 〇: \ 72 \ 72423-9 i〇80〇2.D〇a -4- 50345 (Os AB c D VI. Application Scope of patent 34. If the structure of the scope of patent application No. 22 is applied, the structure further includes a single crystal synthetic semiconductor material layer, which is epitaxially grown to cover the single crystal soil test metal oxide layer. 35. A kind of manufacturing magnetic resistance A method of device structure. The method includes the following steps: providing a semiconductor substrate having a first lattice constant and a first orientation; epitaxially growing a first single crystalline material layer to cover the substrate, the first layer having Strain force and is characterized by a second lattice constant; forming a strain force relaxation layer under the first layer to ease the strain force of the first layer; and epitaxial growth of a second layer to cover the first layer, This second layer can render Magnetoresistive characteristics, and the lattice matches the first layer. 3 6. The method of claim 35, wherein the step of epitaxial growth of a first layer includes epitaxial growth of a single crystal material, which has a relative to 37. The method of claim 36, wherein the step of epitaxially growing a first layer includes growing a single crystalline material including a first lattice constant, rotation, The lattice matching of the first lattice constant is within a range of about 2%. 38. The method of claim 35, further comprising forming a template layer to cover the first layer. 3 9. The method of claim 38, wherein the step of epitaxially growing a first layer includes selecting from MBE, MOCVD, MEE, CVD, O: \ 72 \ 72423-910802.DOC \ 5-5 This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) P/D、PLD、CSD和ALE所組成之群組的方法進行晶蟲 生長的步驟。 40. 如申請專利範圍第39項之方法,其中形成一第一層的步 驟包含生長—層的步驟,該層包含-選自由下列項目所 、、且成之群組的絕緣材料,包括··驗土金屬鈦酸鹽、驗土 金屬鋸酸鹽、鹼土金屬铪酸鹽、鹼土金屬鈕酸鹽、鹼土 、屬飢S文鹽、驗土金屬釕酸鹽、驗土金屬銳酸鹽、包含 屬錯基飼鈦確的勞叙礦、鋼銘酸鹽、氧化職及氧化 此。、 41. 如申請專利範圍第39項之方法,其中蠢晶生長一第二層 的步驟包括藉由選自由MBE、MOCVD、ME£、CVD、 D PLD、CSD和ALE所組成之群組的方法進行晶蠢 生長的步驟。 42·如申請專利範圍第41項之方法,其中蟲晶生長一第二層 的步驟包括生長一磁阻材料層的步驟,該磁阻材料層包 έ (AxBi-x)C〇3 ’其中a係選自由鋼和歛所組成的群組, B係選自由勰、鋇、鈣和鉛所組成的群組,並且χ介於〇 至1範圍内,而C係選自Mn、(MnyC〇i-y)(y大於〇且小於 或等於1)和(MnzNiNz)(z大於〇且小於或等於1:)所組成的 群組。 43.如申請專利範圍第42項之方法,其中形成一模板層的步 驟包括終止生長該第一層的步驟,該第一層具有1到1〇層 單分子層氧,以及一選自由鈦、鋇、鈣和鉛所組成之群 組的材料。 0:\72\72423,9l〇8〇2.D〇a 5 6-The method of grouping P / D, PLD, CSD and ALE performed the steps of crystal growth. 40. The method of claim 39, wherein the step of forming a first layer includes a step of growing-a layer, the layer comprising-selecting an insulating material selected from the group consisting of: Soil test metal titanate, soil test metal sawate, alkaline earth metal sulphate, alkaline earth metal button salt, alkaline earth, genus stern salt, soil test metal ruthenate, soil test sharp metal, containing genus Sulfur-based titanium alloys such as Laosu ore, steel salt, oxidizer and oxidizer. 41. The method of claim 39, wherein the step of growing a second layer of stupid crystals includes a method selected from the group consisting of MBE, MOCVD, ME £, CVD, D PLD, CSD, and ALE. Perform crystal stupid growth steps. 42. The method of claim 41, wherein the step of growing a second layer of vermicular crystals includes the step of growing a layer of magnetoresistive material, the layer of magnetoresistive material including (AxBi-x) C03 'where a Is selected from the group consisting of steel and steel, B is selected from the group consisting of gadolinium, barium, calcium, and lead, and χ is in the range of 0 to 1, and C is selected from Mn, (MnyCoi ) (y is greater than 0 and less than or equal to 1) and (MnzNiNz) (z is greater than 0 and less than or equal to 1 :). 43. The method of claim 42, wherein the step of forming a template layer includes the step of terminating the growth of the first layer, the first layer having 1 to 10 monomolecular layers of oxygen, and a member selected from titanium, A group of materials consisting of barium, calcium, and lead. 0: \ 72 \ 72423,9l〇8〇2.D〇a 5 6- .,請專利範圍第42項之方法,該方法進1包括一至 45 1部份於該第二層中形成—雜感測器的步驟。 ./請專利範圍第35項之方法,該方法進-步包括一至 〉部份於該基板中形成一 cm〇s電路的步驟。 晶 • 專利!圍第35項之方法,該方法進-步包括蟲 一 一第二單結晶層的步驟,該第三單結晶層包含一覆 蓋該第二層的合成半導體材料。 如申”月專利範圍第35項之方法,該方法進一步包括 步驟: 去除該第二層的一部份,以曝露該第一層的一部份; 以及 磊晶生長一第三層,該第三層包含一覆蓋該第一層一 部份的合成半導體材料。 如申明專利範圍第3 5項之方法,該方法進一步包括下列 步驟: 猫日日生長一第三單結晶層,該第三單結晶層包含一覆 蓋該第一層的合成半導體材料;以及 在蠢晶生長一第二層的步驟之前,先去除該第三層的 一部份,以曝露該第一層的一部份。 49. 一種製造磁阻裝置結構之方法,該方法包括下列步驟: 提供一單結晶矽基板; 形成一積體電路,其至少部份形成於該矽基板内; 晶蠢生長一單結晶氧化物層,以覆蓋該矽基板; O:\72\72423-910802. DOO 本紙張尺度適用中國國家標準(C^7a4規格χ 公爱) 503459 A B CD 六、申請專利範圍 於生長該單結晶氧化物層期間,在該單結晶氧化物層 下形成一非結晶氧化物層; 藉由形成一模板層,以終止晶磊生長一單結晶氧化物 的步驟; 晶磊生長一磁阻材料層,以覆蓋該模板層; 形成一磁阻裝置,其至少部份形成於該磁阻材料層 内;以及 形成一電氣互連,其介於該積體電路及該磁阻裝置之 間。〜 5 0.如申請專利範圍第49項之方法,其中磊晶生長一單結晶 氧化物層的步驟包括藉由選自由MBE、MOCVD、 MEE、CVD、PVD、PLD、CSD和ALE所組成之群組的 方法以形成一 SrgBa^TiOs層的步驟,其中g值介於0到1 範圍内。 51. 如申請專利範圍第50項之方法,其中形成一非結晶氧化 物層的步驟包括於磊晶生長一單結晶氧化物層期間維持 氧氣過壓。 52. 如申請專利範圍第50項之方法,其中磊晶生長一第一磁 阻材料層的步驟包括,藉由選自由MBE、M0CVD、 MEE、CVD、PVD、PLD、CSD和ALE所組成之群組的 方法,以磊晶生長一包含(AxBi-JCOs之層的步驟,其中 A係選自由鑭和鈥所組成的群組,B係選自由鋰、鋇、鈣 和鉛所組成的群組,並且X介於0至1範圍内,而C係選自 O:\72\72423-910802.DOa 5 ~ 8 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 50345( 8 8 8 8 A B c D 六、申請專利範圍 Mn、(MnyCobyKy大於0且小於或等於1)和(MnzNiN Z)(z大於0且小於或等於1)所組成的群組。 5 3.如申請專利範圍第52項之方法,其中形成一模板層的步 驟包括終止生長該單結晶氧化物層的步驟,該單結晶氧 化物層具有1到10層單分子層氧,以及一選自由鈦、鋇、 姜弓和錯所組成之群組的材料。 O:\72\72423-910802.DOC\ 5 ~ 9 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)., Please refer to the method of the scope of patent No. 42. The method further includes a step of forming a hybrid sensor in the second layer. ./Please claim the method of the 35th item of the patent, which further comprises a step of forming a cmOs circuit in the substrate. Crystal • Patent! The method according to item 35, further comprising the step of a second single crystal layer, the third single crystal layer including a synthetic semiconductor material covering the second layer. If applying for the method of the 35th patent scope, the method further includes the steps of: removing a part of the second layer to expose a part of the first layer; and epitaxially growing a third layer, the first The three layers include a synthetic semiconductor material covering a part of the first layer. If the method of claim 35 is claimed, the method further includes the following steps: A cat grows a third single crystal layer every day, and the third sheet The crystalline layer includes a synthetic semiconductor material covering the first layer; and before the step of growing a second layer of stupid crystals, removing a portion of the third layer to expose a portion of the first layer. A method for manufacturing a magnetoresistive device structure, the method includes the following steps: providing a single crystalline silicon substrate; forming an integrated circuit at least partially formed in the silicon substrate; growing a single crystalline oxide layer, To cover the silicon substrate; O: \ 72 \ 72423-910802. DOO The paper size is applicable to Chinese national standards (C ^ 7a4 specifications χ public love) 503459 AB CD 6. The scope of application for patents is to grow the single crystal oxide layer In the meantime, an amorphous oxide layer is formed under the single crystalline oxide layer; the step of terminating the epitaxial growth of a single crystalline oxide is formed by forming a template layer; the epitaxial growth is a layer of a magnetoresistive material to cover the A template layer; forming a magnetoresistive device, which is at least partially formed in the magnetoresistive material layer; and forming an electrical interconnection, which is between the integrated circuit and the magnetoresistive device. ~ 5 0. If applied The method of item 49 of the patent, wherein the step of epitaxially growing a single crystalline oxide layer includes forming a method by a method selected from the group consisting of MBE, MOCVD, MEE, CVD, PVD, PLD, CSD, and ALE. The step of the SrgBa ^ TiOs layer, wherein the value of g is in the range of 0 to 1. 51. The method of claim 50, wherein the step of forming an amorphous oxide layer includes epitaxial growth of a single crystalline oxide The oxygen overpressure is maintained during the layer. 52. The method of claim 50, wherein the step of epitaxially growing a layer of the first magnetoresistive material includes, by selecting from the group consisting of MBE, MOCVD, MEE, CVD, PVD, PLD, CSD and ALE A method of epitaxially growing a layer containing AxBi-JCOs, where A is selected from the group consisting of lanthanum and ', B is selected from the group consisting of lithium, barium, calcium, and lead, and X In the range of 0 to 1, and C is selected from O: \ 72 \ 72423-910802.DOa 5 ~ 8 This paper size is applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) 50345 (8 8 8 8 AB c D 6. The group of patent application scope Mn, (MnyCobyKy is greater than 0 and less than or equal to 1) and (MnzNiN Z) (z is greater than 0 and less than or equal to 1). 5 3. The method of claim 52, wherein the step of forming a template layer includes the step of terminating the growth of the single crystal oxide layer, the single crystal oxide layer having 1 to 10 monomolecular layers of oxygen, and A material selected from the group consisting of titanium, barium, ginger bow, and copper. O: \ 72 \ 72423-910802.DOC \ 5 ~ 9 This paper size applies to China National Standard (CNS) A4 specification (210X297 mm)
TW090117906A 2000-07-24 2001-07-23 Magnetoresistive structure and process for fabricating same TW503459B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US62469900A 2000-07-24 2000-07-24

Publications (1)

Publication Number Publication Date
TW503459B true TW503459B (en) 2002-09-21

Family

ID=24502986

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090117906A TW503459B (en) 2000-07-24 2001-07-23 Magnetoresistive structure and process for fabricating same

Country Status (3)

Country Link
AU (1) AU2001276979A1 (en)
TW (1) TW503459B (en)
WO (1) WO2002009151A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452743B (en) * 2011-03-03 2014-09-11 Voltafield Technology Corp Method for fabrication magnetic sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248564A (en) * 1992-12-09 1993-09-28 Bell Communications Research, Inc. C-axis perovskite thin films grown on silicon dioxide
US5479317A (en) * 1994-10-05 1995-12-26 Bell Communications Research, Inc. Ferroelectric capacitor heterostructure and method of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452743B (en) * 2011-03-03 2014-09-11 Voltafield Technology Corp Method for fabrication magnetic sensor

Also Published As

Publication number Publication date
WO2002009151A3 (en) 2003-01-16
AU2001276979A1 (en) 2002-02-05
WO2002009151A2 (en) 2002-01-31

Similar Documents

Publication Publication Date Title
US6885065B2 (en) Ferromagnetic semiconductor structure and method for forming the same
US10783945B2 (en) Memory device
TWI311754B (en) Nanocrystalline layers for improved mram tunnel junctions and method for forming the same
US8218355B2 (en) Magnetoresistive element and magnetic memory
Lairson et al. Epitaxial PtFe (001) thin films on MgO (001) with perpendicular magnetic anisotropy
US7270896B2 (en) High performance magnetic tunnel barriers with amorphous materials
US7352021B2 (en) Magnetic random access memory devices having titanium-rich lower electrodes with oxide layer and oriented tunneling barrier
US20170358737A1 (en) Magnetic cell structures, and methods of fabrication
US8299552B2 (en) Magnetoresistive element and magnetic memory
Liu et al. Flexible oxide epitaxial thin films for wearable electronics: Fabrication, physical properties, and applications
US20080062581A1 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
TW201118870A (en) Magnetic memory devices
TW508849B (en) Microelectronic piezoelectric structure and method of forming the same
CN1726601A (en) Magnetic channel element and use its magnetic memory
TW200931698A (en) Sensor for a magnetic memory device and method of manufacturing the same
US20060012926A1 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
KR101537715B1 (en) Memory device
WO2015160093A2 (en) Memory element
Gao et al. Magnetoelectricity of CoFe2O4 and tetragonal phase BiFeO3 nanocomposites prepared by pulsed laser deposition
Chang et al. A fast route towards freestanding single-crystalline oxide thin films by using YBa 2 Cu 3 O 7-x as a sacrificial layer
TW503459B (en) Magnetoresistive structure and process for fabricating same
Mathews et al. Magnetic oxide nanowires with strain-controlled uniaxial magnetic anisotropy direction
WO2002009126A2 (en) Spin valve structure
Hwang et al. Induced high-temperature ferromagnetism by structural phase transitions in strained antiferromagnetic γ-Fe50Mn50 epitaxial films
US6835464B2 (en) Thin film device with perpendicular exchange bias

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees